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A fundamental prediction of inflation is a nearly scale-invariant spectrum of gravitational wave. The
features of such a signal provide extremely important information about the physics of the early universe. In
this paper, we focus on several topics about warm inflation. First, we discuss the stability property about
warm inflation based on nonequilibrium statistical mechanics, which gives more fundamental physical
illustrations to thermal property of such model. Then, we calculate the power spectrum of gravitational
waves generated during warm inflation, in which there are three components contributing to such spectrum:
thermal term, quantum term, and cross term combining the both. We also discuss some interesting
properties about these terms and illustrate them in different panels. As a model different from cold inflation,
warm inflation model has its individual properties in observational practice, so we finally give a discussion
about the observational effect to distinguish it from cold inflation.
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I. INTRODUCTION

It has taken for several years to search for gravitational
waves on astrophysical experiments, such as LIGO [1],
VIRGO[2], andother observational experiments [3,4] to test
the prediction of general relativity. Hulse and Taylor [5] first
announced the observational evidence for the existence of
gravitational waves. Then came the good news that gravi-
tational waves have been detected by LIGO [6–8] in recent
years generated by a binary black hole. This discovery was a
great achievement that opened a new window to better
understand our universe both at early epoch and late epoch.
Warm inflation model was established as a candidate

scenario to overcome some defects in cold inflation [9,10].
However, it was realized a few years after its original
proposal that the idea of warm inflation was not easy to
realize in concrete models and even simply not be possible
in relevant work [11,12]. Some problems were mentioned
to suspect such a scenario. First, it is hard to couple the
inflaton directly with light fields. Considering a Yukawa
interaction gϕψ̄ψ , the slow roll condition typically requires
an inflaton with large value, while the fermion obtain an
extra mass with also a large value unless the coupling a
quite small. As a result, the dissipative effect may be too
small either which implies that it is hard to obtain a period
of inflation with dissipation coefficient long enough to
require the 60 e-ford to solve the horizon and flatness
problem. Second, a direct coupling to light fields may lead
to large thermal corrections to the inflaton mass mψ ¼ gϕ,

which could prevent slow roll for T > H. Shortly after-
wards successful models of warm inflation have been
established, in which the inflaton indirectly interacts with
the light degrees of freedom though a heavy mediator
fields instead of being coupled with a light field directly
[9,13–15]. In such scenarios dissipation can sustain both
the slow-roll dynamics of the inflaton field and the temper-
ature of the radiation bath for a sufficiently long period.
One can read a Lagrangian density of the generic form,

L½Φ; X; Y� ¼ L½Φ� þ L½X� þ L½Y�
þ Lint½Φ; X� þ Lint½X; Y� ð1Þ

where Φ is the inflaton field, X are any field or degrees of
freedom coupled directly to the inflaton field, while Y can
be any other fields not necessarily coupled to the inflaton,
but are coupled to X. The Lint½Φ; X� and Lint½X; Y� give the
interaction among these fields. The evolution of the inflaton
field can be properly determined in the context of the in-in,
or the Schwinger closed-time path functional formalism
[16]. This equation displays both dissipation and non-
Markovian stochastic noise terms and it is a generalized
Langevin-like equation of motion [17,18].
Compared with the predictions of cold inflation that

primordial density fluctuations mostly from quantum fluc-
tuation and thermal bath are only generated at the end of
inflation [19], warm inflation model suggests that our
universe is hot during the whole inflation when inflaton
fields couplewith the thermal bath and the primary source of
density fluctuations come from thermal fluctuations [20–22].
The equation ofmotion for warm inflation can bewritten as a
stochastic Lengevin equation, in which there is a dissipation
term todescribe the inflaton fields couplingwith thermal bath
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and there is also a fluctuation term described by a stochastic
noise term [17,23]. The fundamental principles of warm
inflation have been reviewed recently in [24].Warm inflation
with strong dissipation requiresϒ > H, with which thermal
fluctuations dominate the whole inflationary epoch i.e.,
T > H [25]. Generally,we can still have theweak dissipation
condition with ϒ ≪ H [26,27]. Noncanonical warm infla-
tion model is under studying recently [28,29].
Although primordial gravitationalwaves generated during

inflation have not been detected yet till now, the discovery
of gravitational waves by LIGO has shed a bright light to
this prediction. The measurement of the cosmic microwave
background radiation and other observations have given a
goodconstraint to the ratio of tensor to scalerwith r < 0.07 at
95 C.L. [30]. The study of primordial gravitational wave is a
way to prove the inflationary programm.What ismore, it also
provides an effective method to distinguish among different
inflationary model. Now more and more researchers have
cast their eyes to primordial gravitationalwaves generated by
various kind of sources, such as primordial density pertur-
bation [31,32], some kind of inflationary model [33,34],
and even during the reheating epoch [35]; a great deal of
predictions have been given in these works which may be
observed in observation experiments in the near future.
However, till now there has not been any calculation about
the gravitational waves generated from warm inflation. This
approach must be an effective way to differentiate cold
inflation model from warm inflation model.
In this paper, we attempt to illustrate the existence of

gravitational wave generated from warm inflation. Green’s
functionmethodhasbeenused to calculate thepower spectrum
of tensor perturbation with source as the form of transverse-
traceless tensor. This spectrum can separate into three terms:
thermal component, quantum component, and cross compo-
nent, and each component has its individual and interesting
properties.With these properties, we discuss the observational
prediction from the view of tensor-to-scalar ratio.
This paper is organized as follows: in Sec. II, we give a

brief introduction to warm inflation and stochastic
approach to deal with warm inflation. In Sec. A, based
on nonequilibrium statistical mechanics, we recalculate the
statistical properties of warm inflation model and give more
results in detail. In Sec. III three programs for describing
the thermal, quantum, and their cross term are calculated
and relevant calculations and equations are derived. In
Sec. IV, we discuss our result by numerical analysis.
Finally, in Sec. V, we conclude our work and give some
further discussions about our results.

II. STOCHASTIC APPROACH
FOR WARM INFLATION

A. Stochastic approach

First, let’s have a brief review of stochastic approach for
cold inflation. The equation of motion for cold inflation is

the standard one: In the warm inflation model, the equation
of background field is often written as the Langevin
equation

� ∂2

∂t2 þ 3H
∂
∂t −

1

a2
∇2

�
Φþ ∂VðΦÞ

∂Φ ¼ 0; ð2Þ

where Φ is the inflaton field operator, a is scale factor in
Friedmann-Robertson-Walker metric and H is the Hubble
parameter defended as H ¼ _a=a. The stochastic approach
assumes that inflaton field separates into two parts, one is
Φ> which denotes the long wavelength part, and another is
Φ< which denotes the short wavelength part for quantum
vacuum fluctuation, i.e., Φ → Φ> þΦ<. Usually, Φ< is
written in terms of a filter (window) function.
The stochastic inflationary approach suggests that quan-

tum inflaton fieldΦ is composed in a short wavelength part
Φ<, which denotes the quantum vacuum fluctuations, and
a long wavelength part Φ> i.e., Φðx; tÞ ¼ Φ<ðx; tÞþ
Φ>ðx; tÞ. As previously study, quantum fluctuation domi-
nates on short wavelength. With this condition, we assume
a number smaller than unity such that the quantum

Φ<ðx; tÞ≡ ϕqðx; tÞ ¼
Z

d3k

ð2πÞ3=2Wðk; tÞ

× ½ϕkðtÞe−ix·kâk þ H:c:�; ð3Þ

where ϕkðtÞ is the field in momentum space, âk is the
annihilation operator whose Hermitian conjugate operators
is â†k. In (3), Wðk; tÞ are the window function with sharp
momentum cutoff

Wðk; tÞ ¼ θðk − ϵaHÞ: ð4Þ

where ϵ is a suitable number smaller than 1. Then fields
ϕkðtÞ in (3) satisfy

� ∂2

∂t2 þ 3H
∂
∂t −

k2

a2
þ hV;ϕϕ ðΦ>Þi

�
ϕkðtÞ ¼ 0: ð5Þ

Generally, ϕkðτÞ is given by

ϕkðτÞ ¼
H

ffiffiffi
π

p
2

ð−τÞ3=2Hð1Þ
μ ð−kτÞ: ð6Þ

where μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 −m2=H2

p
with m2 ≃ constant is the

average of V;ϕϕ ðΦ>Þ, τ is the conformal time in de
Sitter space-time defined as τ ¼ −1=aH, and Hð1Þ is the
Hankel function of the first kind.
Then, with (2), the equation of motion for long wave-

length part of the field Φ> reads

� ∂2

∂t2 þ 3H
∂
∂t −

1

a2
∇2

�
Φ> þ V;ϕ ðΦ>Þ ¼ ξq; ð7Þ
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where ξq is given by

ξq ¼ −
� ∂2

∂t2 þ 3H
∂
∂t −

1

a2
∇2 þ V;ϕϕ ðΦ>Þ

�
ϕqðtÞ ð8Þ

and its average vanishes hξqi ¼ 0. With (3) and (7), the
two-point correlation function is

hξqðx; tÞξqðx0; t0Þi ¼
Z

d3k
ð2πÞ3 e

ik·ðx−x0ÞRe½fkðtÞf�k0 ðt0Þ�;

ð9Þ

where

fkðtÞ ¼
�∂2W
∂t2 þ 3H

∂W
∂t

�
ϕkðtÞ þ 2

∂W
∂t

∂ϕkðtÞ
∂t : ð10Þ

Here we just give a brief introduction of stochastic infla-
tionary approach, and more details have been studied in
several work [36,37].

B. Warm inflation

In warm inflation model, the equation of motion of
background field is often written as the Langevin equation

� ∂2

∂t2 þ ð3H þϒÞ ∂∂t −
1

a2
∇2

�
Φþ ∂VðΦÞ

∂Φ ¼ ξT; ð11Þ

where ϒ is the dissipation coefficient and ξT is the thermal
noise fluctuation. In this paper, we consider only in the case
of de Sitter space-time, where aðtÞ ¼ expðHtÞ and H is
regarded as a constant. According to the fluctuation-
dissipation theorem, dissipation coefficient ϒ and fluc-
tuation noise ξT have the relation

hξTðx; tÞξTðx; t0Þi ¼ 2ϒTa−3δðt − t0Þ: ð12Þ

The Fourier transformation of (12) is

hξTðk; tÞξTðk0; t0Þi ¼ 2ð2π3ÞϒTa−3δ3ðkþ k0Þδðt − t0Þ:
ð13Þ

Usually ϒ is a function of both background homogeneous
inflaton field Φ and temperature T [15] and we do not
attend to discuss this question here.
The the inflaton field operator Φðx; tÞ is often separated

into the parts as follow

Φðx; tÞ ¼ ϕðtÞ þ δφðx; tÞ; ð14Þ

where δφðx; tÞ is the perturbed part of inflaton, and ϕðtÞ is
the background homogeneous inflaton field which is
defended as

ϕðtÞ ¼ 1

Ω

Z
Ω
d3xΦðx; tÞ: ð15Þ

Here, Ω is particle horizon size Ω ¼ 1=H. With this
relation, (11) reads

∂2ϕ

∂t2 þ ½3H þϒ� ∂ϕ∂t þ V;ϕ ðϕÞ ¼ 0; ð16Þ

� ∂2

∂t2 þ ½3H þϒðϕÞ� ∂∂t −
1

a2
∇2

þϒϕðϕÞ _ϕþ VϕϕðϕÞ
�
δφ ¼ ξT: ð17Þ

With the slow-roll condition, we write (16) as form of
that in cold inflation,

3Hð1þQÞ _ϕþ V;ϕ ðϕÞ ¼ 0; ð18Þ

whereQ is the ratio of dissipation coefficient Γ and Hubble
parameter H, i.e., Q≡ Γ=3H. It is also necessary to define
some slow-roll parameter for warm inflation,

ε ¼ 1

16πG

�
V;ϕ
V

�
2

≪ 1þQ; ð19Þ

η ¼ 1

8πG

V;ϕϕ
V

≪ 1þQ; ð20Þ

and

β ¼ 1

8πG

ϒ;ϕ V;ϕ
ϒV

≪ 1þQ: ð21Þ

Now, looking again (17), we consider only the fluc-
tuation from thermal noise and neglect that from quantum
noise. Obviously, although thermal effect play a significant
role in warm inflation, quantum effect may also be non-
negligible. Quantum noise dominates still for short wave-
length perturbation, so we can use stochastic inflationary
approach to deal the quantum fluctuation in warm inflation.
Thus (17) in momentum space by defining the variable
z ¼ k=aH (ranging from 0 to ∞) becomes

δφ00ðk; zÞ − 1

z
ð3Qþ 2Þδφ0ðk; zÞ

þ
�
1þ 3ðη − βQ=ð1þ qÞÞ

z2

�
δφðk; zÞ

¼ 1

z2H2
½ξqðk; zÞ þ ξTðk; zÞ�; ð22Þ

where primes denote the derivatives with respect to the
variable z and ξqðk; zÞ is the quantum noise term reads
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ξqðk; zÞ ¼ −
H2z2

k2

� ∂2

∂z2 −
2þ 3Q

z
∂
∂zþ 1

þϒ;ϕ _ϕ

H2z2
þ V;ϕϕ
H2z2

�
ϕ̂qðk; zÞ; ð23Þ

in which

ϕ̂qðk; zÞ ¼ Wðk; zÞ½ϕkðzÞâ−k þ H:c:�: ð24Þ

Here ϕ̂qðk; zÞ are still the quantum field modes that satisfy
the equation

� ∂2

∂z2 −
2þ 3Q

z
∂
∂zþ 1þ V;ϕϕ

H2z2

�
ϕkðzÞ ¼ 0; ð25Þ

with the solution in terms of z:

ϕkðzÞ ¼
H

ffiffiffi
π

p
2k3=2

z3=2Hð1Þ
μ ðzÞ; ð26Þ

where μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − V;ϕϕ =H2

q
≈ 3=2 − 3η. Then, we can

get the expression of correlation function of quantum noise

hξqðk;zÞξqðk0;z0Þi¼ð2πÞ3z2z02H4

k2k02
½2nðkÞþ1�

×δ3ðkþk0ÞRe½fkðzÞf�k0 ðz0Þ�; ð27Þ

where z0 ¼ k=aðτ0ÞH and fkðzÞ is [38]

fkðzÞ ¼ k2
�
W00 −

3Qþ 2

z
W0 −

3βQ
ð1þQÞz2 W

�
ϕkðzÞ

þ 2k2W0ϕ0
kðzÞ; ð28Þ

and nðkÞ is the distribution function for high-frequency
quantum inflaton which satisfies Bose-Einstein distribu-
tion, i.e., nðkÞ≡hâ†k0 â−ki¼1=½expððk−μÞ=aTÞ−1� where
μ is the chemical potential to eliminate the divergence of
several integrals which will be discussed below.

III. GRAVITATIONAL WAVE GENERATED
FROM WARM INFLATION

Fluctuations (including thermal and quantum) through
the energy-momentum tensors Tμν generates tensor pertur-
bation in Friedmann-Robertson-Walker metrics as

gμν ¼ a2ðτÞ½dτ2 þ ðδij þ hijÞdxidxj�; ð29Þ

where dots denote the derivative with respect to conformal
time τ and Hij is the tensor perturbation with transverse-
traceless gauge. Tensor perturbations hij satisfy the equa-
tion of motion

ḧij þ 2
_a
a
_hij −∇2hij ¼

2

M2
p
Πij

klTkl; ð30Þ

withM−2
p ≡ 8πG. Define h̃ij ≡ ahij, then (30) with Fourier

transformation becomes

̈h̃ij þ
�
k2 −

2

τ2

�
h̃ij ¼

2a
M2

p
Πij

klðkÞTklðk; τÞ: ð31Þ

Here, we have used the relation τ ¼ −1=aH in de Sitter
space-time and Πij

kl are the transverse-traceless projectors
which follow [39,40]:

Πij
klðkÞpkpl ¼

�
pi −

kiðp · kÞ
k2

��
pj −

kjðp · kÞ
k2

�

−
1

2
ðδij − k̂ik̂jÞ

�
p2 −

ðp · kÞ2
k2

�
; ð32Þ

Πij
klðkÞΠij

mnðkÞ pkplpmpn ¼
1

2

�
p2 −

ðp · kÞ2
k2

�
2

;

ð33Þ

and

Πij
klðkÞkl ¼ 0; ð34Þ

where k̂i ¼ ki=k. The solution of (31) is

h̃ijðk;τÞ¼
2

M2
p

Z
dτ0Gkðτ;τ0Þaðτ0ÞΠij

klðkÞTklðk;τ0Þ; ð35Þ

where Gkðτ; τ0Þ is the Green function. Two linear solutions
of (31) are

y1ðτÞ ¼ −kτnð1Þ1 ð−kτÞ ¼
�
1þ i

kτ

�
e−ikτ ð36aÞ

and

y2ðτÞ ¼ −kτnð2Þ1 ð−kτÞ ¼
�
1 −

i
kτ

�
eikτ; ð36bÞ

where nð1Þ1 ðzÞ and nð2Þ1 ðzÞ are the spherical Bessel functions
of the third kind [41]. According to the method in
Appendix B, Green’s functions as a function of z and z0 are

Gkðz; z0Þ ¼
1

kzz0
½ð1þ zz0Þ sinðz0 − zÞ þ ðz − z0Þ

× cosðz0 − zÞ�θðz0 − zÞ; ð37Þ

Energy-momentum tensor for warn inflaton field
write [42]
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Tab ¼ ∂aΦ∂bΦ − gab

�
1

2
∂μΦ∂μΦ − V

�
: ð38Þ

The part on the right-hand side containing gab is projected
away byΠij

kl, and ϕðtÞ is the space average of inflaton field
that contributes nothing to the perturbation. So δφ are the
primary part in Tab. Thus, the tensor spectrum reads

hhijðk;τÞhijðk0;τÞi

¼ 4

ð2πÞ3aðτÞ2M4
p

Z
dz0aðτ0ÞGkðτ;τ0Þ

Z
dz00aðτ00ÞGkðτ;τ00Þ

×
Z

d3pd3p0Πij
klðkÞΠij

mnðk0Þpkðkl−plÞp0
mðk0n−p0

nÞ

×hΦðp;τ0ÞΦðk−p;τ0ÞΦðp0;τ00ÞΦðk0−p0;τ00Þi: ð39Þ

It is convenient to write the spectrum as a function of z:

hhijðk; zÞhijðk0; zk0 Þi

¼ 4

ð2πÞ3k4M4
p

Z
dz0G̃kðτ; τ0Þ

Z
dz00G̃kðτ; τ00Þ

×
Z

d3pd3p0Πij
klðkÞΠij

mnðk0Þpkplp0
mp0

n

× hδφðp; τ0Þδφðk − p; τ0Þδφðp0; τ00Þδφðk0 − p0; τ00Þi;
ð40Þ

where the relation z ¼ k=aH has been used and G̃ are
defined as

G̃kðz; z0Þ ¼
1

z02
½ð1 − zz0Þ sinðz − z0Þ þ ðz − z0Þ

× cosðz0 − zÞ�θðz0 − zÞ: ð41Þ

Now, one should note that z0p are defined as
z0p ¼ p=aðτ0ÞH. If we omit the subscript like z00, it
represents a variable in terms of wave number k,
i.e., z00 ¼ k=aðτ00ÞH.
Using Wick theory, the average of h…i becomes

hδφðp; τ0Þδφðk − p; τ0Þδφðp0; τ00Þδφðk0 − p0; τ00Þi
¼ hδφðp; τ0Þδφðk − p; τ0Þihδφðp0; τ00Þδφðk0 − p0; τ00Þi
þ hδφðp; τ0Þδφðp0; τ00Þihδφðk − p; τ0Þδφðk0 − p0; τ00Þi
þ hδφðp; τ0Þδφðk0 − p0; τ00Þihδφðp0; τ00Þδφðp0; τ00Þi:

ð42Þ

The first term on the right-hand side can be ignored because
it is a diagram containing the disconnected term propor-
tional to δðkÞδðk0Þ. And it is not hard to find that the
second term and the third term are equivalent to each other.

Now the first priority is to solve Eq. (22). According to
(C5) and Appendix B, the solution of (22) is

δφðk; zÞ ¼
Z

dz0gkðz; z0Þ
1

z02H2
½ξTðk; z0Þ þ ξqðk; z0Þ�;

ð43Þ

where

gkðz; z0Þ ¼
zνz0ν

z02νð2=πz0Þ ½JαðzÞYαðz0Þ

− Jαðz0ÞYαðzÞ�θðz0 − zÞ; ð44Þ

with

ν ¼ 3ð1þQÞ=2;

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −

3βQ
1þQ

− 3η

s
: ð45Þ

Write the perturbed field as

δφ ¼ δφT þ δφq; ð46Þ

where δφT is the part including integral of thermal noise
ξT while δφq for quantum noise. Then we can find that
tensor spectrum contains three components: thermal term
hδφTδφTihδφTδφTi, quantum term hδφqδφqihδφqδφqi, and
cross term hδφqδφqihδφTδφTi. Next we will calculate the
spectrum in terms of the three components above.

A. Thermal term

Thermal term of tensor spectrum at the end of inflation
(τ ¼ 0, z → 0) reads

hhijðkÞhijðk0ÞiT
¼ 4

ð2πÞ3k4M4
p

Z
dz0G̃kðτ; τ0Þ

Z
dz00G̃kðτ; τ00Þ

×
Z

d3pd3p0Πij
klðkÞΠij

mnðk0Þpkplp0
mp0

n

× hδφTðp; τ0ÞδφTðk − p; τ0ÞihδφTðp0; τ00Þ
× δφTðk0 − p0; τ00Þi; ð47Þ

The fluctuation-dissipation relation of (13) acts in terms
of t. Now using t ¼ H−1 lnðk=HzÞ together with

δðfðxÞÞ ¼
X
fx0g

δðx − x0Þ
jf0ðx0Þj

; ð48Þ

where x0 are zero point of fðxÞ, we obtain
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hξTðk;tÞξTðk0;t0Þi¼2ð2π3ÞϒT
H4

k2k0
z3z0δ3ðkþk0Þδðz−z0Þ:

ð49Þ

It is helpful to make such calculation below:

hδφTðp; z0pÞδφTðp0; z00p0 Þi

¼ π2

4H2

Z
∞

z0p
dz1

Z
∞

z00
p0

dz2ðz0pz00p0 Þνðz1z2Þ−1−ν

× g̃pðz0p; z1Þg̃p0 ðz00p0 ; z2ÞhξTðp; z1ÞξTðp0; z2Þi

≃
π5ϒTδ3ðkþ k0Þ

p3
½z0νpYαðz0pÞ�½z00νpYαðz0p0 Þ�

×
Z

∞

z0p
dz1z2−2ν1 J2αðz1Þ; ð50Þ

where we have used (C2) and zνJαðzÞ ∼ 0 (z < 1).
Considering the function z2−2νJ2αðzÞ, we find that this
function almost equals to zero except a narrow peak at
z≳ 1, so it is convenient to treat it as a delta function. Thus

Z
∞

z0p
dz1z2−2ν1 J2αðz1Þ

≃ θð1 − p̄z0Þ
Z

∞

0

dz1z2−2ν1 J2αðz1Þ

¼ θð1 − p̄z0Þ Γðν − 1ÞΓðα − νþ 3=2Þ
2

ffiffiffi
π

p
Γðν − 1=2ÞΓðαþ ν − 1=2Þ ; ð51Þ

where z0p ¼ p=aðτ0ÞH ¼ ðp=kÞðk=aðτ0ÞHÞ ¼ p̄z0 and (C7)
has been used. With (45) and (45), get α ≈ ν. Thus

hδφTðp; z0pÞδφTðp0; z00p0 Þi

¼ π5ϒT
p3

δ3ðpþ p0Þð2νΓðνÞÞ2

×
Γðν − 1ÞΓð3

2
Þ

2
ffiffiffi
π

p
Γðν − 1=2ÞΓð2ν − 1=2Þ : ð52Þ

The spectrum damps out as ðsin kτ − kτ cos kτÞ=k3 in
Green’s functions at large value of k. On the other hand, k
only appear in the sublimit of the integral and then they are
absorbed in θ function, and k become not so important
which act only as the form of k − p. Besides, and the most
important, (A6) indicates that if p < akF, δφðp; t0Þ has not
thermalized during inflation. So the integral in tensor
spectrum gets its main contributions at p ≫ k. With these
approximations,

hhijðkÞhijðk0ÞiT
¼ π3ϒ2T2δ3ðkþ k0Þ

16k4M4
p

� ½2νΓðνÞ�2Γðν− 1Þ
4Γðν− 1=2ÞΓð2ν− 1=2Þ

�
2

×
Z

∞

0

dz0
sin z0 − z0 cos z0

z02

Z
∞

z0
dz0

sin z00 − z00 cos z00

z002

×
Z

d3pd3p0
�
p2 −

ðp · kÞ2
k2

�
2 δ3ðpþ p0Þ

p6
θð1− p̄z0Þ:

ð53Þ

Using (33), (C9), (C12)–(C14), thermal term of tensor
spectrum (47) is finally simplified to

hhijðkÞhijðk0ÞiT
¼ 3π4H4

10k3M4
p
δ3ðkþ k0Þ

�
T
H

�
2

×

�
Q8QΓð3Q=2þ 3=2Þ3

ð3Qþ 1ÞΓð3Q=2þ 1ÞΓð3Qþ 5=2Þ
�
2

: ð54Þ

Here, we have assumed z2 > z1 and this assumption has no
affect on the final result.

B. Quantum term

According to (27), the correlation function of
δφqðk; zÞ is

hδφqðp; z0pÞδφqðp0; z00p0 Þi

¼
Z

∞

z0p
dz1

Z
∞

z00
p0

dz2gðz0p; z1Þgðz00p0 ; z2Þ

×
1

H4ðz1z2Þ2
hξqðp; z1Þξqðp0; z2Þi

¼ ð2πÞ3
p4

½2nðkÞ þ 1�δ3ðpþ p0ÞFpðz0pÞF�
pðz00pÞ; ð55Þ

where

FpðzpÞ ¼
Z

∞

zp

dzGðzp; zÞfpðzÞ: ð56Þ

Using (4), (28), (C2), and (C3), FpðzpÞ reads

FpðzpÞ ≃ −i
z3=2−μp Hffiffiffi

2
p

p3
; ð57Þ

with 0<z< ϵ<1 [38]. Notice that zp ¼ p=aH ¼ p̄z < ϵ
and z > ϵ, so 0 < p̄ < 1. Thus the quantum term of
two-point function can be written as

hhijðkÞhijðk0Þiq ≃
32π3H4

5k3M4
p
IðH=TÞδðkþ k0Þ; ð58Þ

where
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IðH=TÞ ¼
Z

1

0

dp̄

�Z
∞

0

dz
sin z − z cos z

z2
× coth

�ðp̄ − p̄0ÞzH
2T

��
2

: ð59Þ

Next, we will proof that IðH=TÞ is normalized no matter at high temperature or low temperature. Note that
p ¼ ðp̄ − p̄0ÞH=T and consider the low temperature condition (T ≪ H or p ≫ 1):Z

∞

0

sin x − x cos x
x2

coth

�
px
2

�
¼

Z
∞

0

dx
sin x − x cos x

x2
þ
Z

∞

0

dx
epx − 1

sin x − x cos x
x2

¼ 1þ 2
X∞
n¼1

ð−1Þn−1 2n
ð2nþ 1Þ!

Z
∞

0

x2n−1

epx − 1
dx ¼ 1 − 2

X∞
n¼1

ζð2nÞ
2nþ 1

ðipÞ−2n

¼ 1 − ln

�
π=ip

sinðπ=ipÞ
�
þ ip

Z
1
ip

− 1
ip

lnΓð1þ zÞdz ¼ 1 − ln

�
π=p

sinhðπ=pÞ
�
þ 2 lnΓð1þ zÞjz→0

≃ 1: ð60Þ
In the calculations above, we have used relevant properties of Gamma function and Zeta function in Appendix C. We obtain
I is unit at low temperature. Next consider the high temperature condition (T ≫ H) and define z ¼ expðp0=aTÞ,
p̃ ¼ p̄H=T. High temperature means that p0 is a negative number with sufficient large value, i.e., z ≪ 1, thus

Z
∞

0

sin x − x cos x
x2

coth

�ðp̄ − p̄0ÞxH
2T

�
¼

Z
∞

0

dx
sin x − x cos x

x2
þ
Z

∞

0

dxze−p̃x

1 − ze−p̃x
sin x − x cos x

x2

¼ 1þ 2
X∞
n;m¼1

ð−1Þn−1 2n
ð2nþ 1Þ!

Z
∞

0

x2n−1ðze−p̃xÞmdx

¼ 1þ 2
X∞
n;m¼1

ð−1Þn−1
2nþ 1

1

p̃2n

zm

m2n ¼ 1þ 2
X∞
n¼1

ð−1Þn−1
2nþ 1

1

p̃2n g2mðzÞ ≃ 1: ð61Þ

Thus we assume that IðT=HÞ ¼ 1. This assumption is
reliable. In stochastic approach, we assume a field ϕq as the
vacuum fluctuation for short wavelength with a sharp
momentum cutoff, which means such a fluctuation as a
noise always exists no matter at low temperature or high
temperature. It is just the condition for cold inflation. On
the other hand, chemical potential is a physical variable that
cannot be ignored when a particles coupling with other
fields (like thermal bath) especially for the condition at
phase transition. Most importantly, it is just the chemical
potential that eliminates the singularity at p ¼ 0.

C. Cross term

If we simulate the calculation above, it is not hard to get
the expression of the cross term for the two-point corre-
lation function:

hhijðkÞhijðk0Þicross
≃
3π4H4

5k3M4
p
δðkþ k0Þ

×
T
H

Q8QΓð3Q=2þ 3=2Þ3
ð3Qþ 1ÞΓð3Q=2þ 1ÞΓð3Qþ 5=2Þ : ð62Þ

This component has nothing new compared with thermal
and quantum component.
In the calculations above, we have ignored the

slow parameter as the index of variable z. With this

approximation, we obtain the scale-invariant spectrum of
each components.

IV. RESULT AND NUMERICAL ANALYSIS

Power spectrum of tensor perturbation PhðkÞ is
defined as:

hhijðkÞhijðk0Þi ¼ 2π2

k3
PhðkÞδðkþ k0Þ: ð63Þ

The spectrum of tensor modes with vacuum form reads [43]

Ph;vacðkÞ ¼
2

π2
H2

M2
p
: ð64Þ

We illustrate the power spectrum for thermal component in
Fig. 1 and total spectrum of tensor perturbation for warm
inflation in Fig. 2.
As discussed above, the spectrum for quantum compo-

nent is a constant with order of H4=M4
p. This value is so

small that there is almost no correction to the spectrum of
primordial tensors, which agrees with other cold inflation
models [32–34]. However, what we interest most is the
thermal component in total spectrum. As is shown in (54),
there are two variables determining the thermal spectrum,
i.e., ϒ=H and T=H. Considering the weak dissipation

GRAVITATIONAL WAVE FROM WARM INFLATION PHYS. REV. D 97, 063516 (2018)

063516-7



condition with ϒ=H ≪ 1 and T=H ≪ 1 first, we can
directly get Ph;TðkÞ → 0. In other words, this condition
is just the same with cold inflation. In contrast, the
condition with strong dissipation (ϒ > H and T > H) is
quite different from that of weak dissipation. The amplitude
of thermal spectrum increases with the increase of ϒ=H
and T=H. Taking two simple examples, Ph;TðkÞ ¼ 63.87 at
ϒ=H ¼ 10 and T=H ¼ 10, or especially, Ph;TðkÞ ∼ 104 at
ϒ=H ¼ 100 and T=H ¼ 100. It has been widely studied
that there has a significant correction on the spectrum of
primordial fluctuations in the warm regime with strong
dissipation for T > H and such a correction lowers the
tensor-to-scalar ratio. Thus the curvature power spectrum is
modified into [14,44]

Δ2
R ¼

�
H
_ϕ

�
2
�
H
2π

�
2
�
1þ 2nþ 2πQ

T
H

�
: ð65Þ

The temperature at the end of inflation is [45]

4.09 × 1013 GeV ≤ T ≤ 2.216 × 1014 GeV: ð66Þ
With this and using (54), (64), and (65), we obtain the
tensor-to-scalar ratio in warm inflation:

r ≃
½10−8fðQÞ þ 8�jnT j
1þ 2nþ 2πQ T

H

; ð67Þ

where fðQÞ is function containing Q in (54) and nT is the
tensor index. From (67) we can find that large Q will upper
the tensor-to-scalar ratio, but it does not act obviously until
Q reaches the level of 100 (Q > 100). In [46], the authors
have tabled the parameters like Q, T=H, r and others in
warm inflation with different potential by the constraint by
recent years’ observational data. The result shows T=H ∼ 1
during inflation which agrees with the analysis in [45]. The
nondetection of cosmic gravitational waves background
strongly constrains that thermal component of tensor
perturbation Ph;T will not upper the ratio dramatically
which also agrees with a various of works [46,47]. In this
way, the primordial tensor spectrum thus can be used to
distinguish warm inflation from cold inflation.

V. CONCLUSIONS AND DISCUSSION

In this paper we first derive the two point correlation
function of tensor perturbation in warm inflation and prove
that primordial scale-invariant power spectrum of warm
inflation is achieved only if the system evolutes near the
thermal equilibrium state, in which condition warm inflaton
fields are stable. We also explain the physical meaning of
both scalar index and slow-roll parameter β in (21) that
correspond to the nonequilibrium properties during infla-
tionary epoch. Then we calculate the power spectrum for
warm inflation by Green’s function method and mainly
discuss the thermal component in total spectrum. We
consider it as a new method to distinguish warm inflation
from cold inflation. At last, we illustrate our result by
numerical analysis. Using existing cosmic observational
data, we find that fluctuations from thermal noise does not
raise the tensor-to-scalar ratio dramatically at order of 10−4

although the temperature is high enough.
There are also many issues which deserve further

discussion in this paper. The first one is the thermal
properties of warm inflation model. For example, how
initial condition determines the scalar index ns and whether
the stability of thermal inflaton fields still holds with
arbitrary initial condition? Then, we find that the spectrum
of quantum fluctuation is almost a constant because of
momentum cutoff in stochastic approach. So whether
quantum fluctuations still exist in high temperature in
other models becomes an interesting and challenging work.FIG. 2. Total spectrum for tensor perturbation.

FIG. 1. We plot the thermal component of tensor perturbation
which is normalized as H4=M4

p. The spectrum increases with the
increase of ϒ=H and T=H. The bright red line on the lower
left quarter is the contour line with the value of amplitude of
quantum fluctuation for tensor mode. The amplitude of thermal
component below the contour line is smaller than the value on the
contour line, i.e., Ph;T=Ph;q < 1. In other words, quantum
fluctuations dominate at this epoch. The condition is opposite
above the contour line, which is almost the same with the work
of Ramos [38].
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Finally, but the most important, is whether we can observe
such a fluctuation? Although the cosmic gravitational
waves background has not been detected yet, with the
discovery of gravitational waves, more and more new
methods coming out [48,49], and a series of observation
installations working or being built [1–4], it is believable
that primordial gravitational waves can be detected in the
foreseeable future.
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APPENDIX A: THERMAL PROPERTIES
OF WARM INFLATION

Correlation function is defined as

Pδφðx − y; t1; t2Þ ¼ hδφðx; t1Þδφðy; t2Þi; ðA1Þ

whose Fourier transformation is

Pδφðk; t1; t2Þ ¼
Z

d3k0

ð2πÞ3 hδφðk; t1Þδφðk
0; t2Þi; ðA2Þ

Let us consider (17) again. Using the slow-roll condition
and strong dissipation condition Γ ≫ H, (17) approxi-
mately writes [50]

ϒ
dδφðk; tÞ

dt
þ ½k2p þ V00ðϕÞ�δφðk; tÞ ≈ ξTðk; tÞ; ðA3Þ

where V 00ðϕÞ ¼ d2VðϕÞ=dϕ2 and ϕ is defined in (15), kp ¼
k=a is the physical wave number and k is the conformal
wave number. Strong dissipation means that we can ignore
the change of parameter a, kp and T within the time interval
1=H and fluctuation from quantum noise is negligible.
Then the solution of (17) is

δφðk; tÞ ≈ 1

ϒ
e−ðt−t0Þ=τðϕÞ

Z
t

t0

et
0−t0ξtðk; t0Þdt0 þ δφðk; t0Þe−ðt−t0Þ=τðϕÞ ðA4Þ

where t0 is any coordinate time during inflation and τðϕÞ ¼ ϒ=½k2p þ V 00ðϕÞ�.
The correlation function of perturbed inflation field is

hδφðk; t1Þδφðk0; t2Þi ¼ δφðk; t0Þδφðk0; t0Þe−ðt1þt2Þ=τðϕÞ þ 2ð2πÞ3Tδ3ðkþ k0Þ
ϒa3

e−ðt1þt2Þ=τðϕÞ

×
Z

t1

t0

Z
t2

t0

eðs1þs2Þ=τðϕÞδðs1 − s2Þds1ds2 ðA5Þ

where we have used (13). The double integral in (A5) contains a δ function, so we need to integrate first to the larger one in
t1 and t2. Then

hδφðk; t1Þδφðk0; t2Þi ¼ δφðk; t0Þδφðk0; t0Þe−ðt1þt2Þ=τðϕÞ þ 2ð2πÞ3Tδ3ðkþ k0Þ
ϒa3

e−ðt1þt2Þ=τðϕÞ

×
Z

minðt1;t2Þ

t0

Z
maxðt1;t2Þ

t0

eðs1þs2Þ=τðϕÞδðs1 − s2Þds1ds2

¼ δφðk; t0Þδφðk0; t0Þe−ðt1þt2Þ=τðϕÞ þ 2ð2πÞ3Tδ3ðkþ k0Þ
ϒa3

e−ðt1þt2Þ=τðϕÞ
Z

minðt1;t2Þ

t0

e2s=τðϕÞds

¼ δφðk; t0Þδφðk0; t0Þe−ðt1þt2Þ=τðϕÞ þ ð2πÞ3TτðϕÞδðkþ k0Þ
ϒa3

fe−½t1þt2−2minðt1;t2Þ�=τðϕÞ − e−ðt1þt2Þ=τðϕÞg

¼ δφðk; t0Þδφðk0; t0Þe−ðt1þt2Þ=τðϕÞ þ ð2πÞ3TτðϕÞδ3ðkþ k0Þ
ϒa3

fe−jt1−t2j=τðϕÞ − e−ðt1þt2Þ=τðϕÞg: ðA6Þ
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Now, let us make a more detailed calculation of the second term in the final equation.

ð2πÞ3TτðϕÞ
ϒa3

¼ ð2πÞ3Tϒ
a3ϒðk2=a2 þ V 00Þ ¼

ð2πÞ3HT

a3H3ð k2

a2H2 þ V 00
H2Þ

¼ ð2πÞ3HT
k3

z3 ðz2 þ 3ηÞ ≃
ð2πÞ3HTz

k3
; ðA7Þ

where we have used relation z ¼ k=aH and Eq. (20). Finally, the correlation function reads

hδφðk; t1Þδφðk0; t2Þi ¼
�
δφðk; t0Þδφðk0; t0Þ −

ð2πÞ3HTz
k3

δ3ðkþ k0Þ
�
e−ðt1þt2Þ=τðϕÞ þ ð2πÞ3HTz

k3
δ3ðkþ k0Þe−jt1−t2j=τðϕÞ:

ðA8Þ

Thermalization requires that initial condition must ther-
malize at physical scale kp within 1=H. From (A8), the first
term on the right-hand side must be negligible with in
Hubble time, so

k2p − V 00

Hϒ
> 1: ðA9Þ

If V 00 > Hϒ, the freeze-out number is the same with that of
cold inflation, kF ¼ H (z ¼ 1). However, if V 00 < Hϒ, the
freeze-out number reads

kF ¼ ðHϒÞ12: ðA10Þ
Obviously Pðk; t1; t2Þ is dependent on the initial state

δφðk; t0Þ. Now make average on initial state and assume
t1 ¼ t2 ¼ t together with t0 ¼ 0, so correlation function
can be written as

Pδφðk0; t0Þ ¼
�
2π2

k3
Pδφðk0; t0Þ −

HTz�
k3

�
e−2t=τϕ þHTz�

k3
;

ðA11Þ
with the definition of power spectrum

Pδφðk; tÞ ¼
k3

2π2

Z
d3k0

ð2πÞ3 hδφðk; t0Þδφðk
0; t0Þi; ðA12Þ

and z� as the value at horizon crossing z� ¼ ðϒHÞ1=2=H.
Things become quite interesting. If the power spectrum is
scale-invariant i.e., Pδφðk; t0Þ ¼ ðϒHÞ1=2T=2π2 [20], the
spectrum Pδφðk; tÞ is also scale-invariant and totally the
same with Pδφðk; t0Þ. In other words, Pδφ is stable in this
condition which means system is on thermal equilibrium
during time interval t > t0. This is quite similar with the
condition of correlation function for particles with Brown
motion [51]. Now, consider that Pδφðk; t0Þ is not a scale-
invariant spectrum and assume Pδφðk; t0Þ ¼ Aðk=k0Þn0−1
where n0 is an arbitrary number. Then Pδφðk; tÞ becomes
also dependent on k i.e., Pδφðk; tÞ ¼ Aðk=k0Þn−1. However,
this term damps with the increase of time, which means n
tends to unit with the time evolution. This is an effect
dominated by nonequilibrium mechanics. In this way, we

can say that scalar index ns and slow-roll parameter β are
parameters that illustrate the deviation from equilibrium
state. Probe on cosmic microwave background shows that
our universe is almost in nearly equilibrium [52] if consid-
ering our universe in early epoch as a model in thermal bath.
The relation (A11) indicates that Pδφðk; t0Þ (the initial
condition of universe) becomes not so important even
though we cannot give an accurate description till now.

APPENDIX B: A BRIEF INTRODUCTION TO
GREEN’S FUNCTION

Let us consider the equation [53]

d2y
dt2

þ ω2ðtÞy ¼ fðtÞ; ðB1aÞ

with boundary condition

yð0Þ ¼ y0ð0Þ ¼ 0: ðB1bÞ
To solve this equation, we need to solve another relevant
equation in terms of Green function G(t,t’):

d2Gðt; t0Þ
dt2

þ ω2ðtÞGðt; t0Þ ¼ δðt − t0Þ; ðB2aÞ

with boundary condition

Gjt¼0 ¼
dGðt; t0Þ

dt

				
x¼0

¼ 0: ðB2bÞ

Obviously, when t < t0, G satisfy

d2Gðt; t0Þ
dt2

þ ω2ðtÞGðt; t0Þ ¼ 0; ðB3Þ

with boundary condition (B2b). Then assume the general
solution of (B3) is

Gðt < t0Þ ¼ c1ðt0Þy1ðtÞ þ c2ðt0Þy2ðtÞ; ðB4Þ

where y1 and y2 is the solutions of (B3). Considering the
boundary condition, we obtain

Gðt < t0Þ ¼ 0: ðB5Þ
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Next, assume

Gðt > t0Þ ¼ c3ðt0Þy1ðtÞ þ c4ðt0Þy2ðtÞ: ðB6Þ
It is not hard to find that G is continuous at t ¼ t0 while G0
not, and

dGðt; t0Þ
dt

				
t<t0

¼ 0;
dGðt; t0Þ

dt

				tþ0

t−0
¼ 1: ðB7Þ

Thus

c3ðt0Þy1ðt0Þ þ c4ðt0Þy2ðt0Þ ¼ 0 ðB8Þ

c3ðt0Þy01ðt0Þ þ c4ðt0Þy02ðt0Þ ¼ 1 ðB9Þ
Then we obtain the solution of (B2)

Gðt; t0Þ ¼ y1ðtÞy2ðt0Þ − y2ðtÞy1ðt0Þ
y1ðtÞy02ðtÞ − y2ðtÞy01ðtÞ

θðt − t0Þ: ðB10Þ

Finally, the solution of (B1) is

yðtÞ ¼
Z

∞

0

Gðt; t0Þfðt0Þdt0: ðB11Þ

APPENDIX C: SPECIAL FUNCTIONS AND
INTEGRALS

The equation

d2y
dz2

þ 1

z
dy
dz

þ
�
1 −

ν2

z2

�
y ¼ 0 ðC1Þ

has two linear independent solutions: Bessel function JνðzÞ
and Neumann function YνðzÞ, with properties [41,54]

JνðzÞ ≈
1

Γðνþ 1Þ
�
z
2

�
ν

ðν > 0; z → 0þÞ; ðC2Þ

YνðzÞ ≈ −
ΓðνÞ
π

�
2

z

�
ν

ðν > 0; z → 0þÞ; ðC3Þ

and

JνðzÞY 0
νðzÞ − J0νðzÞYνðzÞ ¼

2

πz
: ðC4Þ

The solution of equation

d2u
dz2

þ 1 − 2α

z
du
dz

þ
�
β2 þ α2 − ν2

z2

�
u ¼ 0 ðC5aÞ

is also in terms of the Bessel function

u ¼ zαZνðβzÞ; ðC5bÞ

where Zν is any kind of Bessel function. The integral with
double Bessel function is Schafgeitlin integral formula:Z

∞

0

JμðaxÞJνðbxÞ
xλ

dx

¼ bνΓðνþμ−λþ1
2

Þ
2λaν−λþ1Γðνþ 1ÞΓðμ−νþλþ1

2
Þ

× F

�
νþ μ − λþ 1

2
;
ν − μ − λþ 1

2
; νþ 1;

b2

a2

�
;

μþ νþ 1 > λ > −1; 0 < b < a or

μþ νþ 1 > λ > 0; a ¼ b: ðC6Þ
Specially,Z

∞

0

dz1z2−2ν1 J2αðz1Þ

¼ ð1=2Þ2ν−3Γð2ν − 2ÞΓðα − ν − 3=2Þ
2½Γðν − 1=2Þ�2Γðαþ ν − 1=2Þ

¼ Γðν − 1ÞΓðα − νþ 3=2Þ
2

ffiffiffi
π

p
Γðν − 1=2ÞΓðαþ ν − 1=2Þ ; ðC7Þ

where we have used (C10). Zeta function is defined as

ζðzÞ ¼ 1

ΓðzÞ
Z

∞

0

xz−1

ex − 1
dx; ðC8Þ

where ΓðzÞ are Gamma functions with

Γðzþ 1Þ ¼ zΓðzÞðReðzÞ > 1Þ; ðC9Þ
Γð2zÞ ¼ 22z−1 π−1=2ΓðzÞΓðzþ 1=2Þ: ðC10Þ

Zeta function has the property [55]

X∞
k¼1

ζð2kÞ z2k

2kþ 1
¼ 1

2
ln

�
πz

sin πz

�

−
1

2z

Z
z

−z
lnΓð1þ zÞdz; jzj < 1: ðC11Þ

We have used the two integral formulas below frequently in
this paper Z

∞

0

dx
sin x − x cos x

x2
¼ 1; ðC12Þ

Z
∞

0

dx
sin x − x cos x

x3
¼ π

4
£ ðC13Þ

andZ
∞

0

sin x − x cos x
x3

Z
x

0

sin y − y cos y
y2

dydx ¼ π

12
ðC14Þ
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