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We explore the homogeneous background dynamics and the evolution of generated perturbations of
cosmological inflation that is driven by multiple scalar fields interacting with a perfect fluid. Then we apply
the method to warm inflation driven by two scalar fields and a radiation fluid, and present general results
about the evolution of the inflaton and radiation. After decomposing the perturbations into adiabatic and
entropy modes, we give the equation of motion of adiabatic and entropy perturbations on large scales.
Then, we give numerical results of background and perturbation equations in a concrete model (the
dissipative coefficient Γ ∝ H). At last, we use the most recent observational data to constrain our models
and give the observationally allowed regions of parameters. This work is a natural extension of warm
inflation to multifield cases.
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I. INTRODUCTION

Inflation has become one of the central paradigm in
modern cosmology, because it solves many problems of
standard cosmology and provides an origin of large-scale
structure [1,2]. In inflation theory, a most common model is
that cosmological inflation is driven by a scalar field whose
potential dominates other forms of energy density. In
standard inflation, cosmological expansion and reheating
are two distinguished periods and we still know little about
the reheating process. Warm inflation is an important
inflationary model and it combine the cosmological expan-
sion and the production of the radiation into one process, so
the universe can become radiation-dominated smoothly [3].
In warm inflation, dissipative effects are important during
the inflation period, so that radiation production occurs
concurrently with cosmological expansion. Besides, recent
observations imply that chaotic inflation with monomial
quadratic potential and natural inflation are now disfavored
for predicting too large tensor-to-scalar ratio r. In warm
inflation, curvature perturbation are dominated by thermal
fluctuation which is usually much stronger than quantum
fluctuation, while tensor perturbation remain the same to
the cold inflation results. Therefore, many inflationary
models are in accordance with the observational data again
for a decreased r in warm regime.

A different possible way to generate perturbations in
agreement with observations is so-called multifield infla-
tionary model. Although single field inflation may seem
appealing from the perspective of simplicity and economy,
the microphysical origin of inflation still remains unclear
and there is not theoretical reason to expect only one field
to be important in the early Universe. In fact, fundamental
physics, such as sting theory, commonly predicts the
existence of multiple scalar fields [4,5].
Compared to single-field inflation, a key feature of

multifield inflation is a relatively large non-Gaussianity.
However, now the observations of non-Gaussianity is not
precise enough to distinguish between inflationary models.
Therefore it is important to study the effects of multifield
inflation and how they are constrained by observational
data. In addition, the content of the Universe is commonly
assumed to be a mixture of fluids and scalar fields, and
there has been increasing interests focused on multi-
component cosmology. In this paper we investigate cos-
mological inflation driven by multiple scalar fields and an
interacting perfect fluid, and then apply the formalism to
warm inflation in a two-field case. This work is a natural
extension of warm inflation to multifield cases.
This paper is organized as follows. In Sec. II we

introduce the governing background and perturbation
equations of multiple scalar fields interacting with a perfect
fluid. In Sec. III we apply the formalism to warm inflation
and obtain the evolution equations of curvature and entropy
perturbation in a two-field case. In Sec. IV, we give
numerical results in a representative case with the dis-
sipative coefficient Γ ∝ H, then we use the most up-to-data
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observational data to constrain our models and give the
observationally allowed region of parameters. To conclude,
we present some summaries and comments in Sec. IV. In
this paper, we redefined some slow-roll parameters of the
inflation and treat the radiation as a perfect fluid.

II. MULTICOMPONENT INFLATION

Let us study the inflation in homogeneous and isotropic
background. We consider a spatially flat Friedmann-
Robertson-Walker (FRW) metric of the form

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð2:1Þ

where aðtÞ is the scale factor, and t is cosmic time. We use
Planck Unit:

8πG ¼ kB ¼ ℏ ¼ c ¼ 1;

where G is Newton’s gravitational constant, kB is
Boltzmann’s constant, ℏ is the reduced Planck’s constant,
and c is the speed of light. In this work, Greek indices μ, ν,
λ denote spacetime dimensions, and Latin indices I, J, N
denote different scalar fields. Repeated spacetime indices
are summed over.
First we consider a N -fields model with Lagrangian

density [6]:

L ¼ −
1

2
ΣN
I gμν∇μφI∇νφI − VðφÞ; ð2:2Þ

which is minimal coupled to gravity, where VðφÞ ¼
Vðφ1;φ2;…;φN Þ. We assume that there exists a perfect
fluid and the interaction between scalar fields and the fluid
causes a phenomenological dissipative term Γ _φI in the
equation of motion. In general, Γ ¼ Γðφ1;φ2;…;φN ; ρfÞ,
ρf is the energy density of the perfect fluid. From Eq. (2.2)
we can get the equation of motion in the presence of a
perfect fluid:

φ̈I þ ð3H þ ΓÞ _φI þ VφI
¼ 0; ð2:3Þ

where H ≡ _a=a is the Hubble parameter, VφI
¼ ∂V

∂φI
, over-

dots represent derivatives with respect to cosmic time. In a
spatially flat FRW universe, H is determined by:

H2 ¼ 8πG
3

�
1

2
ΣN
I _φI

2 þ VðφÞ þ ρf

�
; ð2:4Þ

and the continuity equation of the perfect fluid

_ρf þ 3Hð1þ ωÞρf ¼ ΓΣI _φI
2; ð2:5Þ

where ω ¼ pf=ρf, pf is the pressure of the fluid.
As in single-field inflation, we define some slow-roll

parameters of the background quantities,

ϵ ¼ −
_H
H2

¼ ΣIϵI þ ϵf; ϵI ¼
1

2

_φ2
I

H2
; ϵf ¼ 2

3

ρf
H2

;

η ¼ −
Ḧ

2H _H
¼ ΣI

ϵI
ϵ
ηI þ

ϵf
ϵ
ηf;

ηI ¼ −
φ̈I

H _φI
; ηf ¼ −

1

2

_ρf
Hρf

: ð2:6Þ

The slow-roll conditions are ϵ < 1, jηj < 1. In slow-roll
approximation, we have

ð3H þ ΓÞ _φI þ VφI
¼ 0; ð2:7Þ

3Hð1þ ωÞρf ¼ ΓΣI _φI
2: ð2:8Þ

In order to study the evolution of the linear perturbations,
we decompose each of the scalar fields into a spatially
homogenous background field and its fluctuations
φIðx; tÞ → φIðtÞ þ δφIðx; tÞ. The line element of the
FRW metric can be written as

ds2 ¼ −ð1þ 2AÞdt2 þ 2a∂iBdxidt

þ a2ðð1 − 2ψÞδij þ 2∂i∂jEÞdxidxj; ð2:9Þ

and the gauge-invariant comoving curvature perturbation is
given by [7,8]

R ¼ ψ −H
δq

pþ ρ
; ð2:10Þ

where δq ¼ ΣIδqI þ δqf is the total momentum density
perturbation, and p and ρ are total pressure and energy
density [9]. The momentum perturbations of each compo-
nents are given by

δqI ¼ − _φIδφI; ð2:11Þ

δqf ¼ aðpf þ ρfÞðBþ δuÞ; ð2:12Þ

where δu is the scalar velocity potential of the fluid, and

from above definition we know δu ¼ δqf
aðpfþρfÞ − B. The

four-velocity of the fluid is defined by

uμ ¼ 1

a
ð1 − A; ∂iδuÞ; ð2:13Þ

uμ ¼ að−1 − A; ∂iδuþ ∂iBÞ: ð2:14Þ

The variation of the scalar field’s equation of motion
leads to:
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̈δφI þ ð3H þ ΓÞ _δφI þ
k2

a2
δφI þ ΣJVφIφJ

δφJ þ _φIδΓ

¼ −ð2VφI
þ Γ _φIÞA

þ _φI

�
_Aþ 3 _ψ þ k2

a2
ða2 _E − aBÞ

�
; ð2:15Þ

and the perturbation of energy and momentum conserva-
tion equation of the fluid is given by [10]

_δρf þ 3Hðδpf þ δρfÞ −
k2

a2
δqf þ

k2

a
ðpf þ ρfÞB

− δΓΣI _φI
2 − 2ΓΣI _φI

_δφ

¼ k2 _Eðpf þ ρfÞ − ΓAΣI _φI
2 þ 3ðpþ ρÞ _ψ ; ð2:16Þ

_δqf þ 3Hδqr þ δpþ ΓΣI _φIδφI ¼ −ðpf þ ρfÞA; ð2:17Þ

where k is the wave number in Fourier space.
The Einstein equation of the multicomponent system is

given by

Gμν ¼ TðφÞ
μν þ TðfÞ

μν ; ð2:18Þ

where

TðφÞ
μν ¼ ΣN

I ∂μφI∂νφI − gμν

�
1

2
ΣN
I ∂λφI∂λφI þ VðφÞ

�
;

ð2:19Þ

TðfÞ
μν ¼ ðρf þ pfÞuμuν þ pfgμν; ð2:20Þ

where Gμν is the Einstein tensor, and TðφÞ
μν , T

ðfÞ
μν are the

energy-momentum tensor of scalar fields and perfect fluid
respectively.
The perturbation equations of Einstein’s field

equations are

δρf þ ΣI _φIδφI þ ΣIVφI
δφI

¼ −2ðV þ ρfÞAþ 2k2H
a2

ðaB − a2 _EÞ − k2

a2
ψ − 6H _ψ ;

ð2:21Þ

δqf − ΣI _φIδφI ¼ −2HA − 2 _ψ ; ð2:22Þ

a2ðËþ 3H _EÞ − að _B − 2HBÞ − Aþ ψ ¼ 0; ð2:23Þ

δpfþΣI _φI
_δφI−VφI

δφI

¼−
k2

a2
ða _B−a2ËÞ−k2H

a2
ð2aB−a2 _EÞ− k2

a2
A

þ2ðV−pfÞAþ2H _Aþ k2

a2
ψþ6H _ψþ2ψ̈ : ð2:24Þ

Equations (2.21)–(2.24) are, respectively, the G0
0 compo-

nent of the field equation, the G0
i component, the tracefree

part of the Gj
i and the Gi

i component [11].

III. APPLICATION TO WARM INFLATION

In warm inflation, the density perturbations are mainly
sourced by thermal noise [12], and metric fluctuations
has little effect on small scales [13,14]. When k

aH ≫ 1,
inflaton fluctuations δφI are described by a Langevin
equation [3]

̈δφIðk; tÞ þ ð3H þ ΓÞ _δφIðk; tÞ þ
k2

a2
δφI ¼ ξIðk; tÞ; ð3:1Þ

where ξIðk; tÞ is a stochastic noise source and different
components of ξIðk; tÞ is independent of each other.
From the equation above, we know there is no direct
coupling between different components of field pertur-
bations when dropping out metric fluctuations on small
scales. If the temperature is sufficiently high, the noise
source is Markovian [13],

hξIðk; tÞξJð−k0; t0Þi ¼ 2ΓTa−3δIJδ3ðk − k0Þδðt − t0Þ: ð3:2Þ

Thermal noise is transferred to inflation field mostly on
small scales, and as the wavelength of perturbations
expands, the thermal effects decrease until the fluctuation
amplitude freezes out.
At horizon-crossing, for T-dependent dissipative coef-

ficients the thermal fluctuations produce a power spectrum
of perturbation [15]

PφI
¼ k−3

ffiffiffi
π

p
2

H1=2ð3H þ ΓÞ1=2T; ð3:3Þ

After horizon-crossing, we have to take into
account the influence of metric perturbations [16]. For
simplicity, we will work in spatially-flat gauge, in which
E ¼ ψ ¼ 0. Since there are only two degrees of freedom
of metric perturbation, only two of the equations of
Eqs. (2.21)–(2.24) are independent. Working with
Eqs. (2.21) and (2.22), we can get A and B in terms
of other perturbation variables by solving these two
equations algebraically

A ¼ −δqr þ ΣI _φIδφI

2H
; ð3:4Þ
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B ¼ −
a

4k2H2
ð24H2δqr þ ð4ρr þ ΣI _φI

2Þð−δqr þ ΣI _φIδφIÞ
þ 2Hð3 _δqr þ 4ΓΣI _φIδφI þ ΣIφ̈IδφI − ΣI _φI

_δφIÞÞ:
ð3:5Þ

In warm inflation, we usually treat the radiation as a
perfect fluid, so the above results can be applied here. For
the radiation fluid, pr ¼ 1

3
ρr, δpr ¼ 1

3
δρr, where pr and ρr

are the pressure and energy density of the radiation, and
δpr, δρr are their perturbations respectively. With these
relations, we can substitute Eq. (2.16) into Eq. (2.17) and
yield:

δ̈qr þ 7H _δqr þ 3

�
7H2 þ _H þ 1

3

k2

a2

�
δqf

þ ΣI

�
1

3
_φI
2δΓþ ð4HΓþ _ΓÞ _φIδφI

þ Γφ̈IδφI þ
5

3
Γ _φI

_δφI

�

¼ 1

3

k2

a
ρrB −

16

3
HρrAþ 1

3
ΓΣI _φI

2A −
4

3
ρr _A: ð3:6Þ

The relationship between energy density ρr and temper-
ature of radiation is ρr ¼ π2

30
g�T4, where g� is the effective

particle number of radiation. Now we define two new
parameters describing the φI dependence and temperature
dependence of the damping term ΓðΓ ¼ Γðφ1;φ2;…;
φN ; ρrÞÞ:

βI ¼
ΓφI

VφI

ΓV
; c ¼ TΓT

Γ
¼ 4ρrΓρr

Γ
; ð3:7Þ

where βI < 1þ r, βI are slow-roll parameters [17], but c is
not required to be small. In order to go back to cold
inflation (Γ ¼ 0) when T ¼ 0, we require ΓT > 0, so c is
positive defined. Considering the consistency of warm
inflation [15,18], we set 0 < c < 4.
Then ΓφI

¼ ∂Γ
∂φI

, Γρr ¼ ∂Γ
∂ρr can be denoted by βI, c and the

corresponding background quantities. So we have [19]

δΓ ¼ ΣIΓφI
δφI þ Γρrδρr; ð3:8Þ

_Γ ¼ ΣIΓφI
_φI þ Γρr _ρr: ð3:9Þ

Substitute δΓ, _Γ, A, B into Eqs. (2.15) and (3.6), and
keep the leading order, we find

δ̈qr þ ð7 − cÞH _δqr þ
�
12 − 3cþ 1

3

k2

a2H2

�
H2δqr

¼ γΣIð5H _δqI þ ð12 − 3cÞH2δqIÞ; ð3:10Þ

δ̈qI þ 3Hð1þ γÞ _δqI þ
k2

a2
δqI ¼ 0: ð3:11Þ

where γ ¼ Γ
3H describes the dissipative strength in warm

inflation.
We define a new variable z ¼ k

aH, then

d
dt

¼ −
k
a
ð1 − ϵÞ d

dz
; ð3:12Þ

d2

dt2
¼ ð1 − ϵÞ kH

a
d
dz

þ ð1 − 2ϵÞ k
2

a2
d2

dz2
: ð3:13Þ

Replace time variable t with z, and keep the leading
order, Eqs. (3.10) and (3.11) can be put in the form

z2δq00r − ð6 − cÞzδq0r þ
�
12 − 3cþ 1

3
z2
�
δqr

¼ γΣIð−5zδq0I þ ð12 − 3cÞδqIÞ; ð3:14Þ
zδq00I − ð2þ γÞδq0I þ zδqI ¼ 0; ð3:15Þ

where a prime denotes a derivative with respect to z.
From Eq. (3.15) we know that in the large-scale limit,

i.e., z ¼ k
aH → 0, δqI is a constant in the slow-roll approxi-

mation. So we drop out the δq0I term on the right-hand side
of Eq. (3.14).

z2δq00r − ð6 − cÞzδq0r þ
�
12 − 3cþ 1

3
z2
�
δqr

¼ γΣIðð12 − 3cÞδqIÞ: ð3:16Þ
This is an inhomogeneous Bessel differential equation.

The solution is given by adding the homogeneous solution
to a particular solution. The homogeneous solution of
(3.16) can be found in terms of Bessel functions

δqhr ¼ C1z
7−c
2 Jν̃ðz=

ffiffiffi
3

p
Þ þ C2z

7−c
2 Y ν̃ðz=

ffiffiffi
3

p
Þ; ð3:17Þ

where ν̃ ¼ ð−1þ cÞ=2, and C1, C2 are two integral
constants.
Then, we try to find a particular solution for this

equation. Because z → 0 rapidly after horizon-crossing,
we drop out the z2 term in the coefficient of δqr. In this
case, a particular solution is given by

δqpr ≈
γΣIðð12 − 3cÞδqIÞ

12 − 3c
¼ γΣIδqI: ð3:18Þ

Then we can get the general solution of Eq. (3.16)

δqr ¼ C1z
7−c
2 Jν̃ðz=

ffiffiffi
3

p
Þ þ C2z

7−c
2 Y ν̃ðz=

ffiffiffi
3

p
Þ þ γΣIδqI:

ð3:19Þ

In case of z ≪ 1, the Bessel functions in the above
equation can be approximated by
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z
7−c
2 Jν̃ðz=

ffiffiffi
3

p
Þ ∼ 12

1−c
4

ΓRð1þc
2
Þ z

3; ð3:20Þ

z
7−c
2 Y ν̃ðz=

ffiffiffi
3

p
Þ ∼ −

1

π
12

−1þc
4 ΓR

�
−1þ c

2

�
z4−c

−
1

π
12

1−c
4 ΓR

�
1 − c
2

�
sin

�
cπ
2

�
z3; ð3:21Þ

where ΓR is the Gamma function. From the above approxi-
mation we know these two terms tend to zero rapidly after
horizon-crossing, so

δqr ≈ γΣIδqI ¼ −γΣI _φIδφI: ð3:22Þ

From Eq. (2.8) we know 4
3
ρr ¼ γΣI _φI

2, so in spatially-
flat gauge the comoving curvature perturbation is given by
[20]

R ¼ −H
δq

pþ ρ
¼ −H

ΣIδqI þ δqr
ΣI _φI

2 þ 4
3
ρr

¼ −H
ΣIδqI
ΣI _φI

2
: ð3:23Þ

Curvature perturbationR has a same form to that in cold
inflation. In one field case, R reduces to our familiar
form R ¼ H δφ

_φ .
Now, we consider a two-field model, φ1 ¼ ϕ, φ2 ¼ χ. In

this case, the perturbation equation of scalar field is given
by

δ̈ϕþ ð3H þ ΓÞ _δϕþ
�
Vϕϕ þ

k2

a2

�
δϕþ Vϕχδχ þ _ϕδΓ

¼ _ϕ

�
−
k2

a
Bþ _A

�
; ð3:24Þ

δ̈χ þ ð3H þ ΓÞ _δχ þ
�
Vχχ þ

k2

a2

�
δχ þ Vϕχδϕþ _χδΓ

¼ _χ

�
−
k2

a
Bþ _A

�
: ð3:25Þ

Substituting Eq. (3.22) into Eqs. (3.4) and (3.5), we can
express the metric perturbation A and B in terms of field
perturbation δϕ, δχ. In previous section, we have expressed
δΓ in terms of field perturbations, therefore now we get two
closed differential equations for the variables δϕ, δχ after
replacing A and B in above two equations with these
results.
As in cold two-field inflation, we define two new

adiabatic field σ and entropy field s by a rotation in field
space. dσ is tangent to the background trajectory and ds is
normal to it [21].

�
dσ

ds

�
¼

�
cos θ sin θ

− sin θ cos θ

��
dϕ

dχ

�
; ð3:26Þ

where cos θ ¼ _ϕffiffiffiffiffiffiffiffiffiffi
_ϕ2þ_χ2

p , sin θ ¼ _χffiffiffiffiffiffiffiffiffiffi
_ϕ2þ_χ2

p .

Using this definition, the equation of motion can be
described in terms of σ, s is given by

σ̈ þ ð3H þ ΓÞ _σ þ Vσ ¼ 0; ð3:27Þ

_θ _σþVs ¼ 0; ð3:28Þ

where
Vσ ¼ cos θVϕ þ sin θVχ , Vs ¼ − sin θVϕ þ cos θVχ .
Similarly, it is useful to decompose the field perturba-

tions into an adiabatic δσ and entropy δs component as
illustrated in Fig. 1, δσ is parallel to the background
trajectory and δs is orthogonal to it.

�
δσ

δs

�
¼

�
cos θ sin θ

− sin θ cos θ

��
δϕ

δχ

�
: ð3:29Þ

Now we can write Eqs. (3.24) and (3.25) in the form

δ̈σ þ ð3H þ ΓÞ _δσ þ
�
k2

a2
þ Vσσ − _θ2

�
δσ

− 2_θ _δsþ2

�
2_θVσ

_σ
− θ̈

�
δsþ _σδΓ

¼ −
k2

a
_σB − ð _σΓþ 2VσÞAþ _σ _A; ð3:30Þ

FIG. 1. An illustration of the decomposition of an arbitrary
perturbation in field space. δϕ, δχ represent fluctuations with
respect to a fixed local frame, and δσ, δs represent fluctuations
parallel and normal to the background path.
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δ̈sþ ð3H þ ΓÞ _δsþ
�
k2

a2
þ Vss − _θ2

�
δsþ 2_θ _δσ −

2_θ σ̈

_σ
δσ

¼ 2_θ _σ A; ð3:31Þ

where

Vσσ ¼ cos2θVϕϕ þ sin 2θVϕχ þ sin2θVχχ ; ð3:32Þ

Vss ¼ sin2θVϕϕ − sin 2θVϕχ þ cos2θVχχ : ð3:33Þ

Since Γ ¼ Γðϕ; χ; ρrÞ in previous section, now we can
treat Γ as Γ ¼ Γðσ; s; ρrÞ. For simplicity, we redefine some
slow-roll parameters

ϵσ ¼
_σ2

2H2
; ησ ¼ −

σ̈

H _σ
; ηr ¼ −

1

2

_ρr
Hρr

;

βσ ¼
VσΓσ

VΓ
; βs ¼

VσΓs

VΓ
: ð3:34Þ

Then, the metric perturbations A, B in Eqs. (3.4), (3.5) and
δΓ ¼ Γσδσ þ Γsδsþ Γρrδρr can be expressed in term of
δσ, δs [According to Eqs. (2.17), (3.4) and (3.22), we can
rewrite δρr in terms of δσ, δs in spatially-flat gauge].
Substituting δΓ, A, B into Eqs. (3.30) and (3.31), we get

δ̈σ þ
�
3H þ Γþ Γ _σ2

3H2
þ Γ _σ2Γρr

H

�
_δσ

þ
�
k2

a2
− _θ2 − 3_σ2 −

3Γ _σ2

2H
−
Γ2 _σ2

6H2
þ Vσσ −

_HΓ _σ2Γρr

H2

−
2ρr _σ

2Γρr

H
−
2Γρr _σ2Γρr

3H2
þ Γ _σ σ̈ Γρr

H
þ _ρr _σ

2Γ2
ρr

H

þ _σΓσ þ
_σ3Γσ

3H2
þ _σ3ΓρrΓσ

H

�
δσ

¼ 2_θ _δsþ
�
_θ _σ2

H
−
2_θVσ

_σ
þ 2θ̈ − _σΓs

�
δs; ð3:35Þ

δ̈sþ ð3H þ ΓÞ _δsþ
�
k2

a2
þ Vss − _θ2

�
δs

¼ −2_θ _δσþ
�ð3H þ ΓÞ _σ2

3H2
þ 2σ̈

_σ

�
_θδσ: ð3:36Þ

The comoving curvature perturbation is given by

R ¼ H
_ϕδϕþ _χδχ
_ϕ2 þ _χ2

¼ H
δσ

_σ
: ð3:37Þ

Replacing δσ in Eq. (3.35) with R, we can rewrite
Eqs. (3.35) and (3.36) as two coupled differential equations
of R, δs. If we keep only the leading order in the slow-roll
approximation, the equations are given by

R̈þ 3ð1þ γ þ cγÞH _Rþ
�
k2

a2
− _θ2

�
R

¼ 2H _θ

_σ
_δsþ

�
2H _θ

_σ
ð3þ 3γÞH þ 2Hθ̈

_σ

�
δs; ð3:38Þ

δ̈sþ 3ð1þ γÞH _δsþ
�
k2

a2
þM2

eff

�
δs ¼ −

2_θ _σ

H
_R; ð3:39Þ

where M2
eff ¼ Vss − _θ2, Meff is the effective mass of δs.

According to Eqs. (3.38) and (3.39), we know when we
neglect the curvature of background trajectory in field
space (_θ ¼ 0), δs behave like a free field, and when r ¼ 0,
these equations can go back to cold inflation.
Now we define the isocurvature perturbation S ¼ H

_σ δs
[22], and the power spectrum of curvature and isocurvature
perturbation [23]

PR ¼ k3

2π2
jRj2; ð3:40Þ

PS ¼ k3

2π2
jSj2: ð3:41Þ

The spectral index of the curvature perturbation is

ns − 1 ¼ d lnPR

d ln k
: ð3:42Þ

The tensor modes of perturbations are not affected by the
thermal noises, so the tensor power spectrum and tensor-to-
scalar ratio at the pivot scale are given by [24]

PT ¼ 8

�
H�
2π

�
2

; ð3:43Þ

r ¼ PR

PT
: ð3:44Þ

In this work, we are mainly concerned with the large
scale evolution of curvature perturbation R, because the
value of R at the end of inflation seeds the observed CMB
temperature anisotropies, corresponding to the variance of
inhomogeneities’ distribution.

IV. NUMERICAL EXAMPLES AND CONSTRAINTS
FROM OBSERVATIONS

A. Numerical examples

When dealing with multicomponent systems, a numeri-
cal method is almost essential. In this section we use the
formalism introduced above to investigate a toy model, in
which massive scalar fields ϕ and χ are coupled through an
interaction term 1

2
g2ϕ2χ2 [25].
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Vðϕ; χÞ ¼ 1

2
m2

ϕϕ
2 þ 1

2
m2

χχ
2 þ 1

2
g2ϕ2χ2: ð4:1Þ

The background equations are

ϕ̈þ ð3H þ ΓÞ _ϕþ ∂Vðϕ; χÞ
∂φ ¼ 0 ð4:2Þ

χ̈ þ ð3H þ ΓÞ_χ þ ∂Vðϕ; χÞ
∂χ ¼ 0 ð4:3Þ

_ρr þ 4Hρr ¼ Γð _ϕ2 þ _χ2Þ ð4:4Þ

H2 ¼ 1

3

�
1

2
_ϕ2 þ 1

2
_χ2 þ Vðϕ; χÞ þ ρr

�
: ð4:5Þ

There are five free parameters associated with the initial
conditions of the equation of motion, ϕ0, χ0, _ϕ0, _χ0, ρr0.
After making use of slow-roll approximation, _ϕ ¼
− 1

3HþΓ
∂Vðϕ;χÞ

∂ϕ , _χ ¼ − 1
3HþΓ

∂Vðϕ;χÞ
∂χ , ρr ¼ Γ

4H ð _ϕ2 þ _χ2Þ, the
initial conditions are given by ϕ0, χ0. We choose the
parameters associated with potential to be mϕ¼2×10−7,
mχ ¼ 10−6, g ¼ 2 × 10−8, and give a numerical result
below.

In our numerical calculations, we set γ ¼ Γ
3H to be a

constant. In order to get a clear picture of the evolution
of background and perturbation variables, we integrate
the exact background equations (4.2)–(4.5) first until
horizon-crossing. After horizon-crossing, we integrate
the background and perturbation equations (3.38)–(3.39)
simultaneously to the end of inflation. We set the effective
particle number of radiation g� ¼ 228.75 [26], and choose
the initial values of curvature perturbation R and entropy
perturbation δs at horizon-crossing according to Eq. (3.3).
In addition, we take the number of e-foldings from horizon-
crossing to the end of inflation to be ΔN ¼ 60 to
make definite calculations.
According to the top left panel of Fig. 2 we know that the

heavy field χ decrease faster than the light field ϕ, and after
a period of time, χ reaches zero and then inflation will be
driven by one single field ϕ. The bottom two graphs of
Fig. 2 show that the potential dominates the total energy in
inflationary period, which is consistent with slow-roll
condition. However, radiation density will increase rapidly
at the end of inflation and then become dominated, at the
same time slow-roll conditions break down.
The left panel of Fig. 3 shows after horizon-crossing

k
aH → 0 quickly andR, δs tend to a constant value and they
are weakly correlated. From Eqs. (3.38) and (3.39) we

FIG. 2. The evolution of different background variables are shown against e-foldings NðdN ¼ HdtÞ in case of r ¼ 1, ϕ0 ¼ 8,
χ0 ¼ 12, and we have set N0 ¼ 0 at the initial time. Top left and top right panel: the evolution of scalar fields and the slow-roll parameter
ϵ, η. Bottom left and bottom right panel show the evolution of kinetic energy density K (K ¼ 1

2
_ϕ2 þ 1

2
_χ2), potential V and radiation

energy density ρr, and all the energy is scaled by total energy density ρ in the graph. In bottom right panel, we zoom in to the few
e-foldings around the end of inflation to give more details, and the dot-dashed vertical line indicates the end of inflation (ϵ ¼ 1). In this
case inflation ends at about N ¼ 104.
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know _θ plays an important role in the interaction of
curvature perturbation R and entropy perturbation δs.
The upper left panel of Fig. 2 shows at around N ¼ 80
the heavy field χ decays to zero and this will cause a bump
in _θ. At around N ¼ 80, _θ increases suddenly and there is a
strong interaction between R and δs, and they all change
significantly. After that, the entropy perturbation decay to
zero and the curvature perturbation R become a nearly
constant value again.

B. Constraints from observations

The most recent measurements of the cosmic microwave
background (CMB) provides narrow constraints on cos-
mological parameters, ruling out large classes of models.
Having established representative examples in previous
subsection, we now turn our attention to the compatibility
with observational data. We will use the most recent Plank
data to constrain our models, finding the allowed regions of
parameter space consistent with the observational values of

FIG. 3. The evolution of curvature perturbationR, entropy perturbation δs and spectral index ns in Γ ∝ H case. The initial value ofR,
δs are chosen based on Eq. (3.3). The spectral index ns is calculated using finite-difference method.

FIG. 4. In the above ðγ; mϕÞ or ðr; nsÞ planes, we show constraints of observational data on the spectral index ns and tensor-to-scalar
ratio r. The intersections of dark-gray shaded areas and red shaded areas give the observationally allowed regions. In the left two panels
we take the mass ratio Rm ¼ 3, and in the right two panels we take Rm ¼ 10. For each value of Rm, results are shown in both ðγ; mϕÞ
planes and ðr; nsÞ planes.
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ns and r. For simplicity, we neglect the interaction between
ϕ and χ (set g ¼ 0), and introduce the mass ratio defined as
Rm ¼ mχ=mϕ. When we fix the value of Rm, for a given
ðγ; mϕÞ when Γ ∝ H, every set of initial condition ðϕ�; χ�Þ
will produce a corresponding e-folding N, and a corre-
sponding curvature power spectrum PR at the end of
inflation (ϵ ¼ 1), just like the numerical examples shown in
last subsection. Then we use the condition N ¼ 60 and
PR ¼ 2.207 × 10−9 (68% CL, Plank TT,TE,EEþ LowP)
to constrain the parameter space and pick out the exact
initial condition ðϕ�; χ�Þ for each value of ðγ; mϕÞ. Next we
give a numerical result of ðr; nsÞ at the end of inflation with
the initial condition we obtained. That is to say, we have a
set of ðr; nsÞ for every ðγ; mϕÞ, so we can determine the
range of our parameters in face of the observational results
of ðr; nsÞ.
We use the observational data ns ¼ 0.9645� 0.0049,

r < 0.1 (68% CL, Planck TT,TE,EEþ LowP) to constrain
our models in case of Rm ¼ 3 and Rm ¼ 10. Our results are
given in parameter space of ðγ; mϕÞ and ðr; nsÞ plotted in
Fig. 4. First, we neglect the points (in white areas) which do
not have a corresponding initial condition of ðϕ�; χ�Þ to
produce expected e-foldings and power spectrum at the
same time. Then we proceed to search for the observatio-
nally allowed regions of parameters from the remaining
points. In the plot, the light-gray shaded regions indicate
areas for r > 0.1 while the dark-gray shaded regions
indicate areas for r < 0.1. The regions highlighted in red
are for 0.9596 < ns < 0.9694, so the intersections of dark-
gray shaded areas and red shaded areas give the regions of
parameter space consistent with the observational data.
According to Fig. 4, we know all models in our analysis

have some observational allowed regions in parameter
plane. As the plots show, thermal fluctuations are much
stronger than quantum fluctuations in warm inflation, so we
need smaller masses of the scalar field to produce observa-
tionally allowed power spectrum. In upper two panels, we
show when Γ ∝ H, different Rm leads to different permitted
range of dissipative strength γ, and inflation can happen in
both weak and strong regime of warm inflation. In Rm ¼ 3
case, γ takes values of 0.38≲ γ ≲ 1.0, and when Rm ¼ 10,
0.4≲ γ ≲ 19. The lower two panels give the lower bound of
tensor-to-scalar ratio r in the observationally allowed range
of spectral index ns, depending on the value of Rm. As
illustrated, observational data favor large value ofRm in two-
field cases. ForRm ¼ 3, r gets a lower bound r ≈ 0.068, this
is a rather large value and may become disfavored by the
observations in the near future. In case of Rm ¼ 10, we
obtain a much smaller bound of r ≈ 0.007, which is in good
agreement with the observational constraints.

V. CONCLUSIONS

In this paper, we have studied inflation driven by
multiple scalar fields and an interacting perfect fluid. We

defined some new parameters and perform a full analysis of
perturbation equations, including field perturbation, fluid
perturbation and metric perturbation. Then we apply the
theory to warm inflation, and give the evolution equations
of curvature perturbation R and isocurvature perturbation
δs in a two-field case. Next, we perform numerical
calculations in our representative examples and give the
main features of the evolution of background and pertur-
bation variables. Finally, in order to check the compatibility
of our models with observations, we use the most up-to-
date observational data to constrain our model and give the
observational permitted regions of the parameters. In the
calculation of perturbations, we have used the slow-roll
approximation for simplicity.
According to the numerical results above, the correlation

between curvature and entropy perturbations can change
PR significantly on large scales, and the change mainly
occurs simultaneously to the turning of the background
trajectory. However, the change cannot be observed if it
happens much more than 60 e-foldings before the end of
inflation [27], in which case the effects of multifield are
negligible. The damping term in background equation can
slow the decrease of scalar fields, so warm inflation will
produce more e-foldings after the turning of trajectory.
Consequently, the multifield effect is more likely to be
observed when the damping effect is not too strong.
Fortunately, the Planck satellite has put a tight upper bound
on the primordial non-Gaussianity, and warm inflationary
models tend to produce large non-Gaussianity, so the
observations seems not to be compatible with the very
strong version of warm inflation [12].
Our results also show that the inflaton field may starts to

oscillate after the end of inflation, just as the reheating
phase in cold inflation. This is a common phenomenon in
weak regime of warm inflation, and different forms of the
damping coefficient can lead to different dynamical fea-
tures of warm inflation. In fact, many models lie between
warm inflation and standard inflation, and there may be
some general framework to describe them [28]. The
existence of radiation will not alter the main features of
super-horizon evolution of scalar perturbations during
slow-roll regime, compared with standard inflation, which
is consistent with observations. However, the value of
comoving curvature perturbation at the end of inflation
depends on the form of damping coefficient Γ.
To study the compatibility with observations, we com-

pared the predictions of our models with the most up-to
data observational data, and show the results in Fig. 4. In all
the cases considered, we find some observationally allowed
regions in parameter space and the mass ration Rm has a
significant impact on the allow regions of parameters. As
illustrated by Fig. 4, the models with a smaller value of Rm
tend to be more constrained by observational data. In our
results, the observationally permitted range of the mass of
the lighter field mϕ are all less than 5 × 10−8Mp (Mp is the
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reduced Planck mass), which is much smaller than the
double inflation models in cold inflation [29]. This is easy
to understand because in warm inflation thermal fluctua-
tions are much stronger than quantum fluctuation, and we
do not need large mϕ to produce the expected value of
scalar power spectrum. Note that if we set γ ¼ 0 in our
models, we go back to the cold inflation regime. However,
according to upper two panels Fig. 4 we know this case is
not observational allowed for it predicts too large scalar-to-
tensor ratio. Therefore, we can conclude that warm infla-
tion effects can reduce the value of r in multifield cases,
making more inflationary models fit the observations.
In our numerical analysis, we take a T-independent

dissipative coefficient as an example, which may not be a
realistic case [30]. As shown in [15], the T-dependent
dissipative coefficient leads to a growing mode in the
fluctuations before horizon-crossing in case of γ > 1

[31,32]. This is an important effect in warm inflation
and has to be taken into account. In T-dependent cases
the perturbations need to be computed numerically, and we
leave this for our future work. The effective mass of
isocurvature mode Meff in the models we studied here is
large enough so that the isocurvature perturbation will
decay to zero before the end of inflation. However, this is
not always the case [33], and further research should be
done on this topic. Besides, when dealing with N ≫ 1
scalar fields in inflationary models, the method of con-
structing random potentials is worth considering [34].

ACKNOWLEDGMENTS

This work was supported by the National Natural
Science Foundation of China (Grants No. 11575270,
No. 11175019, No. 11235003 and No. 11605100).

[1] A. H. Guth, Inflationary universe: A possible solution to the
horizon and flatness problems , Phys. Rev. D 23, 347 (1981).

[2] A. D. Linde, A new inflationary universe scenario: a
possible solution of the horizon, flatness, homogeneity,
isotropy and primordial monopole problems, Phys. Lett.
108B, 389 (1982).

[3] A. Berera, I. G. Moss, and R. O. Ramos, Warm inflation
and its microphysical basis, Rep. Prog. Phys. 72, 026901
(2009).

[4] Z. Lalak, D. Langlois, S. Pokorski, and K. Turzynski,
Curvature and isocurvature perturbations in two-field in-
flation, J. Cosmol. Astropart. Phys. 07 (2007) 014.

[5] S. Weinberg, Cosmology (Oxford University Press,
New York, 2008).

[6] F. Vernizzi and D. Wands, Non-Gaussianities in two-field
inflation, J. Cosmol. Astropart. Phys. 05 (2006) 019.

[7] R Kabir and A Mukherjee, Oscillatory power spectrum and
strongly k-dependent r in hybrid inflation, arXiv:1602
.01221.

[8] K. A. Malik and D. Wands, Adiabatic and entropy pertur-
bations with interacting fluids and fields, J. Cosmol.
Astropart. Phys. 02 (2005) 007.

[9] K. A. Malik, Cosmological perturbations in an inflationary
universe, arXiv:astro-ph/0101563.

[10] C. Pitrou, X. Roy, and O. Umeh, xPand: An algorithm for
perturbing homogeneous cosmologies, Classical Quantum
Gravity 30, 165002 (2013).

[11] N. Bartolo, P. Corasaniti, A. Liddle, and M. Malquarti,
Perturbations in cosmologies with a scalar field and a perfect
fluid, Phys. Rev. D 70, 043532 (2004).

[12] I. G. Moss and C. Xiong, Non-Gaussianity in fluctuations
from warm inflation, J. Cosmol. Astropart. Phys. 04 (2007)
007.

[13] L. M. H. Hall and I. G. Moss, Scalar perturbation spectra
from warm inflation, Phys. Rev. D 69, 083525 (2004).

[14] W. L. Lee and L. Z. Fang, A relativistic calculation of super-
Hubble suppression of inflation with thermal dissipation,
Classical Quantum Gravity 17, 4467 (2000).

[15] C. Graham and I. G. Moss, Density fluctuations from warm
inflation, J. Cosmol. Astropart. Phys. 07 (2009) 013.

[16] A. R. Liddle and D. H. Lyth, Cosmological Inflation
and Large-Scale Structure (Cambridge University Press,
Cambridge, England, 2000).

[17] R. O. Ramos and L. A. da Silva, Power spectrum for
inflation models with quantum and thermal noises, J.
Cosmol. Astropart. Phys. 03 (2013) 032.

[18] X. M. Zhang and J. Y. Zhu, Consistency of the tachyon
warm inflationary universe models, J. Cosmol. Astropart.
Phys. 02 (2014) 005.

[19] Z. P. Peng, J. N. Yu, X. M. Zhang, and J. Y. Zhu, Consis-
tency of warm k-inflation, Phys. Rev. D 94, 103531 (2016).

[20] T. Matsuda, Evolution of the curvature perturbations during
warm inflation, J. Cosmol. Astropart. Phys. 06 (2009) 002.

[21] C. Gordon, D. Wands, B. A. Bassett, and R. Maartens,
Adiabatic and entropy perturbations from inflation, Phys.
Rev. D 63, 023506 (2000).

[22] K. Y. Choi, L. M. H. Hall, and C. van de Bruck, Spectral
running and non-Gaussianity from slow-roll inflation in
generalized two-field models, J. Cosmol. Astropart. Phys.
02 (2007) 029.

[23] S. Cespedes, V. Atal, and G. A. Palma, On the importance of
heavy fields during inflation, J. Cosmol. Astropart. Phys. 05
(2012) 008.

[24] A. Riotto, Inflation and the theory of cosmological pertur-
bations, arXiv:hep-ph/0210162.

[25] S. Tsujikawa, D. Parkinson, and B. A. Bassett, Correlation-
consistency cartography of the double-inflation landscape,
Phys. Rev. D 67, 083516 (2003).

[26] L. Visinelli, Observational constraints on monomial warm
inflation, J. Cosmol. Astropart. Phys. 07 (2016) 054.

WANG, ZHU, and ZHANG PHYS. REV. D 97, 063510 (2018)

063510-10

https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1088/0034-4885/72/2/026901
https://doi.org/10.1088/0034-4885/72/2/026901
https://doi.org/10.1088/1475-7516/2007/07/014
https://doi.org/10.1088/1475-7516/2006/05/019
http://arXiv.org/abs/1602.01221
http://arXiv.org/abs/1602.01221
https://doi.org/10.1088/1475-7516/2005/02/007
https://doi.org/10.1088/1475-7516/2005/02/007
http://arXiv.org/abs/astro-ph/0101563
https://doi.org/10.1088/0264-9381/30/16/165002
https://doi.org/10.1088/0264-9381/30/16/165002
https://doi.org/10.1103/PhysRevD.70.043532
https://doi.org/10.1088/1475-7516/2007/04/007
https://doi.org/10.1088/1475-7516/2007/04/007
https://doi.org/10.1103/PhysRevD.69.083525
https://doi.org/10.1088/0264-9381/17/21/308
https://doi.org/10.1088/1475-7516/2009/07/013
https://doi.org/10.1088/1475-7516/2013/03/032
https://doi.org/10.1088/1475-7516/2013/03/032
https://doi.org/10.1088/1475-7516/2014/02/005
https://doi.org/10.1088/1475-7516/2014/02/005
https://doi.org/10.1103/PhysRevD.94.103531
https://doi.org/10.1088/1475-7516/2009/06/002
https://doi.org/10.1103/PhysRevD.63.023506
https://doi.org/10.1103/PhysRevD.63.023506
https://doi.org/10.1088/1475-7516/2007/02/029
https://doi.org/10.1088/1475-7516/2007/02/029
https://doi.org/10.1088/1475-7516/2012/05/008
https://doi.org/10.1088/1475-7516/2012/05/008
http://arXiv.org/abs/hep-ph/0210162
https://doi.org/10.1103/PhysRevD.67.083516
https://doi.org/10.1088/1475-7516/2016/07/054


[27] M. Dias, J. Frazer, and D. Seery, Computing observables in
curved multifield models of inflation–A guide (with code) to
the transport method, J. Cosmol. Astropart. Phys. 12 (2015)
030.

[28] J. M. F. Maia and J. A. S. Lima, Extended warm inflation,
Phys. Rev. D 60, 101301 (1999).

[29] B. Feng and X. Zhang, Double inflation and the low CMB
quadrupole, Phys. Lett. B 570, 145 (2003).

[30] M. Bastero-Gil, A. Berera, R. O. Ramos, and J. G.
Rosa, Warm little inflaton, Phys. Rev. Lett. 117, 151301
(2016).

[31] M. Bastero-Gil, A. Berera, I. G. Moss, and R. O. Ramos,
Cosmological fluctuations of a random field and radiation
fluid, J. Cosmol. Astropart. Phys. 05 (2014) 004.

[32] M. Bastero-Gil, A. Berera, and R. O. Ramos, Shear viscous
effects on the primordial power spectrum from warm
inflation, J. Cosmol. Astropart. Phys. 07 (2011) 030.

[33] I. Huston andA. J. Christopherson, Isocurvature perturbations
and reheating in multi-field inflation, arXiv:1302.4298.

[34] M. C. D. Marsh, L. McAllister, E. Pajer, and T. Wrase,
Charting an inflationary landscape with random matrix
theory, J. Cosmol. Astropart. Phys. 11 (2013) 040.

TWO-FIELD WARM INFLATION AND ITS SCALAR … PHYS. REV. D 97, 063510 (2018)

063510-11

https://doi.org/10.1088/1475-7516/2015/12/030
https://doi.org/10.1088/1475-7516/2015/12/030
https://doi.org/10.1103/PhysRevD.60.101301
https://doi.org/10.1016/j.physletb.2003.07.065
https://doi.org/10.1103/PhysRevLett.117.151301
https://doi.org/10.1103/PhysRevLett.117.151301
https://doi.org/10.1088/1475-7516/2014/05/004
https://doi.org/10.1088/1475-7516/2011/07/030
http://arXiv.org/abs/1302.4298
https://doi.org/10.1088/1475-7516/2013/11/040

