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We demonstrate the existence of a universal transition from a continuous scale invariant phase to a
discrete scale invariant phase for a class of one-dimensional quantum systems with anisotropic scaling
symmetry between space and time. These systems describe a Lifshitz scalar interacting with a background
potential. The transition occurs at a critical coupling λc corresponding to a strongly attractive potential.
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I. INTRODUCTION

Some of the most intriguing phenomena resulting from
quantum physics are the violation of classical symmetries,
collectively referred to as anomalies [1–4]. One class of
anomalies describes the breaking of continuous scale sym-
metry at the quantum level. A remarkable example of these
“scale anomalies” occurs in the case of a nonrelativistic
particle in the presence of an attractive, inverse square
potential [5–12], which describes the Efimov effect
[13–15] and plays a role in various other systems [16–23].
Classically scale invariant [24], any system described by the
Hamiltonian, ĤS ¼ p2=2m − λ=r2, exhibits an abrupt tran-
sition in the spectrum at 2mλc ¼ ðd − 2Þ2=4 [25] where d is
the space dimension. For λ < λc, the spectrum contains no
bound states close to E ¼ 0; however, as λ goes above λc, an
infinite series of bound states appears. Moreover, in this
“over-critical” regime, the states arrange themselves in an
unanticipated geometric series En∝expð−2πn= ffiffiffiffiffiffiffiffiffiffiffi

λ−λc
p Þ,

n ∈ Z, accumulating at E ¼ 0. The existence and geometric
structure of such levels do not rely on the details of the
potential close to its source and is a signature of residual
discrete scale invariance since fEng → fexp ð−2π=ffiffiffiffiffiffiffiffiffiffiffiffi
λ − λc

p ÞÞEng ¼ fEng. Thus, HS exhibits a quantum phase
transition at λc between a continuous scale invariant (CSI)
phase and a discrete scale invariant phase (DSI). This

transition has been associated with Berezinskii-Kosterlitz-
Thouless (BKT) transitions [12,17,26–30].
Another system—the charged and massless Dirac fer-

mion in an attractive Coulomb potential ĤD ¼ γ0γjpj −
λ=r [31]—also belongs to the same universal class of
systems with these abrupt transitions. The similarity
between the spectra and transition of these Dirac and
Schrödinger Hamiltonians motivates the study of whether
a transition of this sort is possible for a generic scale
invariant system. Specifically, these different Hamiltonians
share a similar property—the power law form of the
corresponding potential matches the order of the kinetic
term. In this paper, we examine whether this property is a
sufficient ingredient by considering a generalized class of
one-dimensional Hamiltonians,

ĤN ¼ ðp2ÞN −
λN
x2N

; ð1Þ

where N is an integer and λN a real coupling, and study if
they exhibit a transition of the same universality class as
ĤS ¼ Ĥ1, ĤD.
Hamiltonian (1) describes a system with non-quadratic

anisotropic scaling between space and time for N > 1. This
“Lifshitz scaling symmetry” [32], manifest in (1), can be
seen for example at the finite temperature multicritical
points of certain materials [33,34] or in strongly correlated
electron systems [35–37]. It may also have applications in
particle physics [32], cosmology [38] and quantum gravity
[39–43]. The non-interacting mode (λN ¼ 0) can also
appear very generically, for example in non-relativistic
systems with spontaneous symmetry breaking [44].
Generalizing (1) to higher-dimensional flat or curved

spacetimes also introduces intermediate scale invariant
terms which are products of radial derivatives and powers
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of the inverse radius. For d > 1 the potential in (1) can
be generated by considering a Lifshitz scale invariant
system with charge and turning on a background gauge
field [32,45–47] consisting of the appropriate multipole
moment. The procedures we use throughout this paper are
readily extended to these situations and the simple model
(1) is sufficient to capture the desired features.
Our main results are summarized as follows. In accor-

dance with the N ¼ 1 case, there is a quantum phase
transition at λN;c ≡ ð2N − 1Þ!!2=22N for all N > 1 from a
CSI phase to a DSI phase in the low energy regime
jEj1=2Nx0 ≪ 1, where x0 > 0 is a short distance cutoff.
The CSI phase contains no bound states and the DSI phase
is characterized by an infinite set of bound states forming a
geometric series as given by Eq. (11). The transition and
λN;c value are independent of the short distance physics
characterized by the boundary condition at x ¼ x0. For
ðλN − λN;cÞ → 0þ, the analytic behavior of the spectrum is
characteristic of the BKT scaling in analogy with N ¼ 1
[12,17] and as shown by Eq. (17). We analyze the x0 ¼ 0
case, obtain its self adjoint extensions and spectrum and
obtain similar results.

II. THE MODEL

Corresponding to (1) is the action of a complex scalar
field in (1þ 1) dimensions:

Z
dt

Z
∞

x¼x0

dx
i
2
ðΨ�∂tΨ − c:c:Þ − j∂N

x Ψj2 þ
λN
x2N

jΨj2;

where c.c. indicates the complex conjugate. This field
theory has manifest Lifshitz scaling symmetry, ðt; xÞ ↦
ðΛ2Nt;ΛxÞ when x0 → 0. The scaling exponent of Λ2 is
called the “dynamical exponent” and has value N in this
case. The action represents a Lifshitz scalar with a single
time derivative and can be recovered as the low energy with
respect to mass limit of a charged, massive Lifshitz scalar
which is quadratic in time derivatives [48]. The eigenstates
of Hamiltonian (1) are given by stationary solutions of the
subsequent equations of motion [49].
Consider the case x0 < x < ∞with x0 ¼ 0. The classical

scaling symmetry of (1) implies that if there is one negative
energy bound state then there is an unbounded continuum.
Thus, the Hamiltonian is non-self-adjoint [51,52]. The
origin of this phenomenon, already known from the
N ¼ 1 case, is the strong singularity of the potential at
x ¼ 0. To remedy this problem, the operator can be made
self-adjoint by applying boundary conditions on the ele-
ments of the Hilbert space through the procedure of self-
adjoint extension [53]. Alternatively, a suitable cutoff
regularization at x0 > 0 can be chosen to ensure self-
adjointness as well as bound the spectrum from below by
an intrinsic scale [8] leaving some approximate DSI at low
energies.

For N ¼ 1 in (1), the continuous scaling invariance of
Ĥ1 is broken anomalously as a result of restoring self-
adjointness. In particular, for λ1 > 1=4, one obtains an
energy spectrum given by E1¼−E0expð−ð2πnÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1−λc

p Þ
for n ∈ Z. The energies are related by a discrete family of
scalings which manifest a leftover DSI in the system.
In what follows, we shall demonstrate that in the case of

large positive λN (attractive potential) one finds, for all N, a
regime with a geometric tower of states using the method of
self-adjoint extension. Subsequently, we bound the result-
ing spectrum from below, while maintaining DSI at low
energies, by keeping x0 > 0 and applying generic (self-
adjoint) boundary conditions at a cutoff point. We obtain
that a transition from CSI to DSI is a generic feature in the
landscape of these Hamiltonians (1), independent of the
choice of boundary condition and in a complete analogy
with the N ¼ 1 case [5–12]. By analytically solving the
eigenvalue problem for all N, we obtain an expression for
the critical λN and for the resulting DSI spectrum in the
over-critical regime.

III. SELF-ADJOINT EXTENSION

To determine whether the Hamiltonians (1) can be made
self-adjoint one can apply von Neumann’s procedure
[51–55]. This consists of counting the normalizable sol-
utions to the energy eigenvalue equation with unit imagi-
nary energies of both signs. When there are M linearly
independent solutions of positive and negative sign,
respectively, there is a UðMÞ parameter family of con-
ditions at x ¼ 0 that can make the operator self-adjoint. If
M ¼ 0, it is essentially self-adjoint and if the number of
positive and negative solutions do not match then the
operator cannot be made self-adjoint.
For every N, there are N exponentially decaying sol-

utions at infinity for E ¼ �i. Normalizability then depends
on their x → 0 behavior which requires a complete solution
of the eigenfunctions. The energy eigenvalue equation from
(1) has an analytic solution in terms of generalized hyper-
geometric functions [56] (see the Supplemental material
[57]) for arbitrary complex energy and λN . Near x ¼ 0, the
analytic solutions are characterized by the roots of the
indicial equation,

λN ¼ ð−1ÞNΔðΔ − 1ÞðΔ − 2Þ…ðΔ − 2N þ 1Þ; ð2Þ

which can be obtained by insertingΨðxÞ¼ xΔð1þOðx2NÞÞ
into the eigenvalue equation and solving forΔ. We label the
2N solutions of (2) as Δi, i ¼ 1;…; 2N and order by
ascending real part followed by ascending imaginary part.
Since (2) is real and symmetric aboutN − 1=2, all roots can
be collected into pairs which sum to 2N − 1 (see Fig. 1). In
addition, because N − 1=2 ≥ −1=2, there can be at most N
roots with ReðΔiÞ ≤ −1=2. Thus, near x ¼ 0, a generic
combination of the N decaying solutions has the form
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ΨðxÞ ¼
XN
i¼1

½ðϵxÞΔiϕi þ � � � þ ðϵxÞΔiþNOi þ…�; ð3Þ

where E is the energy, ϵ≡ jEj1=2N and ϕi; Oi are complex
numbers [58]. We have distinguished modes with the
potential to be divergent as x → 0 by the coefficients ϕi.
Taking ratios of Oi and ϕi yields N-independent dimen-
sionless scales.
To obtain the number of independent normalizable

solutions M, we need to count the number m of roots
Δi with real parts less than −1=2 as λN varies. When any
root violates this bound we must take a linear combination
of our N decaying functions to remove it from the near
origin expansion and as a result M ¼ N −m. This is easily
accomplished by examining the analytic solutions in an
expansion about x ¼ 0.
Generically, for λN small in magnitude,m ¼ 0, and there

is an UðNÞ self-adjoint extension [59]. As λN increases
in absolute value and the real part of some roots go
below −1=2 the dimension of the self-adjoint parameter
decreases. Eventually ĤN either becomes essentially self-
adjoint (negative λN , repulsive potential) or has a Uð1Þ
self-adjoint extension (positive λN , attractive potential).
The different regimes are summarized for N ¼ 1, 2, 3 in
Table I.

Now that we have determined when our operator can be
made self-adjoint we would like to obtain its energy
spectrum. To that purpose, we define the boundary form,
½Ψ;Φ�ðxÞ, by computing the difference ĤN − Ĥ†

N :

hΦjĤN jΨi − hΦjĤ†
N jΨi ¼ ½Φ;Ψ�ð∞Þ − ½Φ;Ψ�ðx0Þ; ð4Þ

hΦjĤN jΨi ¼
Z

∞

x¼x0

dxΦ�ðxÞĤNΨðxÞ; ð5Þ

where

½Φ;Ψ�ðxÞ ¼
X2N
j¼1

ð−1ÞNþj−1dj−1x Φ�ðxÞd2N−j
x ΨðxÞ ð6Þ

and the boundary form is calculated by moving the
derivatives in hΦjĤN jΨi to obtain hΦjĤ†

N jΨi (see
Supplemental material [57]). Setting Φ ¼ Ψ and using
the time-dependent Schrödinger equation, it is straightfor-
ward to show that

∂tρ ¼ ∂x½Ψ;Ψ�; ρ ¼ jΨj2; ð7Þ

so that the boundary form can be interpreted as the value of
the probability current at x ¼ x0.
We are interested in evaluating (4) on the energy

eigenfunctions and require it to vanish when taking
x0 → 0 as this fixes any remaining free parameters of a
general solution. For E < 0 there are N exponentially
decaying solutions at infinity. A general energy eigenfunc-
tion is a sum of these and thus the boundary form (4)
evaluated at infinity is zero. For ĤN to be self-adjoint it is
necessary to impose the same boundary conditions on the
wave functions and their adjoints while ensuring that (6)
vanishes.
By examining (2), it can be seen that for λN > λN;c ≡

ð2N − 1Þ!!2=22N there is a pair of complex roots whose real
part is fixed to be N − 1=2, i.e.

ΔN ¼ Δ�
Nþ1 ¼ ðN − 1=2Þ − iνNðλNÞ; ð8Þ

νNðλNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λN − λN;c

p ðα−1N þOðλN − λN;cÞÞ; ð9Þ

where αN is a constant given explicitly in the Supplemental
material [57]. At sufficiently positive λN , Δ1;…;ΔN−1 are

FIG. 1. A plot of the real part of the solution to the indicial
equation (2) for N ¼ 2 against λ2. The dotted, red vertical line
indicates where λ2 ¼ 9=16 above which the first pair of complex
roots appears. The lowermost horizontal red line indicates where
one of the roots becomes non-normalizable at positive λ2 (i.e.
λ2 ¼ 105=16) while the uppermost indicates the symmetry line
responsible for pairing roots i.e. Δ ¼ 3=2.

TABLE I. The regimes of self-adjoint extension parameter with N ¼ 1, 2, 3 for some values of λN . The bounds for N ¼ 1, 2 are exact
while those for N ¼ 3 are approximate and determined by numerically solving the indicial Eq. (2). A table showing λN , for N ¼ 1, 2, 3,
to larger negative values can be found in the Supplemental material [57].

N 1 2 3

λ − 3
4
< λ1 λ1 < − 3

4
105
16

< λ2 −45 < λ2 <
105
16

693≲ λ3 −162≲ λ3 ≲ 693

Extension Uð1Þ Self-adjoint Uð1Þ Uð2Þ Uð1Þ Uð3Þ
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not normalizable and the pair (8) are the leading normal-
izable roots. This is illustrated in Fig. 1 for N ¼ 2.
Removing the N − 1 non-normalizable roots yields a single
decaying wave function with arbitrary energy. As such, (3)
becomes

ΨðxÞ ¼ ϕNðϵxÞN−1=2−iνN þO1ðϵxÞN−1=2þiνN

þ
X
j≥2

OjðϵxÞΔjþN þ…; ð10Þ

where the N dimensionless and energy-independent scales,
Oj=ϕN , are now fixed. Substituting (10) for two energies E
and Ẽ into (6) yields a term ∝ ðjE=Ẽj2iνN=N − jO1=ϕN j2Þ as
x0 → 0. Thus, the self-adjoint boundary condition is
equivalently an energy quantization condition relating an
arbitrary reference energy E0 > 0 to a geometric tower of
energies:

En ¼ −E0e
−Nπn

νN ; n ∈ Z: ð11Þ

The reference energy E0 is a free parameter and can be
chosen arbitrarily.

IV. CUTOFF REGULARIZATION

We shall now consider x0 > 0 and choose boundary
conditions to give a lower bound to the energy spectrum
while preserving approximate DSI near zero energy. We
will impose the most general boundary condition on the
cutoff point consistent with unitary time evolution [60]. As
the M ¼ N decaying solutions are finite at all points
x0 > 0, independent of λN , this general boundary condition
corresponds to an UðNÞ self-adjoint extension.

To obtain the boundary condition, we diagonalize (6) by
defining Ψ�

k ðx0Þ,

xk−10 dk−1x Ψðx0Þ ¼ Ψþ
k ðx0Þ þ Ψ−

k ðx0Þ; ð12Þ

x2N−k
0 d2N−k

x Ψðx0Þ ¼ eiπðk−1
2
Þ½Ψþ

k ðx0Þ −Ψ−
k ðx0Þ� ð13Þ

for 1 ≤ k ≤ N. After this redefinition, (6) evaluated at
x ¼ x0 becomes proportional to

Φþðx0Þ† ·Ψþðx0Þ −Φ−ðx0Þ† ·Ψ−ðx0Þ: ð14Þ

The vanishing of (14) can be achieved by setting

Ψþðx0Þ ¼ UNΨ−ðx0Þ; ð15Þ

for some arbitrary unitary matrix: UN [53,61]. This addi-
tionally ensures that elements of the space of wave
functions and its adjoint have the same boundary con-
ditions, making ĤN self-adjoint on said space. The matrix
UN can only be specified by supplying additional physical
information beyond the form of the Hamiltonian.
As an illustration of the appearance of the geometric

tower at N > 1, consider Figs. 2 and 3. The former plots ϵ
for N ¼ 2 against λ2. It is plain that as soon as λ2 > 9=16
(the dotted red line) there is a sudden transition from no
bound states satisfying ϵ ≪ x−10 (and one isolated bound
state), to a tower of states. Similarly, Fig. 3 plots the
logarithm of En=Enþ1 for N ¼ 3 as a function of λ3 at low
ϵx0. The result, shown by the blue points in Fig. 3, is a good
match with π=ν3 with ν3 defined by (8).
For general N, λN > λN;c and small enough energies, we

shall now argue that one always finds DSI with the scaling
defined in (11) using a small ϵ expansion. Determining the

FIG. 2. A plot of the logarithm of ϵ against λ2 for a cutoff
position x0 ¼ e−1 and boundary condition displayed. For λ2 <
λ2;c ¼ 9=16 there are no bound states satisfying ϵx0 ≪ 1

(although there is an isolated bound state outside this energy
bound). The solid red line indicates the lower bound on the
negative energies as discussed in the Supplemental material [57].
The dotted red line at λ2;c indicates where the first pair of complex
roots appears, above which we can see the geometric tower
abruptly appearing from ϵ ¼ 0.

FIG. 3. A plot of π=ν3 against ln λ3 for a cutoff position
x0 ¼ e−1 and boundary condition displayed. The solid red line
indicates the numerical result from solving (2) for the roots
defined in (8). The blue dots are calculated by numerically
determining the gradient of lnEn=Enþ1 against n for several n
corresponding to ϵx0 ≪ 1. The red dotted line indicates the
critical λ3.
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energy eigenstates analytically for arbitrary boundary
conditions is made difficult for N > 1 due to the presence
of multiple distinct complex roots in the small energy
expansion. However, we shall show that one pair makes a
contribution that decays more slowly as ϵ → 0 than any
other and derive an approximation in this limit.
Consider (3) evaluated at x ∼ x0 which is a good

approximation to the wave function when ϵx0 ≪ 1.
Imposing decay fixes N of the 2N free parameters.
Without loss of generality we can take them to be Oi so
that Oi ¼ Gi

jϕj for some complex (N × N)-matrix G. The
N remaining free parameters ϕi will be fixed by wave
function normalization and boundary conditions at the
cutoff point (15). The generic dependence of ϕi on ϵ; x0
for ϵx0 ≪ 1 is extractable. Applying the redefinition
ϕ̃i ≡ ϕiðϵx0ÞΔi implies

Oiðϵx0ÞΔiþN → Gi
jðϵx0ÞΔiþN−Δj ϕ̃j: ð16Þ

Given our canonical ordering of the roots and that λ > λc
we have ReðΔiþN − ΔjÞ ≥ 0with equality only when i ¼ 1

and j ¼ N. For ϵx0 ≪ 1 the leading contributions to the
wave function (3) have the form

ΨðxÞ ¼
XN
i¼1

ϕ̃i

�
x
x0

�
Δi þ G1

Nϕ̃Nðϵx0Þ2iνN
�
x
x0

�
ΔNþ1

where ϵx0 only enters the leading term through a phase and
all other contributions to Oi from the ϕ̃i drop out as they
come with ϵx0 to a real positive power. The displayed terms
above are the relevant ones at low energies for solving (15).

Moreover these leading terms are invariant under the
discrete scaling transformation and thus we have DSI.
As a result, applying (15) will necessarily give the energy
spectrum (11) for ϵx0 ≪ 1 with E0 a number depending on
UðNÞ and the cutoff x0.
We can use our expression (9) for νN in terms of λN to

find:

En

E0

¼ − exp

�
−

NπnαNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λN − λN;c

p ð1þOðλN − λN;cÞÞ

�
; ð17Þ

characteristic of the BKT scaling for λN → λN;c.
With the above considerations we can say that a CSI to

DSI transition, at ϵx0 ≪ 1, is a generic feature of our
models is for the consequences of DSI to be relevantinde-
pendent of the completion of the potential near the origin.
This is in complete analogy with the N ¼ 1 case. Thus, the
Hamiltonian (1) need only be effective for the conse-
quences of DSI to be relevant.

ACKNOWLEDGMENTS

The work of D. K. B. was supported in part by the Israel
Science Foundation under Grant No. 504/13 and is cur-
rently supported by a key grant from the National Science
Foundation of China with Grant No. 11235010. This work
was also supported by the Israel Science Foundation Grant
No. 924/09. D. K. B. would like to thank the Technion and
University of Haifa at Oranim for their support. D. K. B.
would also like to thank Matteo Baggioli and Yicen Mou
for reading early drafts.

[1] S. L. Adler, Phys. Rev. 177, 2426 (1969).
[2] J. S. Bell and R. Jackiw, Nuovo Cimento A 60, 47 (1969).
[3] J. G. Esteve, Phys. Rev. D 34, 674 (1986).
[4] B. R. Holstein, Am. J. Phys. 61, 142 (1993).
[5] K. M. Case, Phys. Rev. 80, 797 (1950).
[6] V. de Alfaro, S. Fubini, and G. Furlan, Nuovo Cimento Soc.

Ital. Fis. 34, 569 (1976).
[7] L. D. Landau, Quantum Mechanics: Non-relativistic Theory

(Butterworth-Heinemann, Oxford, 1991).
[8] H. E. Camblong, L. N. Epele, H. Fanchiotti, and C. A. G.

Canal, Phys. Rev. Lett. 85, 1590 (2000).
[9] G. N. J. Añaños, H. E. Camblong, and C. R. Ordóñez, Phys.

Rev. D 68, 025006 (2003).
[10] H.W. Hammer and B. G. Swingle, Ann. Phys. (N.Y.) 321,

306 (2006).
[11] E. Braaten and D. Phillips, Phys. Rev. A 70, 052111 (2004).
[12] D. B. Kaplan, J.-W. Lee, D. T. Son, and M. A. Stephanov,

Phys. Rev. D 80, 125005 (2009).
[13] V. Efimov, Phys. Lett. B 33, 563 (1970).

[14] V. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971).
[15] E. Braaten and H.-W. Hammer, Phys. Rep. 428, 259

(2006).
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