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In this paper we will highlight how a simple vacuum energy dominated inflection-point inflation can
match the current data from cosmic microwave background radiation, and predict large primordial tensor to
scalar ratio, r ∼Oð10−3 − 10−2Þ, with observable second order gravitational wave background, which can
be potentially detectable from future experiments, such as DECi-hertz Interferometer Gravitational wave
Observatory (DECIGO), Laser Interferometer Space Antenna (eLISA), cosmic explorer (CE), and big bang
observatory (BBO).
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I. INTRODUCTION

Detecting the primordial gravitational waves (GWs) will
lead to the finest imprints of the nascent Universe, which will
confirm the inflationary paradigm [1], quantum nature of
gravity [2,3], and a new scale of physics beyond the standard
model (BSM). During the slow roll inflation one can excite
both scalar and tensor perturbations, see [4], and the interest-
ing observable parameter is the tensor-to-scalar ratio, r. There
are many models of inflation, see [5], which can predict both
large and small r, while matching the other observables, such
as the amplitude of temperature anisotropy, the tilt in the
power spectrum, and its running of the spectrum by the
cosmicmicrowave background radiation (CMBR) [6], within
the observed window ofOð8Þ e-foldings of primordial infla-
tion from the Planck satellite. However, it is worthwhile also
to constrain the potential beyond the pivot scale, k� ¼
0.05 Mpc−1, where the relevant observables are normalised.
The aim of this paper will be to provide a simple toymodel

example of inflationary potential, which can generate large
tensorperturbations, inparticular largepotentiallyobservable,
r, by thegroundbasedexperiments suchasBICEP-Keckarray
[7], and also leave imprints of GWs with a frequency range,
10−4 − 103 Hz, at DECi-hertz Interferometer Gravitational
waveObservatory (DECIGO) [8], Laser Interferometer Space
Antenna (eLISA) [9], cosmicexplorer (CE) [10], andbigbang
observer (BBO) [11], see also [12]. Therefore, correlating
GWs at two different frequencies and wavelengths inspired
by the same model of inflation.

II. THE POTENTIAL, TENSOR-TO-SCALAR
RATIO AND BENCHMARK POINTS

As we will show, inflection-point models of inflation
[13,14], provides this unique possibility to excite the GWs

from the pivot scale, where the CMBR observables are
normalized to the end of inflation.
In order to illustrate this, let us now consider a simple

potential which allows inflection-point, and we will strictly
assume that ϕCMB;ΔϕCMB ≤ Mp [14–16].

VðϕÞ ¼ V0 þ Aϕ2 − Bϕn þ Cϕ2ðn−1Þ; ð1Þ

where V0 corresponds to cosmological constant term
during inflation, the coefficients A, B, C are appropriate
constants with dimensions, and n ≥ 3 is an integer. The
physical motivation for the above potential directly comes
from a softly broken supersymmetric theory with a renor-
malizable and nonrenormalizable superpotential contribu-
tion with canonical Kähler potential, see [13]. In these
papers it was assumed that V0 ¼ 0. However, the super-
gravity extension, naturally provides cosmological con-
stant, V0 if no fine tuning is invoked to cancel such a
contribution, see for details [14]. Inflation will have to
come to an end via phase transition, or via hybrid
mechanism [17]. In the present work we will also explore
the possibility of having large V0, in particular to achieve
potentially observable r ≥ Oð10−3Þ at the pivot scale.
In the above Eq. (1), V0, A; B;C are all subject to various

cosmological constraints from the latest Planck data [6],
here we quote the central values, which we will use for the
reconstruction of V0, A;B;C from the following well-
known observables:

As ≈
V

24π2M4
plεV

≈ 2.2 × 10−9 ð2Þ

ns ≈ 1þ 2ηV − 6εV ≈ 0.96 ð3Þ
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dns=d ln k ≈ 16εVηV − 24ε2V − 2ξ2V ≈ −0.013 ð4Þ

d2ns=d ln k2 ≈ −192ε3V þ 192ε2VηV − 32εVη
2
V

− 24εVξ
2
V þ 2ηVξ

2
V þ 2σ3V ≈ 0.03; ð5Þ

where εV , ηV , ξV , σV are slow-roll parameters defined below.
All the above quantities are measured at the pivot scale,
k� ¼ 0.05 Mpc−1, andwe have considered the central values
in this paper, such as As is the amplitude of the scalar power
spectrum, nsðk�Þ is the spectral tilt, dns=d ln kðk�Þ is the
running of the tilt and d2ns=d ln k2ðk�Þ designates the
running of the running of the tilt [6]. Further note that
the slow roll parameters can be expressed in terms of the
potential, and given by, see review [5]:

εV ¼ M2
P

2

�
V 0

V

�
2

; ηV ¼ M2
P

�
V 00

V

�
; ð6Þ

ξ2V ¼ M4
P

�
V 0V 000

V2

�
; σ3V ¼ M6

P

�
V 02V 0000

V3

�
: ð7Þ

Another key formula is the tensor perturbations and the value
of r, and its tilt, which are given by:

At ≈
2V

3π2M4
pl

; rðk ¼ k�Þ ¼
At

As
: nt ≈ −2εV; ð8Þ

In fact, the coefficients, A, B, C can be computed in terms of
V0;As; r; ns, with the help of the following relation, see
[15,16].1:

VðϕCMBÞ ¼
3

2
Asrπ2; V 0ðϕCMBÞ ¼

3

2

ffiffiffi
r
8

r
ðAsrπ2Þ;

V 00ðϕCMBÞ ¼
3

4

�
3r
8
þ ns − 1

�
ðAsrπ2Þ: ð9Þ

Given the observable constraints, see Eqs. (2), (3), (4), (5)
we scan the parameter space by fixing the value of n ¼ 3, 4.
By insisting that the total number of e-foldings of inflation to

be N ¼ 50 along with ϕCMB ∼OðMpÞ, we obtain the
following benchmark points, as tabulated in Table. I.
Note that, as discussed in Refs. [15,16], with ϕCMB ¼ 1,

assuming specific r and varying V0 the parameters A, B, C
have been reconstructed using the data. Further, choice of
large V0 implies that there is no significant fine-tuning
among the relevant parameters involved [18]. Further, for a
specific choice of r, a small range of V0 (and the other
parameters) can remain viable after considering additional
constraints from dns=d ln k; d2ns=d ln k2.
We have numerically solved the Mukhanov-Sasaki

equation [19] without using the slow-roll approximations
to obtain the scalar power spectrum Ps for the three
benchmark points, see [I], two of them are for renormaliz-
able potentials, and one for nonrenormalizable potential.
These have been shown in Fig. 1. We illustrate the power
spectrum beyond the Planck window of Oð8Þ
e-foldings, and show that the scalar amplitude grows
outside this observable window, and reaches PsðkÞ ≤
10−1.5 for k ≤ 1020 Mpc−1 at the end of 50 e-foldings of
inflation. This happens due to the fact that both ϵV , ηV
change nonmonotonically within the observational window
ofOð8Þ e-foldings. At the pivot point, k ¼ 0.05 Mpc−1, the
scalar power spectrum, the tilt and its running all match
the observed data, see Table I, and Eqs. (2), (3), (4), (5), but
after the inflaton has crossed ϕCMB, or the pivot point, the
value of ϵV reaches its maximum, and then decreases
rapidly, while the other slow roll parameter ηV decrease
before increasing again as ϕ decreases [15,16].

TABLE I. We have used ns ¼ 0.96; As ¼ 2.2 × 10−9;ϕCMB ¼ 1 in the Planck units for all the benchmarks evaluated at
k� ¼ 0.05 Mpc−1. The three benchmark points match the current CMBR data, i.e. the central values used in Eqs. (2), (3).

Benchmark
Points (BP) n V0ðk�Þ Aðk�Þ Bðk�Þ Cðk�Þ dns

d ln k ðk�Þ d2ns
d ln k2 ðk�Þ rðk�Þ

1 3 7.44 × 10−10 0.868 × 10−10 0.689 × 10−10 0.190 × 10−10 −0.006 0.003 0.024
2 3 1.506 × 10−10 0.2046 × 10−10 0.2246 × 10−10 0.0757 × 10−10 −0.0148 0.001 0.005
3 4 14.245 × 10−10 1.240 × 10−10 0.500 × 10−10 0.112 × 10−10 −0.0148 0.021 0.046
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FIG. 1. The scalar power spectra has been shown for the
benchmark scenarios in Table I.

1As will be shown in Fig. 2, the slow-roll parameters are small
enough at the pivot scale, and therefore the reconstruction in
Eq. (9) holds good at the pivot scale.
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The evolution of the slow-roll parameters have been
shown in Fig. 2 for BP-3 in order to demonstrate these
features. As shown in the figure, the slow-roll parameters
are small enough around the pivot scale ϕCMB ¼ 1 to
ensure the validity of the parameter reconstruction. As the
slow-roll parameters, especially ηV becomes large as the
inflation proceeds, we numerically solve the full
Mukhanov-Sasaki equation [19] to obtain the scalar power
spectrum, as discussed above.
At small ϕ ≪ ϕCMB, the slow roll parameter ηV → 2A

V0
. As

shown in Fig. 2, it is the large ηV at small ϕ ≪ ϕCMB, that
leads to more power at small length scales. This property
was first noticed in [15]. Note that, for large V0, it can
dominate the energy density well after the CMB observable
window to the end of the inflation, inflation will typically
end via phase transition as discussed above. In our case,
there is be a bumplike feature in the potential close to the
pivot scale. This, in turn, gives rise to large r corresponding
to the benchmark points.
Here we briefly comment on the importance of the

parameters we have chosen. With ϕCMB ¼ 1, using Eq. (9),
it is possible reconstruct the potential with less number
of parameters, e.g., V0; A; B for a particular choice of r.
However, we have found that for n ¼ 3, for ϵV ≲Oð10−3Þ,
B > 0; this makes the potential unbounded from below.
Also, the running of ns, which we compute after recon-
structing the potential parameters using As, ns for a specific
choice of r, can impose further constraint on the viability of
the reconstructed parameters. A further reduction of the
number of parameters (with ϕCMB ¼ 1) would make it
impossible to reconstruct for a given r, since the number
of parameters involved would be less than that of the
equations.
In this paper we will not discuss how to end inflation,

and how to reheat the Universe in any detail [20], but we
will now discuss the possibility of generating GWs at
different length scales and frequencies.
Now, since the scalar power spectrum has an increasing

trend in the infrared, see Fig. 1, one can ask whether this
would source any gravitational waves at the second order.
The gravitational perturbations can be sourced by the
matter perturbations at the second order, this has been
studied in Refs. [21,22]. Based on this we can ask how

much the amplification of GWs will be at scales around
Oð1010 − 1020Þ Mpc−1? Also, what will be the frequency
range of these GWs, and would they be detectable by
DECIGO, eLISA, CE, and BBO?

III. SECONDARY OBSERVABLE
GRAVITATIONAL WAVES

In order to understand this amplification of the GWs, let
us first study the metric perturbations, defined as,

ds2 ¼ −aðηÞ2
�
ð1þ 2ΦÞdη2

þ
�
ð1 − 2ΦÞδij þ

1

2
hij

�
dxidxj

�

where Φ is the metric potential, we have taken anisotropic
stress to be absent, and hij denotes the second-order tensor

perturbation, which satisfies hii ¼ 0; hji;j ¼ 0 (i.e. traceless
and transverse conditions). We are keen on the tensor
perturbations, which can be expressed as follows,

hijðx; ηÞ ¼
1

ð2πÞ3=2
Z

d3keik:x½hkðηÞeijðkÞ þ h̄kðηÞẽijðkÞ�

The two polarization tensors in the above equations are
normalized, such that eijeij ¼ 1 ¼ ẽijẽij; eijẽij ¼ 0.
Note that, at large k (k≳ 108 Mpc−1) of our interest, the

first-order tensor perturbation during inflation is negligible.
To compute the power spectrum, and then the correspond-
ing energy density, it is convenient to work in Fourier
space. By expanding the Einstein tensor and the energy-
momentum tensor up to the second-order, and substituting
the same in the Einstein equation, the following equation
can be obtained [21,22],2

h00k þ 2Hh0k þ k2hk ¼ Sðk; ηÞ: ð10Þ

The source term Sðk; ηÞ can be written as [21,22],

Sðk; ηÞ ¼ −4elmðkÞSlmðkÞ

¼
Z

d3q

ð2πÞ3=2 e
lmðkÞqlqmF ðk;q; ηÞ; ð11Þ

where,
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FIG. 2. The slow-roll parameters have been shown for the
benchmark scenario BP-3 in Table I.

2While the Eq. (10) holds for the “þ” polarization eijðkÞ, the
amplitude h̄k, corresponding to the “×” polarization also obeys a
similar equation. Note that we follow the normalization in [21,22]
for the polarization tensors. Several references follow a different
convention, see, e.g., Ref [23].
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F ðk;q; ηÞ ¼ 12Φðq; ηÞΦðjk − qj; ηÞ

þ 8

H
Φ0ðq; ηÞΦðjk − qj; ηÞ

þ 4

H2
Φ0ðq; ηÞΦ0ðjk − qj; ηÞ: ð12Þ

To estimate the source term, we evaluate the Bardeen
potential first [4]. Since the scalar power spectrum starts
rising for k ≫ keq ∼ 0.01 Mpc−1, the second-order source
term can only be significant for k ≫ keq. Consequently, we
only consider the modes which are reentering the Hubble
patch during the radiation domination. In this epoch, the
Bardeen potential satisfies the following evolution equation:

Φ00 þ 6ð1þ wÞ
ð1þ 3wÞηΦ

0 þ wk2Φ ¼ 0; ð13Þ

with w ¼ 1=3. Ignoring the decaying mode at early times,
the solution takes the following form:

Φðk; ηÞ ¼ cðkÞ
ðkηÞ3

�
kηffiffiffi
3

p cos

�
kηffiffiffi
3

p
�
− sin

�
kηffiffiffi
3

p
��

: ð14Þ

Note that the Bardeen potential ΦðkÞ can be split in to two
parts, a contribution from the primordial perturbation ϕk
(η ≪ 1) and the transfer function as Φðk; ηÞ ¼ ΦðkηÞϕk.
The coefficient cðkÞ is estimated matching of Φðk; ηÞ
with the primordial perturbation at η ≪ 1. This gives
Φðk; η ≪ 1Þ ¼ −cðkÞ=9 ffiffiffi

3
p

. Thus cðkÞ can be estimated
from the primordial power spectrum as follows [21],

cðkÞ2 ≃ ð9
ffiffiffi
3

p
Þ2 4
9

2π2

k3
PsðkÞ ¼

216π2

k3
PsðkÞ ð15Þ

wherePsðkÞ denote the primordial scalar power spectrum (i.e.
the power spectrum as η → 0). Before getting into the
numerical results, we describe the behavior of the amplitude
hk and the source term first [22]. The amplitudehk is largest at
a time ηi, when kηi ≃ 1, i.e., during the period of Hubble
reentry of the respective mode. At this point its amplitude can
be simply estimated as Sðk; ηiÞ=k2. Once a mode enters
horizon, it starts oscillating, and the amplitude decreases as
inverse of the scale factor. Also, the source term SðkÞ
decreases faster during radiation domination before eventu-
ally becoming constant during matter dominated epoch. For
our benchmarks, see Table I, we find that the source term
scales as 1=aγ, where γ ≃ 2–3. For the modes, which enter
early in the radiation dominated epoch, the source term can
become too small before entering thematter dominated epoch,
so the amplitude simply decreases as inverse of the scale factor
until today. The energy density of the gravitational wave (in
logarithmic intervals of k) is given by (see, e.g., [23]),

ρGWðk; ηÞ ¼
hḣijḣiji
32πG

¼ 1

32πG
k2

aðηÞ2 Phðk; ηÞ; ð16Þ

where η is the conformal time, and the power spectrum
Phðk; ηÞ takes the following form

Phðk; ηÞ ¼
k3

2π2
ðjhkðηÞj2 þ jh̄kðηÞj2Þ: ð17Þ

The relative energy density ΩGWðk; ηÞ ¼ ð1=12Þðk2=
aðηÞ2HðηÞ2ÞPhðk; ηÞ, then, can be estimated at the present
epoch by, ðΩ0

radh
2=Ωeq

radÞΩeq
GWðkÞ, where we take h ¼ 0.68,

and Ωeq
GWðkÞ evaluated at the reentry

Ω0
GWðkÞh2 ¼

Ω0
radh

2

2Ωeq
rad

�
g�eq
g�i

�
1=3 k2Phðk; ηiÞ

12aðηiÞ2HðηiÞ2
: ð18Þ

where ηi represents the conformal time around the Hubble
reentry of the respective mode when the amplitude hk
is maximum, thus kηi ∼Oð1Þ. During radiation domina-
tion ρtotal ¼ ρrad ∝ HðηÞ2 ∝ g−1=3� a−4. Further, the effective
number of degree of freedom contributing to the energy
density and to the entropy density have been assumed to be the
same during this epoch, with g�eq ¼ 106.75; g� ¼ 3.36 and
Ωradh2 ≃ 4.3 × 10−5. We show the estimated Ω0

GWðkÞh2 for
the benchmark scenarios in Fig. 3. Note that the BBN and
CMBR constraints onΩGW (i.e.,ΩGW ≲ 10−5, see, e.g., [24])
is satisfied by our benchmark scenarios.

IV. DISCUSSION AND CONCLUSION

Since the scalar power spectrum, as depicted in Fig. 1 for
our benchmark scenarios, rises only after k ∼ 104 Mpc−1,
these remain unaffected by future constraints from COBE/
FIRAS on CMB y and μ distortions; in future PIXIE may
be able to impose moderate constraints in some cases
[25,26]. Furthermore, large scalar perturbation at small
scales can possibly lead to enhanced structure formation at
smaller scales3 We have used available constraints on small
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FIG. 3. The relative contribution of the gravitational wave to the
energy density has been shown for the benchmark scenarios in
Table I.

3The large scale structure (LSS) and Ly-α data is relevant on
scales of ∼Oð10Þ Mpc−1. To our knowledge no numerical
simulation for large scale structure uses resolution smaller than
pc. We could not find any constraints on the scalar power
spectrum at very small scales relevant for us in the literature.
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scale compact objects, most notably primordial blackholes
(PBHs), to ensure the viability of our benchmark scenarios.
Since the scalar power spectra only become large well after
matter radiation equality, we have estimated PBH forma-
tion during radiation domination epoch for these bench-
mark scenarios. The mass of a PBH formed during the
horizon-entry of a scale k (during radiation dominated
epoch) can be estimated as,

MPBHðkÞ ¼ 2.48 × 1046
γ

k2
g: ð19Þ

where γ denotes the energy fraction within the horizon
which ends up inside the PBH. It depends on the details of
the gravitational collapse, and have been estimated to be
approximately ð1=3Þ3=2 ≃ 0.2 during the radiation domi-
nated epoch [27–29]. Thus, large scalar power at large k, as
is relevant for our benchmarks, corresponds to a small PBH
mass, i.e. ≪ Oð1010Þ gm. We have used Press-Schechter
formalism [30], while assuming spherical collapse, with the
threshold density contrast δth ¼ 1

3
, and a Gaussian window

function to estimate the PBH formation [27,28]. Also, the
Gaussian distribution has been assumed for smoothening
the density perturbations.4 We have found that for all our
benchmarks the most abundant PBH masses are well below

Oð1010Þ gm, and these typically contribute much less
than 10−20 to the fraction of the energy density in the
respective epoch. Therefore, there is no stringent constraint
from photo-dissociation or hadron injection during
BBN [25,28].
Before concluding, let us point out to the key physics for

generating large primordial r. This is due to the presence of
V0 term. It is conceivable that instead of V0, one might be
able to invoke many scalar fields giving rise to an enhance-
ment in the Hubble expansion rate [35]. It would be
interesting to see if multi-scalar fields can also reproduce
sufficiently blue tilt in the power spectrum beyond the
8 e-foldings of observed window via inflection-point
inflation.
To summarize, we have provided an example of infla-

tionary potential, which is capable of generating large
tensor-to-scalar ratio, in our scans we have given examples
of r ¼ 0.024, 0.046, 0.005. These values of r are generated
by the inflection-point inflation, which provides large
running of the slow roll parameters outside the pivot scale
such that the power spectrum increases in the infrared until
the end of inflation. The latter sources the secondary GWs
withΩGWh2 ≤ 10−6, which can be potentially detectable by
DECIGO, eLISA, BBO, and CE, therefore, opening up
new vistas for GW cosmology.
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