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In this paper we first discuss how a Noether current corresponding to a gauge or a global symmetry can
locally be introduced in a path integral irrespective of the boundary conditions defining the theory. We then
consider quantization of gravity plus minimally coupled scalar field system in the phase space path integral
approach. The complete gauge fixed action including the Faddeev-Popov determinant is obtained in the so
called ζ-gauge. It turns out that in this formalism while the dilatation survives as the residual symmetry of
the gauge fixed action, other diffeomorphisms which require field dependent corrections fail to be so. The
full Noether current for the dilatation is determined and the spatial boundary conditions that yield a finite
and conserved charge are determined. The charge is shown to be expressible as a surface integral at infinity
and the corresponding Ward identity gives the standard consistency relation of cosmological perturbations.

DOI: 10.1103/PhysRevD.97.063520

I. INTRODUCTION

Fornow, cosmologyseems to be theonly testingground for
quantum gravity. Although the exact theory, which should
presumably resolve thebig-bang singularity, is not knownone
may nevertheless consider small fluctuations around a
classical background and remarkably the results obtained
in the cosmological perturbation theory are consistent with
the observations. In recent years the linearized theory has
been developed to include interactions [1–4] but the approach
is still perturbative and the issues about renormalization,
which are intricate when gravity is involved, are mainly
overlooked. Not surprisingly, symmetry considerations pro-
vide interesting nonperturbative information about cosmo-
logical perturbations; Maldacena’s consistency relation is
being an example [1].
In the presence of a gauge symmetry, the quantum theory

requires a viable gauge fixing which breaks the local
invariance, but even in that case some residual symmetries
may remain in the theory. For cosmological perturbations in
the scalar slow-roll inflationary models, in the so called
ζ-gauge where the time slices are chosen to kill the scalar
field fluctuations, an infinite set of residual symmetries have
been shown to exist in the literature [5,6]. These are spatial
diffeomorphisms that preserve the transversality of the tensor
mode, however all but the dilatation symmetry require field
dependent corrections to the gauge parameter. Naively, each
residual diffeomorphism gives a Ward identity involving
cosmological correlation functions (see e.g. [7–15]).
It is somehow surprising that the residual symmetries of

cosmological perturbations are identified in the literature
without anyway discussing the boundary conditions. As we
will see (and as it is likely well known by many experts) a

Noether current corresponding to a local or a global
symmetry always exists irrespective of the boundary con-
ditions and possible boundary terms in the action. Namely,
when an action is invariant under a symmetry transformation
up to surface terms, which may or may not vanish depending
on the boundary conditions, a conservedNoether current can
always be found.Moreover, the charge density of this current
can be shown to generate the symmetry transformation in the
quantum theory. This is a purely local result which must
follow from the field equations and the canonical commu-
tation relations. On the other hand, proper boundary con-
ditions are needed to get awell defined and conserved charge
whose existence should lead nontrivial information.
Having inflation in mind, in this paper we consider the

standard Einstein gravity coupled to a self interacting real
scalar field. Since the ADM decomposition is conveniently
used for cosmological perturbations, we utilize the (formal)
phase space path integral quantization of the system. In
practice, the fields must be expanded around a classical
cosmological background but we try to keep the discussion
more general by not referring to this perturbative expansion
as long as possible. The diffeomorphism invariance is fixed
by imposing the ζ-gauge and the corresponding Faddeev-
Popov determinant is calculated. As a result, the phase space
path integral involves the Einstein-Hilbert action in the
Hamiltonian form, the gauge fixing terms and a ghost action
related to the Faddeev-Popov determinant. We show that the
complete action is invariant under the dilatation, which
becomes the residual symmetry of the quantum theory1 with
suitable boundary conditions, and we determine the
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1In stating this, we assume that the formal nonperturbative phase
space path integral exists and we simply ignore issues related to
renormalization, seeing them as artifacts of the perturbation theory.
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corresponding Noether current. On the other hand, the
invariance of the theory under the residual diffeomorphisms
that require field dependent parameters is dubious in this
formalism since the corresponding map of fields is not
canonical and thus the integration measure picks up a
nontrivial Jacobian.
Most of the time, the Noether charge associated to a local

symmetry can be expressed as a surface integral at infinity
(see e.g. [16–19]). In our problem, this is fairly evident in the
covariant theory andwe explicitly show it to be truewhen the
fields are expanded around a cosmological background. We
determine the spatial boundary conditionswhich are required
for a finite and conserved charge. Together with the pre-
scribed boundary conditions, the theory becomes free near
the spatial infinity. This allows us to relate theNoether charge
to a zeromode and the correspondingWard identity gives the
standard consistency relation of cosmological perturbations.

II. THE NOETHER CURRENT

In this section, we first review a few salient features of the
Noether current in the path integral quantization and later
study the gravity plus scalar field system. Our approach is
mostly motivated by and very similar to [20], but there are
also some notable differences. Consider the following
elementary in-out path integral of a free massless scalar
field in the flat space with the standard action S ¼
−1=2

R ∂μϕ∂μϕ (since we mainly discuss the in-in path
integrals below, the time ordering of operators will always be
indicated explicitly)Z

DϕeiSϕðxμ1Þ…ϕðxμnÞ ¼ h0jTϕðxμ1Þ…ϕðxμnÞj0i: ð1Þ

Clearly the action is invariant under a constant (infinitesimal)
shift δSϕ≡ c. Assuming naively that the path integral
measure is also invariant under this shift leads to the bizarre
conclusion that all Green functions must vanish. Indeed, this
assumption is incorrect since the path integral is over all
fields which vanish at infinity allowing both integration by
parts in the action and Fourier transformation of the fields.
Unfortunately, the innocent looking constant shift does not
respect this boundary condition. To revive the shift symmetry
in the path integral one may try to apply the transformation
only in a local region. For that consider the following
deformation of the symmetry

δρϕ≡ ρðxÞδSϕ ¼ ρðxÞc; ð2Þ
where ρ is an arbitrary function of compact support in the
space-time. Applying the deformed transformation (2) to the
path integral (1), one may find

Z
DϕeiS

�
δρðϕ1…ϕnÞ

þ i
Z

d4xρðxÞ½∂2ϕðxÞ�ðϕ1…ϕnÞ
�
¼ 0; ð3Þ

where ϕ1¼ϕðxμ1Þ and so on. Note that δρS¼−
R ∂μϕ∂μρ¼R

ρ∂2ϕ since ρ has compact support. The path integral
measure is now invariant under (2), which respects whatever
boundary conditions one has in the theory. Since (3) is true
for any ρ, one concludes

− i∂2h0jTϕ1…ϕnϕðxÞj0i
¼ δ4ðx − x1Þh0jTϕ2…ϕnϕðxÞj0i þ � � �

þ δ4ðx − xnÞh0jTϕ1…ϕn−1ϕðxÞj0i; ð4Þ
which can easily be verified by Wick’s theorem.
The above example is simple but it highlights the crux of

the matter. Consider a theory governed by an action S½ΦI�,
where the fields are collectively denoted by ΦI. Assume
that the action is invariant up to possible surface terms
under a global or a local infinitesimal symmetry trans-
formation δSΦIðxÞ. Define the locally deformed trans-
formation by multiplying with an arbitrary function of
compact support ρ as

δρΦIðxÞ≡ ρðxÞ½δSΦIðxÞ�: ð5Þ
It is easy to see by integration by parts that the variation of
the action under (5) can be written as

δρS ¼ −
Z

d4xρðxÞ½∂μJμ�; ð6Þ

where Jμ can be identified as the Noether current.
Equation (6) follows from the fact that ρ ¼ 1 is the original
symmetry transformation which leaves the action invariant
up to the surface terms. When the field equations hold, (6)
should vanish for arbitrary ρ that gives ∂μJμ ¼ 0. Note that
the Noether current defined in this way is not affected by
the boundary conditions or by possible boundary terms
in the action. The current is not unique either, because

Jμ → Jμ þ ∂νKμν ð7Þ
with arbitrary Kμν ¼ K½μν� still yields (6).
Consider now the following in-in path integral giving the

expectation value of an operator OðtÞ in a (vacuum) stateZ
½DΦIþ�½DΦI

−�½DΦI��eiSþ−S−OþðtÞ≡ hOðtÞi; ð8Þ

where OðtÞ ¼ ΦI1ðt; x⃗1Þ…ΦInðt; x⃗nÞ and for notational
simplicity the initial state wave-functionals are omitted.2

Having cosmological applications in mind, in (8) we
consider a composite operator defined at a single time
but the following argument can easily be generalized to
other cases. We take t < t� to avoid field insertions at the
fixed return time t�. The above path integral is over all

2We will never apply a transformation to the path integral
extending through the initial time ti, therefore the state wave-
functionals will always remain intact.
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fields ΦIþ and ΦI
− satisfying ΦI� ¼ ΦIþðt�Þ ¼ ΦI

−ðt�Þ and
½DΦI�� denotes the spatial integration measure of the field
variables ΦI� at the constant t� slice. As shown in [21], it is
possible to carry out the path integral over ΦI� at t�, which
simply imposes the extra condition _ΦI

þðt�Þ ¼ _ΦI
−ðt�Þ for

ΦI
� fields. Namely, the in-in path integral can be carried out

either by integrating ΦIþ, ΦI
− and ΦI� obeying ΦI� ¼

ΦIþðt�Þ ¼ ΦI
−ðt�Þ; or by integrating over the fields ΦIþ

and ΦI
− satisfying ΦIþðt�Þ ¼ ΦI

−ðt�Þ and _ΦI
þðt�Þ ¼ _ΦI

−ðt�Þ.
Inevitably, these integrals also require certain boundary
conditions at spatial infinity, which are irrelevant at the
moment.
Let us see how the infinitesimal transformation (5)

applies to the in-in path integral (8). Introduce two
independent functions of compact supports ρþ and ρ−
obeying ρþðt�Þ ¼ ρ−ðt�Þ ¼ 0 and define

δþΦIþ ¼ ρþ½δSΦIþ�; δ−ΦI
− ¼ ρ−½δSΦI

−�: ð9Þ

We prefer not to extend the deformed transformations
through the return time t� to avoid boundary effects related
to the ½DΦI�� integral (we also take ρþðtiÞ ¼ ρ−ðtiÞ ¼ 0,
where ti is the initial time). It is natural to assume that the
in-in path integral measure is invariant under (9), which
only restricts the symmetry transformation in a local region.
Then, by applying (9) to (8) with ρþ ¼ 0 one may easily
see that

hOðtÞ½∂μJμ�i ¼ 0: ð10Þ

On the other hand, replacing Oþ in (8) by O− and setting
this time ρ− ¼ 0 gives

h½∂μJμ�OðtÞi ¼ 0: ð11Þ

These two equations show that the Noether current is also
conserved in the quantum theory. Choosing now ρ− ¼ 0
and ρþ ≠ 0 in (8) implies

i∂μhTOðtÞJμðxÞi ¼ δ4ðx − x1Þh½δSΦI1ðt; x⃗1Þ�…ΦIni þ � � �
þ δ4ðx − xnÞhΦI1…½δSΦInðt; x⃗nÞ�i:

ð12Þ

Finally, using (10) and the explicit definition of the time
ordering in (12) yields

ih½J0ðt; x⃗Þ; OðtÞ�i ¼ δ3ðx⃗ − x⃗1Þh½δSΦI1 �…ΦIni þ � � �
þ δ3ðx⃗ − x⃗nÞhΦI1…½δSΦIn �i: ð13Þ

This last equation shows that the Noether charge density is
the generator of the symmetry transformation in the
quantum theory. In getting these identities there is no need
to refer to the boundary conditions since the deformed

transformations (9) do not extend to infinity. Therefore,
these should follow from purely local physics. More
explicitly, the current conservation ∂μJμ ¼ 0 is expected
to hold by field equations and the generator equation (13)
presumably involves the canonical commutation relations.
The above discussion clarifies the basic role of the

Noether current in the path integral quantization and this is
as far as one may continue without paying attention to the
boundary conditions. Obviously, proper boundary condi-
tions are required for the Noether charge QðtÞ ¼R
d3xJ0ðt; x⃗Þ to be well defined and further for it to be

conserved dQ=dt ¼ 0.
After these general considerations, let us now focus on

our main interest, i.e. the gravity plus minimally coupled
scalar field system. We take the metric in the ADM form

ds2 ¼ −N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; ð14Þ

and study the theory in the Hamiltonian formulation. The
Einstein-Hilbert action can be written as

SEH ¼
Z

d4xL ¼
Z

d4x½Πij _hij þ Pϕ
_ϕ − NΦ − NiΦi�

ð15Þ

where the dot denotes the time derivative,

Φ ¼ 1ffiffiffi
h

p
�
ΠijΠij −

1

2
Π2

�
þ 1

2
ffiffiffi
h

p P2
ϕ

þ
ffiffiffi
h

p �
VðϕÞ þ 1

2
hij∂iϕ∂jϕ − Rð3Þ

�
;

Φi ¼ −2
ffiffiffi
h

p
Dj

�
1ffiffiffi
h

p Πj
i

�
þ Pϕ∂iϕ; ð16Þ

Di is the covariant derivative and Rð3Þ is the Ricci scalar of
hij, h ¼ detðhijÞ and Π ¼ Πijhij. In this section all index
manipulations are carried out by the spatial metric hij. In
the classical theory the canonical pairs obey the following
Poisson brackets

fhijðx⃗Þ;Πrsðy⃗g ¼ 1

2
ðδriδsj þ δrjδ

s
i Þδ3ðx⃗ − y⃗Þ;

fϕðx⃗Þ; Pϕðy⃗g ¼ δ3ðx⃗ − y⃗Þ; ð17Þ

and the lapse N and the shift Ni are Lagrange multipliers
enforcing the Hamiltonian and the momentum constraints;
Φ ¼ 0 and Φi ¼ 0.
In the Lagrangian formulation, the theory is invariant

under the full diffeomorphism group generated by the
vector fields kμ ¼ ðk0; kiÞ due to the underlying geometric
structure. In the next section we will fix the time repar-
ametrizations and thus in the following we only consider
coordinate changes with k0 ¼ 0. On the other hand, in the
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Hamiltonian formulation a time dependent spatial diffeo-
morphism generated by kμ ¼ ð0; kiðt; x⃗ÞÞ acts like a time
dependent canonical transformation which generates extra
terms in the action. Although it is possible to deal with this
issue, it is enough for our purposes to focus on time
independent spatial maps generated by a 3-vector kiðx⃗Þ
whose action on the fields become

δShij ¼ kr∂rhij þ hrj∂ikr þ hir∂jkr ¼ Dikj þDjki;

δSΠij ¼ kr∂rΠij − Πrj∂rki − Πri∂rkj þ Πij∂rkr ≡ Lk⃗Π
ij;

δSϕ ¼ ki∂iϕ;

δSPϕ ¼ ki∂iPϕ þ Pϕ∂rkr;

δSN ¼ ki∂iN;

δSNi ¼ kr∂rNi − Nr∂rki: ð18Þ

It is worth to emphasize that since ki is chosen to be time
independent, all fields and their time derivatives transform
like 3-dimensional tensors (or tensor densities of weight
one), which live in the tangent space of constant time slices.
The variation of the action (15) under (18) is then given by
a total surface term

δSSEH ¼
Z

d4x∂iðkiLÞ: ð19Þ

This key geometric structure will be very useful for our
subsequent considerations.
The Noether current corresponding to (18) can be

calculated by deforming the transformations3 like

δρhij ¼ ρ½δShij� ¼ ρðDikj þDjkiÞ ð20Þ

where this modification should be applied to all equations
in (18). A straightforward but lengthy calculation then
gives

δρSEH ¼ −
Z

d4xρ½∂μĴ
μ�; ð21Þ

where

Ĵ0 ¼ 2ΠijDikj þ Pϕki∂iϕ;

Ĵi ¼ −kiL − NiPϕkr∂rϕ −
ffiffiffi
h

p
ðDiϕÞkr∂rϕþ 2NrLk⃗Π

i
r

− 2NiΠrsDrks þ 2
ffiffiffi
h

p
ðDiNÞDrkr þ 2

ffiffiffi
h

p
NDrDrki

− 2
ffiffiffi
h

p
NDiDrkr − 2

ffiffiffi
h

p
ðDrNÞDikr: ð22Þ

As noted before, Ĵμ is not unique and one may obtain
different Noether currents still satisfying (21). It is impor-
tant to observe that

Ĵ0 ¼ kiΦi þ 2∂i½Πijkj�; ð23Þ

and thus on shell when the momentum constraintΦi ¼ 0 is
satisfied, the Noether charge becomes a surface integral at
spatial infinity. This observation will be crucial in getting
the cosmological consistency relation from the Ward
identity.

III. GAUGE FIXING, FADDEEV-POPOV
DETERMINANT AND THE RESIDUAL

SYMMETRY

In this section we would like to apply the phase space
path integral quantization of the gravity plus scalar field
system. Since there is no known nonperturbative quantiza-
tion procedure, one must actually study the fluctuations
around a classical background and apply perturbation
theory. Even in that case the renormalization of the theory
is problematic since gravity is involved. Here, we simply
ignore these issues and keep the quantization procedure
formal. To have closed form expressions, we also would
like to postpone the expansion around the classical back-
ground as long as possible.
There are four primary constraints Φ ¼ 0 and Φi ¼ 0

that demand four gauge conditions. We utilize the so called
ζ-gauge as follows: The time reparametrizations can be
fixed by imposing

G≡ ϕ − ϕBðtÞ ¼ 0; ð24Þ
where ϕBðtÞ can be identified as the background value of
the scalar field that obeys _ϕB ≠ 0 and otherwise (for now)
arbitrary. This condition completely breaks the diffeomor-
phism invariance with k0 ≠ 0. To fix spatial diffeomor-
phisms we introduce δij as a background metric, where the
indices refer to the ADM coordinates introduced in (14).
We define the trace-free graviton field as

γij ≡ hij −
1

3
δijδ

mnhmn ≡ hij −
1

3
δijhmm; ð25Þ

which obeys δijγij ≡ γii ¼ 0. Since there are now two
metric tensors hij and δij, index manipulations should be
done with care. We never raise or lower the indices with δij
and for notational simplicity the summations involving δij
will be denoted like δijhij ¼ hii. We impose

3Wewould like to point out thatwhile the transformation (18) is a
canonical map in the phase space, the deformed transformation
is not canonical. To see this, one can verify that the Poisson
bracket structure is not invariantGðx; yÞ≡ δρfhijðxÞ; πrsðyÞg ≠ 0.
Since Gðx; yÞ is actually a distribution, one may calculateR
d3xd3yfðxÞgðyÞGðx; yÞ for arbitrary compact functions fðxÞ

and gðyÞ. Using (17), we obtain
R
d3xd3yfðxÞgðyÞGðx;yÞ¼

−1
2
ðδriδsjþδsi δ

r
jÞ
R
d3xfðxÞgðxÞklðxÞð∂lρÞ, which does not vanish

unless ρ is a constant. This issue was a reason for debate about IR
divergences of massless fields in de Sitter space, see [22–24].
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Gi ≡ ∂jγji ¼ 0; ð26Þ

which completes the gauge fixing.
In the path integral quantization, the gauge conditions

(24) and (26) can be implemented by Lagrange multipliers
λμ ¼ ðλ; λiÞ via the gauge fixing action

SGF ¼
Z

d4xðλGþ λiGiÞ; ð27Þ

which must be added to the Einstein Hilbert action (15).
There are now four primary constraints Φμ ¼ ðΦ;ΦiÞ

and four gauge conditions Gμ ¼ ðG;GiÞ. In the
Hamiltonian formalism the corresponding Faddeev-
Popov determinant is given by

M ¼ det fΦμðt; x⃗Þ; Gνðt; y⃗Þg; ð28Þ
where the Poisson brackets must be found using (17). The
functional determinant M can be calculated by introducing
anticommuting ghost and antighost fields, χμ ¼ ðχ; χiÞ and
χ̄μ ¼ ðχ̄; χ̄iÞ, and the Faddeev-Popov ghost action as

SFP ¼
Z

dtd3xd3yχ̄μðt; x⃗ÞfΦμðt; x⃗Þ; Gνðt; y⃗Þgχνðt; y⃗Þ: ð29Þ

After a relatively long but straightforward calculation
we obtain

SFP¼
Z

d4x

�
−

1ffiffiffi
h

p χ̄χPϕ− χ̄iχ∂iϕ

þ 1ffiffiffi
h

p ðγijΠ−2Γ̃ijÞχ̄∂jχ
iþð∂iγkjÞχ̄i∂kχ

j

−hij∂kχ̄
i∂kχ

j−hik∂jχ̄
i∂kχ

jþ2

3
hik∂kχ̄

i∂jχ
j

�
; ð30Þ

where Γ̃ij ¼ Πij − δijΠrr=3.
The formal in-out phase space path integral quantization

of the system involves the following integral over field
variables obeying suitable boundary conditions

DXeiS ð31Þ
where

DX ≡DhijDΠklDϕDPϕDNDNmDλρDχ̄μDχν ð32Þ
and S ¼ SEH þ SGF þ SFP. While the integrals over N, Ni

and λμ impose the constraints and the gauge conditions, the
ghost integrals yield the corresponding Faddeev-Popov
determinant. These eliminate the gauge degrees of freedom
and select out the physical subspace in the unconstrained
phase space. For the in-in case, the path integral includesþ
and − branches and a spatial path integral defined at the
return time t� so that

DXþDX−DX�eiSþ−iS− : ð33Þ

The full action is quadratic in the momenta Πij and Pϕ, and
the corresponding Gaussian integrals can be carried out to
get the Lagrangian path integral with a nontrivial field
dependent measure.
Having obtained the complete gauge fixed action, one

may look for residual symmetries which are possibly left
over. It is easy to see that (24) completely eliminates
diffeomorphisms with k0 ≠ 0. To proceed, it is convenient
to introduce a background value for the trace of hij and
write

hij ¼ aðtÞ2ð1þ ζÞδij þ γij ð34Þ
where aðtÞ is (for now) an arbitrary nonvanishing function
of time. Under a possibly time dependent map generated by
kiðt; x⃗Þ, the tensor γij transforms as

δSγij ¼ kr∂rγij þ γrj∂ikr þ γir∂jkr −
2

3
δijγrs∂skr

þ a2ð1þ ζÞ
�
∂jki þ ∂ikj −

2

3
δij∂rkr

�
: ð35Þ

The residual diffeomorphisms must satisfy

∂iðδSγijÞ ¼ 0; ð36Þ
which gives

∂2kj þ 1

3
∂i∂jki ¼ … ð37Þ

where ∂2 ¼ ∂i∂i and the right hand side contains ζ and γij
dependent terms. It is easy to see that the dilatation, which is
generated byki ¼ xi, exactly solves (37)wherewe refer to the
ADM coordinates introduced in (14). There are also field
dependent solutions that can be expressed as a series in the
field variables ζ and γij where the zeroth order term solves the
left hand side of (37). In principle, this yields an infinite set of
residual diffeomorphisms for each zeroth order solution [5,6],
but it is very unlikely that these survive as the symmetries of
the quantum theory. It is easy to see that a field dependentmap
does not generate a canonical transformation; in general the
Poisson bracket structure is destroyed

δSfhij; πrsg ≠ 0: ð38Þ
This can also be verified by observing that the canonical form
of the action

R
d4xΠij _hij is not going to be preserved after the

transformation. Therefore, the path integral measure picks up
a nontrivial Jacobian which would ruin the symmetry.
Moreover, the non-covariant ghost action contains usual
partial derivatives and in general it will not be invariant
under a field dependent diffeomorphism.
This leaves the dilatation as the only residual symmetry

candidate and one must still check the invariance of the
total action. The variation of the Einstein-Hilbert action
gives a surface term as indicated in (19). One may observe
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that the gauge conditions (24) ad (26) transform like tensor
densities

δDG ¼ xi∂iG;

δDGi ¼ xj∂jGi þ 3Gi: ð39Þ
Therefore, the gauge fixing action (27) changes up to
surface terms under the dilatation if one imposes the
Lagrange multipliers to obey

δDλ ¼ xi∂iλþ 3λ;

δDλi ¼ xj∂jλi: ð40Þ
The nice tensor-type transformation properties of the fields
under the dilatation also implies the invariance of the ghost
action as follows: By definition, the constraints Φ and Φi
are tensor densities. It is an elementary exercise to show
that under an infinitesimal canonical transformation the
variation of a Poisson bracket is equal to the Poisson
bracket of the variation, i.e.

δfA;Bg ¼ fδA; Bg þ fA; δBg; ð41Þ
which shows that the Faddeev-Popov matrix entries
fΦμ; Gνg transforms like bi-tensor densities under the
dilation. From the corresponding wights, the transforma-
tion of the ghost fields that would leave the ghost action
invariant (up to surface terms) can be found as

δDχ ¼ xj∂jχ þ 3χ;

δDχ
i ¼ xj∂jχ

i;

δDχ̄ ¼ xj∂jχ̄;

δDχ̄
i ¼ xj∂jχ̄

i − χ̄i: ð42Þ
As a result, the variation of the complete action S ¼ SEH þ
SGF þ SFP under the dilatation ki ¼ xi becomes a surface
term, where the fields are mapped as in (18), (40) and (42).
The path integral measure only picks up an irrelevant
constant Jacobian under these transformations, which act
like a canonical map4 for the fields hij, Πij, ϕ, Pϕ, and as a
linear map for the ghosts χμ, anti-ghosts χ̄μ and the
Lagrange multipliers λμ. So the dilatation becomes the
symmetry of the quantum theory when suitable boundary
conditions killing the surface terms are imposed.

IV. PERTURBATIVE EXPANSION, BOUNDARY
CONDITIONS AND THE NOETHER CHARGE

In this section we quantify our previous findings by an
expansion around a cosmological FRW background
ds2 ¼ −dt2 þ a2dxidxi. We introduce the fluctuation fields
ðζ; PζÞ, ðγij;ΓijÞ, ðφ; PφÞ, n and ni as

hij ¼ a2ð1þ ζÞδij þ γij;

Πij ¼ ð−2_aþ Pζ=2a2Þδij þ Γij;

ϕ ¼ ϕB þ φ;

Pϕ ¼ a3 _ϕB þ Pφ;

N ¼ 1þ n;

Ni ¼ ni; ð43Þ

where δijΓij ¼ 0, and assume that the following back-
ground equations are satisfied

6H2 ¼ 1

2
_ϕ2
B þ VB; _H ¼ −

1

4
_ϕ2
B; ð44Þ

where H ¼ _a=a and VB ¼ VðϕBÞ. The ghost fields and the
Lagrange multipliers have no background values and the
pairs ðζ; PζÞ, ðγij;ΓijÞ, ðφ; PφÞ are canonical conjugates.
After integrating out λμ, which enforces the gauge con-
ditions φ ¼ 0 and ∂iγij ¼ 0, the path integral measure
becomes

DX ≡DζDPζDTγijDΓklDnDniDχ̄μDχν ð45Þ

where DTγij denotes the sum over only the transverse
tensor modes. Evidently, in expanding the action around
the background solution inside the path integral, both
conditions φ ¼ 0 and ∂iγij ¼ 0 can freely be used. A
straightforward calculation then yields

S ¼
Z

Γij _γij þ Pζ
_ζ þ 1

6a3
P2
ζ þHζPζ −

1

2a3
P2
φ − aΓijΓij

þ 2HΓijγij þ
3

2
_ϕBζPφ þ ð _H −H2Þγijγij

−
�
3a2äþ 3

2
a3 _ϕ2

B

�
ζ2 þ 1

2
a∂kζ∂kζ −

1

4a3
∂kγij∂kγij

þ � � � − nΦ̃ − niΦ̃i ð46Þ

where

Φ̃ ¼ _ϕBPφ þ 2a∂2ζ þ 2HPζ þ 6a2äζ þ � � �

Φ̃i ¼ −2a2∂jΓij −
2

3
∂iPζ − 2a2 _a∂iζ þ � � � ð47Þ

and only the quadratic fluctuation terms in the action are
explicitly found whereas the higher order terms are simply
indicated by dots. Since we are expanding around a classical
solution, the linear terms in the action cancel each other. We
omit writing the ghost action since the ghosts decouple from
the fluctuations at the quadratic order. As a check of (46), one
may solve the constraints in (47) as

4Although the deformed transformation is not canonical, it is
nevertheless linear and thus the phase space path integral measure
at most picks up an irrelevant constant as in the case of Lagrange
multipliers and ghosts.
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Pφ ¼ −
2a
_ϕB

∂2ζ −
2_a

a _ϕB

Pζ −
6a2ä
_ϕB

ζ;

Γij ¼ Γij
T þ 1

6a2
δijPζ þ

_a
2
δijζ −

1

2a2
∂i∂j

1

∂2
Pζ

−
3_a
2
∂i∂j

1

∂2
ζ; ð48Þ

where ∂iΓ
ij
T ¼ 0 and Γii

T ¼ 0. Using these solutions back in
the action (46) and after eliminating Pζ through its equation
of motion gives the quadratic action

Sð2Þ ¼
Z

1

2
a3ϵ_ζ2 −

1

2
aϵ∂iζ∂iζ þ

1

4a
_γij _γij −

1

4a3
∂kγij∂kγij

þ ä
2a2

γijγij; ð49Þ

where ϵ ¼ _ϕ2
B=4H2 ¼ − _H=H2 is the slow-roll parameter.

This becomes the standard quadratic action of cosmological
perturbations after rescaling γij → a2γij, which transforms
our γij to the linearized graviton field used in the literature.
As shown in the previous section, the nonlinear action

including ghosts is invariant under the dilatation. While the
variation of the ghosts are still given by (42), the fluctuation
fields can be found to transform as

δDPφ ¼ xi∂iPφ þ 3Pφ þ 3a3 _ϕB;

δDζ ¼ xi∂iζ þ 2ζ þ 2;

δDPζ ¼ xi∂iPζ þ Pζ − 6a2 _a;

δDγij ¼ xk∂kγij þ 2γij;

δDΓij ¼ xk∂kΓij þ Γij;

δDn ¼ xi∂in;

δDni ¼ xk∂kni − ni: ð50Þ

The change of the action under the deformed dilatation
δρ ¼ ρδD becomes

δρS ¼ −
Z

d4xρ½∂μJμ�; ð51Þ

where the corresponding Noether current [below Oð2Þ
denotes the quadratic and the higher order fluctuation
terms] is given by

J0 ¼ 2Pζ þ 6a3Hζ þOð2Þ;
Ji ¼ 2a∂iζ þ 4a∂inþOð2Þ: ð52Þ

We check ∂μJμ ¼ 0 provided that the linearized field
equations are obeyed. We also confirm that to that order
∂μJμ ¼ ∂μĴ

μ, where Ĵμ is the full nonlinear current given
in (22).

Like (23), the charge density can be expressible as

J0 ¼ xiΦ̃i þ ∂i

�
xi
�
2

3
Pζ þ 2a2 _aζ

�
þ 2a2xjΓij þOð2Þ

�
:

ð53Þ

Thus, similar to the full nonlinear charge density (23), its
perturbative version (53) can also be written as the sum of
the momentum constraint and a total divergence term.
Indeed, defining a new Noether current using the freedom
(7) as

J̃0 ¼ Ĵ0 þ ∂i½6a2 _axiζ þ 4a2 _axi�;

J̃i ¼ Ĵi −
d
dt

½6a2 _axiζ þ 4a2 _axi�; ð54Þ

one may see that J̃0 and J0 agree on linear terms, which
prove (53) (one may replace Jμ with J̃μ if necessary). On
shell, i.e. when the momentum constraint is obeyed, the
Noether charge becomes

Q ¼
Z

d3xJ0

¼ lim
r→∞

r3
Z
S2
dΩ

�
2

3
Pζ þ 2a2 _aζ þ 2a2

xixj

r2
Γij þOð2Þ

�
;

ð55Þ

which is a surface integral at spatial infinity.
The form of the surface charge (55) suggests the

following boundary conditions for the fields

ζ; Pζ; γij;Γij ¼ O

�
1

r3

�
as r → ∞: ð56Þ

We assume that the time derivatives of the fields have the
same fall-off rates and a spatial derivative increases the
order by one like ∂iζ ¼ Oð1=r4Þ. Together with these
boundary conditions the operator 1=∂2 becomes well
defined in the position space, for example one has

1

∂2
ζðx⃗Þ ¼ −

1

4π

Z
d3y

ζðy⃗Þ
jx⃗ − y⃗j : ð57Þ

Therefore ð1=∂2Þζ ¼ Oð1=rÞ and the standard solutions of
the lapse n and the shift ni in the linearized theory suggests

n ¼ O

�
1

r3

�
; ni ¼ O

�
1

r2

�
as r → ∞: ð58Þ

The fall-off conditions (56) and (58) apply to all fields in
the path integral. Moreover, from Jμ given in (52) one sees
that the current conservation ∂μJμ ¼ 0 implies

_Q ¼ 0; ð59Þ
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i.e. the spatial flux of the field at infinity vanishes and the
Noether charge is conserved.
Consider now the expectation value of an operator OðtÞ,

conveniently defined at a single time, given by the in-in
path integral. From the infinitesimal variations of the
integration variables, one may get the Schwinger-Dyson
equations h½E:o:M:�OðtÞi ¼ 0 and hOðtÞ½E:o:M:�i ¼ 0.
Specifically, taking the operator in the plus-branch
OþðtÞ in the path integral and varying ni− and choosing
O−ðtÞ in the path integral and varying niþ respectively give

hOðtÞΦii ¼ hΦiOðtÞi ¼ 0: ð60Þ
Furthermore, manipulations similar to the previous section
imply

hOðtÞ½∂μJμ�i ¼ h½∂μJμ�OðtÞi ¼ 0 ð61Þ
and

h _QOðtÞi ¼ hOðtÞ _Qi ¼ 0;

ih½Q;OðtÞ�i ¼ hδDOðtÞi: ð62Þ
The prescribed boundary conditions are only used in the
last equation to make sure the existence of the Noether
charge in the path integral. We note that these identities are
valid for any initial state in the theory.
The Noether charge inside the path integral can be

expressed as a surface charge depending on fields at
infinity since the momentum constraint is satisfied by
the Schwinger-Dyson equations (60). In integrating out
the boundary fields living at spatial infinity, the full action
can be replaced by the quadratic one because of the
presumed boundary conditions (in other words, the full
interacting theory becomes linearized and free near spatial
infinity). Using the linearized momentum constraint (47),
the surface integral can be converted back to a volume
integral so that

Q ¼
Z

d3x½2PðfÞ
ζ þ 6a2 _aζðfÞ�; ð63Þ

where the label (f) signifies that these are free fields
governed by the quadratic action. One may further use the

linearized equation PðfÞ
ζ ¼a3ϵ_ζðfÞ−3a2 _aζðfÞ−ða2= _aÞ∂2ζðfÞ

to obtain

Q ¼ 2

Z
d3x½a2ϵ_ζðfÞ�: ð64Þ

From the field equation of ζðfÞ and using the fall-off
conditions, one may readily verify that _Q ¼ 0.
Formally, it is possible to obtain (64) in the operator

formalism as follows: Take the variable ζ. The exact
Heisenberg picture operator ζH is related to the free
interaction picture operator ζðfÞ by

ζHðt; x⃗Þ ¼ ζðfÞðt; x⃗Þ − i
Z

t

ti

dt0½ζðfÞðt; x⃗Þ; HIðt0Þ� þ…

ð65Þ

whereHIðt0Þ¼
R
d3yHIðt0;y⃗Þ is the interaction Hamiltonian

and the dotted terms contain more nested commutators of
ζðfÞ with HI . By causality, for any given y⃗ one has

lim
jx⃗j→∞

½ζðfÞðt; x⃗Þ;HIðt0; y⃗Þ� ¼ 0; ð66Þ

therefore one expects

lim
jx⃗j→∞

½ζðfÞðt; x⃗Þ; HIðt0Þ� → 0; ð67Þ

which would imply

lim
jx⃗j→∞

ζHðt; x⃗Þ → lim
jx⃗j→∞

ζðfÞðt; x⃗Þ: ð68Þ

However, the Hamiltonian HIðt0Þ is given by the integral of
the Hamiltonian density HIðt0; y⃗Þ extending to spatial
infinity, so ζðfÞðt; x⃗Þ and HIðt0Þ have causally overlapping
regions even when jx⃗j → ∞. Consider a similar commutator

½ζðfÞðt; x⃗Þ; ζ̃ðfÞðt0; k⃗Þ� ∝ e−ik⃗:x⃗ ð69Þ

where ζ̃ðfÞ is the Fourier transform of ζðfÞ defined by

ζ̃ðfÞðt0; k⃗Þ ¼ ð2πÞ−3=2
Z

d3xe−ik⃗:x⃗ζðfÞðt0; x⃗Þ; ð70Þ

which involves an integral extending to spatial infinity as in
the interactionHamiltonian.Although (69) does not converge
to zero pointwise as jx⃗j → ∞, its angular average in the
position space produces the factor sinðkjx⃗jÞ=ðkjx⃗jÞ that
vanishes in the limit of interest. By expressing the interaction
Hamiltonian in terms of the Fourier transformed variables,
one may then predict that the commutator (67) vanishes after
the angular integration is carried out as jx⃗j → 0 implying

lim
r→∞

Z
S2
dΩζHðt; r; θ;ϕÞ → lim

r→∞

Z
S2
dΩζðfÞðt; r; θ;ϕÞ:

ð71Þ

This shows that theNoether charge operator given in (55) can
be expressed by the free fields, which straightforwardly leads
to (64).
Using the free field expansion

ζðfÞ ¼ ð2πÞ−3=2
Z

d3keik⃗:x⃗μkðtÞak⃗ þ H:c: ð72Þ

where

ALI KAYA PHYS. REV. D 97, 063520 (2018)

063520-8



μk _μ
�
k − μ�k _μk ¼

i
ϵa3

; ð73Þ

one may find

Qj0i ¼ lim
k→0

2ð2πÞ3=2a3ϵ
�
_μk
μk

��
ζ̃ðfÞðk⃗Þj0i; ð74Þ

where ak⃗j0i ¼ 0. The standard curvature perturbation ζ̂,
which is conserved at the superhorizon scales, is defined by

ζ̂ ¼ 1

6
ln
�
1

a3
det hij

�
: ð75Þ

At the linearized level, ζ̂ and ζ agree with each other. Since
the zero mode of ζ̂ is constant and the Heisenberg picture
operators are identified with the corresponding interaction
picture operators at ti, one has

5 limk→0 ζ̂ðk⃗Þ ¼ limk→0ζ̃
ðfÞðk⃗Þ

giving

Qj0i ¼ lim
k→0

2ð2πÞ3=2a3ϵ
�
_μk
μk

��
ζ̂ðfÞðk⃗Þj0i; ð76Þ

Then, for any operator that commutes with ζ̂ðk⃗ ¼ 0Þ like
OðtÞ ¼ ζ̂ðt; x⃗1Þ…ζ̂ðt; x⃗nÞ, the Eqs. (73) and (76) yield

lim
k→0

2ð2πÞ3=2
jμkj2

hOðtÞζ̂ðk⃗Þi ¼ hδDOðtÞi; ð77Þ

which is the dilatational consistency relation of cosmological
perturbations. As an example, by taking OðtÞ ¼
ζ̂ðt; k⃗1Þζ̂ðt; k⃗2Þ in (77) and noting that δDζ̂ðt; x⃗Þ ¼
xi∂iζ̂ þ 1, one may obtain

lim
k→0

2ð2πÞ3=2
PðkÞ hζ̂ðt; k⃗1Þζ̂ðt; k⃗2Þζ̂ðk⃗Þi

¼ −δ3ðk⃗1 þ k⃗2Þ∂ðk1Þ
i ½ki1Pðk1Þ�; ð78Þ

where PðkÞ is the exact two point function in the momentum
space, which is defined by hζ̂ðt; k⃗1Þζ̂ðt; k⃗2Þi ¼ δ3ðk⃗1 þ
k⃗2ÞPðkÞ and satisfies limk→0PðkÞ ¼ limk→0jμkj2. Eq. (78)
can be identified as the consistency relation for the 3-point
function [1,25].

V. CONCLUSIONS

In this paper we try to clarify a few issues about the
cosmological Ward identities related to the residual
symmetries of the cosmological perturbations in the phase
space path integral quantization method. The general role
played by the Noether current in the path integral

approach is reviewed. We study the gravity plus mini-
mally coupled self-interacting scalar field system in the so
called ζ-gauge, which is relevant for the slow-roll infla-
tion. The ghost action yielding the Faddeev-Popov deter-
minant is obtained. We observe that only the dilatation
survives as the residual symmetry of the complete gauge
fixed action including the ghosts. The corresponding
Noether current is calculated both exactly in the nonlinear
theory and in the linearized form when the theory is
expanded around a cosmological background. The
Noether charge is shown to be equivalent to a surface
integral at spatial infinity and the boundary conditions that
are required for charge conservation are identified. It turns
out that the charge can be related to the zero mode of the
curvature perturbation ζ and the related Ward identity
gives the consistency relation of the cosmological
perturbations.
The present work can be extended in a few directions.

Since the full Noether current is obtained, it is possible to
determine the nonzero momentum corrections to the
cosmological consistency relation in a systematic way (see
[26–28]). Indeed, it is not difficult to get the nonzero
momentum version of the identity (62) that involves the
Noether charge carrying momentum k⃗ defined by Qðk⃗Þ¼R
d3xexpðik⃗:x⃗ÞJ0ðt;x⃗Þ. Introducing Jiðk⃗Þ¼R

d3xexpðik⃗:x⃗ Þ×
Jiðt;x⃗Þ, the current conservation implies _Qðk⃗Þ ¼ ikiJiðk⃗Þ,
thus one would expect the vector Ji to show up in the Ward
identity. This is work in progress which we hope to report
soon.More ambitiously, it would be interesting to generalize
the present formalism to accommodate other field dependent
residual symmetries discussed in the literature. The main
obstacle here is that a field dependent diffeomorphism do not
leave the path integral measure invariant. One plausible way
of avoiding this issue is to focus on the asymptotic sym-
metries as in [29–34]. It might also be possible to find nicer
field variables or alternative gauge conditions allowing
different residual symmetries.
In the context of gauge-gravity duality, the asymptotic

charges are usually defined using the counter-term sub-
traction method and in [35] these have been shown to
generate the desired asymptotic symmetries of the AdS
space. On the other hand, in [36] the asymptotic symmetry
group and the corresponding charges are specified on
appropriately constructed phase space for the asymptoti-
cally de Sitter Einstein gravity. Curiously, the spatial fall-off
conditions utilized in [36] for the construction of the phase
space are very similar to the ones imposed in this paper.
It would be interesting to study both of these approaches in
the context of scalar inflationary models and examine
their implications for the cosmological correlation func-
tions. These are important questions that are worth to
dwell on, whose answers are expected to improve our
understanding of the cosmological perturbations at the
nonlinear quantum level.

5For notational simplicity the Fourier transform of the operator
ζ̂ðt; x⃗Þ, which is defined as in (70), is denoted by the same symbol
ζ̂ðt; k⃗Þ. Since limk→0 ζ̂ðt; k⃗Þ is conserved its time argument is also
dropped.
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