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We study the performance of the latest HðzÞ data in constraining the cosmological parameters of
different cosmological models, including that of Chevalier-Polarski-Linder w0w1 parametrization. First, we
introduce a statistical procedure in which the chi-square estimator is not affected by the value of the Hubble
constant. As a result, we find that the HðzÞ data do not rule out the possibility of either nonflat models or
dynamical dark energy cosmological models. However, we verify that the time varying equation-of-state
parameter wðzÞ is not constrained by the current expansion data. Combining the HðzÞ and the Type Ia
supernova data, we find that the HðzÞ/SNIa overall statistical analysis provides a substantial improvement
of the cosmological constraints with respect to those of theHðzÞ analysis. Moreover, the w0 − w1 parameter
space provided by the HðzÞ/SNIa joint analysis is in very good agreement with that of Planck 2015, which
confirms that the present analysis with the HðzÞ and supernova type Ia (SNIa) probes correctly reveals the
expansion of the Universe as found by the team of Planck. Finally, we generate sets of Monte Carlo
realizations in order to quantify the ability of theHðzÞ data to provide strong constraints on the dark energy
model parameters. The Monte Carlo approach shows significant improvement of the constraints, when
increasing the sample to 100 HðzÞ measurements. Such a goal can be achieved in the future, especially in
the light of the next generation of surveys.
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I. INTRODUCTION

The general picture of the cosmos, as it is established by
the analysis of the recent cosmological data (see Ref. [1]
and references therein), is described with a cosmological
scenario that consists ∼30% of matter (baryonic and dark)
while the rest corresponds to the so-called dark energy
(DE). This mysterious component of the cosmic fluid
plays an eminent role in cosmological studies because
it is responsible for the accelerated expansion of the
Universe. Also, current observations seem to favor an
isotropic, homogeneous, and spatially flat universe.
During the last decades, different classes of theoretical

models have been introduced in order to explain the
accelerating Universe,1 giving rise to a scholastic debate
about what is the exact description and the key points of
each scheme. One of the fundamental questions of modern
cosmology that subsequently emerges is what is the model
that best describes the accelerated expansion of the
Universe [3]. A prominent path in order to distinguish

the various cosmological models is to probe the cosmic
history [4] of the Universe, using either the luminosity
distance of standard candles or the angular diameter distance
of standard rulers.
In order to map the cosmic expansion history, it is

common to use a combination of various cosmological
probes, namely standard candles (SNIa [5,6], gamma ray
bursts, [7], HII galaxies [8,9]), standard rulers (clusters,
baryon acoustic oscillations (BAOs), [10,11]), the cosmic
microwave background (CMB) angular power spectrum [1]
and recently, data from gravitational wave measurements,
the so-called standard sirens [12]. Alternatively, dynamical
probes of the expansion history based on measures of the
growth rate of matter perturbations (for recent studies, see
Ref. [13] and references therein) are also used toward
tracing the cosmic expansion, and they are confined to
relatively low redshifts similar to those of Type Ia super-
nova data z ≃ 1.4. The aforementioned observations probe
the integral of the Hubble parameterHðzÞ; hence, they give
us indirect information for the cosmic expansion. Also, it is
worth noting that in some cases the data suffer from the so-
called circularity problem, the fact that one needs to impose
a fiducial cosmology in order to be able to define the data
(see for example Refs. [14,15]).
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Among the large body of cosmological data, the only
data set that provides a direct measurement of the cosmic
expansion is the HðzÞ sample, and indeed a plethora of
papers have been published (e.g. Refs. [16–31]) which
determine the dynamical characteristics of various DE
cosmological models, including those of modified gravity.
Today, the most recent HðzÞ data trace the cosmic expan-
sion rate up to redshifts of order z ≃ 2.4, while there are
proposed methods [32] which potentially could expand the
HðzÞ measurements to z ≤ 5. As expected, using the HðzÞ
data in constraining the cosmological models via the
standard likelihood analysis, one has to deal with the
Hubble constant, namely H0. However, the best choice
of the value of H0 is rather uncertain. Indeed, several
studies on the determination of the Hubble constant have
indicated a ∼3.1σ tension between the value obtained by
the Planck team (see Ref. [1]), namely H0 ¼ 67.8�
0.9 Km/s/Mpc, and the results provided by the SNIa pro-
ject (Riess et al. [33]) of H0¼73.24�1.74Km/s/Mpc. In
order to alleviate this problem, we propose in the current
work a statistical method which is not affected by the value
of H0.
The structure of the article is as follows. In Sec. II, we

present the HðzÞ data used and the related statistical
analysis. At the beginning of Sec. III, we describe the
main properties of the most basic DE models, and then we
focus on the cosmological constrains. In Sec. IV, we
discuss the Monte Carlo simulations used toward planning
future HðzÞ measurements in order to place better con-
straints on the DE model parameters. Finally, in Sec. V, we
provide a detailed discussion of our results, and we
summarize our conclusions in Sec. VI.

II. STATISTICAL ANALYSIS WITH HðzÞ DATA
In this section, we discuss the details of the statistical

analysis and on the observational sample that we utilize in
order to place constraints on the cosmological parameters.
In particular, we use the cosmic expansion data as collected
by Farooq et al. [28] (see Table I and the corresponding
references) for which the Hubble parameter is available as a
function of redshift. Notice, that the HðzÞ sample contains
38 entries in the following redshift range: 0.07 ≤ z ≤ 2.36.
In Fig. 1, we present the normalized redshift distribution of
the HðzÞ data and the corresponding distribution of the
relative uncertainty σð%Þ ¼ σHðziÞ/HðziÞ. Also, we find no
significant correlation between σ and redshift in that range.
First, let us assume that we have a dark energy model that

includes n-free parameters, provided by the statistical
vector ϕμ ¼ ðϕ0;ϕ1;…ϕnÞ. In order to put constraints
on ϕμ, we need to implement a standard χ2-minimization
procedure, which in our case is written as

χ2ðϕμÞ ¼
XN
i¼1

�
HDðziÞ −HMðzi;ϕμÞ

σi

�
2

; ð1Þ

where HDðziÞ and σi are the observational data and the
corresponding uncertainties at the observed redshift, zi. The
capital letters M and D stand for model and data respec-
tively. In this case, the theoretical Hubble parameter is
written as

HMðz;ϕμÞ ¼ H0Eðz;ϕμþ1Þ; ð2Þ

where H0 is the current value of Hubble parameter, namely
the Hubble constant; EðzÞ is the normalized Hubble
function; and the vector ϕμ contains the cosmological
parameters. In this framework, we observe that the
statistical vector becomes ϕμ ¼ ðH0;ϕμþ1Þ, where the

TABLE I. The observational data set that was used in this paper.
The data set, compiled by Farooq et al. [28] consists of N ¼ 38
observations.

z HðzÞ ðKm/s/MpcÞ σH ðKm/s/MpcÞ Method/Reference

0.070 69.0 19.6 [34]
0.090 69.0 12.0 [35]
0.120 68.6 26.2 [34]
0.170 83.0 8.0 [35]
0.179 75.0 4.0 [36]
0.199 75.0 5.0 [36]
0.200 72.9 29.6 [34]
0.270 77.0 14.0 [35]
0.280 88.8 36.6 [34]
0.352 83.0 14.0 [36]
0.380 81.5 1.9 [11]
0.3802 83.0 13.5 [37]
0.400 95.0 17.0 [35]
0.4004 77.0 10.2 [37]
0.4247 87.1 11.2 [37]
0.440 82.6 7.8 [38]
0.4497 92.8 12.9 [37]
0.4783 80.9 9.0 [37]
0.480 97.0 62.0 [39]
0.510 90.4 1.9 [11]
0.593 104.0 13.0 [36]
0.600 87.9 6.1 [38]
0.610 97.3 2.1 [11]
0.680 92.0 8.0 [36]
0.730 97.3 70.0 [38]
0.781 105.0 12.0 [36]
0.875 125.0 17.0 [36]
0.880 90.0 40.0 [39]
0.900 117.0 23.0 [35]
1.037 154.0 20.0 [36]
1.300 168.0 17.0 [35]
1.363 160.0 33.6 [40]
1.430 177.0 18.0 [35]
1.530 140.0 14.0 [35]
1.750 202.0 40.0 [35]
1.965 186.5 50.4 [40]
2.340 222.0 7.0 [41]
2.360 226.0 8.0 [42]
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components ϕμþ1 contain the free parameters which are
related with the matter density, spatial curvature, and dark
energy.
Therefore, in order to proceed with the statistical

analysis, we need to either know the exact value of the
Hubble constant or have it as a free parameter. The most
recent results on the determination of the Hubble constant
have found a ∼3.1σ tension between the value obtained
by the SNIa project (Riess et al. [33]) of H0 ¼ 73.24�
1.74 Km/s/Mpc and the results from Planck (see Ref. [1])
ofH0 ¼ 67.8� 0.9 Km/s/Mpc. The Hubble constant prob-
lem has inspired us to propose a technique which provides
the chi-square estimator independent from the value of H0.
At this point, we present the basic ingredients toward
marginalizing χ2 overH0.

2 Indeed, inserting (2) into (1), the
latter equation simply becomes

χ2ðϕμÞ ¼ AH2
0 − 2BH0 þ Γ; ð3Þ

where

A ¼
XN
i¼1

E2ðziÞ
σ2i

B ¼
XN
i¼1

EðziÞHDðziÞ
σ2i

Γ ¼
XN
i¼1

HDðziÞ2
σ2i

:

In this context, the corresponding likelihood function is
written as

L ¼ e−x
2/2 ⇒ L ¼ exp

�
AH2

0 − 2BH0 þ Γ
2

�
ð4Þ

or

LðDjϕμ;MÞ ¼ exp

�
AðH0 − B

AÞ2 − B2

A þ Γ
2

�
:

Using Bayes’s theorem and marginalizing over H0, we
arrive at

pðϕμjD;MÞ ¼ 1

pðDjMÞ
Z

e−
AðH0−B/AÞ2−B2/AþΓ

2 dH0: ð5Þ

Furthermore, considering that H0 lies in the range
H0 ∈ ð0;þ∞Þ, introducing the variable y ¼ H0 − B/A,
and utilizing flat priors pðϕμjM;H0Þ ¼ 1, we obtain after
some simple calculations

pðϕμjD;MÞ ¼ 1

pðDjMÞ e
−1
2
ðΓ−B2/AÞ

Z þ∞

−B
A

e−
A
2
y2dy ð6Þ

or

pðϕμjD;MÞ ¼ 1

pðDjMÞ e
−1
2
½Γ−B2

A �
ffiffiffiffiffiffi
π

2A

r �
1þ erf

�
Bffiffiffiffiffiffi
2A

p
��

;

ð7Þ

where erfðxÞ ¼ 2ffiffi
π

p
R
x
0 e

−y2dy is the error function. Lastly, it

is easy to show that the above likelihood function corre-
sponds to the following marginalized χ̃2H function,

χ̃2Hðϕμþ1Þ ¼ Γ −
B2

A
þ lnA − 2 ln

�
1þ erf

�
Bffiffiffiffiffiffi
2A

p
��

; ð8Þ

FIG. 1. The redshift (upper panel) and the relative error (lower
panel) distributions of our data set.

2Similar analysis has been proposed by Taddei and Amendola
[43] and Basilakos and Nesseris [44]) in order to marginalize the
chi-square function of the growth rate data over the value of the
rms fluctuations at 8h−1 Mpc, namely σ8.
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where we have ignored the constant lnðπ/2Þ, since it does
not play a role during the minimization procedure.
Obviously, the statistical estimator (8) does not suffer

from the Hubble constant problem. Indeed, instead of
minimizing χ2, we now use the marginalized χ̃2H function
which is independent of H0, and thus we do not need to
impose in the statistical analysis an a priori value for the
Hubble constant, as is usually done in many other studies of
this kind.
Bellow, we test the performance of the current statistical

procedure at the expansion level using some well-known
dark energy models.

III. FITTING MODELS TO HðzÞ DATA
In this section, we present the expansion rate of the

Universe in the context of the most basic DE models of
which the free parameters are constrained following the
procedure of the previous section. Due to the fact that the
HðzÞ data are well inside in the matter dominated era, we
can neglect the radiation term from the Hubble expansion.
Let us now briefly discuss the cosmological models

explored in the present study:
(i) In the nonflat ΛCDM model, the Hubble parameter

is given by

Eðz;ϕμþ1Þ¼ ½Ωm0ð1þ zÞ3þΩΛ0þΩK0ð1þ zÞ2�1/2;
ð9Þ

where ΩK0 is the dimensionless curvature density
parameter at the present time which is defined as
ΩK0 ¼ 1 −Ωm0 −ΩΛ0; hence, the cosmological
vector takes the form ϕμþ1 ¼ ðΩm0;ΩΛ0Þ.

(ii) In the wCDM spatially flat model, the equation-of-
state parameter wd ¼ pd/ρd is constant [45], where
ρd is the density and pd is the pressure of the dark
energy fluid respectively. Under the latter condi-
tions, the normalized Hubble function is

Eðz;ϕμþ1Þ ¼ ½Ωm0ð1þ zÞ3 þ Ωd0ð1þ zÞ3ð1þwÞ�1/2;
ð10Þ

where Ωd0 ¼ 1 −Ωm0 and thus the cosmological
vector is ϕμþ1 ¼ ðΩm0; wÞ.

(iii) The Chevalier-Polarski-Linder (CPL) cosmological
model was first introduced in the literature by Linder
[46] and Chevalier and Polarski [47]. Here, the
equation-of-state parameter is allowed to vary with
redshift, and it is written as a first order Taylor
expansion around the present epoch, wðaÞ¼w0þ
w1ð1−aÞ with a ¼ 1/ð1þ zÞ. Therefore, the dimen-
sionless Hubble parameter takes the following form,

Eðz;ϕμþ1Þ ¼ ½Ωm0ð1þ zÞ3 þ Ωd0XðzÞ�1/2; ð11Þ

where

XðzÞ ¼ ð1þ zÞ3ð1þw0þw1Þ exp
�
−3w1

z
zþ 1

�

and Ωd0 ¼ 1 − Ωm0. In this case, the vector of the
model parameters is ϕμþ1 ¼ ðΩm0; w0; w1Þ.

For the nonflat ΛCDM model, the likelihood function
peaks at ðΩm0;ΩΛ0Þ ¼ ð0.250þ0.039

−0.043 ; 0.693
þ0.147
−0.186Þ with

χ̃2H;min/df ≃ 0.639 (df are the degrees of freedom).
Also, based on ΩK0¼ 1−Ωm0−ΩΛ0, we find ΩK0 ¼
0.057þ0.142

−0.152 . Our constraints are in agreement within 1σ
errors with those of Farooq et al. [28], who found, using the
same HðzÞ data, ðΩm0;ΩΛ0Þ ¼ ð0.23; 0.60Þ for H0 ¼
68 Km/s/Mpc and ðΩm0;ΩΛ0Þ ¼ ð0.25; 0.78Þ for H0 ¼
73.24 Km/s/Mpc respectively. Recently, Jesus et al. [48]
found H0 ¼ 69.5� 2.5 Km/s/Mpc, Ωm0 ¼ 0.242� 0.036
ΩΛ0 ¼ 0.256� 0.14, while using the Riess et al. [49] prior
H0 ¼ 73.8 Km/s/Mpc, they found 0.21 ≤ Ωm0 ≤ 0.32 and
0.65 ≤ ΩΛ0 ≤ 0.99.
In the case of wCDM cosmological model, the

results of the minimization analysis are ðΩm0; wÞ ¼
ð0.262þ0.042

−0.037 ;−0.96
þ0.275
−0.270Þ with χ̃2min/df ≃ 0.64. For com-

parison, Farooq et al. [28] obtained ðΩm0; w0Þ ¼
ð0.26;−0.86Þ for H0 ¼ 68 Km/s/Mpc and ðΩm0; w0Þ ¼
ð0.24;−1.06Þ for H0 ¼ 73.24 Km/s/Mpc respectively.
Lastly, for the CPL parametrization, we find χ̃2min/df ≃
0.64 and ðw0; w1Þ ¼ ð−0.960� 0.171; 0.047� 0.425Þ,
where we have set Ωm0 ¼ 0.262. We repeat our analysis
by using theΩm-prior derived originally by the Planck team
[1]. Specifically, if we impose Ωm0 ¼ 0.308, then we
obtain ðw0; w1Þ ¼ ð−0.687� 0.123;−1.009� 0.598Þ with
χ̃2H;min/df ≃ 0.66. Notice that in Table II we provide a more
compact presentation of our statistical results. In Fig. 2, we
plot the 1σ, 2σ, and 3σ confidence contours in the
ðΩm0;ΩΛ0Þ and ðΩm0; wÞ planes for nonflat ΛCDM (upper
panel) and wCDM (bottom panel) models respectively. We
observe that our best-fit values are almost ∼1σ away from
the values provided by the Planck team [1] (see the stars in
Fig. 2). Moreover, in Fig. 3, we show the ðw0; w1Þ contours
for the CPLmodel by usingΩm0 ¼ 0.262 (upper panel) and
Ωm0 ¼ 0.308 (bottom panel). The stars in Fig. 3 corre-
sponds to the solution ðw0; w1Þ ¼ ð−1; 0Þ. As expected, we
find that the parameter w0 is degenerate with respect to w1,
implying that the time varying equation-of-state parameter
wðzÞ is not constrained by this analysis.

A. Joint analysis with SNIa

Although the HðzÞ data provide a direct measurement of
the expansion of the Universe, due to their large errors with
respect to the SNIa data, various authors preferred to utilize
the latter data in order to constrain the cosmological
parameters.3 Here, we want to combine HðzÞ and SNIa

3For a thorough treatment of the statistical difficulties, see
Ref. [50].
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in order to study the performance of the HðzÞ data (as they
stand today, namely 38 entries) with that of SNIa data. In
particular, we use the Union 2.1 set of 580 SNIa of Suzuki
et al. [5]. Concerning the chi-square estimator of the SNIa,
we utilize the method of Ref. [51], where the form of χ̃2Sn is
independent of H0 (see also Ref. [9] and references

TABLE II. Results of cosmological parameters values and uncertainties. Here, the HðzÞ data are not correlated.

Models Ωm0 ΩΛ0ðΩdeÞ w0 w1 χ2min/ν

Using only the HðzÞ data
ΛCDM 0.250þ0.039

−0.043 0.693þ0.147
−0.186 −1 0 0.639

wCDM 0.262þ0.042
−0.037 0.738 −0.960þ0.275

−0.270 0 0.640
CPL 0.262 0.738 −0.960� 0.171 0.047� 0.425 0.640
CPL 0.308 0.692 −0.687� 0.123 −1.009� 0.598 0.657

Using the joint analysis of HðzÞ/SNIa data
ΛCDM 0.255� 0.020 0.692� 0.045 −1 0 0.950
wCDM 0.264� 0.015 0.736 −0.965� 0.046 0 0.950
CPL 0.264 0.736 −0.979� 0.260 0.085� 0.094 0.950
CPL 0.308 0.692 −0.938� 0.053 −0.684� 0.288 0.955

FIG. 3. The likelihood contours Δχ̃2 ¼ χ̃2H − χ̃2H;min in the case
of CPL model. Upper panel: Here, we utilize Ωm0 ¼ 0.262 from
the first panel of Table II. Bottom panel: Here, we use Ωm0 ¼
0.308 from Planck, [1]. Notice that stars corresponds to flat
ΛCDM model ðw0; w1Þ ¼ ð−1; 0Þ.

FIG. 2. The likelihood contours for Δχ̃2 ¼ χ̃2H − χ̃2H;min equal to
1σ (2.32), 2σ (6.18), and 3σ (11.83) confidence levels. The red
dot corresponds to the best-fit solutions. Upper panel: the
contours of the nonflat ΛCDM model, in the ðΩm0;ΩΛÞ plane.
The dashed line represents the Ωm0 þΩΛ ¼ 1 line. Here, the
best-fit point is ðΩm0;ΩΛÞ ¼ ð0.250; 0.693Þ. Lower panel: the
wCDM model in the ðΩm0; wÞ plane. The best-fit solution is
ðΩm0; wÞ ¼ ð0.262;−0.960Þ. The dashed curve corresponds to
w ¼ −1. Notice that stars show the best-fit solution provided by
the Planck team [1] for the flat ΛCDM model.
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therein). In this framework, the overall likelihood function
is given by the product of the individual likelihoods
according to

Ltot ¼ Lsn × LH;

which translates in an addition for the total χ2tot:

χ2tot ¼ χ̃2sn þ χ̃2H:

The results based on the joint analysis ofHðzÞ/SNIa data
are given in Figs. 4 and 5 and listed in the second panel of
Table II. It becomes clear that the addition of the SNIa data
in the likelihood analysis improves substantially the stat-
istical results. Overall, we find that the HðzÞ/SNIa joint
analysis increases the figure of merit (FoM; for a definition,
see below) by a factor of ∼2.5 with respect to that of HðzÞ
analysis. Therefore, the combined analysis of the HðzÞ
data with SNIa reduces significantly the parameter space,
providing tight constraints on the nonflat ΛCDM and

wCDM models respectively. In particular, for the former
model, the total likelihood function peaks at ðΩm0;ΩΛ0Þ ¼
ð0.255� 0.02; 0.692� 0.045Þ with χ2tot;min/df ≃ 0.950,
while for the latter cosmological model, we find ðΩm0;wÞ¼
ð0.264�0.015;−0.965�0.046Þ with χ2tot;min/df ≃ 0.950.
Concerning the CPL model, we find that, although the
area of w0 − w1 contours is significantly reduced, the
degeneracy between w0 and w1 persists also in the joint
analysis. However, what is specifically interesting is that
for the CPL model theHðzÞ/SNIa contours are in very good
agreement with those of Planck TT, lowP CMB data and
external (BAO, JLA, and H0) data [1] (see the solid circles
in Fig. 5), which confirms that our analysis with the HðzÞ
and SNIa probes correctly reveals the expansion history of
the Universe as provided by the Planck team.
Concluding this section, it is interesting to mention that

recently Yu et al. [52] introduced the covariance matrix of
three BAO HðzÞ measurements [11] in the HðzÞ analysis.

FIG. 4. The HðzÞ/SNIa joint likelihood contours. The upper
panel shows the solution space for the nonflat ΛCDM model,
while the lower panel corresponds to the wCDM model. The
dashed line corresponds to w ¼ −1. The red dot corresponds to
the best-fit solutions. The black star shows the solution of
Planck [1].

FIG. 5. The joint SNIa and HðzÞ likelihood contours in the
(w0, w1) plane for Ωm0 ¼ 0.262 (upper panel) and Ωm0 ¼ 0.308
(lower panel). The solid black dots correspond to the best-fit
parameters. We also show the theoretical ΛCDM ðw0; w1Þ ¼
ð−1; 0Þ values (star points). The dot-dashed line corresponds to
w0 þ w1 ¼ 0. Finally, the area of green/blue dots is borrowed
from Planck [1].
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Using this covariance matrix, we have redone our statistical
analysis, and in Table III, we provide the corresponding
constraints, which are in agreement (within 1σ errors) with
those of Table II. Notice that in the Appendix we have
generalized the statistical methodology of Sec. II in the
presence of the covariance matrix.

IV. STRATEGY TO IMPROVE THE
COSMOLOGICAL CONSTRAINS USING

THE HðzÞ DATA
From the previous analysis, it becomes clear that an

important question that we need to address is the following:
What is the strategy for the recovery of the dark energy
equation of state using the direct measurements of the
Hubble expansion? In this section, we proceed with our
investigation toward studying the effectiveness of utilizing
HðzÞ measurements to constrain the equation-of-state
parameter. Specifically, our aim is to test how much better
can we go in placing cosmological constraints by increasing
the current HðzÞ sample from 38 to 100. In order to achieve
such a goal, we produce sets of Monte Carlo simulations
with which we quantify our ability to recover the input
cosmological parameters of a fiducial cosmological model,
namely ðΩm0;ΩK0; w0; w1Þ ¼ ð0.25; 0;−1; 0Þ with H0 ¼
68.75 Km/s/Mpc. In the upper panel of Fig. 6, we present
the evolution of the Hubble parameter of the referencemodel
(black line), and on top of that, we plot the HðzÞ data (solid
points). In the lower panel of Fig. 6, we show the distribution
of 100ð%Þ × jHD −Href j/HD as a function of redshift (see
below), whereHD andHref are the Hubble parameters of the
data and the reference cosmology respectively.Weverify that
the differences δH ¼ jHD −Href j are not correlated with
redshift.
Now, we develop an algorithm that generates different

numbers of mock HMCðzÞ measurements following the
redshift and the error distributions of the realHðzÞ data (see
Figs. 1 and 2). Thus, our aim is to obtain the value of HMC
as well as the corresponding 1σ error by calibrating the
mock HðzÞ sample from the real HðzÞ data in which

0.07 ≤ z ≤ 2.36. More specifically, we implement the
following steps.
First, from the redshift interval [0.07, 2.36], we choose a

redshift zran by randomly sampling the observed redshift

FIG. 6. Upper panel: Comparison of the observed (red
points [28]) and theoretical evolution of the reference Hubble
parameter, HðzÞ, using ðΩm0;ΩK0;w0;w1Þ¼ð0.25;0;−1;0Þ and
H0 ¼ 68.75 Km/s/Mpc. The reference cosmology is represented
by the solid curve. Lower panel: The distribution of δH ¼
jHD −Href j. Notice that HDðzÞ indicates the observed Hubble
parameter, while HrefðzÞ is the Hubble function of the fiducial
cosmology.

TABLE III. Cosmological constraints using the correlation matrix of the HðzÞ data [11,52].

Models Ωm0 ΩΛ0ðΩdeÞ w0 w1 χ2min/ν

Using only the HðzÞ data
ΛCDM 0.255� 0.026 0.692� 0.142 −1 0 0.747
wCDM 0.248� 0.024 0.752 −1.015� 0.177 0 0.750
CPL 0.248 0.752 −1.011� 0.332 −0.110� 0.122 0.749
CPL 0.308 0.692 −0.565� 0.221 −1.564� 0.731 0.738

Using the joint analysis of HðzÞ/SNIa data
ΛCDM 0.248� 0.016 0.701� 0.065 −1 0 0.958
wCDM 0.257� 0.005 0.743 −0.954� 0.005 0 0.957
CPL 0.257 0.748 −0.946� 0.096 −0.106� 0.362 0.957
CPL 0.308 0.692 −0.761� 0.114 −1.052� 0.551 0.969
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distribution (see Fig. 1). For this “random” redshift, we
define the measured Hubble parameter HDðzranÞ and the
ideal Hubble parameter HrefðzranÞ from the reference
cosmology. Second, in order to take into account the
deviation of the observed Hubble parameter from the
reference cosmology, we are randomly sampling the dis-
tribution of the differences δH (see the lower panel of
Fig. 6) between the data and the fiducial cosmological
model. Once first and second steps are completed for all
mock data4 used, the mock Hubble parameter HMC is
selected from the normal distribution N ðHref ; σ2ranÞ.
Finally, performing a trial and error procedure, we have
confirmed that by assigning to each mock Hubble param-
eter HMC the individual error σran ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2H þ δH2

p
we

recover the contours of the reference model, and thus
the mock HðzÞ data contain the simulated triads
fzran; HMC; σrangi, where i ¼ 1; ::N and N ∈ ½38; 120�.
For the benefit of the reader in Fig. 7, we plot the mock
Hubble parameter as a function of redshift. Notice that in
this case the mock sample contains N ¼ 100 entries. This
figure can be compared with that of the observedHðzÞ data
(see the upper panel of Fig. 6).
Now, based on the mock data, we attempt to measure the

effectiveness of the HðzÞ measurements in constraining the
cosmological parameters. Therefore, we calculate the well-
known FoM in the solution space. The figure-of-merit
(FoM) is a useful tool because it provides an assess how
constraining the likelihood analysis of theHðzÞ data can be.
We have defined the FoM as the inverse of the enclosed
area of the 2σ contour in the parameter space of any two
degenerate cosmological parameters, namely Ωm0 −ΩΛ0
and w0 − w1. Of course, the higher the FoM is, the more
constraining the model is. We generate 100 Monte Carlo

simulations for each selected number (N ¼ 38; 40; ::120)
of mock HðzÞ data, and the corresponding results are
shown in Fig. 8. In this figure, we plot the ratio between the
simulation FoM and that of the present sample of 38 HðzÞ
measurements, namely FoM38, as a function of the number
of mockHðzÞ data. Therefore, with the aid of Fig. 8, we see
the behavior of the factor by which the FoM increases with
respect to its present value. We observe that this factor
increases linearly with the number of HðzÞ mock data.
A linear regression yields

�
FoM
FoM38

�
non-flat;Λ

¼ ð0.0087� 0.0002ÞN þ 0.689� 0.027

�
FoM
FoM38

�
CPL

¼ ð0.0246� 0.0007ÞN − 0.534� 0.33:

Using the above expressions, we find that for the realistic
future observations of ∼100 HðzÞ data the FoM is expected
to increase by factors of ∼2 and ∼3 for the nonflat ΛCDM
and CPL models respectively.

FIG. 8. The FoM/FoM38 as a function of the number of entries
in the mockHðzÞ data. Notice, that we used 100 realizations. The
quantity FoM38 is the figure of merit of the current HðzÞ data.
The upper and lower panels correspond to nonflat ΛCDM and
CPL models respectively.

FIG. 7. The mock Hubble parameter as a function of redshift.
In this case, the mock data set constraints N ¼ 100 entries.
The dashed line corresponds to the ΛCDM model with
ðH0;Ωm0;ΩΛ0Þ ¼ ð68.5; 0.25; 0.693Þ.

4We sample the number of mock data as N ∈ ½38; 120� in steps
of 2.
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V. DISCUSSION

In this section, we provide a qualitative discussion of our
HðzÞ based analysis, giving the reader the opportunity to
appreciate the new results of our study. First of all, to our
knowledge, this is the first time that a Bayesian likelihood
analysis applied on theHðzÞ data, marginalizing properly the
value of H0 and thus excluding it from the likelihood
analysis. But why is this important in these kind of studies?
Using the direct measurements of the cosmic expansion,
namely HðzÞ data in constraining the cosmological models,
via the standard χ2 estimator [see Eq. (1)], one has to either
know the exact value of the Hubble constant or have it as a
free parameter, increasing, however, the parameter space. If
we follow the first path, then we are facing the well-known
Hubble constant problem. This problem is related with the
fact that the determination of the Hubble constant has
indicated a ∼3.1σ tension between the value obtained by
the Planck team (see Ref. [1]), namely H0 ¼ 67.8�
0.9 Km/s/Mpc and the results provided by the SNIa project
(Riess et al. [33]) of H0 ¼ 73.24� 1.74Km/s/Mpc. This is
the main reason that various studies in the literature first
imposed the Hubble constant to the above values and then
they placed constraints to other cosmological parameters
(Ωm;ΩΛ; w; ::Þ. For example, Farooq et al. [28] provided
two different sets of constraints for different values of H0.
Indeed, if they imposed H0 ¼ 68 Km/s/Mpc, then their
likelihood function peaks at ðΩm0;ΩΛ0Þ¼ð0.23;0.60Þ,
while for H0¼73.24Km/s/Mpc, the corresponding like-
lihood function peaks at a different pair, namely
ðΩm0;ΩΛ0Þ ¼ ð0.25; 0.78Þ. Obviously, the fact that the exact
value of the Hubble constant remains an open issue in
cosmology affects the constraints. At this point, we would
like to stress that our statistical method (see Sec. II) treats in a
natural way the aforementioned problem. Specifically, the
outcome of our analysis is a new chi-square estimator [see
Eq. (8)] which is not affected by the value of the Hubble
constant, and thus our constraints are independent fromH0.
Concerning the importance of having directmeasurements

of the cosmic expansion, some considerations are in order at
this point. The choice ofHðzÞ data, used in many studies in
the literature aswell as in our work, is dictated by the fact that
these data are the only data which are giving a direct
measurement of the Hubble expansion as a function of
redshift. To date, the cosmic acceleration has been traced
mainly by SNIa, which means that the observed Hubble
relation, namely distance modulus versus z, lies in the range
0 < z < 1.5 [5,6]. In general, the cosmological data used to
probe the cosmic expansion history involve a combination of
standard candles (SNIa, GRBs, HII), standard rulers (clus-
ters, BAOs, CMB shift parameters) and the CMB angular
power spectrum. These observations probe the integral of the
Hubble expansion rate HðzÞ; hence, they give us indirect
information of the cosmic expansion either up to redshifts of
order z ≃ 1–1.5 (SNIa, BAO, and clusters) or up to the
redshift of recombination (z ∼ 1100). It is therefore clear that
the redshift range∼1.5–1000 is not directly probed by any of

the aforementioned observations, and as shown in Ref. [8],
the redshift range 1.5 < z < 3.5 plays a vital role in
constraining the DE equation of state, since different DE
models reveal their largest differences in this redshift interval.
Therefore, the fact that direct HðzÞ measurements can be
extracted relatively easily at high redshifts make them,
especially those which are visible at redshifts z > 1.5,
indispensable tools for investigating the phenomenon of
the accelerated expansion of the Universe. It is worth
mentioning that there are proposed methods which poten-
tially could expand theHðzÞmeasurements to z ≤ 5 [32] (for
other possible tracers, see Refs. [7,9]).
At the moment, an obvious disadvantage of using the

current HðzÞ sample alone in constraining the dark energy
models is related with the small number statistics and thus
with the weak statistical constraints. However, in order to
appreciate the impact of the current HðzÞ data set in
constraining the dark energy models, we show in Sec. II
A that our combinedHðzÞ/SNIa statistical analysis (which is
not affected by H0Þ correctly reveals the expansion
of the Universe as provided by the team of Planck [1].
Specifically, we find that for the CPL model the HðzÞ/SNIa
the w0 − w1 solution space is compatible with that of Planck
TT, lowP CMB data and external (BAOs, JLA,H0) data; see
the solid circles in Fig. 5). In order to understand the
effectiveness of the HðzÞ/SNIa test in constraining the w0 −
w1 parameter space, we present in the left panel of Fig. 9 the
HðzÞ (red-scale contours) and Union 2.1 SNIa (solid black
curves) contours respectively.We observe that, evenwith the
currentHðzÞ contours, the jointHðzÞ/SNIa analysis reduces
significantly (due to different inclination of the contours) the
w0 − w1 solution space and hence it becomes compatible to
that of the Planck (TT, lowPCMB, BAOs, JLA, andH0) test.
Therefore, from the above discussion, it becomes clear

that the ideal avenue that cosmologists need to follow
toward understanding the nature of the cosmic acceleration
is to use future high quality HðzÞ data to measure the dark
energy equation of state and the matter content of the
Universe. This issue is discussed in Sec. IV. In particular,
Monte Carlo predictions show that for the realistic future
expectations of ∼100 HðzÞ measurements we predict that
the present FoM of the nonflat ΛCDM model is increased

FIG. 9. Left panel: The 1σ, 2σ, and 3σ likelihood contours in
the case of the current HðzÞ sample, using the CPL parametriza-
tion. Right panel: The corresponding contours in the case of our
mock sample which contains ∼100 entries. In black, we show the
SNIa contours of the Union 2.1 set.
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by a factor of 2, while in the case of the CPL para-
metrization we find a threefold increase of the correspond-
ing FoM. For an example, we provide in the right panel of
Fig. 9 the contours of one simulation of 100 HðzÞ mea-
surements for the CPL model in the w0 − w1 plane (red-
scale contours) For comparison, we plot the corresponding
contours (black curves) of the Union 2.1 set of 580 SNIa of
Suzuki et al. [5]. Obviously, in the case of SNIa data, we
observe that the parameters w0 and w1 are degenerate. This
seems to hold also for the JLA data [6]. However, our
Monte Carlo analysis indicates that with the aid of only
∼100 future HðzÞ measurements in the redshift range
0 < z < 2.4, we will be able to put strong constraints on
w0 as well as to reduce significantly the w1 uncertainty. The
latter is important since the w1 parameter tests the evolution
of the DE equation-of-state parameter. We argue that,
having the future HðzÞ data available, we will be in a
position to use these data combined with SNIa and other
probes to whittle away the available parameter space for the
contender dark matter/energy scenarios and hopefully to
settle on a single viable model.
In a nutshell, we would like to make clear that with the

present analysis we do not want to compete with SNIa or
other cosmological probes. The aim of our article is to
investigate the power of direct measurements of the cosmic
expansion, toward constraining the dark energy models,
and to provide the appropriate observational framework for
future work.

VI. CONCLUSIONS

We investigated the performance of the latest expansion
data, the so-called HðzÞ measurements, toward con-
straining the dark energy models. In the context of HðzÞ
data aimed at testing the various forms of dark energy, it is
important to minimize the amount of priors needed to
successfully complete such a task. One such prior is the
Hubble constant, and its measurement at the ∼1% accuracy
level has been proposed as a necessary step for constraining
the dark energy models. However, it is well known that the
best choice of the value of H0 is rather uncertain; namely, a
∼3.1σ tension has been found between the value provided
by the Planck team (see Ref. [1]) and the results obtained
by the SNIa project (Riess et al. [33]). In order to
circumvent this problem, we implemented in the first part
of our work a statistical method which is not affected by the
value ofH0. Based on the latter approach, we found that the
HðzÞ data do not rule out the possibility of either nonflat
models or dynamical dark energy cosmological models.
Then, we performed a joint likelihood analysis using

the HðzÞ and the SNIa data, thereby putting tight con-
straints on the cosmological parameters, namely Ωm0 −
ΩΛ0 (nonflat ΛCDMmodel) andΩm0 − w (wCDMmodel).
Furthermore, using the CPL parametrization, we found that
the w0 − w1 parameter space provided by the HðzÞ/SNIa
joint analysis is in a very good agreement with that of

Planck 2015, which confirms that the present analysis with
the HðzÞ and SNIa probes correctly captures the expansion
of the Universe as found by the team of Planck.
Finally, we performed sets of Monte Carlo simulations in

order to quantify the ability of theHðzÞ data to provide strong
constraints on the model parameters. The Monte Carlo
approach showed substantial improvement of the constraints,
when increasing the sample to ∼100 HðzÞ measurements.
Such a target can be achieved in the future, especially in the
light of the next generation of surveys.

ACKNOWLEDGMENTS

S. Basilakos acknowledges support by the Research
Center for Astronomy of the Academy of Athens in the
context of the program “Testing general relativity on
cosmological scales” (Reference No. 200/872).

APPENDIX: INCLUDING COVARIANCE
IN THE STATISTICAL ANALYSIS

With the aid of the our statistical method (see Sec. II), we
calculate the new chi-square estimator that is relevant in the
case of the covariance matrix. If the data are correlated,
then the chi-square estimator is written as

χ2H ¼ VC−1
covVT; ðA1Þ

where C−1
cov is the inverse of the covariance matrix [52] and

V¼fHobsðz1Þ−HMðz1;ϕμÞ;…;HobsðzNÞ−HMðzN;ϕμÞg;
or using Eq. (2), we have

V ¼ fHobsðz1Þ −H0Eðz1;ϕμþ1Þ;…;

HobsðzNÞ −H0EðzN;ϕμþ1Þg:
Inserting the latter vector into Eq. (A1), we obtain after
some algebra

χ2H ¼ AH2
0 − 2BH0 þ Γ;

and thus following the procedure of Sec. II, the functional
form of the marginalized χ̃2H estimator boils down to that of
Eq. (8). Notice that the quantities A, B, and Γ are given by

A ¼ EC−1
covET;

B ¼ 1

2
ðEC−1

covHT
obs þHobsC−1

covETÞ;

Γ ¼ HobsC−1
obsH

T
obs;

with

E ¼ fEðz1;ϕμþ1Þ;…; EðzN;ϕμþ1Þg
and

Hobs ¼ fHobsðz1Þ; ::; HobsðzNÞg:
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