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Gravitational waves from warm inflation
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A fundamental prediction of inflation is a nearly scale-invariant spectrum of gravitational wave. The
features of such a signal provide extremely important information about the physics of the early universe. In
this paper, we focus on several topics about warm inflation. First, we discuss the stability property about
warm inflation based on nonequilibrium statistical mechanics, which gives more fundamental physical
illustrations to thermal property of such model. Then, we calculate the power spectrum of gravitational
waves generated during warm inflation, in which there are three components contributing to such spectrum:
thermal term, quantum term, and cross term combining the both. We also discuss some interesting
properties about these terms and illustrate them in different panels. As a model different from cold inflation,
warm inflation model has its individual properties in observational practice, so we finally give a discussion
about the observational effect to distinguish it from cold inflation.
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I. INTRODUCTION

It has taken for several years to search for gravitational
waves on astrophysical experiments, such as LIGO [1],
VIRGO [2], and other observational experiments [3,4] to test
the prediction of general relativity. Hulse and Taylor [5] first
announced the observational evidence for the existence of
gravitational waves. Then came the good news that gravi-
tational waves have been detected by LIGO [6-8] in recent
years generated by a binary black hole. This discovery was a
great achievement that opened a new window to better
understand our universe both at early epoch and late epoch.

Warm inflation model was established as a candidate
scenario to overcome some defects in cold inflation [9,10].
However, it was realized a few years after its original
proposal that the idea of warm inflation was not easy to
realize in concrete models and even simply not be possible
in relevant work [11,12]. Some problems were mentioned
to suspect such a scenario. First, it is hard to couple the
inflaton directly with light fields. Considering a Yukawa
interaction gy, the slow roll condition typically requires
an inflaton with large value, while the fermion obtain an
extra mass with also a large value unless the coupling a
quite small. As a result, the dissipative effect may be too
small either which implies that it is hard to obtain a period
of inflation with dissipation coefficient long enough to
require the 60 e-ford to solve the horizon and flatness
problem. Second, a direct coupling to light fields may lead
to large thermal corrections to the inflaton mass m,, = g¢,
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which could prevent slow roll for 7' > H. Shortly after-
wards successful models of warm inflation have been
established, in which the inflaton indirectly interacts with
the light degrees of freedom though a heavy mediator
fields instead of being coupled with a light field directly
[9,13-15]. In such scenarios dissipation can sustain both
the slow-roll dynamics of the inflaton field and the temper-
ature of the radiation bath for a sufficiently long period.
One can read a Lagrangian density of the generic form,

L@, X, Y] = L[®] + L[X] + L[Y]
+ ‘Cint[q)’x] + Eint[Xv Y] (1)

where @ is the inflaton field, X are any field or degrees of
freedom coupled directly to the inflaton field, while ¥ can
be any other fields not necessarily coupled to the inflaton,
but are coupled to X. The £, [®@, X] and L, [X, Y] give the
interaction among these fields. The evolution of the inflaton
field can be properly determined in the context of the in-in,
or the Schwinger closed-time path functional formalism
[16]. This equation displays both dissipation and non-
Markovian stochastic noise terms and it is a generalized
Langevin-like equation of motion [17,18].

Compared with the predictions of cold inflation that
primordial density fluctuations mostly from quantum fluc-
tuation and thermal bath are only generated at the end of
inflation [19], warm inflation model suggests that our
universe is hot during the whole inflation when inflaton
fields couple with the thermal bath and the primary source of
density fluctuations come from thermal fluctuations [20-22].
The equation of motion for warm inflation can be written as a
stochastic Lengevin equation, in which there is a dissipation
term to describe the inflaton fields coupling with thermal bath
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and there is also a fluctuation term described by a stochastic
noise term [17,23]. The fundamental principles of warm
inflation have been reviewed recently in [24]. Warm inflation
with strong dissipation requires T > H, with which thermal
fluctuations dominate the whole inflationary epoch i.e.,
T > H [25]. Generally, we can still have the weak dissipation
condition with ¥ < H [26,27]. Noncanonical warm infla-
tion model is under studying recently [28,29].

Although primordial gravitational waves generated during
inflation have not been detected yet till now, the discovery
of gravitational waves by LIGO has shed a bright light to
this prediction. The measurement of the cosmic microwave
background radiation and other observations have given a
good constraint to the ratio of tensor to scaler with » < 0.07 at
95 C.L. [30]. The study of primordial gravitational wave is a
way to prove the inflationary programm. What is more, it also
provides an effective method to distinguish among different
inflationary model. Now more and more researchers have
cast their eyes to primordial gravitational waves generated by
various kind of sources, such as primordial density pertur-
bation [31,32], some kind of inflationary model [33,34],
and even during the reheating epoch [35]; a great deal of
predictions have been given in these works which may be
observed in observation experiments in the near future.
However, till now there has not been any calculation about
the gravitational waves generated from warm inflation. This
approach must be an effective way to differentiate cold
inflation model from warm inflation model.

In this paper, we attempt to illustrate the existence of
gravitational wave generated from warm inflation. Green’s
function method has been used to calculate the power spectrum
of tensor perturbation with source as the form of transverse-
traceless tensor. This spectrum can separate into three terms:
thermal component, quantum component, and cross compo-
nent, and each component has its individual and interesting
properties. With these properties, we discuss the observational
prediction from the view of tensor-to-scalar ratio.

This paper is organized as follows: in Sec. II, we give a
brief introduction to warm inflation and stochastic
approach to deal with warm inflation. In Sec. A, based
on nonequilibrium statistical mechanics, we recalculate the
statistical properties of warm inflation model and give more
results in detail. In Sec. III three programs for describing
the thermal, quantum, and their cross term are calculated
and relevant calculations and equations are derived. In
Sec. IV, we discuss our result by numerical analysis.
Finally, in Sec. V, we conclude our work and give some
further discussions about our results.

II. STOCHASTIC APPROACH
FOR WARM INFLATION

A. Stochastic approach

First, let’s have a brief review of stochastic approach for
cold inflation. The equation of motion for cold inflation is

the standard one: In the warm inflation model, the equation
of background field is often written as the Langevin
equation

0? 0 5 ov(®)
op t3H 5 - v O+ =0, (2)

where @ is the inflaton field operator, a is scale factor in
Friedmann-Robertson-Walker metric and H is the Hubble
parameter defended as H = a/a. The stochastic approach
assumes that inflaton field separates into two parts, one is
®_ which denotes the long wavelength part, and another is
®_ which denotes the short wavelength part for quantum
vacuum fluctuation, i.e., ® - ®_ + ®_. Usually, d_ is
written in terms of a filter (window) function.

The stochastic inflationary approach suggests that quan-
tum inflaton field ® is composed in a short wavelength part
®_, which denotes the quantum vacuum fluctuations, and
a long wavelength part ®. ie., ®(x,1) =D_(X,1)+
®_ (x,1). As previously study, quantum fluctuation domi-
nates on short wavelength. With this condition, we assume
a number smaller than unity such that the quantum

3
D_(x.1) =, (x.1) = /%W(k, )
x [pi(r)e™*a +Hel, (3)

where ¢y (7) is the field in momentum space, a is the
annihilation operator whose Hermitian conjugate operators
is af( In (3), W(k,t) are the window function with sharp

momentum cutoff

W(k, 1)

where € is a suitable number smaller than 1. Then fields
¢x (1) in (3) satisfy

o o K
op T35 =5+ (Vg (@

= 0(k — eaH). 4)

2)) | (1) =0. (5)
Generally, ¢, (z) is given by

(e = T (ep ) (k). (6)

where p = /9/4 —m?/H* with m? ~constant is the

average of V,,, (®.), 7 is the conformal time in de

Sitter space-time defined as 7 = —1/aH, and H'V is the
Hankel function of the first kind.

Then, with (2), the equation of motion for long wave-
length part of the field ®. reads

o o )
o+ 3H E——v DAV, (@)=, (7)
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where £, is given by

1
;Vz + Vigp (@) | dq(2)  (8)

N
=" {82+3 o1

and its average vanishes (£,) = 0. With (3) and (7), the
two-point correlation function is
3

(&, (% 1E, (X 1) = / Ak

s € REF () (1)

)
where

2
= [ + 35 o + 257 0. (1

Here we just give a brief introduction of stochastic infla-
tionary approach, and more details have been studied in
several work [36,37].

B. Warm inflation

In warm inflation model, the equation of motion of
background field is often written as the Langevin equation

2
82

oV (D)

o= (1)

0 1
3H+T) = —— V2| @+
+CBH+T) o ——

where T is the dissipation coefficient and &; is the thermal
noise fluctuation. In this paper, we consider only in the case
of de Sitter space-time, where a(7) = exp(Hr) and H is
regarded as a constant. According to the fluctuation-
dissipation theorem, dissipation coefficient Y and fluc-
tuation noise £y have the relation

Er(x.0)ér(x.1)) =2YTa>8(t = 1).  (12)
The Fourier transformation of (12) is

(Er(k.0&r (K. 1)) = 2(22°)YTa™8 (k + k)o(t - 1').
(13)

Usually Y is a function of both background homogeneous

inflaton field ® and temperature 7 [15] and we do not
attend to discuss this question here.

The the inflaton field operator ®(x, 7) is often separated

into the parts as follow

O(x.1) = P(1) + op(x. 1), (14)

where 6¢(x, t) is the perturbed part of inflaton, and ¢(¢) is

the background homogeneous inflaton field which is
defended as

#(1) zé/gaﬁxd)(x,t). (15)

Here, Q is particle horizon size Q = 1/H. With this
relation, (11) reads

o ¢ L4

Sp TBHEY V., () =0, (16)
9

{ + [BH + Y(¢)] at—%vz

+ Yy (9)g + V¢¢(¢)}5§0 =<7 (17)

With the slow-roll condition, we write (16) as form of
that in cold inflation,

H(1+Q)p+ V., (¢) =0, (18)

where Q is the ratio of dissipation coefficient I" and Hubble
parameter H, i.e., Q =T'/3H. It is also necessary to define
some slow-roll parameter for warm inflation,

1 Vs 2
=G ( V¢> <1+0, (19)
1V,
and
1 T,V,

Now, looking again (17), we consider only the fluc-
tuation from thermal noise and neglect that from quantum
noise. Obviously, although thermal effect play a significant
role in warm inflation, quantum effect may also be non-
negligible. Quantum noise dominates still for short wave-
length perturbation, so we can use stochastic inflationary
approach to deal the quantum fluctuation in warm inflation.
Thus (17) in momentum space by defining the variable
7z = k/aH (ranging from 0 to co) becomes

1
9/ (k.2) =~ (30 +2)60/ (k. )

3(n—po/(1+¢q
Z2

1+ ) op(K,z)

:ﬁ[fq(k,z) +¢r(k, 2)] (22)

where primes denote the derivatives with respect to the
variable z and &,(k, z) is the quantum noise term reads
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+Eﬁ+¥%@m@, 23)
in which
dy(k,2) = Wk 2)[px(2)ay +Hel.  (24)

Here éﬁq(k, z) are still the quantum field modes that satisfy
the equation

& 24300 Vigp
—_—— — 0, 25
[&2 z Oz H2 2} i(2) = (25)
with the solution in terms of z:
H
hele) = DI 22H( (), 20

where y = 1/9/4 -V, /H*~3/2—3n. Then, we can

get the expression of correlation function of quantum noise

(.22, 2) = Z g 4

x5 (k+k Refi(2)f ()], (27)

where 7/ = k/a(7')H and fy (z) is [38]
30+2

) " _ _ 3ﬁQ
=k |W p w (1-|—Q)Z2W ¢k(Z)

+ 22W' ) (2), (28)

fx(2)

and n(k) is the distribution function for high-frequency
quantum inflaton which satisfies Bose-Einstein distribu-
tion, i.e., n(k)=(a},a_,)=1/[exp((k—p)/aT)—1] where
u is the chemical potential to eliminate the divergence of
several integrals which will be discussed below.

III. GRAVITATIONAL WAVE GENERATED
FROM WARM INFLATION

Fluctuations (including thermal and quantum) through
the energy-momentum tensors 7, generates tensor pertur-
bation in Friedmann-Robertson-Walker metrics as

Gu = @*(0)[d7* + (8 + hyj)dx'dx’], (29)

where dots denote the derivative with respect to conformal
time 7 and H;; is the tensor perturbation with transverse-
traceless gauge. Tensor perturbations h;; satisfy the equa-
tion of motion

2

M2 H Tkl’ (30)

. a-

with M,? = 8zG. Define h] = ah;
transformatlon becomes

= 2\ - 2a

ij» then (30) with Fourier

Hijkl(k)Tkl(k’T)- (31)

Here, we have used the relation 7 = —1/aH in de Sitter
space-time and I1; jk’ are the transverse-traceless projectors
which follow [39,40]:

24

Hijkl(k)pkpl = <Pi

1 s p-k)?
_5(5”‘—/([/(]’) <p2_( 2 ) >, (32)
o 1 (p-k)*\2
Hijkl(k)nij (K)  pepiPmPn = ) (P2 T )
(33)
and
Hl]kl(k)kl =0, (34)

where k; = k;/k. The solution of (31) is

ilij(k’f):%/dT/Gk(T,T/)a(T/)Hijkl(k)Tkl(va,)’ (35)

p

where G (z,7’) is the Green function. Two linear solutions
of (31) are

y1(7) = k" (=kz) = (1 +é> ekt (36a)

and

ya(t) = —ken'? (—kz) = <1 —é) et (36b)

where n(ll) (z) and n(lz) (z) are the spherical Bessel functions
of the third kind [41]. According to the method in
Appendix B, Green’s functions as a function of z and z" are

Gi(z,7) = [(1+zZ)sin(z —z) + (z—2')

1
kzZ
x cos(z' — 2)]0(z' - z), (37)

Energy-momentum tensor for warn inflaton field
write [42]
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T, = 0,D0,® — g, G 9, DD — V). (38)

The part on the right-hand side containing g, is projected

away by IT; j’d, and ¢ (1) is the space average of inflaton field

that contributes nothing to the perturbation. So d¢ are the
primary part in 7',;,. Thus, the tensor spectrum reads

<hij(k’7)hij(kl’f)>
4

:W/dz/a(T,)Gk(T,T/)/dz”a(T”)Gk(T’T//)

X/d3Pd3P/Hijkl(k)Hijmn(k/)Pk(kl—P1>P§n(k§1—P/n)
x(®(p,7)®(k—p,7)®(p".7")@(k'~p",7")).  (39)

It is convenient to write the spectrum as a function of z:

(hij(k,2)hi;(K', 2i0))
4 . .
——/dz’Gk(T,r’)/dz"Gk(T, ")

(Q2n) KM
X/d3pd3P/Hijkl(k)Hijm"(k/)l?kpzpfnpfl

x (6¢(p.7)op(k —p.7)op(p". 7)o (K —p'.7")),
(40)

where the relation z = k/aH has been used and G are
defined as

Gi(z,7) = Z% (1 =2zZ)sin(z = 2') + (2= 2)

x cos(z' — 2)]0(z' — z2). (41)

Now, one should note that z’p are defined as
Z, = p/a(r)H. If we omit the subscript like Z”, it
represents a variable in terms of wave number k,
ie., 7/ =k/a(7")H.

Using Wick theory, the average of (...) becomes

(0g(p.7")0p(k — p. )50 (p". 7" )8 (k' — p’. "))
= (6¢(p,7)o¢(k —p, 7)) (69 (p', ") o (K" = p', 7"))
+ (6p(p.7)p(p". 7")) (Sp(k — p.7)p (K — p'.7"))
+ (6¢(p. 7)op (K" —p',7")) (6p(p". ") d0p(p', 7")).
(42)
The first term on the right-hand side can be ignored because
it is a diagram containing the disconnected term propor-

tional to &(k)S(k’). And it is not hard to find that the
second term and the third term are equivalent to each other.

Now the first priority is to solve Eq. (22). According to
(C5) and Appendix B, the solution of (22) is

plk.2) = [ doie?) o ler k. 2) + &, k.2,
(43)
where
o (2.2) = #Z/Im,) [Vo(2)Yo(2')
—Jo(Z)Yo(2)]0(Z = 2). (44)
with
v=3(1+0Q)/2,
_ - fﬁ—QQ 3 (45)
Wiite the perturbed field as
8 = Spr + 8¢, (46)

where g7 is the part including integral of thermal noise
&r while 6¢, for quantum noise. Then we can find that
tensor spectrum contains three components: thermal term
(6@r@r) (6@rdpr), quantum term (39,09, ) (59,09, ), and
cross term (5¢,6¢,) (5prdpr). Next we will calculate the
spectrum in terms of the three components above.

A. Thermal term

Thermal term of tensor spectrum at the end of inflation
(r =0, z = 0) reads

(hij (k)R (K)) 7

4

:W/dz’Gk(r, T’)/dz”Gk(T, 7")

X / d® pd’ p'TL M (KT (K') py pypi Py

x (6gr(p, 7' )o¢r(k —p, 7)) (6pr(p’, ")
x Spr(K' —p',7")), (47)

The fluctuation-dissipation relation of (13) acts in terms
of t. Now using t = H~'In(k/Hz) together with

B 5(x — xg)
5(f()€)) - % |f/()€())| ’ (48)

where x are zero point of f(x), we obtain
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(Er(k.0Er (K1) =228 YT 55228 (kK )3(z = ).
(49)
It is helpful to make such calculation below:
(007 (p. 2,) 001 (. 2)))
4H2/ le/ de Zp Z]Zz) v
X Gp(2p. 21)9y (2, 22)(Er (P2 20)Er (P, 22))
YT (k + K')
2 [ YelB)IYe(z))
x/'ﬁfhﬂ() (50)
%
where we have used (C2) and z/J,(z) ~0 (z<1).

Considering the function z27?*J2(z), we find that this
function almost equals to zero except a narrow peak at
z 2 1, so it is convenient to treat it as a delta function. Thus

/ dz 222 (zy)

2
~ (1 —PZ’)/ dz 277 J5(21)
0
-1 a—v+3/2)

=0 -p7) 2/aAl(v—1/2)(a+v—1/2)° (1)
where 7, = p/a(7')H = (p/k)(k/a(7')H) = pz’ and (C7)
has been used. With (45) and (45), get a = v. Thus

(601 (p. 2007 (p'. 1))
YT
=55+ )2 TW)
p
— 3
M- Hre) 5

A= 1220 =1/2)°

The spectrum damps out as (sin kz — kz cos kz)/k> in
Green’s functions at large value of k. On the other hand, k
only appear in the sublimit of the integral and then they are
absorbed in @ function, and k become not so important
which act only as the form of k — p. Besides, and the most
important, (A6) indicates that if p < akg, 5¢(p, fy) has not
thermalized during inflation. So the integral in tensor
spectrum gets its main contributions at p > k. With these
approximations,

(hij(K)hij(k))7
C BTTE(k+K) [ RTWPIw-1) 2
16k* M {4r(y —1/2)F(2v -1 /2)}

,sinz’ =7 cosz [ sinz” —7"cosz”
x [z 7 dz 7
0 < 7 <

p,kz 253p+p/ ~
x/dSpd3p’<p2—< k2)> (p(, )9(1—[71/).

(53)

Using (33), (C9), (C12)—(C14), thermal term of tensor
spectrum (47) is finally simplified to

(ij (k)i (K")) 7
3z*H* A T\?
— 10K Sk +k )(ﬁ)
" [ 089r(3Q/2 +3/2)°
(BOo+1r@Be/2+1r@o+5/2

Here, we have assumed z, > z; and this assumption has no
affect on the final result.

)] © s

B. Quantum term

According to (27), the correlation function of

5p,(k,z) is

(00,(p. )00, (0", 2))))

/ dzl/ dz,9(2),.21)9 (z ' 2)

<§q(p’ Zl)éq(p ’ Z2)>

H4(Z1z )?
(Zﬂ)3 3 / / k 1"
= e 2n(k) + 1]6°(p + p')F,(2,)F;(2),  (55)
where

Fe) = [T a6 f 0. (50

Using (4), (28), (C2), and (C3), F (z,) reads

PH

F,(z,) i f/§p3 , (57)

with 0 <z <e<1 [38]. Notice that z, = p/aH = pz < e
and z>¢€, so 0 < p < 1. Thus the quantum term of
two-point function can be written as

3273 HY

(hij(k)h;;(K')), ~ WI(H/T)(S(k +k'), (58)

where
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I1(H)T) = /01 dp M“’ g SMETICSToh (%)] ’ (59)

Next, we will proof that I(H/T) is normalized no matter at high temperature or low temperature. Note that
p = (p— po)H/T and consider the low temperature condition (7' << H or p > 1):

© Sin X — X COS X
————c¢o
0 X

2n

dx sinx — xcosx

th(ﬂ) :/oodxsinx—;ccosx+/°°
2 0 X 0

ePr —1 x?

=1+ 2; (=11 G D

i L
r/ip >+ip/’”1nr(1+z)dz:1—1n< 7/

o
~1.

o x2n-1 =< {(2n)
=1-2 ip)~2"
A e’”‘—ldx ZZn—i—l(lp)

n=1

m) + 21nF(1 + Z)lz—>0

(60)

In the calculations above, we have used relevant properties of Gamma function and Zeta function in Appendix C. We obtain
I is unit at low temperature. Next consider the high temperature condition (7 > H) and define z = exp(pq/aT),
p = pH/T. High temperature means that p, is a negative number with sufficient large value, i.e., z < 1, thus

© SN X — X COS X p— po)xH ©  SinX — XCOSX o dxze P* sinx — x cos x
/ 5 coth<(p Po) ) :/ dx +/
0 0 0

X 2T 2 e >
> 2]1 00 -
=142 )yt =1 (L p=PX)m ]
i nmzl( ) (2n + 1)!/0 X (zeT ) Mdx
= (=)t 1o = (-1)t 1
S =1+2 ~1. (61
! n,mz—l 2n+1 pm* i ; 2n+1 p>* 2n(2) (61)

Thus we assume that /(7/H) = 1. This assumption is
reliable. In stochastic approach, we assume a field ¢, as the
vacuum fluctuation for short wavelength with a sharp
momentum cutoff, which means such a fluctuation as a
noise always exists no matter at low temperature or high
temperature. It is just the condition for cold inflation. On
the other hand, chemical potential is a physical variable that
cannot be ignored when a particles coupling with other
fields (like thermal bath) especially for the condition at
phase transition. Most importantly, it is just the chemical
potential that eliminates the singularity at p = 0.

C. Cross term

If we simulate the calculation above, it is not hard to get
the expression of the cross term for the two-point corre-
lation function:

<hij (k)hu (k,)>cross

3n*H*
~ 2" 5(k 4 K)
5k3m7)
T 089 (30/2 +3/2)3

X — . 62
HGBQ+ 1HI'(30/2+1)I'3Q +5/2) (62)
This component has nothing new compared with thermal
and quantum component.
In the calculations above, we have ignored the
slow parameter as the index of variable z. With this

approximation, we obtain the scale-invariant spectrum of
each components.

IV. RESULT AND NUMERICAL ANALYSIS

Power spectrum of tensor perturbation P,(k) is
defined as:

. . 27
(hij(K)h;j(K')) = 7Ph(k)5(k + k). (63)
The spectrum of tensor modes with vacuum form reads [43]

2 H?

Ph,vac(k) = 230 (64)
M5,

We illustrate the power spectrum for thermal component in
Fig. 1 and total spectrum of tensor perturbation for warm
inflation in Fig. 2.

As discussed above, the spectrum for quantum compo-
nent is a constant with order of H*/Mj,. This value is so
small that there is almost no correction to the spectrum of
primordial tensors, which agrees with other cold inflation
models [32-34]. However, what we interest most is the
thermal component in total spectrum. As is shown in (54),
there are two variables determining the thermal spectrum,
i.e.,, Y/H and T/H. Considering the weak dissipation
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FIG. 1. We plot the thermal component of tensor perturbation

which is normalized as H*/M. The spectrum increases with the
increase of Y/H and T/H. The bright red line on the lower
left quarter is the contour line with the value of amplitude of
quantum fluctuation for tensor mode. The amplitude of thermal
component below the contour line is smaller than the value on the
contour line, ie., P,r/P,, <1. In other words, quantum
fluctuations dominate at this epoch. The condition is opposite
above the contour line, which is almost the same with the work
of Ramos [38].

condition with Y/H <« 1 and T/H < 1 first, we can
directly get P, 7(k) — 0. In other words, this condition
is just the same with cold inflation. In contrast, the
condition with strong dissipation (Y > H and 7 > H) is
quite different from that of weak dissipation. The amplitude
of thermal spectrum increases with the increase of Y/H
and 7'/ H. Taking two simple examples, P, r(k) = 63.87 at
Y/H =10 and T/H = 10, or especially, P;, r(k) ~ 10* at
Y/H =100 and T/H = 100. It has been widely studied
that there has a significant correction on the spectrum of
primordial fluctuations in the warm regime with strong
dissipation for 7> H and such a correction lowers the
tensor-to-scalar ratio. Thus the curvature power spectrum is

modified into [14.,44]
\ 700

600

500

400

TIH

300

200

100

FIG. 2. Total spectrum for tensor perturbation.

A = (g)z <%>2 {1 +2n+ 2nQ£]. (65)

The temperature at the end of inflation is [45]
4.09 x 10" GeV < T <2216 x 10'* GeV. (66)

With this and using (54), (64), and (65), we obtain the
tensor-to-scalar ratio in warm inflation:

_[10757(0) + §]lny|
T 1+2n+2707%

. (67)

where f(Q) is function containing Q in (54) and ny is the
tensor index. From (67) we can find that large Q will upper
the tensor-to-scalar ratio, but it does not act obviously until
Q reaches the level of 100 (Q > 100). In [46], the authors
have tabled the parameters like Q, T/H, r and others in
warm inflation with different potential by the constraint by
recent years’ observational data. The result shows T/H ~ 1
during inflation which agrees with the analysis in [45]. The
nondetection of cosmic gravitational waves background
strongly constrains that thermal component of tensor
perturbation P, will not upper the ratio dramatically
which also agrees with a various of works [46,47]. In this
way, the primordial tensor spectrum thus can be used to
distinguish warm inflation from cold inflation.

V. CONCLUSIONS AND DISCUSSION

In this paper we first derive the two point correlation
function of tensor perturbation in warm inflation and prove
that primordial scale-invariant power spectrum of warm
inflation is achieved only if the system evolutes near the
thermal equilibrium state, in which condition warm inflaton
fields are stable. We also explain the physical meaning of
both scalar index and slow-roll parameter § in (21) that
correspond to the nonequilibrium properties during infla-
tionary epoch. Then we calculate the power spectrum for
warm inflation by Green’s function method and mainly
discuss the thermal component in total spectrum. We
consider it as a new method to distinguish warm inflation
from cold inflation. At last, we illustrate our result by
numerical analysis. Using existing cosmic observational
data, we find that fluctuations from thermal noise does not
raise the tensor-to-scalar ratio dramatically at order of 107*
although the temperature is high enough.

There are also many issues which deserve further
discussion in this paper. The first one is the thermal
properties of warm inflation model. For example, how
initial condition determines the scalar index n, and whether
the stability of thermal inflaton fields still holds with
arbitrary initial condition? Then, we find that the spectrum
of quantum fluctuation is almost a constant because of
momentum cutoff in stochastic approach. So whether
quantum fluctuations still exist in high temperature in
other models becomes an interesting and challenging work.
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Finally, but the most important, is whether we can observe
such a fluctuation? Although the cosmic gravitational
waves background has not been detected yet, with the
discovery of gravitational waves, more and more new
methods coming out [48,49], and a series of observation
installations working or being built [1-4], it is believable
that primordial gravitational waves can be detected in the
foreseeable future.
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APPENDIX A: THERMAL PROPERTIES
OF WARM INFLATION

Correlation function is defined as

(Al)
!

Psp(X =y, 11, 1) = (6¢(X, 1,)50(y, 12)),

1

t
(k. 1) e 00 [ el (k) 3k )/

T

[0

whose Fourier transformation is

31,/

Poplk.11.13) = / DK ok, 1)50(K . 1)),

(2r)? (42)

Let us consider (17) again. Using the slow-roll condition
and strong dissipation condition I' > H, (17) approxi-
mately writes [50]

T

dsp(k., 1)
i (A3)

+ [k + V" (9)16p(k, 1) = &r (K, 1),

where V"(¢) = d*V(¢)/d¢* and ¢ is defined in (15), k, =
k/a is the physical wave number and k is the conformal
wave number. Strong dissipation means that we can ignore
the change of parameter a, k,, and T within the time interval
1/H and fluctuation from quantum noise is negligible.
Then the solution of (17) is

(A4)

where 7, is any coordinate time during inflation and 7(¢) = Y/[k3 4+ V" (¢)].

The correlation function of perturbed inflation field is

(Bp(k,1,)0p(K' . 1)) = Sg(k, 19)dp (K, tg)e~(1+2)/(4)

t 1
x/l/ze<“'l+sz>/f('l’>5(s1—sz)dsldsz
1o Ji

3753
2(27)°TS gk +Kk’) (1))
Ya’

(AS)

where we have used (13). The double integral in (A5) contains a d function, so we need to integrate first to the larger one in

t; and t,. Then

2(27)°T (k + K')

e~ (n+n)/t($)

(o(k. 1,)00(K'. 1)) = dg(K. 10)5gp(K', 1g)e™ (1 T2)/7()

Ya3

min(t;,t,)  [max(t;,t,)
X/ 112 / 172 e(s]JrSz)/T(fﬁ)(S(sl —Sz)dsldsz
f fo

= 5(p(k, to)é(p(k/, to)e_(tl""tz)/f(éb) +

20273T&(k + k') _

o~ (t40)/2(9) / L) s gg
)

Ya3
3 /
_ sk, 1)K’ 1)~ @) 4 %) TT(?‘?(“ K ¢ el 2minG )5 ) _ oot +0)/6)
a
3 3 /
= gl 1)K g)eteervso) o CITHIRRERD o) _ emtusmnreny. (a6)
—
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Now, let us make a more detailed calculation of the second term in the final equation.

(27)’Te(p) (27)3TY B

(27)*HT

(2z)3HT  (2z)*HTz

Ya3 YK a*+ V")

3H’%(

2 7Nl 3 = ’ (A7)
L) (24 3p) K

where we have used relation z = k/aH and Eq. (20). Finally, the correlation function reads

(27)*HT?

otk 1)ap(K 1)) = (S0(0. 100300 10) - 22

Thermalization requires that initial condition must ther-
malize at physical scale k,, within 1/H. From (A8), the first
term on the right-hand side must be negligible with in
Hubble time, so

K-V
HY

> 1. (A9)

If V' > HY, the freeze-out number is the same with that of
cold inflation, ki = H (z = 1). However, if V' < HY, the
freeze-out number reads
kp = (HY)x. (A10)
Obviously P(k,t,,1,) is dependent on the initial state
op(Kk, ty). Now make average on initial state and assume
t, = t, =t together with 7y = 0, so correlation function
can be written as

Py (K 1) = (2](3 Pay (K. 1) H7;Z*> _2I/T¢+HZZ*’
(A1)
with the definition of power spectrum
IS Ak
Pay(i.t) = 555 [ s ol w)ap(. ). (A1)
and z, as the value at horizon crossing z, = (YH)'/?/H.

Things become quite interesting. If the power spectrum is
scale-invariant i.e., Ps, (K, ) = (YH)"/2T/27* [20], the
spectrum Py, (K, ) is also scale-invariant and totally the
same with Py, (K, #y). In other words, Py, is stable in this
condition which means system is on thermal equilibrium
during time interval ¢ > t,. This is quite similar with the
condition of correlation function for particles with Brown
motion [51]. Now, consider that Py, (k, %) is not a scale-
invariant spectrum and assume Py, (K, )) = Ak/kg)" !
where ' is an arbitrary number. Then P, (k, f) becomes
also dependenton k i.e., P, (k, 1) = A(k/ko)"~". However,
this term damps with the increase of time, which means n
tends to unit with the time evolution. This is an effect
dominated by nonequilibrium mechanics. In this way, we

53<k + k/)) —(t1+1,)/7(¢p

(27r) HTz

e 53(1( +K')e” [t1=12|/(¢)

(A8)

|

can say that scalar index n,; and slow-roll parameter f are
parameters that illustrate the deviation from equilibrium
state. Probe on cosmic microwave background shows that
our universe is almost in nearly equilibrium [52] if consid-
ering our universe in early epoch as a model in thermal bath.
The relation (All) indicates that Pj,(k.?,) (the initial
condition of universe) becomes not so important even
though we cannot give an accurate description till now.

APPENDIX B: A BRIEF INTRODUCTION TO
GREEN’S FUNCTION

Let us consider the equation [53]

d2
ey = £, (B1a)
with boundary condition
¥(0) =y'(0) = 0. (B1b)

To solve this equation, we need to solve another relevant
equation in terms of Green function G(t,t’):

&Gt 1
% +a?(1)G(1,1) =56(t—1),  (B2a)
with boundary condition
dG(t, 1)
Gl = =0. B2b
‘170 dt —0 ( )
Obviously, when # < 7, G satisfy
d2 ?
#—I— @?*(1)G(t,1) =0, (B3)

dr?
with boundary condition (B2b). Then assume the general
solution of (B3) is

Gt < 1) = ci(t)y1(1) + 2 () y2 (1),

where y; and y, is the solutions of (B3). Considering the
boundary condition, we obtain

(B4)

G(t<r?)=0. (B5)
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Next, assume

G(t>1) = e3()yi (1) + ca()y2(1).  (BO)

It is not hard to find that G is continuous at ¢ = ¢ while G’
not, and

ag(r.7)| dG(t,1)[*0
e 0. = = = 1. (B7)
Thus
c3()yi(1') + ca(t)ya(1') = 0 (BS)
3 (7) + ca(?)ya (1) = 1 (B9)

Then we obtain the solution of (B2)

_ 21O (t) = 32Oy (1) 0(t—1).

G(1,7) = B10
) = w0 = oW () (B10)
Finally, the solution of (B1) is
y(t) = /oo G(t,1)f(¢)dr. (B11)
0

APPENDIX C: SPECIAL FUNCTIONS AND

INTEGRALS
The equation
d’>y 1dy v
— - I-=])y=0 Cl
S (1-%) ()

has two linear independent solutions: Bessel function J,(z)
and Neumann function Y, (z), with properties [41,54]

1 Z\?
J, (D) r—(= 0, 0"), C2
Ot () w0z-0n @
r 2\¥
Y, (2) = ) <—> (v>0,z-0"), (C3)
T \z
and
/ / 2
1 (2)Y,(2) = L ()Y, (2) = . (C4)
The solution of equation
d’u 1 -2adu 5 o =12
— — =0 C5
d22+ - dz+<ﬁ+ 2 )u (C5a)

is also in terms of the Bessel function

u=2z"Z,(pz), (C5b)

where Z, is any kind of Bessel function. The integral with
double Bessel function is Schafgeitlin integral formula:

o J,(ax)J,(bx)
/0 — dx

byr(y+ﬂ;ﬂ+1 )

— 2,'{ay—ﬂ+ll—‘(l/ + 1)1—‘(/4—1/42-14-1)

v+u—A+1 v—p—-21+1 b?
F . 1: —
X ( 2 9 2 9y+ ’az 9
u+v+1>1>-1, O<b<a or
u+v+1>1>0, a=nhb. (C6)

Specially,

/ Az, 21 (21)
0

(17227 (2w = 2T (@ — v — 3/2)
20w = 1/2)PT(a+v—1/2)
 Tv-1Dr(a-v+3/2)
2y/al(v—1/2)F(a+v—-1/2)’

(€7)

where we have used (C10). Zeta function is defined as

1 o x&l
=— —d
¢(z) B A L (C8)
where I'(z) are Gamma functions with
[(z+1) = zI'(z)(Re(z) > 1), (C9)
[(2z) =2%"'  7z7'20()T(z + 1/2). (C10)
Zeta function has the property [55]
® 2%
b4 1 nz
2 =-1
;C( i 2 n(sinnz)
1
—— ["mr(1+2)dz |z <1 (Cl1)
2z ),

We have used the two integral formulas below frequently in
this paper

®©  SiNX— XCOSX
/ dx————=1, (C12)
0 X
/oodxsinx—;ccosx:zf (C13)
0 X 4
and
©sinx —xcosx [*siny—ycosy b4
/ 3 / 5 dydx =— (Cl4)
0 x 0 y 12
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