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We examine transport in a holographic model in which the dynamics of the charged degrees of freedom
is described by the nonlinear Dirac-Born-Infeld (DBI) action. Axionic scalar fields are included to break
translational invariance and generate momentum dissipation in the system. Scaling exponents are
introduced by using geometries which are nonrelativistic and hyperscaling-violating in the infrared. In
the probe DBI limit the theory reproduces the anomalous temperature dependence of the resistivity and
Hall angle of the cuprate strange metals, ρ ∼ T and cotΘH ∼ T2. These scaling laws would not be present
without the nonlinear dynamics encoded by the DBI interactions. We further show that because of its
richness the DBI theory supports a wide spectrum of temperature scalings. This model provides explicit
examples in which transport is controlled by different relaxation times. On the other hand, when only one
quantity sets the temperature scale of the system, the Hall angle and conductivity typically exhibit the same
temperature behavior. We illustrate this point using new fully backreacted analytical dyonic black brane
solutions.
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I. INTRODUCTION

For nearly a decade holographic techniques developed
within string theory have been applied to the realm of
condensed matter physics. Holography has provided a
novel set of analytical tools to approach many-body
systems and a new window into the mechanisms behind
strongly coupled quantum phases of matter (see e.g.,
Ref. [1] for a comprehensive review). The main focus of
this promising research area has been on probing phase
transitions and transport in models that may be in the same
universality class as strongly correlated electron systems.
The latter exhibit unconventional behaviors which are
believed to be tied to the complexity of their phase diagram,
the presence of strong interactions and the lack of a
quasiparticle description.
A prime example of such unconventional behavior is the

strange metal phase of the high-temperature cuprate super-
conductors. Its anomalous features include a linear temper-
ature dependence for the resistivity ρ ∼ T [2–4], often
believed to be associated with an underlying quantum
critical point. Another puzzling aspect of the cuprates is the
observed scaling of the Hall angle [5,6] cotΘH ∼ T2, starkly
different from that of ρ. These peculiar transport properties
display sharp deviations from the weak coupling paradigm

of Fermi liquid theory and appear robust across different
compounds.
Realizing the phenomenology of the cuprates within a

holographic model has thus far proven to be a challenge—
in particular, reproducing the anomalous temperature
dependence of both ρ and ΘH at once. It is now
understood that systems in which transport is governed
by two different relaxation times should lead to different
temperature behaviors for the Hall angle and conduc-
tivity. For Einstein-Maxwell-dilaton (EMD) theories this
was discussed e.g., in Ref. [7]. However, even such
models fail to accommodate the scaling laws of the
cuprates [8]. [Note that the examples of Ref. [9] violate
the null energy condition (NEC) while Ref. [10] used a
model for which the identification of the conductivity
involves a number of subtleties [11].] Other studies of
magnetotransport based on EMD-like theories can be
found in Refs. [12–19].
Our goal in this paper is to explore the origin of

these anomalous scalings and clarify the conditions
needed to realize them. We work with a string-theory-
motivated gravitational model [20] which takes into
account nonlinear interactions between the charged degrees
of freedom, encoded by the Dirac-Born-Infeld (DBI)
action. Describing the low-energy dynamics of D-branes,
DBI theories are nonlinear realizations of electrodynamics
which are natural from a top-down perspective. It is
precisely the nonlinear dynamics of the gauge field sector
which allows us to realize ρ ∼ T and cotΘH ∼ T2, and more
generically a wider range of scalings. We emphasize that
our construction is the first consistent holographic reali-
zation of the strange metal scalings of the resistivity and
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Hall angle; in particular, the latter two can be obtained
simultaneously without violating the NEC.
In this model clean scaling regimes arise in a

straightforward manner in the so-called probe limit, in
which the backreaction of the DBI interactions on the
geometry can be safely neglected. As a consequence,
gravitational solutions to the theory are of a simple
form, and the resulting conductivities are easy to study
analytically. Meanwhile, the nonlinear nature of the
interactions between the charged degrees of freedom
is retained in this regime. The behavior of the resistivity
differs generically from that of the Hall angle because
distinct couplings control different temperature scales
in the system. Moreover, the theory admits nonrelativ-
istic, hyperscaling-violating black brane solutions whose
scaling exponents can be chosen to reproduce the
cuprates.
Realizing the same scaling laws away from this regime

should not pose any conceptual challenges, but rather
only technical ones. Finding exact analytical solutions to
the theory in the presence of backreaction is harder, and
to do so one must rely on simplifications and restrictions
on the parameters of the model. This can lead to a
situation where only one coupling sets the temperature
scale in the system, and controls the behavior of all the
conductivities. For these particular background solutions,
then, the conductivity and Hall angle behave in much the
same way as a function of T; such cases could not be
used to describe the cuprates. We illustrate this point at
the end of this paper. However, we emphasize that this is
only a limitation of the analytical solutions, and numeri-
cally one can construct a much larger class of back-
ground solutions, describing systems with different
relaxation scales. There should be no conceptual obstacle
to reproducing the phenomenology of the cuprates in
these more general settings.
In conclusion, the probe limit offers a window into

the existence of clean scaling regimes, including those
observed in the cuprate high-temperature superconduc-
tors. We stress that in this class of DBI theories the
cuprates’ scaling laws would not be present if the DBI
interaction was turned off; in that case the arguments
developed for EMD theories would be relevant. Thus,
our analysis provides evidence that to capture the
complexity of the phase diagram of non-Fermi liquids
it may be crucial to include the nontrivial dynamics
between the (charged) degrees of freedom, in addition to
the interplay between the various physical scales in the
system.

II. THE HOLOGRAPHIC SETUP

We consider a four-dimensional holographic model
which describes gravity coupled to a neutral scalar field
ϕ, two axions ψ I and an Abelian gauge field Aμ, whose
dynamics is described by the DBI action,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ − YðϕÞ

2

X2
I¼1

ð∂ψ IÞ2
�

þ
Z

d4xZ1ðϕÞ
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− detðgμν þ Z2ðϕÞFμν

q
Þ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

q i
; ð1Þ

where the second term in the DBI part is chosen such that in
the weak flux limit F → 0 one recovers the standard gauge
field kinetic term. The scalar couplings Z1ðϕÞ, Z2ðϕÞ and
YðϕÞ lead to nontrivial interactions between the scalar
sector and the gauge field. The axionic scalars are intro-
duced to break translational symmetry and ensure that the
system dissipates momentum and exhibits a finite DC
conductivity. Magnetotransport in this model was studied
first in Ref. [21] and later in Ref. [20] taking into account
backreaction effects. Early work on the conductivity in
probe DBI setups can be found e.g., in Refs. [22–28].
As in Ref. [20], here we work with geometries of the

form

ds2 ¼ −DðrÞdt2 þ BðrÞdr2 þ CðrÞðdx2 þ dy2Þ;
ϕ ¼ ϕðrÞ; ψ1 ¼ kx; ψ2 ¼ ky;

A ¼ AtðrÞdtþ
h
2
ðxdy − ydxÞ; ð2Þ

with h denoting the magnitude of the magnetic field. The
linear dependence of the axions on the spatial coordinates
breaks translational invariance and the strength of momen-
tum relaxation is controlled by the parameter k [29]. The
general equations of motion are presented in Sec. I of the
Supplemental Materials [30]. Our focus below will be on
solutions which exhibit hyperscaling violation (θ ≠ 0) and
nonrelativistic scalings (z ≠ 1) in the IR of the geometry,
and approach anti–de Sitter (AdS) in the UV.
The DC conductivities σij for the theory (1) and the

background geometry (2) were computed in Ref. [20] using
the horizon method developed in Refs. [7,31]. We refer the
reader to Ref. [20] for the analysis and report the results for
σij in the Supplemental Materials [30]. The key observation
is that σij is controlled by the three scalar couplings Z1, Z2,
Y and the bulk metric component C, all evaluated at the
horizon. These are generically temperature-dependent
terms. Moreover, to the extent that they are independent
of each other, they in principle provide different temper-
ature scales in the system. The inverse Hall angle and
resistivity are then extracted by using

cotΘH ¼ σxx
σxy

; ρ ¼ ρxx ¼
σxx

σ2xx þ σ2xy
: ð3Þ

The conductivity associated with the DBI model is
extremely rich and complex. Also, it provides yet another
example in which one does not have the simple additive
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form σDC ¼ σccs þ σdiss. Indeed, the dissipative (σdiss) and
charge conjugation symmetric (σccs) contributions in this
model are intertwined in a nontrivial way, thanks here to the
nonlinear nature of the DBI interactions. The complexity of
this DBI theory is both a challenge and an opportunity:
while it is difficult to extract specific scaling properties
without focusing on particularly simple sectors, one also
expects to find a wide range of possible behaviors. In
particular, the transport coefficients simplify significantly
in a number of limiting cases, as discussed in Ref. [20]. The
one that is most relevant to us here is the probe limit.

III. PROBE DBI LIMIT

The expressions for the conductivities of the DBI theory
are much more tractable when the contribution to the
geometry coming from the DBI sector is negligible
compared to that of other matter content. In this case the
background geometry is seeded by the scalar and axions,
and the dynamics of the U(1) gauge field can be captured
by treating it as a probe around the resulting geometry: this
is the so-called probe DBI limit. Interestingly, we find that
the same expression for cotΘH and ρxx can be obtained
from the fully backreacted case when the momentum
dissipation scale k dominates over the other physical scales
in the system [20].
In the probe DBI limit the inverse Hall angle can be seen

to take the simple form

cotΘH ¼ C
hQZ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ Z2

1Z
2
2ðC2 þ h2Z2

2Þ
q

; ð4Þ

and the in-plane resistivity is given by

ρxx ¼
C
Z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ Z2

1Z
2
2ðC2 þ h2Z2

2Þ
p

Q2 þ C2Z2
1Z

2
2

; ð5Þ

evaluated at the horizon. Moreover, in the probe regime the
charge density Q and the magnetic field h should be small
compared to the other scales in the system (the consistency
of the probe DBI approximation will be discussed in Sec. II
of the Supplemental Materials [30]). In particular, working
in the limits Q2 ≪ Z2

1Z
2
2C

2 and h2Z2
2 ≪ C2, the resistivity

and the Hall angle reduce to the very simple expressions

cotΘH ¼ C2Z1

hQ
; ρxx ¼

1

Z1Z2
2

; ð6Þ

where we have only kept leading-order terms. The small-Q
and -h limits are entirely natural in the probe approxima-
tion, and will be shown below to be valid in appropriate
temperature windows.
The key feature to appreciate in the expressions (6) for

ρxx and cotΘH is that they generically scale differently with
temperature, precisely because they are controlled by
different quantities. The functions C, Z1 and Z2 provide

different temperature scales in the system, as long as at
least two of them are independent of each other. The
technical advantage of the probe limit, as we will see
shortly, is that it allows us to keep the scalar couplings Z1

and Z2 much more arbitrary than would be possible when
working with specific backreacted solutions. This will give
us more freedom to choose the scalings we are after.
In order to obtain the cuprates’ scalings ρxx ∼ T and

cotΘH ∼ T2 from Eq. (6), one then needs to have a system
for which

C
Z2

¼ T3/2

l1/2
0

and Z1Z2
2 ¼

z0
T
; ð7Þ

where l0 and z0 are two positive constants that depend on
the specific theory one is considering. Moreover, the small-
Q and -h approximations we adopted to obtain Eq. (6)
become, assuming a temperature dependence as in Eq. (7),
T ≫ l0Q2/z20 and T3 ≫ l0h2.
At this stage it is convenient to introduce dimensionless

expressions for the temperature and magnetic field, T ¼
z2
0

l0Q2 T and h ¼ z3
0

l0Q3 h respectively, as well as a constant

ζ ¼ l0Q2/z30. When the condition (7) is satisfied, the
expressions (4) and (5) then become

ρxx ¼ ζ
T3/2

1þ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Tþ h2/T2

p
;

cotΘH ¼ T3/2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Tþ h2/T2

p
: ð8Þ

It is clear that one obtains

ρxx ¼ ζT; cotΘH ¼ T2

h
; ð9Þ

in the “high-temperature” limit T ≫ 1þ h2/T2. Note that
this condition is given in terms of T, defined by using the
particular scale l0Q2/z20 that characterizes the theory one is
considering. Thus, this is not necessarily a high-T limit, and
it would indeed describe low temperatures provided that
such a scale is sufficiently higher than the temperature the
experiment is probing.
So far our analysis was based on the assumption that

condition (7) could be satisfied. We are now ready to show
how it can be realized explicitly. To proceed further we
need to extract the temperature dependence of CðrÞ; Z1ðϕÞ
and Z2ðϕÞ. Thus, we need to focus on a particular back-
ground solution and specify a choice of couplings. In order
to allow for the freedom to have scaling exponents, we are
interested in geometries that are nonrelativistic and hyper-
scaling-violating in the IR, and approach AdS in the UV.
As was shown in Ref. [21], when the dilaton couplings V

and Y are approximated by exponentials in the IR, VðϕÞ ∼
−V0eηϕ and YðϕÞ ∼ eαϕ, the geometry in the probe limit is
of the simple hyperscaling-violating form
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ds2 ¼ rθ
�
−fðrÞ dt

2

r2z
þ L2dr2

r2fðrÞ þ
dx2 þ dy2

r2

�
; ð10Þ

ϕ ¼ κ lnðrÞ; ψ1 ¼ kx; ψ2 ¼ ky; ð11Þ

with

fðrÞ ¼ 1 −
�
r
rh

�
2þz−θ

; z ¼ α2 − η2 þ 1

αðα − ηÞ ; θ ¼ 2η

α
;

κ ¼ −
2

α
; L2 ¼ ðzþ 2 − θÞð2z − θÞ

V0

;

k2 ¼ 2V0ðz − 1Þ
2z − θ

:

Recall that in this limit the gauge field is a probe around this
background solution, and its expression can be obtained by
solving the U(1) equation of motion. Finally, from the form
of the blackening function we read off T ∼ r−zh and

CðrhÞ ¼ rθ−2h ⇒ CðTÞ ∼ T
2−θ
z ; ð12Þ

which is also the temperature scaling of the entropy
density, s ∼ T

2−θ
z .

To have a well-defined geometry and a resolvable
singularity one should take into account Gubser’s criterion
[32,33] as well as the NEC, which restricts the range of
fz; θg appearing in Eq. (10). Depending on the location of
the IR, these restrictions yield

IRr → ∞∶ ½1 < z ≤ 2; θ < 2z − 2�; ½z > 2; θ < 2�;
IRr → 0∶ ½z ≤ 0; θ > 2�; ½0 < z < 1; θ > zþ 2�: ð13Þ

When the backreaction of the DBI action on the
geometry is taken into account, exact fz; θg solutions to
our model can be found only for particular choices of scalar
couplings Z1ðϕÞ and Z2ðϕÞ (typically single exponentials).
In the probe limit where the backreaction of the DBI sector
can be neglected, there is a certain amount of freedom to
choose the couplings Z1, Z2. For simplicity—and to
eventually make contact with the fully backreacted case
—we take them to be Z1 ∼ eγϕ and Z2 ∼ eδϕ, where γ, δ are
free parameters. This ensures that they yield single powers
of temperature when evaluated at the horizon. Indeed,
combining this with the expression for the scalar field
needed to support the scaling solutions, ϕ ¼ − 2

α lnðrÞ,
yields

Z1 ∼ T
2γ
zα and Z2 ∼ T

2δ
zα: ð14Þ

Thus, for arbitrary couplings γ, δ one has

C
Z2

∼ T
2−θ
z −2δ

zα and Z1Z2
2 ∼ T

2γþ4δ
zα ; ð15Þ

and in turn

ρxx ∼ T−2
zðγαþ2δαÞ; cotΘH ∼

1

hQ
T

2
zð2−θþγ

αÞ; ð16Þ

for the general scaling of the resistivity and Hall angle in
the probe DBI limit. The condition required to realize the
cuprates’ scalings then becomes

γ

α
¼ zþ θ − 2 and

δ

α
¼ 1 −

θ

2
−
3

4
z: ð17Þ

With this particular choice of Lagrangian parameters one
obtains the celebrated cuprate behavior

ρxx ∼ T; cotΘH ∼ T2: ð18Þ

The validity of the probe DBI description is discussed in
Sec. II of the Supplemental Materials [30]. We stress that
there is a wide range of values of z and θ (or equivalently of
the theory parameters γ and δ) which satisfies all constraints
and can be used to realize these two scaling laws. However,
one still needs to identify a selection mechanism to explain
why these scalings are robust and universal in the cuprates.
It is interesting to note that the z ¼ 4/3, θ ¼ 0

case singled out by the purely field-theoretic analysis of
Ref. [34] corresponds here to having δ ¼ 0, or equivalently
a constant Z2 (and γ2 ¼ 4/3). Thus, this corresponds to a
minimal form of the Lagrangian, in which only the overall
scalar coupling in the DBI term Z1ðϕÞ is turned on. This
case is reminiscent of the standard dilaton coupling to the
DBI action ∼e−Φ in string theory. An interesting question is
whether one could obtain the couplings needed to realize
the cuprates within a top-down string theory construction.
Indeed, with a UV-completed theory all parameters would
be entirely fixed. Note that the scaling laws (18) would not
be present if one turned off the DBI interaction. Our results
provide further compelling evidence for the importance of
nonlinear interactions among the charge carriers for
describing strange metals, as observed in other holographic
models (see e.g., Ref. [24]).

IV. THE GENERAL BACKREACTED CASE

As we have just seen, in the probe regime these DBI
models admit the scaling laws (18) observed in the
cuprates, and more generally cases in which ρxx and
cotΘH scale differently with temperature, as in Eq. (16).
We expect to find the same behavior even when one moves
away from the probe limit and takes into account the full
backreaction of the DBI interactions on the geometry.
However, finding exact analytical solutions that are fully
backreacted is technically more challenging, and one does
not expect them to be of the simple form of Eq. (12),
especially in the presence of a magnetic field. Exact
analytical solutions to the DBI theory are rare, and rely
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on making simplifying assumptions on theory parameters.
One of the potential consequences then, is that they can
lead to cases for which σij is controlled by a single
temperature-dependent quantity: a single scale. In such
instances one does not expect to have a clean separation
between the behavior of the resistivity ρxx and the Hall
angle cotΘH. Indeed, the two should have a similar T
structure. In this section we illustrate precisely this point
with an analytical example.
Exact nonrelativistic, hyperscaling-violating solutions

to the full DBI theory (1) were put forth in Ref. [20]. In
the presence of a background magnetic field h ≠ 0, the
scaling geometries of Ref. [20] had a fixed value of the
hyperscaling-violating parameter, θ ¼ 4. Analytical solu-
tions with arbitrary θ were also expected to exist, and
to provide a more fruitful avenue to modeling possible
scaling regimes. Indeed, when the Lagrangian parameters
are such that

γ ¼ −2δ; η ¼ α − δ;

we have identified another class of dyonic black branes
of the form (10), but with a blackening function given
schematically by

fðrÞ ¼ 1 − ð1þ c0r4−θh Þ
�
r
rh

�
2þz−θ

þ c0r4−θ; ð19Þ

where c0 is a constant that depends on theory parameters,
and all the remaining details of the solution are given in
Sec. I of the Supplemental Materials [30]. We note that for
these solutions the momentum dissipation parameter is not
free, but is determined in terms of h, Q and theory
parameters. The main feature that distinguishes this sol-
ution from that in Eq. (12) is the complexity of the
blackening function. As a result, the temperature of these
black branes is related to the horizon radius in a rather
nontrivial way,

T ∼ r−zh þ c0ðz − 2Þ
ð2þ z − θÞ r

4−z−θ
h ; ð20Þ

which in turn gives a much wider range of possible
temperature dependence for the entropy density than the
one (12) found in the probe limit. The general expression
(20) is quite cumbersome, making it difficult to identify the
existence of scaling regimes. However, in appropriate
regions of parameter space only one of the two terms in
Eq. (20) dominates, so that one can assume a clean scaling
of the form T ∼ rph for some parameter p.

These exact solutions are quite constrained (they require
specific relationships between theory parameters), and in
particular have the property that the metric component C
and the couplings Z1 and Z2 are all related to each other,

CðrÞ ¼ Z2ðrÞ ¼ rθ−2; Z1 ∼ r4−2θ ¼ C−2; ð21Þ

implying for example that the combination Z1Z2C is
simply a constant. As a consequence, evaluating the
conductivities on the background solutions above, we find
that the temperature dependence is controlled entirely by
one single quantity: the combination CY. Thus, this
quantity sets the only temperature scale available in the
system (for early discussions of different time scales in
holographic transport coefficients, see e.g., Refs. [31,35]).
Inspecting the expressions for the conductivities, we see
that the resistivity and Hall angle have the schematic form

ρxx ¼
a1CY þ a2ðCYÞ2 þ a3ðCYÞ3 þ a4ðCYÞ4

a5 þ a6CY þ a7ðCYÞ2 þ a8ðCYÞ3 þ a9ðCYÞ4
;

cotΘH ¼ b1CY þ b2ðCYÞ2
b3 þ b4CY þ b5ðCYÞ2

; ð22Þ

where the ai, bi are T-independent terms which depend on
h, k, Q. The expressions for the coefficients are quite
complicated, but all share a similar structure. In particular,
the coefficients of ρxx and cotΘH in front of each power of
CY are generically similar to each other (for instance, the
pairs a2 and b2, or a6 and b4). What this implies is that,
without severe fine-tuning of the parameters z1, h and Q,
one cannot generically decouple the temperature behavior
of ρxx from that of cotΘH. The reason for this is that, unlike
in the probe DBI case, the same quantity CY is responsible
for giving rise to all T dependence in this particular system.
In closing, we note that by fine-tuning parameters so that
some of these coefficients can be made to vanish, one can
indeed force ρxx and cotΘH to have a different scaling in
terms of CY (and potentially obtain the cuprates’ scalings).
However, this would only hold in a very limited temper-
ature region, and require unnatural choices of theory
parameters. This procedure would give at best a very
undesirable—highly fine-tuned—realization of the scalings
of the cuprates.
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