
 

Closing in on the large-scale CMB power asymmetry
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Measurements of the cosmic microwave background (CMB) temperature anisotropies have revealed a
dipolar asymmetry in power at the largest scales, in apparent contradiction with the statistical isotropy of
standard cosmological models. The significance of the effect is not very high, and is dependent on
a posteriori choices. Nevertheless, a number of models have been proposed that produce a scale-dependent
asymmetry. We confront several such models for a physical, position-space modulation with CMB
temperature observations. We find that, while some models that maintain the standard isotropic power
spectrum are allowed, others, such as those with modulated tensor or uncorrelated isocurvature modes, can
be ruled out on the basis of the overproduction of isotropic power. This remains the case even when an extra
isocurvature mode fully anticorrelated with the adiabatic perturbations is added to suppress power on large
scales.
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I. INTRODUCTION

The standard six-parameter Λ cold dark matter (ΛCDM)
cosmological model describes the temperature fluctuations
in the cosmic microwave background (CMB) radiation
spectacularly well, as demonstrated by the WMAP satellite
[1], the Atacama Cosmology Telescope [2], the South Pole
Telescope [3], and, especially, the Planck satellite [4].
Central assumptions in the ΛCDM model are that the
fluctuations are Gaussian and statistically homogeneous
and isotropic. Despite the success of the standard model,
several “anomalies” have been noticed in the CMB, which
apparently violate these assumptions (for reviews, see
Refs. [5–8]). The statistical significance of these anomalies
is not very high, and is weakened substantially with
a posteriori (look elsewhere) corrections [5,7,9,10] when
those are well defined.
Probably the most intriguing of the anomalies is a very

roughly 6% dipolar or hemispherical asymmetry in the
large-scale CMB temperature fluctuation power, first noted
in the WMAP one-year data [11]. Later analyses showed
that the asymmetry is substantially reduced on multipole
scales l≳ 100 [7,12–16]. The significance of the asym-
metry is only at the 3σ level, and is sensitive to a posteriori
choices in the maximum multipole scale [5,7], so it should

perhaps not be considered a great surprise. Nevertheless, an
origin to the asymmetry as a physical modulation of the
primordial fluctuations would clearly be of fundamental
importance for cosmology, and in particular might provide
information about inflation, given the large-scale nature of
the effect. Therefore it is worthwhile to investigate possible
physical explanations. Since concrete inflationary models
for modulation are difficult to construct [17], we consider
phenomenological models in this study.
While most studies of the dipolar asymmetry have been

performed in angular multipole space, any physical model
will necessarily be described best in position (or k) space.
In Ref. [18] we developed a formalism for describing a
spatial modulation and its effect on CMB temperature
anisotropies, and for performing Bayesian estimation of the
modulation parameters. This formalism was crucial for
answering an important question: what does a modulation
that fits the temperature data predict for other observations,
such as CMB lensing [18] and polarization [19]? Given the
inconclusive significance level of the asymmetry, probes of
modes independent from CMB temperature may be essen-
tial in order to confirm or refute a physical origin to the
asymmetry. Our formalism is an extension of an approach
to describe the effects in the CMB of gradients in
cosmological parameters [20]. The effects of various such
parameter gradients were discussed in [21].
In this paper we apply our formalism [18,19] for the first

time to determine whether any models for modulation can
already be ruled out. To do this we point out that some
models necessarily increase the statistically isotropic
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temperature power over ΛCDM, and so the ordinary power
spectra can be considered as “independent probes” to test a
physical origin for the asymmetry. We consider purely
phenomenological modulations of the ordinary adiabatic
fluctuations, as well as a gradient of the scalar spectrum tilt
and modulations of tensor and isocurvature contributions,
in doing so testing several of the models discussed in [21].
Modulated isocurvature modes were studied in [13], and, in
the context of a particular inflationary model [22], in
Ref. [23]. In the process we also provide constraints on
unmodulated tilted tensor and isocurvature modes using the
latest data.

II. FORMALISM

Our goal is to construct physical, position-space models
for a temperature dipolar asymmetry, which is confined
mostly to large scales. We apply the formalism developed
in Refs. [18,19], which captures scale dependence by
employing two fluctuation components. The first,
Q̃loðxÞ, is restricted mainly to large scales (low k) and is
maximally linearly spatially modulated:

Q̃loðxÞ ¼ QloðxÞ
�
1þ x · d̂

rLS

�
; ð1Þ

where QloðxÞ is statistically isotropic with power spectrum
PloðkÞ, d̂ is the direction of modulation, and rLS is the
comoving distance to last scattering. The second compo-
nent, QhiðxÞ, is statistically isotropic with spectrum PhiðkÞ.
The two fields are taken to be uncorrelated, i.e.,
hQloðkÞQhi�ðk0Þi ¼ 0. We attempt to be agnostic as to
the origin of the modulation; the isotropicQhi component is
adiabatic, while for the modulated component, Qlo, we
consider adiabatic, CDM isocurvature, and tensor
fluctuations.
Note, importantly, that while we take the first fluctuation

component to be maximally modulated according to
Eq. (1), the amount of modulation in the total sky will
be determined by a free amplitude parameter, A, inside the
definition of PloðkÞ. This convention differs from that used
in [18,19], in which the modulation amplitude parameter A
appeared explicitly multiplying the dipole term in Eq. (1).
Nevertheless, the two conventions are equivalent in terms
of observable quantities.
The total temperature anisotropies due to these two fields

will be to a very good approximation [18]

δTðn̂Þ ¼ δT loðn̂Þð1þ n̂ · d̂Þ þ δThiðn̂Þ; ð2Þ

where δT lo, with power spectrum Clo
l (called the “asym-

metry spectrum”), is produced by PloðkÞ, while δThi, with
spectrum Chi

l , is produced by PhiðkÞ. These anisotropies
lead to the lowest-order spherical harmonic multipole
covariance [7,18,20,24]

halma�l0m0 i ¼ Clδll0δmm0 þ δCll0

2

X
M

dMξMlml0m0 ; ð3Þ

where δCll0 ≡ 2ðClo
l þ Clo

l0 Þ and dM is the spherical har-
monic decomposition of n̂ · d̂. The coefficients ξMlml0m0

couple modes l to l� 1:

ξMlml0m0 ≡
ffiffiffiffiffiffi
4π

3

r Z
Yl0m0 ðn̂ÞY1Mðn̂ÞY�

lmðn̂ÞdΩ: ð4Þ

Crucially, the modulated component will also contribute
to the total isotropic power, via

Cl ¼ Clo
l þ Chi

l : ð5Þ

Therefore a model that produces sufficient asymmetry to fit
the temperature data may overproduce isotropic power at
large scales and hence be inconsistent with experiments
such as Planck.

III. MODELS

We employ the same models as described in Ref. [19] to
describe a large-scale modulation. First, we consider the
adiabatic tanh model, with k-space asymmetry spectrum

PloðkÞ ¼ Atanh

2
PΛCDMðkÞ

�
1 − tanh

�
ln k − ln kc

Δ ln k

��
; ð6Þ

where

PΛCDMðkÞ ¼ As

�
k
k0

�
ns−1 ð7Þ

describes the usual ΛCDM power-law primoridal comov-
ing curvature perturbation spectrum. The parameters Δ ln k
and kc describe the width and position of a small-scale
cutoff and Atanh ≤ 1 is the amplitude of the modulation.
Next we consider an adiabatic power-law model (abbre-
viated “ad.-PL”):

PloðkÞ ¼ APLPΛCDMðklo0 Þ
�

k
klo0

�
nlos −1

; ð8Þ

where nlos and APL ≤ 1 are the modulation tilt and ampli-
tude, and klo0 ¼ 1.5 × 10−4 Mpc−1 is a pivot scale. For both
of these adiabatic models we fix PhiðkÞ via the constraint

PloðkÞ þ PhiðkÞ ¼ PΛCDMðkÞ ð9Þ

(and hence Clo
l þ Chi

l ¼ CΛCDM
l ), so that the isotropic

power is automatically consistent with standard ΛCDM.
This constraint will be satisfied, for example, in the
scenario of [25].
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Next we consider a single-component adiabatic model
with a linear gradient in the tilt, ns, of the primordial power
spectrum (“ns-grad” for short). In this case we can directly
write the asymmetry spectrum as [18,19]

Clo
l ¼ −

Δns
2

dCΛCDM
l

dns
: ð10Þ

Here we have used a linear approximation for the effect of
the gradient, which will be well justified by our results. The
modulation amplitude is specified by the increment in tilt,
Δns, from modulation equator to pole. Note that this
modulation will depend implicitly on the pivot scale for As.
Finally we consider three models that naturally produce

contributions on large scales. The first is a modulation of
the standard ΛCDM integrated Sachs-Wolfe (ISW) con-
tribution with amplitude AISW ≤ 1 [26]. This phenomeno-
logical model automatically satisfies isotropic CMB
constraints and Clo

l is simply the contribution of the
ISWeffect to the total power Cl. The second is a modulated
CDM density isocurvature component,

PloðkÞ ¼ αk�
1 − αk�

PΛCDMðk�Þ
�
k
k�

�
nI−1

; ð11Þ

and the third is a modulated tensor component,

PloðkÞ ¼ rk�P
ΛCDMðk�Þ

�
k
k�

�
nt
: ð12Þ

In these latter two cases the models are described by two
parameters, a primordial power ratio (αk� or rk�, evaluated
at scale k� ¼ 0.002 Mpc−1) and a tilt (nI or nt). Since these
components are maximally modulated, these power ratios
also determine the modulation amplitudes. For both iso-
curvature and tensor models we set PhiðkÞ ¼ PΛCDMðkÞ, so
that, with respect to isotropic power, we simply have
ΛCDM plus isocurvature or tensor modes. This will give
us an extra constraint for these models over the adiabatic
cases. This is reasonable since it would require a very
contrived adiabatic scalar large-scale power deficit that,
when combined with the isocurvature or tensor spectrum,
resulted in the usualΛCDM spectrum. For the tensor model
we also consider an unmodulated isocurvature component
that is fully (anti-)correlated with the adiabatic scalars.
Anticorrelated isocurvature modes would decrease power
on large scales, potentially allowing for a larger contribu-
tion of modulated tensors. This inclusion adds one extra
parameter, which is simply the amplitude of perturbations
for the new mode.

IV. MODULATION ESTIMATOR

For a full-sky, noise-free measurement of the temper-
ature multipoles, we can write down an estimator for the
modulation amplitude ΔXM ≡ AdM as [7,18,20]

ΔX̂M ¼ 1

4A
σ2X

X
lml0m0

δCll0

ClCl0
ξMlml0m0a�lmal0m0 ; ð13Þ

where A ¼ Atanh, APL, Δns, AISW, αk� /ð1 − αk� Þ, or rk�,
depending on the model, and where the cosmic variance of
the estimator is given by

σ2X ¼ 12A2

�X
l
ðlþ 1Þ δC

2
llþ1

ClClþ1

�−1
: ð14Þ

The presence of noise and incomplete sky coverage
modifies the above relations. We use a C-inverse filter
approach that accounts for noise, and, optimally, for the
mask (as described in Refs. [27,28]). Masking and residuals
in the data will induce a mean-field value for ΔXM that can
be estimated with simulations. Further details of the full
estimator we use can be found in Appendix C of Ref. [7].
For fixed modulation parameters the maximum like-

lihood is

lnL ¼
X
M

ΔX̂2
M

2σ2X
: ð15Þ

We can then build the rest of the likelihood by sampling on
a grid of values for the k-space parameters (see Ref. [18]).
For the tensor and isocurvature models we assign a uniform
prior on A, in order to obtain consistency with the isotropic
likelihood results. For all other models we use a prior
uniform in the individual ΔXM.

V. RESULTS

Our dipole asymmetry constraints come from Planck TT
data using the SMICA solution [29]. The best-fit asymme-
try spectra for all of our models are illustrated in Fig. 1,
where we see the expected large-scale character of the
asymmetry. The corresponding full posteriors for α0.002 and
r0.002 and their tilts are shown in Fig. 2 (orange contours),
where we can see that large values of α0.002 or r0.002 are
needed to explain the asymmetry. [Recall that the power
ratios α0.002 and r0.002 also fix the modulation amplitude for
the case of maximal modulation in Eq. (1).]
For the isocurvature and tensor models we can also

obtain constraints from the isotropic power spectra
described in Table I; we will refer to these as isotropic
constraints. These were obtained with a version of
COSMOMC [30] modified to accomodate uncorrelated
isocurvature modes. For the isotropic constraints all six
of the ΛCDM parameters were varied, in addition to the
isocurvature or tensor fractions. For these models Fig. 2
also shows the isotropic posteriors for α0.002 and r0.002 and
their tilts (blue contours), as well as the joint constraints,
with the assumption that the isotropic and asymmetry
likelihoods are independent (recall that they arise from
diagonal and off-diagonal elements of the multipole
covariance, respectively). Figure 2 shows that, for both
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isocurvature and tensor modulation, the joint constraints
are inconsistent with the level of modulation preferred by
the asymmetry data. In other words, the addition of the
independent isotropy data has substantially reduced the
“signal” seen in the asymmetry data.
Note that in Fig. 2 we have assumed that the isocurvature

and tensor contributions are maximally modulated, via
Eq. (1). This allows us to directly compare the asymmetry
and isotropic posteriors, but is also a conservative choice,
because for less than full modulation the corresponding r
and α values preferred by the asymmetry constraints would
necessarily be larger with larger uncertainties. This would
increase the tension we find between asymmetry and
isotropic constraints and increase the dominance of the
isotropic data in the joint constraints.
In order to express the above graphical results quanti-

tatively, and determine which models are viable for explain-
ing the original asymmetry signal, we will consider two
quantities for each model. The first is the probability, P>3σ,
that the data allow a modulation amplitude A that is at least
3 times larger than the cosmic variance σX. Note that the
choice of the value 3 is arbitrary; however, if P>3σ is small
then the model cannot source significant modulation and
can be ruled out, even if P>3σ being large is an insufficient
condition to prefer a modulation model over ΛCDM. The
second quantity we use is the maximum-likelihood ampli-
tude of modulation compared to the cosmic-variance value,
A/σX. For both quantities σX is calculated for asymmetry
only [via Eq. (14)].
We present these quantities for the various model and

data combinations in Table II. For the asymmetry data, both
quantities are large (except for the ISW model), which
simply tells us that the models can produce the considerable
asymmetry present in the data. However, in all cases the

values drop substantially when adding the isotropic data.
This implies that even maximally modulated tensor or
isocurvature modes cannot source the large asymmetry
signal (or can, but with very small probability) due to their
respective isotropic constraints (consistent with the result in
[32] for tensor modulation). If we attempt to hide the
isotropic tensor temperature power by including an anti-

FIG. 2. Posteriors for α0.002 or r0.002 and tilt of the isocurvature
(top panel) and tensor (bottom) models. Contours enclose 68%
and 95% of the posteriors. We have conservatively assumed
maximal modulation, so that the vertical axes are also a measure
of the level of modulation relative to the isotropic ΛCDM
spectrum. We can see that the modulation allowed by the
asymmetry constraints is reduced substantially when adding
the isotropic constraints.

FIG. 1. ΛCDM temperature spectrum compared to the best-fit
asymmetry spectra, Clo

l , for the various models. The best fits
correspond roughly to a 5–10% asymmetry for l≲ 100, as
expected, with the exception of the ISW modulation, whose
maximum amplitude (and shape) is fixed by ΛCDM.

TABLE I. Data sets used for the isotropic constraints. BKP
refers to the BICEP2/Keck Array-Planck joint analysis [31].

Model Data set

Isocurvature Planck TT, TE, EEþ lowP
Tensors Planck TT, TE, EEþ lowPþ lensingþ BKP
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correlated isocurvature mode the conclusions remain the
same (see the row marked nt ¼ 0� in Table II). This is due
to the different shapes of the tensor and anticorrelated
isocurvature power spectra, and not, for instance, to the
nondetection of primordial B modes in the BICEP2/Keck
Array-Planck data. Therefore we expect that, in general, a
modulation model for which (like the tensor and isocurva-
ture models) isotropic power is added will be unable to
explain the dipolar asymmetry signal. The tanh, ad.-PL,
and ns-grad models are of course unaffected by the
isotropic constraint and are thus still viable modulation
models as far as CMB temperature is concerned. For the
ISW model both P>3σ and A/σX are small: even for
maximal modulation the standardΛCDM ISW contribution
cannot explain the observed asymmetry. Note that, via
Eq. (15), the ratio A/σX is essentially the best-fit χ value,
which shows that the tanh model (which has the most free
parameters) gives the best fit.
For our best-fit parameters, the ns-grad model induces a

modulation amplitude of roughly 1.6% at k ¼ 1 Mpc−1.
On such small scales this model should be vulnerable to
constraints from large-scale structure surveys [33–37].
Indeed, this modulation amplitude is close to (or in excess
of) the 95% upper limit based on quasar data in [38], and so
a rigorous joint analysis may already rule this model out.
In order to determine quantitatively the level of modu-

lation allowed by the full data we look at constraints on the
r and α parameters for the isocurvature and tensor models
(where we are able to use power spectra to provide tighter
constraints). In Table III we show the 95% C.L.s (or upper
limits where relevant) for r0.002 and α0.002 for the different
combinations of data. While the general tensor and iso-
curvature models (where the tilts are free to vary) show no
strong detection with the asymmetry constraints alone (in

the sense that we can only quote upper limits), we see that
the addition of power spectrum data strongly constrains the
amount of modulation allowed by the data. For models
where the tilt is fixed and not allowed to vary, the
modulation signal is more apparent; however, the addition
of isotropic constraints removes the signal to a similar
degree. Note that the asymmetry constraints in Table III
allow much larger values of r than α. This is due simply to
the fact that identical primordial ratios of tensor- and
isocurvature-to-adiabatic scalar fluctuations produce much
larger isocurvature temperature fluctuations.

VI. DISCUSSION

The models we have examined fall into two general
classes. In the first, the total statistically isotropic temper-
ature power was constrained to match that of standard
ΛCDM. Therefore the degree of modulation could be
varied without spoiling the success of ΛCDM. In the
second class, the modulated component contributed extra
power to the isotropic spectra. Our main conclusion is that
models in this latter class fail to provide sufficient modu-
lation to explain the dipole asymmetry without producing
too much large-scale statistically isotropic power. Hence
these models, which include modulated tensor and uncor-
related isocurvature, can be ruled out as the source of the
large-scale dipolar asymmetry.
Models in the first class, however, can fit the asymmetry

while maintaining the success of the ΛCDM isotropic
spectra, and hence some cannot yet be ruled out. One
exception is a modulated ISW contribution, which cannot
source enough asymmetry to explain the signal in temper-
ature. The scalar tilt gradient model produces substantial
modulation on small scales, and so is at risk from survey
data. The surviving models are the phenomenological
adiabatic modulation models. Of course the contrived
nature of such models should mean that ΛCDM is still
preferred: they essentially add parameters to fit features in
the data that may simply be random noise. Unfortunately a
Bayesian model selection procedure would not provide an
unambiguous Bayes factor for these models, since the
modulation model evidence is strongly driven by the
parameter prior ranges, which are completely

TABLE II. Percentage of the posterior for which the amplitude
A exceeds 3σX, i.e., P>3σ , as well as A/σX for the maximum-
likelihood parameters, for different combinations of data. These
quantify whether the model can source significant asymmetry
given the data, a necessary but not sufficient condition for
preferring the model over ΛCDM. The asterisk denotes the
addition of a fully anticorrelated isocurvature component.

Asymmetry Isotropic Joint

Model P>3σ[%] A/σX P>3σ[%] A/σX P>3σ[%] A/σX

tanh 63.1 3.3 � � � � � �
ad.-PL 32.4 2.5 � � � � � �
ns-grad 36.3 2.7 � � � � � �
ISW 0.0 1.2 � � � � � �
nI free 32.2 3.2 1.5 0.06 0.5 0.03
nI ¼ 1 37.4 3.1 0.33 0.10 1.0 0.10
nI ¼ ns 39.6 3.1 0.073 0.09 0.24 0.03
nt free 29.9 3.1 0.003 0.03 0.001 0.02
nt ¼ 0 37.4 3.1 0.000 0.48 0.000 0.63
nt ¼ 0� 37.4 3.1 0.000 0.31 0.000 0.49
nt < 0 32.1 3.1 0.008 0.48 0.003 0.00

TABLE III. 95% C.L. (or upper limits) for the parameters r0.002
and α0.002 for various tensor and isocurvature models and data
combinations.

Model Asymmetry Isotropic Joint

nI free α ≤ 0.092 α ≤ 0.031 α ≤ 0.038
nI ¼ 1 0.007 ≤ α ≤ 0.083 α ≤ 0.038 α ≤ 0.044
nI ¼ ns 0.008 ≤ α ≤ 0.086 α ≤ 0.038 α ≤ 0.046
nt free r ≤ 0.28 r ≤ 0.08 r ≤ 0.09
nt ¼ 0 0.02 ≤ r ≤ 0.28 r ≤ 0.07 r ≤ 0.10
nt ¼ 0� 0.02 ≤ r ≤ 0.28 r ≤ 0.08 r ≤ 0.09
nt ≤ 0 r ≤ 0.30 r ≤ 0.09 r ≤ 0.09
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undetermined. It will only be possible to confirm or refute
these models by comparing future observations with their
predictions for probes (such as CMB polarization) which
are sensitive to independent fluctuation modes from CMB
temperature [19].
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