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We perform adiabatic regularization of power spectrum in nonminimally coupled general single-field
inflation with varying speed of sound. The subtraction is performed within the framework of earlier study
by Urakawa and Starobinsky dealing with the canonical inflation. Inspired by Fakir and Unruh’s model on
nonminimally coupled chaotic inflation, we find upon imposing near scale-invariant condition, that the
subtraction term exponentially decays with the number of e-folds. As in the result for the canonical
inflation, the regularized power spectrum tends to the “bare” power spectrum as the Universe expands
during (and even after) inflation. This work justifies the use of the “bare” power spectrum in standard
calculation in the most general context of slow-roll single-field inflation involving nonminimal coupling
and varying speed of sound.
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I. INTRODUCTION

Cosmic inflation [1–6], a theory involving a short
period of rapid exponential expansion of space, is nowadays
considered as an integral part ofmodern cosmology. It offers
a simple solution to the horizon and flatness problems—
challenges that had been hardly addressed through the
standard big bang cosmology before inflation was devel-
oped. In addition to this, it explains the origin of primordial
density perturbations that gave rise to what we nowadays
observe as galaxies and clusters of galaxies [7–10].
One of the most important physical observables in

inflationary cosmology is the power spectrum of primordial
density perturbations. In fact, for any viable theory of
inflation, before non-Gaussianity/trispectrum [11–16],
tensor-to-scalar ratio [17–19], loop corrections [20,21],
and spectral index and its running [22,23]—quantities that
have occupied a significant part of the current millennium’s
researches in inflationary cosmology—the power spectrum
in its most basic form has to be calculated first. As such, the
need for a logically consistent expression for the power

spectrum based on solid physical and mathematical
grounds, cannot be overemphasized.
In this work, we deal with one aspect of this need, by

studying the effect of a subtraction procedure called adia-
batic regularization [24–28] (see also Ref. [29] for dis-
cussion on loop correction), on the power spectrum. This is
the third in a series of studies on regularizing the power
spectrum following the method laid down by Urakawa and
Starobinsky [30] within the framework of the canonical
inflation model [31–34]. The first one [35] involves min-
imally coupled general single-field inflation (where the
speed of sound is in general, non-constant) [36,37], while
the second one [38] deals with nonminimally coupled
chaotic inflation (where the speed of sound is constant)
[39–43]. These two studies serve to generalize the result of
Urakawa and Starobinsky in two different directions. The
current work deals with nonminimally coupled general
single-field inflation where the speed of sound is in general,
nonconstant [44,45]. It encompasses the first two studies
with the combined two layers of complexity, and hopes to
extend the validity of the result in the canonical case to the
general inflationmodelwe consider here. To put this study in
context, we briefly discuss below the emergence of the issue
of adiabatic regularization of the power spectrum.
About a decade ago, a proposal was put forward [46]

leading to a possible significant modification of the power
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spectrum used in standard calculation, by incorporating a

subtraction term within the framework of adiabatic regu-
larization. To briefly elaborate the basic underlying ideas of
this proposal using the labels and terminologies of the
current paper, we consider the two-point function of the
gauge-invariant scalar perturbation R [47] given by

hRðτ;xÞRðτ; yÞi ¼
Z

dk
k
sinðkjx − yjÞ
kjx − yj Δ2

Rðk; τÞ; ð1Þ

where k is the wave number, Rk is the perturbation written
in k-space, τ is the conformal time, ðx; yÞ are pairs of
position vectors, and Δ2

R is the dimensionless power
spectrum defined in terms of the perturbations in k-space as

Δ2
Rðk; τÞ ¼

k3

2π2
jRkðτÞj2: ð2Þ

For large values of k, the Mukhanov-Sasaki equation
[31–33] governing the behavior of Rk, tells us that
jRkðτÞj2 ∼ 1=k. It follows that in the coincidence limit
x → y, the two-point function hRðτ;xÞRðτ; yÞi is quad-
ratically divergent.
This divergence can be removed by performing adiabatic

regularization. Rather informally, the quantity Rk on the
right-hand side of the first equation above is expanded in
accord with the so-called adiabatic condition [24] and the
divergent-yielding terms from this expansion are subtracted
out in the integrand; thus, producing a finite result.
Consistency-wise, such a regularization procedure is corre-
spondingly reflected in the power spectrum. Consequently,
one may expect that its value can be modified after the
subtraction is performed. As reported in the proposal [46],
while preserving its scale-invariant nature, the resulting
physical power spectrum in the canonical inflation model
differs by several orders of magnitude from the original one.
In the past decade, there have been a significant number

of research papers discussing this matter about the possible
modification of the power spectrum and the applicability of
adiabatic regularization in the calculation of the physical
power spectrum (See for instance, Refs. [46,48–58] and in
particular, Ref. [55] for a short review. Here, owing to
limitation in space and a slightly different focus of this
work, we are only going to outline some of the main
points.) In Ref. [56], the authors argued that “in the far
infrared regime, the adiabatic expansion is no longer valid,
and the unrenormalized spectra are the physical, measur-
able quantities.” In Ref. [58], the authors showed that the
power spectrum can become negative when one goes
beyond using only those adiabatic subtraction terms suffi-
cient to remove the divergences—the minimal subtraction
scheme as we call it in this work—in the corresponding
two-point function. In Ref. [55], the authors from a
practical perspective considered the CMB and argued that
in the two-point function of cosmological perturbations,

only the x ≠ y case should be considered; hence, the
divergence is avoided and regularization is not necessary.
Urakawa and Starobinsky [30] in their work on adiabatic

regularization of power spectrum in the canonical (single-
field) inflation essentially reached the same conclusion that
the physical power spectrum is the “bare” power spectrum,
using a different approach. The idea is that one may
perform adiabatic regularization by following the same
procedure as in the original proposal [46] except for one
main difference. Following our notation in this work, in the
equation for regularized power spectrum given as

Δ2ðrÞ
R ¼ Δ2ðbÞ

R − Δ2ðsÞ
R ; ð3Þ

where Δ2ðbÞ
R is the “bare” (or the original) power spectrum

and Δ2ðsÞ
R is the subtraction term, the authors of the original

proposal evaluated the subtraction term Δ2ðsÞ
R at the horizon

crossing while in Ref. [30], the authors followed the

evolution of Δ2ðsÞ
R beyond the horizon crossing. The latter

authors found that the subtraction term decays with the
number of e-folds and the regularized power spectrum

converges to Δ2ðbÞ
R .

In a sense, the result of Urakawa and Starobinsky is
complementary to the claims in Refs. [55–58]. They differ
however, in the approach of using adiabatic regularization—
it may be necessary but the final result (at least for the
canonical inflation) is simply the “bare” power spectrum. In
our past works [35,38] involving adiabatic regularization of
power spectra for more general inflation models, we have
followed the same scheme for three main reasons. First,
consistency of the regularization of the two-point function of
primordial cosmological perturbations calls for its applica-
tion to the power spectrum; that is, not only to those short-
wavelength modes but to all modes the integral/summation
with respect to which constitute hRðτ;xÞRðτ; yÞi.
Otherwise, some “fundamental properties would be vio-
lated” (e.g., the divergence of “the renormalized energy-
momentum tensor would not vanish”) [46]. However,
considering the modes constituting the standard expression
for the power spectrum, one should go beyond horizon
crossing and follow the evolution of the subtraction term.
(Note that in Ref. [56], the authors also emphasized the
importanceof time in applyingadiabatic regularization. They
offer a somewhat different perspective that adiabatic expan-
sion is no longer valid in the superhorizon limit.) Second, we
see that the coincidence limit x → y is a mathematical and
physical possibility that cannot be avoided by considering
few practical cases of interest where x might not be equal
to y. Furthermore, one has to necessarily deal with the
“coincidence” limit when calculating loop corrections in
more advanced treatments. Third and last, the adiabatic
regularization should follow the minimal subtraction pre-
scription since in general, the adiabatic expansion is “only
asymptotic but not convergent” [24] and going beyond the
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minimal prescription can lead to unphysical negative power
spectrum [58].
In the current work, we follow the same track laid down

by Urakawa and Starobinsky. As already stated above, this
study encompasses the canonical case and its generaliza-
tions in two different directions covered in our previous
works [35,38]. Considering the complications (i.e., non-
constant speed of sound and nonminimal coupling) brought
about by our generalization, we wish to confirm the null
effect of adiabatic regularization on the power spectrum.
This paper is divided as follows. In the following section,

Sec. II, we lay down the background equations from the
action for our model of inflation. Then in Sec. III, we
decompose the action with respect to the primordial
cosmological perturbations and then solve the “bare” power
spectrum. The complexity due to the nonminimal coupling
involved in the inflation model is addressed in this part by
method of frame transformation from the Jordan frame to
the Einstein frame and vice versa. After deriving the “bare”
power spectrum, we insert a short subsection dealing with
the condition of scale invariance as it is imposed on the
speed of sound. We need to impose some constraint on the
speed of sound to determine the behavior of the subtraction
term in which (as we shall see,) it is a part. In Sec. IV, we
formally derive the subtraction term and finally perform
adiabatic regularization. In the final section, Sec. V, we
state our conclusion and leave some words about our future
research prospects.

II. SETUP: NONMINIMALLY COUPLED
GENERAL SINGLE-FIELD INFLATION

The action for nonminimally coupled general single-
field inflation involving the inflaton field ϕ can be written
as

S ¼ 1

2

Z ffiffiffiffiffiffi
−g

p
d4x½M2

PlfðϕÞRþ 2Pðϕ; XÞ�; ð4Þ

where g is the determinant of the metric gμν, the quantity
M2

Pl is the (square of) Planck mass, and R is the Ricci scalar.
The nonminimal coupling term is included in the product
fðϕÞR where fðϕÞ≡ 1þ hðϕÞ. The last term on the right
hand side is the “pressure” functional P involving ϕ and the
kinetic term X defined as

X ≡ −
1

2
gμν∇μϕ∇νϕ: ð5Þ

In the limit where P → X − V and h → 0, the action above
reduces to that of the slow-roll canonical inflation.
The background spacetime for the action (4) is described

by Friedmann-Lemaître-Robertson-Walker (FLRW) metric
given by

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð6Þ

where a is the scale factor and t is the coordinate time
related to the conformal time by the definition dτ≡ dt=a.
With this metric at hand and the action stated above, the
equation of motion for ϕ can be written as

M2
PlhϕRþ 2Pϕ þ 2PXX∇μX∇μϕ

− 4PXϕX þ 2PX□ϕ ¼ 0; ð7Þ

where the subscripts indicate partial differentiation; e.g.,
Pϕ ¼ ∂P=∂ϕ. Furthermore, the variation of the action with
respect to gμν allows us to derive the equation for the
conserved energy-momentum tensor. From this tensor, we
identify the energy density ρ and pressure p as

ρ ¼ 1

f
ðPXϕ̇

2 − P − 3ḣHÞ; ð8Þ

p ¼ 1

f
ðPþ ḧþ 2ḣHÞ: ð9Þ

Note that our identification above for p does not lead to the
identification of P as pressure as in the minimally coupled
case (h ¼ 0). We will however, continue to refer to P as the
“pressure” functional.
The sum of energy density and pressure is related to the

slow-roll parameter ϵ≡ −Ḣ=H2 through the equation

Ḣ ¼ −
1

2
ðρþ pÞ: ð10Þ

Using the two equations above for ρ and p we find

ϵ ¼ ϵ̃

f
− β1 þ α ð11Þ

where the slow-roll parameters ϵ̃, β1, and α are defined as
(a somewhat related quantity β2 is introduced in the next
section.)

ϵ̃≡ ϕ̇2

2H2
PX; β1 ≡ ḣ

2fH
; and α≡ ḧ

2fH2
: ð12Þ

The quantity ϵ̃ is the first slow-roll parameter in the
minimally coupled case (i.e., when h → 0, ϵ → ϵ̃) while
β1 is the same slow-roll parameter introduced in Ref. [42].
We further introduce the notation α for brevity. For slow-
roll inflation to take place, ϵ ≪ 1, corresponding to the
conditions ϵ̃, jβ1j, jαj ≪ 1.
In this work, as in the canonical case, we assume slow-

roll inflation. We add a further limitation that the type of
inflation be chaotic. Consequently, we may impose that it
start out with large value of hðϕÞ and ends when
hðϕÞ ∼Oð1Þ. This is in accord with the nonminimally
coupled chaotic inflation considered in Refs. [39–42]
where hðϕÞ ¼ ξϕ2=M2

Pl with ξ as the nonminimal coupling
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parameter usually taken to be much greater than unity
[39,59]. Considering the power spectrum of the primordial
cosmological perturbations, all our calculations here are
good at least to first order in the slow-roll parameters. As
far as adiabatic regularization of the power spectrum is
concerned, this should be more than sufficient. Lastly, we
do not consider here loop corrections.

III. THE “BARE” POWER SPECTRUM, SCALE
INVARIANCE, AND SPEED OF SOUND

A. “Bare” power spectrum

After setting up the necessary background equations in
the previous section, we now turn our attention to fluc-
tuation. The perturbed metric containing the fluctuation R
can be written in the ADM decomposition [60] as

ds2 ¼ −N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; ð13Þ

where N and Nj are the lapse and shift functions respec-
tively. Wewish to calculate the “bare” power spectrum ofR
(in k-space) using the comoving gauge [11] where δϕ ¼ 0,
and the spatial part of the metric above takes the form

gij ¼ a2ðtÞe2Rδijdxidxj: ð14Þ

In the minimally coupled model of inflation, the (“bare”)
power spectrum can be computed by first decomposing the
action Sm given by

Sm ¼ 1

2

Z ffiffiffiffiffiffi
−g

p
d4x½M2

PlRþ 2Pðϕ; XÞ�; ð15Þ

with respect to R as Sm ¼ Sð0Þm þ Sð2Þm þ Sð3Þm þ � � �, subject
to the chosen gauge and the metric decomposition above.
(For calculations in the minimally coupled case, interested
readers may see Refs. [11,13].) Then the equation of
motion for R called the Mukhanov-Sasaki equation, is

derived from the second order action Sð2Þm . In k-space, it
states

v00k þ
�
k2c2s −

z00

z

�
vk ¼ 0; ð16Þ

where the speed of sound c2s , perturbation vk, and z in the
potential term z00=z, are given by

vk ≡ zRk; z2 ≡ 2a2ϵ
c2s

; c2s ¼
PX

PX þ 2XPXX
; ð17Þ

and the symbol prime indicates differentiation with respect
to τ. Finally, the solution of Mukhanov-Sasaki equation is
computed and the “bare” power spectrum is determined
using the equation

Δ2ðbÞ
R ¼ k3

2π2
jRkj2: ð18Þ

Note that implicit in this procedure is the quantization of
perturbation and calculation of the vacuum expectation
value with respect to the Bunch-Davies vacuum.
In the nonminimally coupled model of inflation that we

consider in this work, one may follow the same procedure.
However, the decomposition of the action can become quite
complicated because of the presence of the nonminimal
coupling term hðϕÞR. To ease our way of establishing the
Mukhanov-Sasaki equation, we use the method of frame
transformation from the Jordan frame (where the original
model is in place) to the Einstein frame; then we go back to
the Jordan frame with respect to which we write down the
power spectrum. In using this method, the metric is
transformed as

ds2 → dŝ2 ¼ Ω2ðϕÞds2; ð19Þ

where the hat indicates Einstein frame and Ω2 is called the
conformal factor that we choose as Ω2 ¼ fðϕÞ. The main
advantage of transforming to the Einstein frame is that in
this frame, the action takes a minimally coupled form. As
such, the relations in this frame are the same as those of
minimally coupled case but with the variables involved
“wearing” a hat. Furthermore, noting that the perturbation
is frame invariant (i.e., R̂ ¼ R) [41,61–63] one may
perform the decomposition Ŝ ¼ Ŝð0Þ þ Ŝð2Þ þ Ŝð3Þ þ � � �
[64] and from Ŝð2Þ establish the Mukhanov-Sasaki equation
as

v̂00k þ
�
k2ĉ2s −

ẑ00

ẑ

�
v̂k ¼ 0; ð20Þ

where

v̂k ¼ ẑRk; ĉ2s ¼
P̂X̂

P̂X̂ þ 2X̂P̂X̂ X̂

;

X̂ ¼ X
Ω2

; ẑ2 ¼ 2â2ϵ̂
ĉ2s

; ð21Þ

with

P̂ ¼ P
Ω4

þ 6M2
PlX̂

Ω2
ϕ

Ω2
; â≡Ωa; ϵ̂≡ −

1

Ĥ2

dĤ
dt̂

;

Ĥ ≡ dâ
dt̂

; and dt̂≡Ωdt: ð22Þ

Needless to say, the conformal time is invariant under
conformal transformation (i.e., τ̂ ¼ τ) so there is no need to
have another notation for the derivative in the Mukhanov-
Sasaki equation above.
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It then remains for us to solve (or more precisely,
semianalytically approximate the solution of) the
Mukhanov-Sasaki equation (20) to find the “bare” power
spectrum. To do this, we need to express the potential term
ẑ00=ẑ in terms of the conformal time and corrections due to
slow-roll parameters. The quantity ẑ depends on ϵ̂; ĉ2s , and
â≡Ωa. For the hatted first slow-roll parameter, we find
upon using its definition given above,

ϵ̂ ¼ ϵ̃

Ω2

p2

p2
1

; ð23Þ

where

p1 ≡ 1þ β1; p2 ≡ 1þ s2; with s2 ≡ 3M2
Pl

2

h2ϕ
Ω2PX

:

ð24Þ

Note that unlike jβ1j ≪ 1, the quantity s2 is not necessarily
small during inflation. In the Fakir and Unruh model of
nonminimally coupled chaotic inflation [39] for instance,
s2 is nearly constant and of the order 103 during inflation
for ξ ∼Oð103Þ. Here, we assume this same behavior and
take the magnitude of

β2 ≡ ṗ2

p2H
ð25Þ

to be much less than unity. For the hatted speed of sound,
we find from the second of (21)

ĉ−2s ¼ c−2s
1þ c2ss2
1þ s2

¼ c−2s ð1þ κsÞ; ð26Þ

where 1þ κs ≡ ð1þ c2ss2Þ=ð1þ s2Þ. We assume in this
work that jκsj ≪ 1 and is of the same order of magnitude as
that of the slow-roll parameters.
Using the results above for ϵ̂ and ĉ−2s and the definition

â≡Ωa, in the expression for ẑ given by the last of (21) we
find

ẑ2 ¼ 2a2ϵ̃
c2s

p2

p2
1

ð1þ κsÞ: ð27Þ

It is then straightforward to determine the potential term
from this expression. To first order in the slow-roll
parameters we have

ẑ00

ẑ
¼ ðaHÞ2

�
2 − ϵþ 3

2
ϵ̃2 þ 3δ1 þ

3

2
β2 þ � � �

�
; ð28Þ

where ϵ̃2≡ ˙̃ϵ=ϵ̃H is the second Hubble flow parameter [65]
in the minimal coupling limit and δ1 ≡ −ċs=csH is the first
sound flow-parameter [66]. (Note that the usual slow-roll

parameters are ϵ≡ −Ḣ=H2 and η≡ ϵ − ϵ̇=2ϵH. In terms of
the Hubble flow parameters fϵig, they can be written as
ϵ ¼ ϵ1 so we simply write ϵ1 as ϵ, and η ¼ ϵ − ϵ2=2. As
always, the tilde corresponds to the minimal coupling
limit.) The factor aH on the right-hand side of the equation
for the potential term is related to the conformal time
as [67]

τ ¼ −
1

a

X∞
n¼0

�
H−1 d

dt

�
n
H−1;

τ ¼ −ðaHÞ−1ð1þ ϵþ � � �Þ: ð29Þ

This allows us to finally write ẑ00=ẑ in terms of τ as

ẑ00

ẑ
¼ 1

τ2

�
2þ 3ϵþ 3

2
ϵ̃2 þ 3δ1 þ

3

2
β2 þ � � �

�
: ð30Þ

If the hatted speed of sound is unity, with the potential
given above, the Mukhanov-Sasaki equation (20) can be
readily transformed to Bessel differential equation and be
solved through the Hankel function approximation. The
presence of ĉ2s in the term k2ĉ2s complicates the differential
equation because of its dependence on τ. To remedy this,
we define a new independent variable ŷ involving ĉs and τ
and rewrite the Mukhanov-Sasaki equation as

d2ûk
dŷ2

þ
�
k2 −

1

q̂
d2q̂
dŷ2

�
ûk ¼ 0; ð31Þ

where

q̂≡ ẑ
ffiffiffiffiffi
ĉs

p
; ûk ≡ v̂k

ffiffiffiffiffi
ĉs

p
; and dŷ≡ ĉsdτ: ð32Þ

We can explicitly write ŷ in terms of cs and τ as

ŷ ¼ csτ

�
1 − δ1 −

1

2
κs

�
: ð33Þ

Moreover, the new potential term can be expressed in terms
of the old potential term and derivatives of ĉs through the
definitions above for q̂ and ŷ. This can then be manipulated
to gain an equation analogous to (30) for ẑ00=ẑ:

1

q̂
d2q̂
dŷ2

¼ 1

ŷ2

�
2þ 3ϵps þ

3

2
ϵ̃2

�
; ð34Þ

where we have defined ϵps ≡ ϵ − 1
2
δ1 þ 1

2
β2. Note the

absence of κs in the set of small parameters inside the
pair of parentheses on the right hand side. It is present in
the intermediate calculation involving the relationship
between ĉs and cs but cancels along the way.
With the above result for the new potential term, we can

rewrite (31) as
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d2ûk
dŷ2

þ
�
k2 −

1

ŷ2

�
ν2s −

1

4

��
ûk ¼ 0 ð35Þ

with νs ¼ 3
2
þ ϵps þ 1

2
ϵ̃2. Defining x̂ ¼ −kŷ and ûk ¼

ŵk

ffiffiffî
x

p
allows us to transform this to Bessel differential

equation,

x̂2
d2ŵk

dx̂2
þ x̂

dŵk

dx̂
þ ðx̂2 − ν2sÞŵk ¼ 0; ð36Þ

the solution of which can be written in terms of the Hankel
functions. Going back to ûk and then to v̂k, we find in the
superhorizon limit kcs ≪ aH that

v̂k ¼
1

2

ffiffiffi
π

k

r
ei

π
4
ð2νsþ1Þ

ffiffiffiffiffi
x̂
ĉs

s �
−
i
π
ΓðνsÞ

�
x̂
2

�
−νs

�
; ð37Þ

where Γ is the gamma factorial function.
We substitute the expression for v̂k above into Rk ¼

v̂k=ẑ and then to the equation for the “bare” power
spectrum given by (18). After performing some algebraic
manipulation, we finally obtain

Δ2ðbÞ
R ¼ H2�

8π2ϵ̃�cs�p2�

�
1 − 2ϵ� þ 2δ1� þ 2β1�

þ 1

2
κs� þ ð2ϵps� þ ϵ̃2�Þð2 − γ − ln 2Þ

�
; ð38Þ

where γ ¼ 0.5772 is the Euler-Mascheroni constant and
“*” indicates horizon crossing. This is our sought-for
expression for the “bare” power spectrum. Observe that
in the limit where cs� → 1 and h → 0, it reduces to that of
the canonical case as

Δ2ðbÞ
R →

H2�
8π2ϵ̄�

½1 − 2ϵ̄� þ ð2ϵ̄� þ ϵ̄2�Þð2 − γ − ln 2Þ�;

where ϵ̄ ¼ ϕ̇2=2H2 is the canonical first slow-roll param-
eter and ˙̄ϵ ¼ Hϵ̄ϵ̄2. For nonminimally coupled chaotic
inflation case where the speed of sound is constant and
h ¼ ξϕ2=M2

Pl, Eq. (38) reduces to

Δ2ðbÞ
R →

H2�
8π2ϵ̄�ð1þ 6ξÞ ½1 − 2ϵ� þ 2β1�

þ ð2ϵ� þ β2� þ ϵ̄2�Þð2 − γ − ln 2Þ�; ð39Þ

which is in agreement with the result in Refs. [39,41,42]
(apart from the slow-roll corrections not included in these
references).
Note that in Ref. [44], the authors derived the expression

for the “bare” power spectrum for essentially the same
model we considered here using a different method
following a somewhat “brute-force” decomposition of

the action in the Jordan frame. Their result cannot be
readily compared to ours due to a different set of slow-roll
parameters used. The expression for the power spectrum
also involves fðϕÞR evaluated at an unusual value of τ ¼ 1.
In addition to this, some slow-roll parameters seem to have
been perhaps, unintentionally omitted.

B. Scale invariance and the speed of sound

1. “Exact” scale invariance

In Ref. [68] (see also Refs. [69–71]), the authors
investigated scale invariance of the power spectrum and
its relationship to the speed of sound within a minimally
coupled framework with Lagrangian L ¼ ffiffiffiffiffiffi−gp

Pðϕ; XÞ.
Part of this study was establishing a relationship between
δ1 and ϵ as imposed by scale invariance. They found that
exact scale invariance requires that both of these parameters
be constant. Moreover, there are two possible cases
realizing this namely, (a) δ1 ¼ 2ϵ corresponding to an
expanding universe with a decreasing sound speed and
(b) δ1 ¼ − 2

5
ð3 − 2ϵÞ corresponding to a contracting uni-

verse with increasing sound speed.
In this work, we need to impose some constraint on the

speed of sound as part of the determination of the behavior
of the subtraction term in the adiabatic regularization of the
power spectrum (see the following section). Inspired by
symmetry, we impose near scale invariance and similar to
that in Ref. [68], find the relationship between δ1 and ϵ.
Following a similar track as that of the mentioned refer-
ence, we first, consider an ideal scenario corresponding to
“exact” scale invariance. Then, we consider deviation about
this and arrive at a more realistic equation corresponding to
a near scale-invariant condition on the speed of sound.
For the choice of an expanding universe, we follow a

simplified derivation using the expression for the spectral
tilt (instead of starting with the Mukhanov-Sasaki equation
as was done in Ref. [68]). From the expression for the
power spectrum given by (38) we find the spectral tilt to
first order in the slow-roll parameters as

d lnΔ2ðbÞ
R

d ln k
¼ d lnΔ2ðbÞ

R

dN�

dN�
d ln k

;

d lnΔ2ðbÞ
R

d ln k
¼ −2ϵ1� þ δ1� − β2� ð40Þ

Exact scale invariance then dictates −2ϵ1� þ δ1� − β2� ¼ 0,
which is the same as that of the minimally coupled inflation
scenario except for the addend −β2�.
Note however, that within the framework of Fakir and

Unruh’s model of nonminimally coupled chaotic inflation
[39] where h ¼ ξϕ2=M2

Pl with ξ ∼Oð103Þ, the quantity
β2� ≈ 2β1�=h ≪ β1�, where β1 is one of the slow-roll
parameters. Consequently, within this framework,
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δ1� ¼ 2ϵ� þ higher order correction; ð41Þ

which is essentially the same as that of the minimally
coupled inflation. In this work, considering the more general
model that we have, we assume that the contribution of β2
in the scale-invariant condition is also sub-dominant.

2. Near scale invariance

The scale-invariance condition (41) ties up the variation
of the speed of sound δ1 and the behavior of the Hubble
parameter as measured by ϵ1 so tightly with little freedom
to accommodate a realistic inflation scenario. This con-
dition has at least two limitations. First, the way it is written
does not include the element of time. Second, in the special
case where the speed of sound is constant, δ1 → 0 and the
slow-roll parameter ϵ is also forced to become too small or
vanishing if the higher corrections are negligible.
To remedy these limitations, we assume a near scale-

invariant condition given by

δ1ðτÞ ¼ 2ϵðτÞ − αsðτÞ: ð42Þ

Here, in the general case where the speed of sound is not
constant, we take αs as subdominant, that is, at least of the
second order in the slow-roll parameters, such that δ1 ¼ 2ϵ
to first order. To accommodate the specific case of constant
speed of sound, we assume that in the limit as δ1 → 0,
αs → 2ϵ so that the equation becomes ϵ ¼ ϵ (trivial).
Although it does not impose anything on ϵ, we have a
slow-roll assumption in place. Near scale invariance in this
case hinges on the smallness of ϵ during a significant part of
inflation.
Note that the near scale invariant condition given above

is in agreement with Ref. [68]. In this research article, the
authors arrived at the equation given by (partially using our
notation,) δ1 ¼ 2ϵ − ð1þ ϵÞδI , where δI is a parameter that
depends at least on ϵ and δ1. Analysis of the calculations in
the mentioned reference indicates that this equation
behaves the same way as our near scale invariance equation
above with αs ¼ ð1þ ϵÞδI .

IV. ADIABATIC REGULARIZATION
OF POWER SPECTRUM

The regularized power spectrum Δ2ðrÞ
R is the difference

between the “bare” power spectrum Δ2ðbÞ
R calculated in the

immediately preceding section, and the subtraction term

Δ2ðsÞ
R ; symbolically,

Δ2ðrÞ
R ¼ Δ2ðbÞ

R − Δ2ðsÞ
R : ð43Þ

In this section we wish to derive the form of Δ2ðsÞ
R and

perform the subtraction process. Moreover, we investigate
the behavior of the regularized power spectrum as the

Universe expands; that is, with respect to the number of
e-folds.

A. Derivation of the subtraction term

The subtraction term can bewritten in terms ofRðsÞ
k (now

with a superscript “s” for “subtraction”) following the form
of the “bare” power spectrum given by (18). We have

Δ2ðsÞ
R ¼ k3

2π2
jRðsÞ

k j2 ¼ k3

2π2

���� v
ðsÞ
k

z

����2; ð44Þ

where vðsÞk ≡ zRðsÞ
k . The quantity vðsÞk is given by the ansatz

(see Refs. [24,25])

vðsÞk ðτÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WkðτÞ

p e−i
R

τ dτ̃Wkðτ̃Þ; ð45Þ

that resembles the plane-wave solution of the Mukhanov-
Sasaki equation. In adiabatic regularization, WkðτÞ that we
simply write hereafter as W for brevity, is expanded as
W ¼ ω0 þ ω1 þ ω2 þ � � �, where the subscript n in ωn
denotes the adiabatic order. Furthermore, one imposes the

adiabatic condition on vðsÞk ðτÞ. Put simply, this means that

vðsÞk ðτÞ should reduce to the plane-wave solution in the limit
of very slow expansion of the Universe or very small
wavelength of the modes involved, such that spacetime is
effectively flat.

Similar to that of the determination of Δ2ðbÞ
R , there is an

added layer of complexity in finding Δ2ðsÞ
R due to the

presence of nonminimal coupling term. For the former, we
performed frame transformations and exploited the fact that

R̂ðbÞ
k ¼ RðbÞ

k to easily find RðbÞ
k and in turn, Δ2ðbÞ

R . For the
latter, it would be good if we could perform the same frame

transformations and exploit a similar relation between R̂ðsÞ
k

and RðsÞ
k . As it turns out, as argued in Ref. [35],

R̂ðsÞ
k ¼ RðsÞ

k ; in other words, it is also frame-invariant.
Working in the Einstein frame, following (45), one writes

v̂ðsÞk ðτÞ in terms of Ŵ and then expand the latter as
Ŵ ¼ ω̂0 þ ω̂1 þ ω̂2 þ � � �. The working equation for Ŵ
can be simply borrowed from the minimally coupled case
we investigated in Ref. [67], but with all the corresponding
variables involved “wearing” a hat:

Ŵ00

2Ŵ
−
3

4

Ŵ02

Ŵ2
þ Ŵ2 − k2ĉ2s þ

ẑ00

ẑ
¼ 0: ð46Þ

Performing a substitution from the expansion of Ŵ above in
the working equation, equating terms of the same adiabatic
order, and considering only the expansion up to second
adiabatic order based on the minimal subtraction prescrip-
tion, we find
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jRðsÞ
k j2 ¼ 1

2ẑ2kĉs

�
1þ 1

2k2ĉ2s

ẑ00

ẑ
þ 1

k2ĉ2s

�
1

4

ĉ00s
ĉs

−
3

8

ĉ0s
ĉ2s

��
:

Note that for superhorizon modes, the first term inside the
pair of square brackets is negligible compared to the other
terms. We are then left with the task of expanding the
second term involving the potential, and the derivative
terms involving the hatted speed of sound.
Using the expressions for ĉs and ẑ given by (26) and (27)

respectively, the equation for jRðsÞ
k ðτÞj2 can be rewritten as

jRðsÞ
k j2 ¼ H2

4k3ϵ̃csp2

�
1 −

1

2
ϵþ 3

4
ϵ̃2 þ

5

4
δ1 þ 2β1

þ 3

4
β2 þ

1

2
κs

�
: ð47Þ

This can be readily substituted in the equation for Δ2ðsÞ
k

given by (44) to gain

Δ2ðsÞ
R ¼ H2

8π2ϵ̃csp2

�
1 −

1

2
ϵþ 3

4
ϵ̃2 þ

5

4
δ1 þ 2β1

þ 3

4
β2 þ

1

2
κs

�
: ð48Þ

This is our sought-for expression for the subtraction term.
Observe that in the nonminimal coupling limit h → 0
where the speed of sound is in general nonconstant,
p2 → 1, β1 → 0, and κs → 0. In such a case,

Δ2ðsÞ
R →

H2

8π2ϵ̃cs

�
1 −

1

2
ϵ̃þ 3

4
ϵ̃2 þ

5

4
δ1

�
; ð49Þ

consistent with the result in Ref. [35]. When we further take
the limit cs → 1 of the above expression as in the canonical
case, it reduces to the result of Urakawa and Starobinsky
[30], namely,

Δ2ðsÞ
R →

H2

8π2ϵ̄

�
1 −

1

2
ϵ̄þ 3

4
ϵ̄2

�
: ð50Þ

B. The regularized power spectrum

Now that the “bare” power spectrum and the subtraction
term are in place, we can finally compute the regularized

power spectrum. By virtue of (43) for Δ2ðrÞ
R , and (38) and

(48) for Δ2ðbÞ
R and Δ2ðsÞ

R respectively, we find

Δ2ðrÞ
R ¼ H2�

8π2ϵ̃�cs�p2�

�
1þ ϵðbÞ� −

�
H2

H2�

��
ϵ̃�
ϵ̃

�

×

�
p2�
p2

��
cs�
cs

�
ð1þ ϵðsÞÞ

�
; ð51Þ

where we have lumped together the slow-roll corrections as

ϵðbÞ� ≡ −2ϵ� þ 2δ1� þ 2β� þ
1

2
κs�

þ ð2ϵps� þ ϵ̃2�Þð2 − γ − ln 2Þ;

ϵðsÞ ≡ −
1

2
ϵþ 3

4
ϵ̃2 þ

5

4
δ1 þ 2β1 þ

1

2
κs: ð52Þ

The first two terms (1þ ϵðbÞ� ) inside the pair of square

brackets in the equation above for Δ2ðrÞ
k are constants

reminiscent of the “bare” power spectrum. The four factors

in the third term determine the behavior of Δ2ðrÞ
R . Of these

factors, the first two remind us of the canonical inflation.
When the ratio p2�=p2 and cs�=cs both approach unity, we

recover the expression for Δ2ðrÞ
R in Ref. [30]. The third

factor p2�=p2, is due to the added layer of complexity
brought about by non-minimal coupling. The fourth and
last one is due to another layer of complexity attributed to
(in general,) nonconstant speed of sound.
Let us examine the behavior of the four factors above

one-by-one with respect to the number of e-folds N defined
as dN ≡ d ln a. For the factor involving the Hubble
parameter H, we find from the definition ϵ≡ −Ḣ=H2

and that for N that

H2

H2�
¼ e

−2
R

N

N�
dÑϵðÑÞ

: ð53Þ

During inflation ϵ goes from near zero to unity marking
the end of inflation. It follows that the first factor H2=H2�
exponentially decays with the number of e-folds.
Following a similar calculation for the second factor
involving ϵ̃ we find

ϵ̃�
ϵ̃
¼ e

−
R

N

N�
dÑϵ̃2ðÑÞ

: ð54Þ

Since ˙̃ϵ has to be positive on average if ϵ̃ is to follow an
increasing trend as inflation progresses, then ϵ̃2 has to be
positive on average as well. This implies that the factor ϵ̃�=ϵ̃
is also decaying with N. For the third factor involving p2,
note from the definition of β2 given by (25) that

β2 ¼
d lnp2

dN
: ð55Þ

In the immediately preceding section we took jβ2j to be
much smaller than jβ1j. Doing the same thing here implies
that essentially p2�=p2 will be of the order unity for large
enough N near the end of inflation. [In Ref. [38], consid-
ering the Fakir and Unruh model of nonminimally chaotic
inflation, p2�=p2 ∼Oð1Þ.] Consequently, it cannot com-
pete with the exponentially decaying effect of the first two
factors.
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For the last factor involving the speed of sound, we note
from (42) in Sec. III that

δ1ðτÞ ¼ 2ϵðτÞ − αsðτÞ: ð56Þ

Intuitively, αs is some (dimensionless) quantity measuring
the deviation from exact scale invariance. For a decreasing
speed of sound, the first slow-roll parameter ϵ should be
dominant over αs > 0. However, for the limiting case where
the speed of sound is constant, αs should tend to 2ϵ; the
near scale invariance in this case is obeyed by virtue of the
smallness of ϵ during a significant period of inflation.
The near scale-invariant condition above involving ϵ and

δ1 allows us to determine the behavior of the speed of
sound with the number of e-folds as

cs�
cs

¼ e
R

N

N�
dÑð2ϵ−αsÞ: ð57Þ

In combination with all other subresults for the factors
involving H, ϵ̃, and p2, we find

�
H2

H2�

��
ϵ̃�
ϵ̃

��
p2�
p2

��
cs�
cs

�
¼ e

−
R

N

N�
dÑ½ϵ̃2ðÑÞþαsðÑÞ�

:

implying an exponentially decaying behavior. In effect, the

subtraction term in the equation for Δ2ðrÞ
R given by (51)

above becomes insignificant in the long run. In other
words, the regularized power spectrum tends to the “bare”
power spectrum with the expansion of the Universe during
(and even beyond) inflation.

V. CONCLUDING REMARKS

The adiabatic regularization of power spectrum in canoni-
cal inflation yields a physical (regularized) power spectrum
essentially the same as the “bare” power spectrum. In this
work, we added two layers of complexities in combination
namely, non-minimal coupling and varying speed of sound.
Assuming a large-field inflationary scenario as in the work
of Fakir and Unruh and invoking near scale invariance, we
find the same behavior of the regularized power spectrum as
in the work of Urakawa and Starobinsky in the canonical
inflation scenario. In particular, our calculation indicates that
the subtraction term is an exponentially decaying function
of the number of e-folds. We may see that the expansion of
the Universe during (and even beyond) inflation washes out
the term reminiscent of a UV regularization leading to its
null effect on the power spectrum primarily constituted by
frozen superhorizon modes.

In retrospect, noting that adiabatic regularization was
originally formulated to remove divergent-yielding terms in
the two-point function of quantum fields in the short-
wavelength limit, one may readily expect a null effect on
the power spectrum. However, owing to the requirement of
consistency for it to be applied to all modes and not only to
UV modes, one may also expect a sort of “tail” of this
regularization procedure extending to the long wavelength
modes that could affect the power spectrum. What we have
done here is a rigorous calculation aiming to shed light on
this “tail.” As it turns out, with the help of symmetry in the
form of scale invariance and some assumptions rooted in
the chaotic inflationary scenario, the frozen superhorizon
modes embedded in the power spectrum are not affected
at all. All in all, we see this result in the most general
framework considered herein as a testament to the self-
consistency of adiabatic regularization and a strong
support to the use of the “bare” power spectrum in standard
calculations.
For future studies, we wish to probe deeper the con-

nection between the null effect of adiabatic regularization
on the power spectrum and scale-invariance. Physically,
near scale invariance results due to an almost constant
Hubble radius during inflation. If the Hubble radius is
almost constant, cosmological perturbations follow the
same evolutionary pathway—they exit essentially the same
Hubble sphere, enhance by inflation, and then freezes. Our
preliminary insight is that it might be possible that the
condition of scale-invariance alone is sufficient to ensure
the null effect of adiabatic regularization (or any other self-
consistent regularization scheme,) on the power spectrum,
independent of any model of inflation satisfying this
condition. In addition to this, we may also investigate
questions about the relationship between non-constant
Hubble radius (say, oscillatory about a nearly constant
value with respect to conformal time), symmetry in the
form of scale invariance, and adiabatic regularization of
the resulting power spectrum.
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