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We investigate a compelling model of quintessential inflation in the context of α-attractors, which
naturally result in a scalar potential featuring two flat regions; the inflationary plateau and the quintessential
tail. The “asymptotic freedom” of α-attractors, near the kinetic poles, suppresses radiative corrections and
interactions, which would otherwise threaten to lift the flatness of the quintessential tail and cause a 5th-
force problem respectively. Since this is a nonoscillatory inflation model, we reheat the Universe through
instant preheating. The parameter space is constrained by both inflation and dark energy requirements. We
find an excellent correlation between the inflationary observables and model predictions, in agreement with
the α-attractors setup. We also obtain successful quintessence for natural values of the parameters. Our
model predicts potentially sizeable tensor perturbations (at the level of 1%) and a slightly varying equation
of state for dark energy, to be probed in the near future.
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I. INTRODUCTION

One of the greatest discoveries in cosmology was that
the Universe is currently undergoing accelerated expansion
[1,2]. To account for this, Einstein’s general relativity
demands that the dominant component of the Universe
content violates the strong energy condition. Assuming
that it is a barotropic fluid, its pressure must be negative
enough p < − 1

3
ρ. Such a mysterious substance is dubbed

“dark energy.”
By far, the simplest choice of dark energy is vacuum

density, due to a nonzero cosmological constant, for which
p ¼ −ρ. The main problem with this idea is that the
required value of the cosmological constant is staggeringly
small such that the vacuum density is about 10120 times
smaller than the Planck density, which corresponds to the
cutoff scale of the theory. This has been called “the worst
fine-tuning in Physics”.1 To overcome this, but at the
expense of introducing new physics, there have been
alternative proposals put forward.
A substance which can exhibit pressure negative

enough is a potentially dominated homogeneous scalar
field. Thus, it is possible for a dynamical scalar field to
drive the accelerated expansion of the Universe, therefore
being a type of dark energy. The idea has long been in use
when modelling cosmic inflation in the early Universe
(inflationary paradigm). Mirroring the mechanism used
to explain inflation, this idea can also be applied to
address the current accelerated expansion. A scalar field
responsible for late inflation is called quintessence;

the fifth element after baryons, CDM, photons and neu-
trinos [3–5].
Since they are both based on the same idea, it is natural to

attempt to unify cosmic inflation with quintessence.
Indeed, the mechanism in which a scalar field is both
driving primordial inflation and causing the current accel-
erated expansion, is called quintessential inflation [6].
Quintessential inflation is economical in that it models
both inflation and quintessence in a common theoretical
framework and employs a single degree of freedom. It also
features some practical advantages, for example the initial
conditions of quintessence are determined by the infla-
tionary attractor. As such the infamous coincidence prob-
lem (which corresponds to late inflation occurring at
present) is reduced to a constraint on the model parameters
and not on initial conditions.
Quintessential inflation models require the inflaton

potential energy density to survive until the present day
to act as dark energy. Amongst other things, this neces-
sitates a reheating mechanism alternative to the standard
assumption, in which, after the end of inflation, the inflaton
field decays into the thermal bath of the hot big bang. If
inflaton decay is not considered, then reheating must occur
by other means. Different reheating alternatives to inflaton
decay include instant preheating [7,8], curvaton reheating
[9–11], and gravitational reheating [12,13], amongst
others [14], which may or may not happen exclusively.
For example, gravitational reheating is always present,
but because it is a very inefficient mechanism it is over-
whelmed if another reheating mechanism is present. The
outcome of any of these reheating mechanisms must
complete and lead to radiation domination well before1by Laurence Krauss.
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the time of big bang nucleosynthesis (BBN). The temper-
ature of the Universe when radiation domination takes over
is called the reheating temperature Treh. Thus we need
Treh ≫ 1 MeV to avoid disturbing BBN.
In quintessential inflation models, if reheating is not

prompt, a period of kination exists, where the kinetic
density of the inflaton is the dominant energy density in
the Universe. During this period, the nondecaying mode for
gravitational waves is not suppressed and this produces a
spike in the gravitational wave spectrum at high frequen-
cies. The energy density of these gravitational waves may
be large enough to disturb the BBN process. As such it is
constrained and provides an upper limit on the duration of
kination. This, in turn, is a lower bound on the reheating
temperature.
The scalar potential in quintessential inflation typically

features two flat regions, which when traversed by the
scalar field, result in accelerated expansion, provided that
the scalar field dominates the Universe. These are called the
inflationary plateau and the quintessential tail and can lead
to the primordial and current accelerated expansion respec-
tively. Thus, the required potential is of runaway type, with
the global minimum displaced at infinity, where the
vacuum density is zero. The form of the quintessential
potential is non trivial, especially since the two plateaus
differ by more than a factor of 10100 in energy density.
Consequently, one needs to use a theoretical framework
that is valid at both these extreme energy scales.
A compelling way to naturally generate a scalar potential

with the desired two plateaus is the idea of α-attractors,
which is heavily used in inflationary model building
[15–37]. Recently, we have presented a new quintessential
inflation model along these lines [38]. Our model is in
excellent agreement for inflationary observables with the
CMB observations [39]. In our paper in Ref. [38] we
utilized the mechanism of gravitational reheating to
reheat the Universe after inflation, in alignment with
the economy of the quintessential inflation idea.
However, gravitational reheating is notoriously inefficient,
with a very low reheating temperature of approximately
Treh ∼ 104 GeV. As a result, the spike of gravitational
waves due to kination is large enough to challenge the BBN
process. This is the price to pay for economy. In this paper
we generalize our approach and employ the instant pre-
heating mechanism to reheat the Universe. Thus, we
envisage a coupling between our scalar field with some
other degree of freedom such that, after the end of inflation,
the rapid variation of the inflaton’s expectation value leads
to nonperturbative particle production, which generates the
radiation bath of the hot big bang. The process is modulated
by the coupling constant g. If g is small enough, instant
preheating becomes comparable to gravitational reheating.
Thus, in general we consider Treh > 104 GeV.
The setup of α-attractors also has another beneficial

consequence, apart from generating the potential plateaus.

It has to do with the suppression of radiative corrections
near the poles (so along the plateaus), which otherwise
threaten to lift the flatness of the quintessential tail, as
well as the suppression of interactions, which would
otherwise generate a 5th-force problem for quintessence.
Both these problems plague models of quintessence and
quintessential inflation alike. In Ref. [38], we had not
fully realized the beneficial effect of the α-attractors setup
in this respect. Thus, we aimed to avoid excessive inter-
actions by keeping the noncanonical field sub-Planckian
(the interactions are Planck-suppressed). However, as
demonstrated in Refs. [40,41], the suppression of loop
corrections and interactions along the plateaus (near the
poles) is such that even a super-Planckian excursion of the
noncanonical inflaton is admissible. We investigate this
issue in detail, but conservatively choose to avoid super-
Planckian values for our noncanonical inflation field in our
treatment.
We start with an overview of the model before noting

how a change of reheating mechanism affects the number
of remaining inflationary e-folds since observable scales
left the horizon during primordial inflation. We calculate
the inflationary observables before investigating how the
quintessence requirements determine the parameter space
in a model with instant preheating.
We use natural units, where c ¼ ℏ ¼ 1 and Newton’s

gravitational constant is 8πG ¼ m−2
P , with mP ¼ 2.43 ×

1018 GeV being the reduced Planck mass.

II. THE MODEL

A. The scalar potential

We consider the following model:

L ¼ Lkin þ LV þ Λ; ð1Þ

where Lkin is the kinetic Lagrangian density, LV is the
potential Lagrangian density and Λ is a cosmological
constant.
The kinetic Lagrangian density is

Lkin ¼
1
2
ð∂ϕÞ2

ð1 − ϕ2

6αm2
P
Þ2
; ð2Þ

where α > 0 is a parameter. This is the standard, nonca-
nonical form in the context of α-attractors [15–18]. It can be
realized in supergravity theories, when the Kähler manifold
is not trivial, such that Lkin features poles, characterized by
the α parameter.
For the potential Lagrangian density, we consider a

simple exponential function (possibly due to gaugino
condensation [42–44]). Thus, we have

−LV ¼ VðϕÞ ¼ V0e−κϕ=mP : ð3Þ
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where κ is a parameter (without loss of generality, we
consider κ > 0) and V0 is a constant density scale.
In an effort to minimize its potential density, the expect-

ation value of the field ϕ grows in time. However, it cannot
cross the poles at � ffiffiffiffiffiffi

6α
p

mP [15–18]. Thus, starting in
between the poles, we expect that it finally approaches the
value ϕ → þ ffiffiffiffiffiffi

6α
p

mP, which corresponds to nonzero poten-
tial density Vð ffiffiffiffiffiffi

6α
p

mPÞ ¼ V0e−κ
ffiffiffiffi
6α

p
.

We assume that, due to an unknown symmetry, the
vacuum density is zero. This was the standard assumption
before the discovery of dark energy. If a nonzero vacuum
density is assumed then we have the usual ΛCDM
cosmology. For motivating quintessence as the explanation
of the dark energy observations, the vacuum density has to
be zero. This fixes the cosmological constant in our model
to the value

Λ ¼ Vð
ffiffiffiffiffiffi
6α

p
mPÞ ¼ V0e−κ

ffiffiffiffi
6α

p
: ð4Þ

Defining n≡ κ
ffiffiffiffiffiffi
6α

p
and incorporating Λ, the scalar poten-

tial can now be expressed as

VðϕÞ ¼ V0e−n½enð1−
ϕffiffiffi

6α
p

mP
Þ − 1�: ð5Þ

To assist our intuition, it is useful to consider a
canonically normalized inflaton field φ. The form of the
kinetic Lagrangian density in Eq. (2) suggests the field

redefinition is obtained when ∂ϕ
∂φ ¼ 1 − ϕ2

6αm2
P
, which gives

ϕ ¼
ffiffiffiffiffiffi
6α

p
mP tanh

�
φffiffiffiffiffiffi
6α

p
mP

�
: ð6Þ

Then, the scalar potential, in terms of the canonical scalar
field becomes

VðφÞ ¼ e−2nM4

�
exp

�
n

�
1 − tanh

φffiffiffiffiffiffi
6α

p
mP

��
− 1

�
; ð7Þ

where we have defined M4 ≡ enV0, which stands for the
inflation energy scale. Note, also, that Λ ¼ e−2nM4.
Whereas the range of the noncanonical inflaton field ϕ is

bounded by the poles in Lkin: −
ffiffiffiffiffiffi
6α

p
< ϕ=mP <

ffiffiffiffiffiffi
6α

p
, the

range of the canonical inflaton field φ is unbounded:
−∞ < φ < þ∞. This is because the poles are transposed
to infinity when we switch from ϕ to φ. In effect, the scalar
potential VðφÞ becomes “stretched” as ϕ approaches the
poles [15–18]. Therefore, the potential VðφÞ features two
plateaus experienced by the field, one at early and one at
late times.
At early times (φ → −∞;ϕ → −

ffiffiffiffiffiffi
6α

p
mP), the potential

in Eq. (7) can be simplified to

VðφÞ ≃M4 expð−2ne
2φffiffiffi
6α

p
mPÞ; ð8Þ

which gives rise to the inflationary plateau. In the opposite
limit, towards late times (φ → þ∞;ϕ → þ ffiffiffiffiffiffi

6α
p

mP), the
potential in Eq. (7) becomes

V ¼ 2ne−2nM4 expð−2φ=
ffiffiffiffiffiffi
6α

p
mPÞ: ð9Þ

This corresponds to the quintessential tail. It is evident that
the potential density asymptotes to zero as φ → þ∞.
The evolution of the quintessential inflaton field goes as

follows. The field slow-rolls along the early-time plateau,
obeying the slow-roll constraints and inflating the
Universe. Inflation ends when the potential becomes steep
and curved. Afterwards, the inflaton field falls down the
steep slope of the potential. A period of kination ensues,
when the Universe is dominated by the kinetic density of
the scalar field. Kination ends when the Universe is
reheated and radiation takes over. As such, the duration
of kination is inversely proportional to the reheating
temperature Treh, which defines the moment when radiation
domination begins and reheating completes. The field
continues to roll until it runs out of kinetic energy and
freezes at a particular value φF. It remains dormant at φF
until late times, when it becomes quintessence and its
residual potential density drives the Universe expansion
into acceleration again.
Here we should highlight the importance of the param-

eter n ¼ κ
ffiffiffiffiffiffi
6α

p
. The value of n modulates both the steep-

ness of the potential and the inflaton value where the
potential drops from the early-time to the late-time plateau.
As such, this controls φF, the value the field freezes at,
when it runs out of kinetic energy after reheating.

B. The range of α

At late times, there are two attractor solutions to the
Klein-Gordon equation depending on whether the quintes-
sence field is eventually dominant or not over the
background matter. It has been shown that, when the
background density becomes comparable to the field’s
residual potential density VðφFÞ, the field unfreezes and
briefly oscillates about the attractor before settling on the
attractor solution [45]. The question of which attractor
solution the field eventually follows is controlled by the
value of α, which determines the slope of the quintessen-
tial tail.
The latest Planck observations suggest that the density

parameter of dark energy is ΩΛ ¼ 1 −ΩK −Ωm, where
ΩK ¼ 0.000� 0.005 is the curvature density parameter and
Ωm ¼ 0.308� 0.012 is the density parameter of matter.
This results in ΩΛ ¼ 0.692� 0.017. Planck also demands
that the effective barotropic parameter of dark energy is
wDE ¼ −1.023þ0.091

−0.096 (Planck TTþ lowPþ ext)2 at 2-σ. We

2“ext" includes the Planck lensing, BAO, JLA, and H0

data sets.
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investigate this in the appendix and we find that demanding
that our model satisfies these observational requirements
results in the bound α ≳ 1.5 (i.e.,

ffiffiffiffiffiffi
6α

p ≳ 3). In all cases, the
scalar field has unfrozen but is yet to settle on the attractor
solution. This results in ẇDE ≠ 0, which lies within current
Planck bounds (see appendix) but can be potentially
observable in the near future, where the dot denotes time
derivative.
We can obtain an upper bound on α by avoiding super-

Planckian values for the noncanonical field ϕ. The moti-
vation for this is to suppress radiative corrections and the
5th-force problem, which plague quintessence models [38].
However, the bound is soft, as both loop corrections and
interactions are suppressed near the poles [40,41] as we
discuss in the penultimate section of this paper. Still, being
conservative, we choose to avoid a super-Planckian non-
canonical inflation field. Therefore, the relevant range for α
is the following:

3≲ ffiffiffiffiffiffi
6α

p ≲ 5 ⇔ 1.5 ≤ α ≤ 4.2: ð10Þ

For the above range, there is a theoretical prejudice in view
of maximal supergravity, string theory, and M-theory, for
particular values of α satisfying 3α ¼ 5, 6, 7 [33,46,47].

C. Inflationary observables

The inflationary observables predicted by this model
are [38]

r ¼ 16ϵ ¼ 12α

�
N� þ

ffiffiffiffiffiffi
3α

p

2

�−2
; ð11Þ

ns ¼ 1 −
2

ðN� þ
ffiffiffiffi
3α

p
2
Þ
−

3α

2ðN� þ
ffiffiffiffi
3α

p
2
Þ2
≃ 1 −

2

N�
; ð12Þ

and

n0s ≡ d ln ns
d ln k

¼ −
1

ðN� þ
ffiffiffiffi
3α

p
2
Þ

2ðN� þ
ffiffiffiffi
3α

p
2
Þ þ 3α

ðN� þ
ffiffiffiffi
3α

p
2
Þ2 − 2ðN� þ

ffiffiffiffi
3α

p
2
Þ − 3

2
α

≃ −
2

N2� − 2N�
ð13Þ

where r is the tensor to scalar ratio, ns is the spectral index
of the scalar perturbations and n0s its running. In the above,
N� is the number of remaining inflationary e-folds when
the cosmological scales left the horizon during inflation
and the last equations in Eqs. (12) and (13) correspond to
α ≪ N2� and are the standard α-attractors results.

The value of N� is dependent on Treh via the equation3

N� ≃ 61.93þ ln

�
V1=4
end

mP

�
þ 1

3
ln

�
V1=4
end

Treh

�
: ð14Þ

As will be discussed in the following sections, Treh
depends on n and α as well as the efficiency of the
reheating mechanism. As such, the value of N� is deter-
mined iteratively. However, using N� ¼ 62 [in view of
Eq. (14)] and

ffiffiffiffiffiffi
6α

p ¼ 4 [the middle point of the range in
Eq. (10)] in Eqs. (12) and (13) gives approximate results:

ns ¼ 0.968 and n0s ¼ −5.46 × 10−4: ð15Þ

Assuming N� ¼ 62 and considering the range in Eqs. (10),
(11) gives

0.005 ≤ r ≤ 0.012: ð16Þ

These inflationary observables are in excellent agreement
with the latest Planck observations [39]. As shown later, the
resulting values of ns, n0s, and r using the actual values of
N�, obtained from considering the reheating mechanism
and the quintessence requirements, remain in excellent
agreement with the observations and are very close to
the above.
Finally, for the energy scale of inflation we find [38],

�
M
mP

�
2

¼ 3π
ffiffiffiffiffiffiffiffiffiffiffi
2αPζ

p
ðN� þ

ffiffiffiffi
3α

p
2
Þ
exp

�
3α

4

�
N� þ

ffiffiffiffiffiffi
3α

p

2

�
−1
�
; ð17Þ

wherePζ ¼ ð2.199� 0.066Þ × 10−9, is the spectrum of the
scalar curvature perturbation [39]. With N� ¼ 62 and α in
the range in Eq. (10), we find M ≃ 1016 GeV, which is at
the scale of grand unification. The actual values of M can
be seen in Fig. 8.

III. REHEATING AND QUINTESSENCE

A. Inflaton freezing

As mentioned earlier, n affects the freezing value of
the field, φF. During kination the field is oblivious of
the potential and the Klein-Gordon equation reduces to
φ̈þ 3Hφ̇ ≃ 0. Consequently, following the treatment in
Ref. [38], it is easy to show that during kination, the scalar
field grows as

φ ¼ φIP þ
ffiffiffi
2

3

r
mP ln

�
t
tIP

�
; ð18Þ

3In Ref. [38], N� was calculated exactly to be 63.49, due to a
cancellation of all dependence on Treh in the case of gravitational
reheating.
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where the subscript “IP” denotes the moment of instant
preheating, when radiation is generated (discussed in the
following subsection), and we consider that kination
continues for a while after instant preheating occurs.
Because radiation density scales as ρr ∝ a−4, once created,
radiation eventually takes over, since for a kinetically

dominated scalar field we have ρkin ≡ φ̇2

2
∝ a−6. Thus,

for the density parameter of radiation during kination we
have Ωr ¼ ρr=ρϕ ∝ a−2. Denoting as “reh” the moment of
reheating, i.e., the moment when the radiation bath comes
to dominate the Universe, we have Ωreh

r ¼ 1 by definition.
Therefore, the radiation density parameter at instant pre-
heating is

ΩIP
r ¼ Ωreh

r

�
aIP
areh

�
2

¼
�
tIP
treh

�2
3

; ð19Þ

where ΩIP
r ≡ ðρr=ρÞIP is the radiation density parameter at

instant preheating and we considered that during kination
a ∝ t1=3. Inserting the above into Eq. (18) we find

φreh ¼ φIP −
ffiffiffi
3

2

r
mP lnðΩIP

r Þ: ð20Þ

Now, as shown in Ref. [38], during radiation domination,
the field continues to roll for a while as

φ ¼ φreh þ
ffiffiffi
2

3

r
mP

�
1 −

ffiffiffiffiffiffiffi
treh
t

r �
: ð21Þ

The above suggests that the field freezes at a value φF,
given by

φF ¼ φIP þ
ffiffiffi
2

3

r �
1 −

3

2
lnΩIP

r

�
mP; ð22Þ

where we used Eq. (20). Here, we assume that the
generation of radiation is almost instantaneous, as is
discussed later. A relationship between n and φF can be
obtained from the final energy density requirements for
dark energy. Starting from the requirement that the density
of quintessence must be comparable to the density of the
Universe today:

ρinf
ρ0

≃
M4

VðφFÞ
≃
e2φF=

ffiffiffiffi
6α

p
mP

2ne−2n
≃ 10108; ð23Þ

where ρinf is the energy density during inflation, we find

2n − lnð2nÞ ¼ 108 ln 10 −
2ffiffiffiffiffiffi
6α

p φF

mP
; ð24Þ

and combining Eqs. (22) and (24) gives

2n − lnð2nÞ ¼ 108 ln 10 −
2ffiffiffiffiffiffi
6α

p
ffiffiffi
2

3

r �
1 −

3

2
lnΩIP

r

�
; ð25Þ

where we assumed that the right-hand side of Eq. (22) is
dominated by the last term. This is so whenΩIP

r ≪ 1, which
can be challenged only for very high reheating efficiency.
However, as we show later, such efficiency is excluded
because of backreaction constraints. Also, high reheating
efficiency would mean that radiation domination begins
almost right after instant preheating. This would result in a
high reheating temperature, incompatible with gravitino
overproduction considerations.
The parameter space for n is related to the density of

produced radiation at the end of inflation. Hence, changing
the reheating efficiency affects the parameter space for n.
ΩIP

r is larger the more efficient instant preheating is,
meaning the scalar field rolls less far in field space before
it freezes. So, maintaining the same final energy density
(comparable to the density at present), requires a higher n
value. To find bounds on n, we derive bounds on ΩIP

r and
evolve the equations of motion numerically, in order to
determine exactly when instant preheating occurs and how
this affects the variables we need to constrain.
The equations of motion used are

3m2
PH

2 ¼ 1

2
φ̇2 þ VðφÞ; ð26Þ

−2Ḣm2
P ¼ φ̇2; ð27Þ

φ̈ ¼ −3Hφ̇ − V 0ðφÞ; ð28Þ

where the prime denotes differentiation with respect to φ
and dots denote differentiation with respect to time.

B. Instant preheating

For instant preheating we presume the inflaton ϕ is
coupled to some other scalar field χ. In particular, we
consider an interaction at an enhanced symmetry point
(ESP) at ϕ ¼ ϕ0. The Lagrangian density near the ESP is

L ¼ Lðϕ0Þ þ Lint; ð29Þ

where Lðϕ0Þ is determined by Eq. (1) evaluated at ϕ0. The
interaction Lagrangian density near the ESP is

Lint ¼ −
1

2
g2ðϕ − ϕ0Þ2χ2 − hχψψ̄ ; ð30Þ

where g and h are perturbative coupling constants, and ψ
denotes a fermion field, coupled to χ. The fermion is taken
to be light, such that the χ-particles decay into a radiation
bath. We consider h ∼ 1, which means that the decay of χ is
immediate.
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The scalar field, χ, can be expressed in terms of the
creation and annihilation operators, and the Fourier modes
of this expansion obey a wave equation with a frequency
dependent on the effective mass of χ. Certain solutions to
this wave equation are growing solutions and this translates
into an exponential increase of the occupation number nk
for a particular mode, when particle production occurs
[7,8]. The adiabaticity condition

ω̇k

ω2
k

< 1; ð31Þ

where ωk is the frequency of the Fourier expanded wave
equation, must be violated for particle production to occur.
For the interaction terms used here, this leads to:

jṁχ j ≪ m2
χ ; ð32Þ

with m2
χ ¼ g2ðϕ − ϕ0Þ2. Thus, particle production takes

place when:

jϕ̇j > gðϕ − ϕ0Þ2; ð33Þ

which gives the following range for ϕ

ϕ0 −

ffiffiffiffiffiffi
jϕ̇j
g

s
≤ ϕ ≤ ϕ0 þ

ffiffiffiffiffiffi
jϕ̇j
g

s
: ð34Þ

The above is the window of ϕ in which particle production
occurs.
The careful reader may have noticed that the interaction

considered regards ϕ, the original noncanonically normal-
ized field. Hence, we need to find ϕ and ϕ̇ to check the
adiabaticity constraint. We can find ϕ using Eq. (6) from
which we readily obtain

ϕ̇ ¼ sech2
�

φffiffiffiffiffiffi
6α

p
mP

�
φ̇; ð35Þ

where we obtain φ and φ̇ from the computation, but for
completeness:

φ ¼
ffiffiffiffiffiffi
6α

p
mPtanh−1

�
ϕffiffiffiffiffiffi
6α

p
mP

�
ð36Þ

and φ̇ ¼ ϕ̇

1 − ϕ2

6αm2
P

; ð37Þ

which are analytically cyclic. It is clear from this
computation that the region where ϕ̇ is maximized and
particle production occurs is very close to ϕ ¼ 0, mean-
ing ϕ ≃ φ [cf. Eq. (6)] and ϕ is almost canonical. This
can be seen clearly in Fig. 1. This is because, when the
noncanonical ϕ is near the poles it hardly varies, even

when the canonical φ changes substantially. Thus, it is
not possible to violate the adiabaticity condition in
Eq. (31) in this region. Therefore, there may be many
ESPs along the φ direction, but only near ϕ ≃ φ ≃ 0 can
we have particle production.
The number density of produced χ particles [7,8] is

nχ ¼
Z

d3k
ð2πÞ3 nk ¼

1

2π2

Z
∞

0

k2nkdk; ð38Þ

where the occupation number

nk ¼ exp

�
−
πm2

χ

ṁχ

�
; ð39Þ

is suppressed when ṁχ < mχ , evidencing why the
adiabaticity condition in Eq. (32), controls particle pro-
duction. Combining Eq. (38) with the χ particle effective
mass provides the density of the produced χ particles
[7,8]

ρIPχ ¼ g5=2jϕ̇IPj3=2ϕIP

8π3
: ð40Þ

The instant preheating efficiency is maximized when ϕ
is near the final edge of the production window in
Eq. (34) because, even though we expect a continuous
contribution to nχ whilst ϕ is in this region, the produced
χ-particles are diluted by the expansion of the Universe.
Therefore, we expect only the ones produced near the end
of the particle production regime to contribute signi-
ficantly to ρIPχ . As such, from Eq. (34), taking ϕ0 ≃ 0,
we set

FIG. 1. This plot depicts where ϕ̇ is maximized in the φ
direction.
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ϕIP ¼
ffiffiffiffiffiffiffi
ϕ̇IP

g

s
; ð41Þ

which simplifies Eq. (40) to

ρIPr ¼ ρIPχ ¼ g2ϕ̇2
IP

8π3
; ð42Þ

where we have considered that ϕ̇ > 0 because the field is
rolling toward larger values and we have assumed that the
decay of the χ-particles to radiation is instantaneous.
For each choice of n, the quintessence requirements

stipulate the required value of φF and hence ΩIP
r . The value

of ΩIP
r is

ΩIP
r ¼ ρIPχ

ρIPχ þ ρIPϕ;a
¼ ρIPr

ρIPϕ;b
: ð43Þ

where ρIPχ ¼ ρIPr is defined in Eq. (42) and the subscript
“a=b” refers to after/before instant preheating. Inserting the
above in Eq. (42), a rearrangement quickly yields:

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π3

ϕ̇2
IP

ΩIP
r ρ

IP
ϕ

s
; ð44Þ

where we have omitted subscript “b” for simplicity. Note
that ρϕ;a ≃ ρϕ;b when ΩIP

r ≪ 1.
For each choice of n, we calculate φF from Eq. (23) and

insert this into Eq. (22) to obtain ΩIP
r as a function of n. As

the reheating variables are also functions of n, we now have
g in terms of only n. However, as noted previously, ϕIP and
ϕ̇IP are themselves dependent on g and so this requires
iteration. This is the procedure to obtain a value of g for a
given value of n.

IV. CONSTRAINTS FROM REHEATING
AND QUINTESSENCE

A. Immediate constraints on n

An immediate sanity check arises: if φF < φIP then the
combination of n and α is disallowed. This allows us at first
glance to constrain n. For the complete range of allowed α
values, 1.5 ≤ α ≤ 4.2, we find

n ≤ 130: ð45Þ

The fact that this approach produces an upper limit on n
makes sense because a larger n value makes the potential
steeper and means lower V values will be reached earlier
in field space. Hence, to equate VðφFÞ with dark energy
today will require a lower value for φF. As such, ensuring
φF > φIP results in an upper bound on n.

B. Keeping g perturbative and ensuring
radiation domination

The first constraint on g is found by requiring g < 1, for
a perturbative coupling constant, which provides a tight
upper bound on n:

α ¼ 1.5∶ n ≤ 124;

α ¼ 4.2∶ n ≤ 125: ð46Þ

However, to obtain the correct Universe history, we also
need to ensure we have a period of radiation domination
after instant preheating, which might provide a tighter
bound. In a quintessential inflation model with a period of
kination after radiation generation, this is never a problem
because the density of the produced radiation scales as ρr ∝
a−4 whilst the density of the kinetically dominated field
scales as ρϕ ∝ a−6. Hence, to ensure radiation domination
we need to ensure that the scalar field remains kinetically
dominated after instant preheating. Note, that the transfer of
energy to χ-particles during instant preheating comes from
the kinetic energy density of the inflaton only, therefore
VðϕaÞ ¼ VðϕbÞ≡ VðϕIPÞ. Were there not enough kinetic
density left, the inflaton would become potentially domi-
nated and would embark to a new bout of inflation. Thus,
we need to ensure that the kinetic energy of the inflaton is
greater than the potential energy after instant preheating.
This leads to

ρϕ;a − VðϕIPÞ > VðϕIPÞ ⇒ ρχ < ρϕ;b − 2VðϕIPÞ; ð47Þ

where the subscripts a and b refer to after and before
instant preheating respectively and we have used that
ρϕ;b ¼ ρϕ;a þ ρχ . Equation (47) gives us an upper limit
on the allowed energy density of produced χ particles,
which translates to an upper limit on the perturbative
coupling g, from the equation for the energy density,
Eq. (42). However, it turns out that this constraint is
automatically satisfied for a perturbative coupling
with g < 1.

C. Backreaction constraint

We must also consider the backreaction of produced χ-
particles on ϕ, which may further constrain the allowed
value of g. The equation of motion for the scalar field,
including backreaction, is given by [7,8]

ϕ̈þ 3Hϕ̇þ V 0ðϕÞ ¼ −gnχ
ϕ

jϕj ; ð48Þ

where

nχ ¼
ðgjϕ̇jÞ3=2

8π3
exp

�
−
πm2

χ

ṁχ

�
ð49Þ
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and we consider that, near the ESP, ϕ is canonically
normalized (ϕ ≃ φ), as discussed.
The exponential is suppressed during particle production

and so the right-hand side of Eq. (48) becomes

ϕ̈þ 3Hϕ̇þ V 0ðϕÞ ¼ −
g5=2ϕ̇3=2

8π3
; ð50Þ

where we have also considered ϕ̇ > 0. As back reaction
increases, the magnitude of the right-hand side of this
equation grows to have more and more of an effect on the
dynamics [8]. This is maximized at ϕ ¼ ϕIP (i.e., for
maximum nχ). Computing this at that moment, we find
that to avoid backreaction effects requires roughly

g≲ 10−3: ð51Þ

In detail, the above upper bound on g depends on the value
of α as depicted in our results, see Figs. 2–10.

D. Gravitino constraint

Finally, because this is a model rooted in supergravity,
constraints from overproduction of gravitinos have to be
taken into account. The overproduction of gravitinos needs
to be controlled because they can either contribute to the
mass of dark matter and overclose the Universe or they can
decay and disrupt the production of nuclei during BBN.
Gravitino production is strongly correlated with reheating
temperature. In general, the bound Treh < Oð109Þ GeV
[48–50] is adequate.4

We can derive Treh in this model from the relationship

Treh ¼
�

30

π2g�
ρrehr

�
1=4

; ð52Þ

where reh denotes the moment of reheating, which is the
onset of the radiation era. Employing Eq. (19) we readily
find

ρrehr ¼ ρrehϕ ¼ ρIPϕ ðΩIP
r Þ3; ð53Þ

where we used that ρϕ ∝ a−6 during kination. Inserting this
into Eq. (52) we find

Treh ¼
�
30

π2g�
ρIPϕ ðΩIP

r Þ3
�
1=4

¼
�
30

π2g�
ρIPr ðΩIP

r Þ2
�
1=4

; ð54Þ

where we also considered that ρr ¼ Ωrρϕ. We find ΩIP
r as

follows

ΩIP
r ¼ ρIPr

ρIPϕ
¼ g2ϕ̇2

IP

8π3
2

ϕ2
IP
¼ g2

4π3
; ð55Þ

where we considered Eq. (42) and that ρIPϕ ¼ 1
2
ϕ̇2
IP during

kination. Thus, ΩIP
r ∼ 10−2g2, which means that, since

g < 1, ΩIP
r is very small. Given that the dependence of

ðρIPϕ Þ1=4 on g is weak, Eq. (54) suggests Treh ∝ g3=2. This is
easy to understand by considering that a large value of g
means that more radiation is generated at instant preheat-
ing. Consequently, reheating happens earlier and therefore
Treh is large. To limit Treh to small enough values we need
to avoid a large g.
In our model, the bound Treh < Oð109Þ GeV translates

to an upper bound on g of roughly

g≲ 10−2: ð56Þ

As in the previous subsection, in detail, the above upper
bound on g depends on the value of α as depicted in our
results, see Figs. 2–10.

E. A lower bound on g

The first constraint on a lower g value is to ensure
that radiation domination occurs before BBN, but this
constraint is not a worry for we find Treh ≫ 1 MeV in
all cases.
We may obtain a lower bound on ρIPχ , and hence g, from

the nucleosynthesis constraint on the energy density of
produced gravitational waves during kination. We follow
the treatment in Ref. [52] to find the lower bound on g. The
BBN constraint demands

FIG. 2. Allowed parameter space for n, for the range of allowed
g values and allowed α values between 1.5 and 4.2. The bounds
arising from backreaction and gravitino constraints are indicated.

4However, in some cases, the bound can be much a tighter:
Treh < Oð106Þ GeV [51].
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�
ρg
ρr

�
reh

≲ 10−2; ð57Þ

where �
ρg
ρr

�
reh

¼ 64

3π
h2GW

�
ρϕ
ρr

�
IP
: ð58Þ

Using the relations

h2GW ¼ H2
end

8m2
P

and H2
end ≃

Vend

3m2
P
; ð59Þ

where the subscript “end” signifies the end of inflation, we
can reexpress this as�

ρg
ργ

�
reh

¼ 8

9π

Vend

m4
P

1

ΩIP
r
≲ 10−2: ð60Þ

Substituting the above in Eq. (55) we get

g ≥ 20π

ffiffiffi
8

9

r
V1=2
end

m2
P
≃ 10

�
M
mP

�
2

∼ 10−4 ð61Þ

where we considered that Vend ¼ M4e−
ffiffiffiffi
3α

p
[38]. For the

last equation we considered M ≃ 1016 GeV as suggested
by Fig. 8.

V. RESULTS AND DISCUSSION

The two unavoidable constraints are the upper bound on
n, ensuring g < 1 because of perturbativity, and the lower
limit on g ensuring a period of kination that does not disturb
BBN through overproduction of gravitational waves. This
bound is g≳ 10−4. These bounds result in the parameter
space

α ¼ 1.5∶ 118 ≤ n ≤ 124; ð62Þ

α ¼ 4.2∶ 121 ≤ n ≤ 125: ð63Þ

The upper constraint on g arising from the avoidance of
backreaction in the instant preheating mechanism results in
a bound on g of approximately g≲ 10−3. However, this
bound can be sidestepped if the decay χ → ψψ̄ is rapid, as
is often assumed. All that is required is a large enough h
value for this coupling. The upper bound on g arising from
gravitino overproduction constraints is important in a
model rooted in supergravity. This bound is roughly
g≲ 10−2. Because of this bound, the parameter space is
reduced to

α ¼ 1.5∶ 118 ≤ n ≤ 122; ð64Þ

α ¼ 4.2∶ 121 ≤ n ≤ 124: ð65Þ

The allowed values of n and κ for a selection of g values
are shown in Table I, without consideration of the back-
reaction and gravitino bounds. For the extremal values
of n the corresponding values of N�, ns, r, n0s, Treh, M,
and V1=4

0 are shown in Tables II and III. Figures 2, 3, 4,

TABLE I. Allowed n and κ values for specific choices of g,
within the allowed α range, before consideration of backreaction
and gravitino constraints.

g Allowed n values Allowed κ values

0.001 119 ≤ n ≤ 122 24.3 ≤ κ ≤ 39.6
0.01 121 ≤ n ≤ 123 24.5 ≤ κ ≤ 40.3
0.1 123 ≤ n ≤ 124 24.7 ≤ κ ≤ 41.0
1.0 125 ≤ n ≤ 126 25.1 ≤ κ ≤ 41.7

TABLE II. For the allowed range of n, prior to consideration of
backreaction and gravitino constraints, the corresponding values
of N� and the inflationary observables are shown.

α n N� ns r=10−3 n0s=10−4

1.5 118 62.7 0.968 4.42 −5.25
1.5 124 59.1 0.966 4.97 −5.92
4.2 121 63.5 0.968 11.8 −5.11
4.2 125 59.4 0.966 13.9 −5.86

TABLE III. For the allowed range of n, prior to consideration of
backreaction and gravitino constraints, the corresponding values
of Treh, M and V1=4

0 are shown.

α n κ Treh (GeV) M (GeV) V1=4
0 (GeV)

1.5 118 39.3 3.84 × 106 8.50 × 1015 1.31 × 103

1.5 124 41.3 2.22 × 1011 8.76 × 1015 3.01 × 102

4.2 121 24.1 2.35 × 105 1.10 × 1016 8.04 × 102

4.2 125 24.9 6.07 × 1010 1.15 × 1016 3.06 × 102

FIG. 3. Allowed parameter space for κ, for the range of allowed
g values and allowed α values between 1.5 and 4.2. The bounds
arising from backreaction and gravitino constraints are indicated.
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FIG. 4. N� values for the range of g values and allowed α values
between 1.5 and 4.2. The bounds arising from backreaction and
gravitino constraints are indicated.

FIG. 5. Treh values for the range of g values and allowed α
values between 1.5 and 4.2. The bounds arising from back-
reaction and gravitino constraints are indicated.

FIG. 6. The interaction strength, G for the range of allowed g
values and allowed α values between 1.5 and 4.2. The bounds
arising from backreaction and gravitino constraints are indicated.

FIG. 7. ns and r values for the range of n values indicated in
Eq. (62), for allowed α values between 1.5 and 4.2. The bounds
arising from backreaction and gravitino constraints are indicated.

FIG. 8. M values for the range of g values and allowed α values
between 1.5 and 4.2. The bounds arising from backreaction and
gravitino constraints are indicated.

FIG. 9. V1=4
0 values for the range of g values and allowed α

values between 1.5 and 4.2. The bounds arising from back-
reaction and gravitino constraints are indicated.
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5, 7, 8 9, and 10 document how the parameter space is
altered when the backreaction and gravitino bounds are
included. Values of N�, ns r, n0s, Treh, M, and V1=4

0 for
the most constricted final parameter space are shown in
Tables IV and V.
With a lower value of ΩIR

r , the inflaton rolls to larger
distances before it freezes. To fulfill dark energy require-
ments, this requires a lower n value. The results found
here for n demonstrate this. The two different α values
result in different n requirements because α controls the
slope of the quintessential tail [cf. Eq. (9)]. A smaller/
larger α-value means a steeper/gentler quintessential tail.
Thus, for a given value of φF, we require smaller/larger
n-values for a smaller/larger-α value.

VI. SUPPRESSED INTERACTIONS

In general, quintessence models require an extremely
flat potential over super-Planckian distances. This gives
rise to two problems. First, the flatness of such a potential
can be lifted by sizeable radiative corrections. Second,
because the mass of the quintessence field is extremely
small ∼H0 ∼ 10−33 eV, the corresponding wavelength is
very large (Horizon sized), which can give rise to the
infamous 5th force problem, that amounts to sizable
violations of the equivalence principle.
However, in the context of α-attractors both the above

dangers are averted. Indeed, as discussed in Refs. [40,41],
when near the kinetic poles (ϕ=mP ≈� ffiffiffiffiffiffi

6α
p

, equivalently
jφj=mP ≫

ffiffiffiffiffiffi
6α

p
), the inflaton interactions are exponen-

tially suppressed and the field becomes “asymptotically
free.” The same is true for the loop corrections to the
potential. We now briefly demonstrate this regarding the
interactions.
We expect the inflaton to have Planck-suppressed

interactions with other fields. Following Refs. [40,41],
let us sketch this by considering another scalar field σ with
which the inflaton is coupled as

δV ¼ 1

2
h

�
ϕ

mP

�
q
ϕ2σ2; ð66Þ

where q ≥ 0 and h ¼ Oð1Þ. Then, the strength of the
interaction is estimated by G ¼ ∂2

φ∂2
σδV. It is straightfor-

ward to find

G ¼
�∂ϕ
∂φ

�
2

ðqþ 1Þðqþ 2Þh
�

ϕ

mP

�
q
: ð67Þ

Now, near the pole (down the quintessential tail) we have
ϕ=mP ¼ ffiffiffiffiffiffi

6α
p

. Using this and in view of Eq. (6), we find

G ¼ ðqþ 1Þðqþ 2Þhð6αÞq=2
cosh4 φFffiffiffiffi

6α
p

mP

: ð68Þ

Taking q ∼ h ∼ α ∼ 1 and φF ≫ mP we obtain that the
strength of the interaction is suppressed as

G ∼ exp

�
−

4φFffiffiffiffiffiffi
6α

p
mP

�
: ð69Þ

It should be noted here that this suppression is not due to
assuming a Planck-suppressed interaction, as can be readily
seen by taking q ¼ 0 in Eq. (68).
It is straightforward to obtain an estimate of the above

value of G. Indeed, ignoring φIP and using Eq. (55) we have

φF=mP ≃
ffiffiffi
2

3

r
½1 − 3 ln ðg=2π3=2Þ�: ð70Þ

FIG. 10. Λ1=4 values for the range of g values and allowed α
values between 1.5 and 4.2. The bounds arising from back-
reaction and gravitino constraints are indicated.

TABLE IV. Final values for the parameters when considering
the tightest constraints on g, from the backreaction bound.

α n N� ns r=10−3 n0s=10−4

1.5 118 62.74 0.968 4.42 −5.25
1.5 119 62.14 0.968 4.51 −5.35
4.2 121 63.54 0.968 11.8 −5.11
4.2 122 62.53 0.967 12.2 −5.28

TABLE V. Final values for the parameters when considering
the tightest constraints on g, from the backreaction bound.

α n κ Treh (GeV) M (GeV) V1=4
0 (GeV)

1.5 118 39.3 3.84 × 106 8.5 × 1015 1.31 × 103

1.5 119 39.7 2.39 × 107 8.5 × 1015 1.03 × 103

4.2 121 24.1 2.35 × 105 1.1 × 1016 8.04 × 102

4.2 122 24.3 5.07 × 106 1.1 × 1016 6.31 × 102
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Inserting the above into Eq. (69), we obtain

G ∼ e−4=3
ffiffi
α

p �
g

2π3=2

�
4=

ffiffi
α

p
ð71Þ

Using this we obtain the values shown in Fig 6,
which demonstrates that the interaction strength is
drastically diminished. The above argument can be
generalized to nonperturbative interactions, which are
expected to be of the form ∼ expð−βiϕ=mPÞLi, where Li
is any 4-dimensional Lorentz-invariant operator.
Considering the interaction strength, we always obtain
a factor ð∂ϕ∂φÞ2 ∼ exp ð− 4φFffiffiffiffi

6α
p

mP
Þ in the limit ϕ=mP →

ffiffiffiffiffiffi
6α

p
.

As shown in Fig. 6, the interaction strength is exponen-
tially suppressed, which overcomes the 5th force
problem.
In a similar manner, loop corrections are also suppressed

so the flatness of the quintessential tail is safely protected
from radiative corrections [40,41].

VII. CONCLUSIONS

We have investigated a model of quintessential inflation
in the context of α-attractors in supergravity. We consi-
dered a simple exponential potential VðϕÞ ¼ V0e−κϕ=mP

[cf. Eq. (3)] and the standard α-attractors kinetic term,
which features two poles at ϕ ¼ � ffiffiffiffiffiffi

6α
p

mP [cf. Eq. (2)].
Switching to a canonically normalized inflaton, the scalar
potential gets “stretched” as the poles are transposed to
infinity [15–18], thereby generating the inflationary
plateau and the quintessential tail. After inflation, the
field becomes kinetically dominated as it “jumps off the
cliff” of the inflationary plateau. A period of kination
ensues. This necessarily ends when the Universe becomes
dominated by radiation and the hot big bang begins. This
radiation is generated through the mechanism of instant
preheating. For this we assume that the inflaton ϕ is
coupled with some other scalar field χ such that, after the
end of inflation when the inflaton’s variation peaks, the
effective mass of the χ-particles is varying nonadiabati-
cally. This adiabaticity breaking results in particle pro-
duction of χ-particles, which soon decay into a newly
formed radiation bath. The strength of the interaction
between ϕ and χ is parametrized by the coupling g
[cf. Eq. (30)].
We have investigated the parameter space available,

when the observational constraints on the abundance and
barotropic (equation of state) parameter of dark energy
are considered. We were conservative in avoiding a
super-Planckian inflaton field ϕ, even though the sup-
pression of loop corrections and interactions of the
inflaton near the poles in α-attractors [40,41] would
mean that, even if the inflaton were super-Planckian,
the flatness of the quintessential runaway potential would

be preserved and there would not be a fifth-force
problem. Moreover, we have taken into account back-
reaction constraints, which threaten to shut down χ-
particle production and gravitino constraints on the
reheating temperature.
When all the constraints are applied we find that our

model is successful for natural values of the model
parameters. In particular, for the coupling we find
g ∼ 10−4 − 10−2, while we also have V1=4

0 ∼ 1 TeV, which
is the electroweak energy scale (Fig. 9). The inflationary
scale is M ≃ 1016 GeV, which is at the energy scale of
grand unification (Fig. 8). For the slope of the exponential
potential we find κ ≃ 24–40 (Fig 3), i.e., κ ∼ 0.1mP=M,
meaning that in the potential the inflaton is suppressed by
the scale ∼1017 GeV (string scale?).
We also find that the cosmological scales exit the

horizon about N� ≃ 62–63 e-folds before the end of
inflation (Fig. 4) and that the reheating temperature is
Treh ∼ 105 − 108 GeV (Fig. 5), which satisfies gravitino
constraints as required. For the inflationary observables we
obtain the values ns ¼ 0.968 for the spectral index and
n0s ¼ −ð5 − 6Þ × 10−4 for its running. For the tensor to
scalar ratio we obtain r ≃ 0.004–0.012, which may well be
observable (Fig. 7). These values are within the 1-σ contour
of the Planck results [39].
The α-attractors setup may also be realized without

relying on supergravity [15–18]. In this case, the
gravitino constraints may not be necessary. Also, back-
reaction effects can be dispensed with when the
χ-particles decay rapidly into radiation, such that they
do not backreact and close the resonance. If we remove
these constraints, our parameter space is substantially
enlarged. In particular, g can approach unity, while N�
can be as low as N� ≃ 59 and the reheating temperature
can be as large as Treh ∼ 1011 GeV. Regarding the
inflationary observables, the spectral index can become
as low as ns ¼ 0.966, but r is not changed much.
The required cosmological constant is Λ1=4 ∼

10−10 GeV (Fig. 10), which is somewhat larger that the
value ∼10−3 eV required in ΛCDM, but the improvement
is not much. One may worry that, if one is prepared to
accept the scale 0.1 eV, why not stay with ΛCDM in the
first place. The answer is twofold. First, in contrast to
ΛCDM, our required value for Λ is not imposed ad hoc to
satisfy the observations. Instead, it is generated by the
requirement that the vacuum energy asymptotes to zero
[cf. Eq. (4)]. In other words, the (unknown) mechanism
which demands zero vacuum density is the one which
imposes our value of Λ. The second reason has to do with
the future horizon problem in string theories [53–56]. In
a nutshell, in ΛCDM, there is a future event horizon,
which makes the asymptotic future states not well
defined because they are not causally connected. As a
result, the formulation of the S-matrix is problematic
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[57,58]. Our model may overcome this problem as
follows: Since the eventual value of the vacuum density
is zero, this means that the size of the future event
horizon increases to infinity. Thus, future states are well
defined and the future horizon problem is overcome.
Finally, it is important to point out that our model
considers a varying barotropic parameter of dark energy,
which will be tested in the near future.
In summary, we have shown that our model of quintes-

sential inflation with α-attractors, first introduced in
Ref. [38], works well with instant preheating, improving
the robustness of the model.
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APPENDIX: THE RANGE OF α

In this Appendix we calculate the appropriate range for
α, upon which our results are based. To do this, we first
investigate exponential quintessence.
We consider single field quintessence with a canonical

scalar field φ and a scalar potential VðφÞ, which drives the
currently observed accelerated expansion. This simple
model assumes only a minimal coupling between gravity
and φ, and is thus described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lþ Smðgμν;ΨnÞ; ðA1Þ

where the scalar tensor Lagrangian density is

L ¼ 1

2
m2

PR −
1

2
ð∂φÞ2 − VðφÞ; ðA2Þ

and Sm is the action for any matter fields present, Ψn,
coupled to gravity.
To explore the dynamics of any late universe quintes-

sence model we assume a wCDM cosmology. We have an
FRW metric and assume the effects of ρr are negligible and
that ρΛ ¼ 0. As such, the content of the Universe is
modeled as two perfect fluid components; our scalar
field φ, and a nonrelativistic background matter fluid,
denoted by subscript “m,” with equations of state

pi ¼ wiρi; i ∈ fφ; mg where wφ ¼ wφðtÞ and pm ¼ 0 ⇒
wm ¼ 0. Ignoring perturbations and any spatial curvature,
because ΩK ≃ 0 [60], we have

gμνdxμdxν ¼ −dt2 þ a2ðtÞδijdxidxj; ðA3Þ

ρφ ¼ 1

2
φ̇2 þ VðφÞ; pφ ¼ 1

2
φ̇2 − VðφÞ; ðA4Þ

wφ ¼ pφ

ρφ
¼

1
2
φ̇2 − VðφÞ

1
2
φ̇2 þ VðφÞ ; w ¼ Σipi

Σiρi
¼ pφ

ρ
; ðA5Þ

where ρ ¼ Σiρi ¼ ρm þ ρφ. The evolution equations are

−2Ḣm2
P ¼ φ̇2 þ ρm; ðA6Þ

ρ̇m ¼ −3Hρm; ðA7Þ

δS
δφ

¼ φ̈þ 3Hφ̇þ V 0ðφÞ ¼ 0; ðA8Þ

conditional on the Friedman equation

3m2
PH

2 ¼ 1

2
φ̇2 þ VðφÞ þ ρm: ðA9Þ

Specific quintessence models are distinguished by
considering suitable forms of VðφÞ (typically of runaway
type) which are flat enough to lead to the current
accelerated expansion at late times. In quintessential
inflation models, this region is called the quintessential
tail. Quintessential inflation considers so-called “thawing”
quintessence, where, until recently, φ was frozen, but
near the present it unfreezes and begins to evolve into a
possible slow-roll regime as it dominates the Universe
and drives the current accelerated expansion.
Here we consider the specific case of exponential

quintessence where

VðφÞ ¼ VQ expð−λφ=mPÞ; ðA10Þ

where VQ is a constant density scale and λ is a constant
parameter.
The Klein-Gordon equation, Eq. (A8) admits two

attractor solutions which depend on the eventual domi-
nance vs. subdominance of φwith regard to the background
matter:

Dominantðfor λ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wbÞ

p
Þ∶

V ¼ 2ð6 − λ2Þ
λ4

�
mP

t

�
2

& ρkin ¼
2

λ2

�
mP

t

�
2

⇒ ρφ ¼ 12

λ4

�
mP

t

�
2

: ðA11Þ
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Subdominantðfor λ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wbÞ

p
Þ∶

V ¼ 2

λ2

�
1 − wb

1þ wb

��
mP

t

�
2

& ρkin ¼
2

λ2

�
mP

t

�
2

⇒ ρφ ¼ 4

λ2ð1þ wbÞ
�
mP

t

�
2

; ðA12Þ

where ρkin ≡ 1
2
φ̇2 and wb is the barotropic parameter of the

background; being wb ¼ 0 for matter.
The solutions differ with regard to the evolution of ρφ in

comparison to that of ρm, which is fixed at ρm ∝ a−3. For
dominant quintessence Eq. (A11), ρφ ∝ a−λ

2

, and for
subdominant quintessence Eq. (A12), ρφ ∝ a−3. The sub-
dominant quintessence attractor solution is called a scaling
solution because ρφ=ρm stays constant. The value of λ
determines both the slope of the quintessential tail, and
which attractor solution the field eventually follows. The
value of λ ¼ ffiffiffi

3
p

(since wb ¼ 0) represents the boundary
between the two attractor solutions, i.e., as λ increases
toward

ffiffiffi
3

p
, the evolution of ρφ increasingly moves towards

that of ρφ ∝ a−3.
Copeland et al. [45] used a phase-plane analysis and

found that, for λ <
ffiffiffi
3

p
the dominant quintessence attractor

solution [Eq. (A11)] is a stable node. For
ffiffiffi
3

p
< λ <

ffiffiffi
6

p
and λ >

ffiffiffi
6

p
the subdominant quintessence attractor sol-

ution [Eq. (A12)] is a stable node/spiral and a stable spiral
respectively. After unfreezing, the field briefly oscillates
about the attractor before settling on the attractor solution.
For λ <

ffiffiffi
3

p
, it is easy to show that w ¼ −1þ λ2=3 on the

attractor [38]. This means that λ <
ffiffiffi
2

p
results in w < −1=3,

which leads to eternal accelerated expansion. For
ffiffiffi
2

p
≤

λ <
ffiffiffi
3

p
(

ffiffiffi
3

p
≤ λ≲ 2

ffiffiffi
6

p
), the brief oscillation of the field

about the dominant quintessence (subdominant quintes-
sence) attractor, may result in a bout of transient accelerated
expansion [61–65].
We numerically explore the cosmological dynamics

of this single field quintessence model, to a confirmed
accuracy of 10−4ð4 d:pÞ for all cosmological parameters.
We use the latest Planck observations to constrain the range
of λ for which any current eternal or transient accelerated
expansion is present. The latest Planck observations [60]
suggest that the density parameter of dark energy is ΩΛ ¼
1 − ΩK − Ωm, where ΩK ¼ 0.000� 0.005, and Ωm ¼
0.308� 0.012. This results in ΩΛ ¼ 0.692� 0.017.
As we have a time-varying wφ, we model a Taylor

expansion of wφ to first order

wφ ¼ wDE þ
�
1 −

a
a0

�
wa; ðA13Þ

where wa ¼ −ðdwφ=daÞ0 ¼ −ẇDE=H0a0, the subscript “0”
denotes values today, when a ¼ a0 and wφða0Þ ¼ wDE. We
use the Planck bounds [60] of wDE ¼ −1.023þ0.091

−0.096 at 2-σ in

our constraint on possible ranges of values for λ. This
translates to w0 ¼ −0.7112� 0.0821, where w0 is the
barotropic parameter of the Universe at present, w0 ¼
ðpφ=ρÞ0 [cf. Eq. (A5)].
Demanding that our model satisfies these observational

requirements, the Universe today has to lie within the range
ðρφ=ρmÞ0 ¼ ΩΛ=Ωm ¼ 2.2523� 0.1429, within which we
can investigate any current eternal or transient accelerated
expansion found. We start with the frozen field, where
φ̇F ¼ 0 and ðρφ=ρmÞF ≪ 1, where the subscript “F”
denotes frozen values.
Only a change in the value of λ affects the evolution of

our model once the field is unfrozen. A relative decrease
(increase) in the value of ρFφ ¼ VðφFÞ, for a given ρFm, only
increases (decreases) the evolution time of the model until
a0 today, i.e., the model is extended backwards (forwards)
to an earlier (later) time when φ is frozen. Similarly, any
change in the value of φF can be expressed as a change in
VQ, and so for a given value of λ, also has no effect on the
dynamics. Conversely, since ΩΛ is fixed by the observa-
tions, changes in φF without a change in VQ must instead
be accompanied with corresponding changes in λ, such that
the contribution of quintessence to the density budget at
present remains fixed.

1. Transient accelerated expansion

For brief periods of transient accelerated expansion with
w < −1=3, we find a range of numerically valid λ values
bridging the dominant and subdominant quintessence
regimes

ffiffiffi
2

p
≤ λ <

ffiffiffiffiffiffiffiffiffi
3.38

p
ðA14Þ

However, the values for w that we find in this scenario
are incompatible with the Planck constraints for the entire

FIG. 11. Transient accelerated expansion for λ ¼ ffiffiffi
2

p
. We find

w < −1=3, but the minimum value of w is well outside of the
Planck bounds.
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range of λ values above. As the minimum value of w
reached during any period of evolution increases with
increasing λ, we only need to look at λ ¼ ffiffiffi

2
p

to illustrate
our findings. This is shown in Fig. 11, where we are using
λ ¼ ffiffiffi

2
p

. It can be clearly seen that the minimum value of w
is not nearly small enough to match the Planck observa-
tional bounds, and so all higher values of λ are also
ruled out.5

2. Eternal accelerated expansion

We know theoretically that w < −1=3 for λ <
ffiffiffi
2

p
.

When applying the Planck constraints we find that the
cosmologically viable range is reduced to λ <

ffiffiffiffiffiffiffiffiffi
0.46

p
.

We find that, in all cases, the scalar field at present has
unfrozen but is yet to settle on the attractor solution.
This is illustrated in Fig. 12 for λ ¼ ffiffiffiffiffiffiffi

0.4
p

, where it can
be clearly seen the field has yet to evolve to its
attractor solution. It can also be clearly seen that the
present day values at lnða=a0Þ ¼ 0 are within the
Planck bounds.
As illustrated in Fig. 15, we find that it is the bound

for wDE ¼ −1.023þ0.091
−0.096 that constrains our possible

range of values to λ <
ffiffiffiffiffiffiffiffiffi
0.46

p
. This can also be seen

in Fig. 12, where the value of wDE is closer to the
upper Planck bound for wDE compared to the value for
w0, which is further within the upper Planck bound for

w0. When increasing λ, we find that wDE exits the
upper Planck bound for wDE before w0 exits the upper
Planck bound for w0. If we ignore this constraint and
just demand that w0 ¼ −0.7112� 0.0821 today, then
our range of possible values for λ extends to
λ <

ffiffiffiffiffiffiffiffiffi
0.68

p
.

Using our Taylor expansion of wφ to first order,
[cf. Eq. (A13)], we obtain a range of values for jwaj that
are of Oð10−2Þ −Oð10−3Þ. These values easily lie within
current Planck bounds [60], but can be potentially observ-
able in the near future, e.g., by EUCLID. This is illustrated
in Figs. 13 and 14.
The above are valid in general for exponential quintes-

sence. We now apply our findings to our quintessential

FIG. 13. wa against α and λ2 for λ2 < 0.46 ⇔ α > 1.45, values
in the text are quoted to 2 s.f.

FIG. 14. wa versus wDE. The allowed parameter space depicted
lies well within the 1-σ Planck contour.

FIG. 12. Eternal accelerated expansion for λ ¼ ffiffiffiffiffiffi
0.4

p
. The

vertical line lnða=a0Þ ¼ 0 indicates present day values of w
and wφ (w0 and wDE respectively), which also fall within the
required Planck bounds for w and wφ today. The scalar field has
unfrozen, but is yet to settle on the attractor solution.

5Figure 11 also highlights the validity of w ¼ −1þ λ2=3
requiring λ <

ffiffiffi
2

p
for eternal accelerated expansion, as we can

clearly see w ¼ −1=3 in the attractor limit where λ ¼ ffiffiffi
2

p
. We can

also see wφ moving toward the same value because we are in the
dominant quintessence regime.
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inflation model with α-attractors. We convert from λ to α,
using α ¼ 2=3λ2 [cf. Eq. (9)], and restate all our findings in
terms of α. We find that only values of α ≥ 1.5 accord with

all the required Planck constraints and set an upper bound
of α ¼ 4.2 to avoid a super-Planckian ϕ. Figures 13 and 15
are labeled both in terms of λ2 and α.

[1] A. G. Riess et al. (Supernova Search Team), Observational
evidence from supernovae for an accelerating universe and a
cosmological constant, Astron. J. 116, 1009 (1998).

[2] S. Perlmutter et al. (Supernova Cosmology Project), Mea-
surements of Ω and Λ from 42 high redshift supernovae,
Astrophys. J. 517, 565 (1999).

[3] P. J. E. Peebles and B. Ratra, The cosmological constant and
dark energy, Rev. Mod. Phys. 75, 559 (2003).

[4] B. Ratra and P. J. E. Peebles, Cosmological consequences of
a rolling homogeneous scalar field, Phys. Rev. D 37, 3406
(1988).

[5] R. R. Caldwell, R. Dave, and P. J. Steinhardt, Cosmological
Imprint of an Energy Component with General Equation of
State, Phys. Rev. Lett. 80, 1582 (1998).

[6] P. J. E. Peebles and A. Vilenkin, Quintessential inflation,
Phys. Rev. D 59, 063505 (1999).

[7] G. N. Felder, L. Kofman, and A. D. Linde, Instant preheat-
ing, Phys. Rev. D 59, 123523 (1999).

[8] A. H. Campos, H. C. Reis, and R. Rosenfeld, Preheating in
quintessential inflation, Phys. Lett. B 575, 151 (2003).

[9] B. Feng and M.-z. Li, Curvaton reheating in nonoscillatory
inflationary models, Phys. Lett. B 564, 169 (2003).

[10] J. C. Bueno Sanchez and K. Dimopoulos, Curvaton reheat-
ing allows TeV Hubble scale in NO inflation, J. Cosmol.
Astropart. Phys. 11 (2007) 007.

[11] T. Matsuda, NO curvatons or hybrid quintessential inflation,
J. Cosmol. Astropart. Phys. 08 (2007) 003.

[12] L. H. Ford, Gravitational particle creation and inflation,
Phys. Rev. D 35, 2955 (1987).

[13] E. J. Chun, S. Scopel, and I. Zaballa, Gravitational reheating
in quintessential inflation, J. Cosmol. Astropart. Phys. 07
(2009) 022.

[14] E. J. Copeland, M. Sami, and S. Tsujikawa, Dynamics of
dark energy, Int. J. Mod. Phys. D 15, 1753 (2006).

[15] R. Kallosh, A. Linde, and D. Roest, Superconformal infla-
tionary α-attractors, J. High Energy Phys. 11 (2013) 198.

[16] R. Kallosh, A. Linde, and D. Roest, Universal Attractor for
Inflation at Strong Coupling, Phys. Rev. Lett. 112, 011303
(2014).

[17] S. Ferrara, R. Kallosh, A. Linde, and M. Porrati, Minimal
supergravity models of inflation, Phys. Rev. D 88, 085038
(2013).

[18] S. Ferrara, R. Kallosh, A. Linde, and M. Porrati, Higher
order corrections in minimal supergravity models of in-
flation, J. Cosmol. Astropart. Phys. 11 (2013) 046.

[19] R. Kallosh, A. Linde, and D. Roest, Large field inflation and
double α-attractors, J. High Energy Phys. 08 (2014) 052.

[20] R. Kallosh and A. Linde, Planck, LHC, and α-attractors,
Phys. Rev. D 91, 083528 (2015).

[21] D. Roest and M. Scalisi, Cosmological attractors from
alpha-scale supergravity, Phys. Rev. D 92, 043525 (2015).

[22] A. Linde, Single-field α-attractors, J. Cosmol. Astropart.
Phys. 05 (2015) 003.

[23] M. Scalisi, Cosmological α-attractors and de Sitter land-
scape, J. High Energy Phys. 12 (2015) 134.

[24] J. J. M. Carrasco, R. Kallosh, and A. Linde, α-attractors:
Planck, LHC and dark energy, J. High Energy Phys. 10
(2015) 147.

FIG. 15. Possible range of values for α and λ2, from the Planck constraints on w. It is shown that the 2-σ upper bound on wDE is
satisfied only for λ2 < 0.46 or equivalently α ¼ 2=3λ2 > 1.45. The allowed ranges of w and wφ reflect the observed range in ΩΛ=Ωm.
Values in the text are quoted to 2 s.f.

DIMOPOULOS, WOOD, and OWEN PHYS. REV. D 97, 063525 (2018)

063525-16

https://doi.org/10.1086/300499
https://doi.org/10.1086/307221
https://doi.org/10.1103/RevModPhys.75.559
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1103/PhysRevLett.80.1582
https://doi.org/10.1103/PhysRevD.59.063505
https://doi.org/10.1103/PhysRevD.59.123523
https://doi.org/10.1016/j.physletb.2003.09.064
https://doi.org/10.1016/S0370-2693(03)00589-6
https://doi.org/10.1088/1475-7516/2007/11/007
https://doi.org/10.1088/1475-7516/2007/11/007
https://doi.org/10.1088/1475-7516/2007/08/003
https://doi.org/10.1103/PhysRevD.35.2955
https://doi.org/10.1088/1475-7516/2009/07/022
https://doi.org/10.1088/1475-7516/2009/07/022
https://doi.org/10.1142/S021827180600942X
https://doi.org/10.1007/JHEP11(2013)198
https://doi.org/10.1103/PhysRevLett.112.011303
https://doi.org/10.1103/PhysRevLett.112.011303
https://doi.org/10.1103/PhysRevD.88.085038
https://doi.org/10.1103/PhysRevD.88.085038
https://doi.org/10.1088/1475-7516/2013/11/046
https://doi.org/10.1007/JHEP08(2014)052
https://doi.org/10.1103/PhysRevD.91.083528
https://doi.org/10.1103/PhysRevD.92.043525
https://doi.org/10.1088/1475-7516/2015/05/003
https://doi.org/10.1088/1475-7516/2015/05/003
https://doi.org/10.1007/JHEP12(2015)134
https://doi.org/10.1007/JHEP10(2015)147
https://doi.org/10.1007/JHEP10(2015)147


[25] M. Galante, R. Kallosh, A. Linde, and D. Roest, Unity of
Cosmological Inflation Attractors, Phys. Rev. Lett. 114,
141302 (2015).

[26] J. J. M. Carrasco, R. Kallosh, and A. Linde, Cosmological
attractors and initial conditions for inflation, Phys. Rev. D
92, 063519 (2015).

[27] T. Terada, Generalized pole inflation: Hilltop, natural, and
chaotic inflationary attractors, Phys. Lett. B 760, 674
(2016).

[28] K. Sravan Kumar, J. Marto, P. Vargas Moniz, and S. Das,
Non-slow-roll dynamics in α-attractors, J. Cosmol. Astro-
part. Phys. 04 (2016) 005.

[29] Y. Ueno and K. Yamamoto, Constraints on α-attractor
inflation and reheating, Phys. Rev. D 93, 083524 (2016).

[30] M. Eshaghi, M. Zarei, N. Riazi, and A. Kiasatpour, CMB
and reheating constraints to α-attractor inflationary models,
Phys. Rev. D 93, 123517 (2016).

[31] M. Artymowski and J. Rubio, Endlessly flat scalar poten-
tials and α-attractors, Phys. Lett. B 761, 111 (2016).

[32] R. Kallosh, A. Linde, D. Roest, and T. Wrase, Sneutrino
inflation with α-attractors, J. Cosmol. Astropart. Phys. 11
(2016) 046.

[33] S. Ferrara and R. Kallosh, Seven-disk manifold, α-attractors,
and B modes, Phys. Rev. D 94, 126015 (2016).

[34] S. D.OdintsovandV. K.Oikonomou, Inflationaryα-attractors
from FðRÞ gravity, Phys. Rev. D 94, 124026 (2016).

[35] A. Di Marco, P. Cabella, and N. Vittorio, Reconstruction of
α-attractor supergravity models of inflation, Phys. Rev. D
95, 023516 (2017).

[36] A. Alho and C. Uggla, Inflationary α-attractor cosmology:
A global dynamical systems perspective, Phys. Rev. D 95,
083517 (2017).

[37] K. Dimopoulos and M. Artymowski, Initial conditions for
inflation, Astropart. Phys. 94, 11 (2017).

[38] K. Dimopoulos and C. Owen, Quintessential Inflation with
α-attractors, J. Cosmol. Astropart. Phys. 06 (2017) 027.

[39] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XX. Constraints on inflation, Astron. Astrophys.
594, A20 (2016).

[40] A. Linde, On the problem of initial conditions for inflation,
arXiv:1710.04278.

[41] R. Kallosh and A. Linde, Cosmological attractors and
asymptotic freedom of the inflaton field, J. Cosmol. As-
tropart. Phys. 06 (2016) 047.

[42] L. Gorlich, S. Kachru, P. K. Tripathy, and S. P. Trivedi,
Gaugino condensation and nonperturbative superpotentials
in flux compactifications, J. High Energy Phys. 12 (2004)
074.

[43] M. Haack, D. Krefl, D. Lust, A. Van Proeyen, and M.
Zagermann, Gaugino Condensates and D-terms from D7-
branes, J. High Energy Phys. 01 (2007) 078.

[44] Z. Lalak, G. G. Ross, and S. Sarkar, Racetrack inflation
and assisted moduli stabilisation, Nucl. Phys. B766, 1
(2007).

[45] E. J. Copeland, A. R. Liddle, and D. Wands, Exponential
potentials and cosmological scaling solutions, Phys. Rev. D
57, 4686 (1998).

[46] R. Kallosh, A. Linde, D. Roest, and Y. Yamada,D3 induced
geometric inflation, J. High Energy Phys. 07 (2017) 057.

[47] R. Kallosh, A. Linde, T. Wrase, and Y. Yamada, Maximal
supersymmetry and B-mode targets, J. High Energy Phys.
04 (2017) 144.

[48] J. R. Ellis, A. D. Linde, and D. V. Nanopoulos, Inflation can
save the gravitino, Phys. Lett. 118B, 59 (1982).

[49] M. Kawasaki, F. Takahashi, and T. T. Yanagida, The
Gravitino-overproduction problem in inflationary universe,
Phys. Rev. D 74, 043519 (2006).

[50] M. Kawasaki, F. Takahashi, and T. T. Yanagida, Gravitino
overproduction in inflaton decay, Phys. Lett. B 638, 8
(2006).

[51] K. Kohri, T. Moroi, and A. Yotsuyanagi, Big-bang nucleo-
synthesis with unstable gravitino and upper bound on the
reheating temperature, Phys. Rev. D 73, 123511 (2006).

[52] A. Agarwal, R. Myrzakulov, M. Sami, and N. K. Singh,
Quintessential inflation in a thawing realization, Phys. Lett.
B 770, 200 (2017).

[53] S. Hellerman, N. Kaloper, and L. Susskind, String theory
and quintessence, J. High Energy Phys. 06 (2001) 003.

[54] W. Fischler, A. Kashani-Poor, R. McNees, and S. Paban,
The acceleration of the universe, a challenge for string
theory, J. High Energy Phys. 07 (2001) 003.

[55] T. Banks, Cosmological breaking of supersymmetry?, Int. J.
Mod. Phys. A 16, 910 (2001).

[56] T. Banks and W. Fischler, M theory observables for
cosmological space-times, arXiv:hep-th/0102077.

[57] L. Dyson, M. Kleban, and L. Susskind, Disturbing impli-
cations of a cosmological constant, J. High Energy Phys. 10
(2002) 011.

[58] N. Goheer, M. Kleban, and L. Susskind, The trouble with de
Sitter space, J. High Energy Phys. 07 (2003) 056.

[59] Y. Akrami, R. Kallosh, A. Linde, and V. Vardanyan, Dark
energy, α-attractors, and large-scale structure surveys,
arXiv:1712.09693.

[60] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XIII. Cosmological parameters, Astron. Astrophys.
594, A13 (2016).

[61] K. Dimopoulos, The curvaton hypothesis and the eta-
problem of quintessential inflation, with and without branes,
Phys. Rev. D 68, 123506 (2003).

[62] U. França and R. Rosenfeld, Fine tuning in quintessence
models with exponential potentials, J. High Energy Phys. 10
(2002) 015.

[63] J. M. Cline, Quintessence, cosmological horizons, and self-
tuning, J. High Energy Phys. 08 (2001) 035.

[64] C. F. Kolda and W. Lahneman, Exponential quintessence
and the end of acceleration, arXiv:hep-ph/0105300.

[65] A. Kehagias and G. Kofinas, Cosmology with exponential
potentials, Classical Quantum Gravity 21, 3871 (2004).

INSTANT PREHEATING IN QUINTESSENTIAL … PHYS. REV. D 97, 063525 (2018)

063525-17

https://doi.org/10.1103/PhysRevLett.114.141302
https://doi.org/10.1103/PhysRevLett.114.141302
https://doi.org/10.1103/PhysRevD.92.063519
https://doi.org/10.1103/PhysRevD.92.063519
https://doi.org/10.1016/j.physletb.2016.07.058
https://doi.org/10.1016/j.physletb.2016.07.058
https://doi.org/10.1088/1475-7516/2016/04/005
https://doi.org/10.1088/1475-7516/2016/04/005
https://doi.org/10.1103/PhysRevD.93.083524
https://doi.org/10.1103/PhysRevD.93.123517
https://doi.org/10.1016/j.physletb.2016.08.024
https://doi.org/10.1088/1475-7516/2016/11/046
https://doi.org/10.1088/1475-7516/2016/11/046
https://doi.org/10.1103/PhysRevD.94.126015
https://doi.org/10.1103/PhysRevD.94.124026
https://doi.org/10.1103/PhysRevD.95.023516
https://doi.org/10.1103/PhysRevD.95.023516
https://doi.org/10.1103/PhysRevD.95.083517
https://doi.org/10.1103/PhysRevD.95.083517
https://doi.org/10.1016/j.astropartphys.2017.06.006
https://doi.org/10.1088/1475-7516/2017/06/027
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1051/0004-6361/201525898
http://arXiv.org/abs/1710.04278
https://doi.org/10.1088/1475-7516/2016/06/047
https://doi.org/10.1088/1475-7516/2016/06/047
https://doi.org/10.1088/1126-6708/2004/12/074
https://doi.org/10.1088/1126-6708/2004/12/074
https://doi.org/10.1088/1126-6708/2007/01/078
https://doi.org/10.1016/j.nuclphysb.2006.06.041
https://doi.org/10.1016/j.nuclphysb.2006.06.041
https://doi.org/10.1103/PhysRevD.57.4686
https://doi.org/10.1103/PhysRevD.57.4686
https://doi.org/10.1007/JHEP07(2017)057
https://doi.org/10.1007/JHEP04(2017)144
https://doi.org/10.1007/JHEP04(2017)144
https://doi.org/10.1016/0370-2693(82)90601-3
https://doi.org/10.1103/PhysRevD.74.043519
https://doi.org/10.1016/j.physletb.2006.05.037
https://doi.org/10.1016/j.physletb.2006.05.037
https://doi.org/10.1103/PhysRevD.73.123511
https://doi.org/10.1016/j.physletb.2017.04.066
https://doi.org/10.1016/j.physletb.2017.04.066
https://doi.org/10.1088/1126-6708/2001/06/003
https://doi.org/10.1088/1126-6708/2001/07/003
https://doi.org/10.1142/S0217751X01003998
https://doi.org/10.1142/S0217751X01003998
http://arXiv.org/abs/hep-th/0102077
https://doi.org/10.1088/1126-6708/2002/10/011
https://doi.org/10.1088/1126-6708/2002/10/011
https://doi.org/10.1088/1126-6708/2003/07/056
http://arXiv.org/abs/1712.09693
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1103/PhysRevD.68.123506
https://doi.org/10.1088/1126-6708/2002/10/015
https://doi.org/10.1088/1126-6708/2002/10/015
https://doi.org/10.1088/1126-6708/2001/08/035
http://arXiv.org/abs/hep-ph/0105300
https://doi.org/10.1088/0264-9381/21/16/003

