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Extreme black holes have been argued to be unstable, in the sense that under linearized gravitational
perturbations of the extreme Kerr spacetime the Weyl scalar ψ4 blows up along their event horizons at very
late advanced times. We show numerically, by solving the Teukolsky equation in 2þ 1D, that all
algebraically independent curvature scalar polynomials approach limits that exist when advanced time
along the event horizon approaches infinity. Therefore, the horizons of extreme black holes are stable
against linearized gravitational perturbations. We argue that the divergence of ψ4 is a consequence of the
choice of a fixed tetrad, and that in a suitable dynamical tetrad all Weyl scalars, including ψ4, approach their
background extreme Kerr values. We make similar conclusions also for the case of scalar field perturbations
of extreme Kerr.
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Black hole (BH) stability has been an important question
in the understanding of their physical reality. Rigorous
analyses have proved linear stability for Schwarzschild
BHs for regular initial data [1]. For the rotating Kerr BH,
linear stability has been proved rigorously only for mass-
less scalar field perturbations for the nonextremal case [2],
although mode stability has been demonstrated also for
gravitational perturbations [3].
An interesting class of BHs is that of extreme ones: BHs

which have vanishing surface gravity. In classical general
relativity extreme BHs (maximally charged or maximally
spinning BHs) behave differently, both physically and
mathematically, from nonextremal ones, in a way that
draws much attention to them and to nearly extreme BHs
[4]. Extreme BHs also play an important role in super-
symmetric and string theories, where it is easier to describe
them quantum mechanically because of their vanishing
surface gravity and consequently vanishing temperature for
Hawking radiation [5].
Recently, it was argued that extreme BHs are unstable:

fields (massless scalar fields or gravitational perturbations)
or their transverse derivatives grow unboundedly along
their event horizons (EHs). Specifically, Aretakis argued
that extreme Reissner-Nordström BHs are linearly unstable
under scalar field perturbations [6]: certain transverse
derivatives of the time evolution of regular initial data
grow unboundedly with advanced time.
Lucietti and Reall expanded Aretakis’s result also for

linearized vacuum gravitational perturbations of extreme
Kerr BHs (EK) [7] and showed that for axisymmetric
perturbations certain second transverse derivatives of the
Weyl scalar ψ4 and certain sixth transverse derivatives of
the Weyl scalar ψ0 blow up in the Hartle-Hawking (HH)
tetrad along the EH with advanced time. The HH tetrad is a

null tetrad in which the Kinnersley null-tetrad basis vectors
l, n are rescaled with the horizon function, so that they are
regular on the EH, and specifically, for any finite value of
advanced time the Weyl scalars on the EH are finite. For
nonaxisymmetric gravitational perturbations Casals et al.
showed that the HH Weyl scalar ψ4 itself blows up along
the EH and that each additional transverse derivative
increases the blowup rate [8,9], and they concluded that
spacetime curvature diverged. (Note that it was not claimed
in [8] that curvature scalar invariants blow up. See also [9].)
Lucietti and Reall [7] also suggested that when full non-
linearity is considered, spacetime would evolve such that
either a null singularity would evolve instead of an EH, or
spacetime would evolve to a nonextreme BH. (See also
[10].) The suggestion that EK are linearly unstable and that
spacetime may evolve a null singularity instead of a regular
EH for EK is highly troubling in view of the importance of
extreme BHs in both general relativity and string theory.
Our numerical experiment is to set a perturbation in the

so-called Beetle-Burko scalar ξ [11], which in our case
measures the deviation of curvature invariants from their
background values. Horizon instability would imply that
the perturbation ξ would not tend to a limit along the EH.
The advantage of our approach is that we make an invariant
statement on which all observers would agree. In practice,
we solve the Teukolsky equation [12] for the Weyl scalars
ψ4 and ψ0 (from which we construct ξ) in the HH tetrad for
EK, using compactified hyperbolical coordinates similar to
those used, say, in Ref. [13].
The major technological innovation in this study is

boundary conditions (BC) that allow us to track the
evolution of the fields on the EH accurately: the fields
are actually “evolved” on the boundary (which is the EH in
our computational setup) as opposed to computed using the
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BC in conjunction with data from the “bulk.” The more
common approach is to evolve the fields in the bulk, i.e.
compute the source term in the bulk and update the values
of the field via time stepping, and then use this evolved data
in the bulk along with the imposed BC (or a simple
extrapolation) to compute the fields on the boundary.
This approach has the advantage that it is computationally
cheaper and fairly simple to implement. However, it
inherently relies on a high degree of smoothness in the
solution, thus resulting in some inaccuracy in cases wherein
a sharp physical feature is present. Given that is precisely
what is expected here, we took the alternate approach of
evolving the fields everywhere, including at the boundary
itself. To do this, the source term is computed at the
boundary and the field values are updated at every time
step. Now, computing the source term involves
computing derivatives at the boundary, and that is done
using a high-order, one-sided, finite-difference stencil. This
approach generated results that were consistent with several
of the test cases that we used to validate our computational
framework. Detailed results from these tests appear below.
The numerical scheme that we used is presented in detail

in Ref. [14] along with several stability, convergence and
other tests. We summarize the approach as follows: (i) the
Teukolsky equation, written in hyperboloidal coordinates
(based on the ingoing Kerr coordinate system) is first cast
into a ð2þ 1ÞD form by separating out the axisymmetric φ
dependence; (ii) the resulting equation is rewritten in first-
order hyperbolic form; and (iii) a time-explicit, two-step
Richtmeyer-Lax-Wendroff, second-order finite-difference
evolution scheme is implemented. We also developed a
new fifth-order Weighted Essentially Non-Oscillatory
(WENO) finite-difference scheme [15] with third-order
Shu-Osher explicit time stepping [16]. This method was
used to cross-check the results obtained with the second-
order code, and to obtain results thatwere inaccuratewith the
second-order code. The initial data for the evolved fields is
specified as a “truncated” (in order for it to be compactly
supported) Gaussian pulse placed in the strong field, with or
without support on the EH: in the code’s compactified
hyperboloidal coordinates (ρ, τ) [13], the Gaussian pulse is
centered at ρ ¼ 1.0M or 5.0M, respectively, and is of width
0.1M with a truncation window of 4.0M width.
We next find numerically the behavior of the Weyl

scalars ψ0 and ψ4 and their ∂ρ gradients along the EH as
functions of advanced time v (“Eddington coordinate”).
The gradient ∂ρ ∝ ∂r, r being the ingoing Kerr radial
coordinate. We note that ρ is regular on the EH, so that
these gradients are effectively gradients with respect to a
Kruskal-like coordinate. We further note that as v → ∞ the
∂ρ gradients of ψ4, ψ0 and also of a scalar field ϕ become
transverse (i.e., ∂ρ becomes proportional to ∂u, u being
retarded time), with the relative error at finite late advanced
times decaying like v−2. For simplicity of discussion, we
refer to ∂ρ as a transverse gradient hereafter.

Figure 1 shows the local power indices (LPIs) [17] for
the axisymmetric (m ¼ 0) case. For the field ζðvÞwe define
the LPI q as q ≔ −vζ;vζ−1. We denote by ψ ðnÞ

i the nth
transverse derivative of ψ i. We find for m ¼ 0 that for
n ¼ 0, 1, 2, 3 the corresponding q values are 2; 0; 0;−1 for
ψ4 and 6,5,4,1 for ψ0. The instability in the field ψ4 is
manifest in its third derivative, in accordance with the
conclusions of [7]: q < 0 implies unbounded growth with
advanced time along the EH. (We comment that the results
here have initial data that are unsupported on the EH. For
initial data that are supported on the EH we find results in
agreement with [7].)
In Fig. 2 we show the fields ψ4 and ψ0 for the

nonaxisymmetric case (m ¼ 2). Our results for ψ4 are in
agreement with the results of [8,18] for n ¼ 0, 1, 2, 3; that

is, the late time behavior is found to be ψ ðnÞ
4 ðv ≫ MÞ ∼

v3=2þn and ψ ðnÞ
0 ðv ≫ MÞ ∼ v−5=2þn.

The gravitational case is Ricci flat, and therefore all
scalars made with R or Rμν or their derivatives vanish
identically. Curvature therefore depends only on the Weyl
tensor. A general spacetime in 4D has 14 algebraically
independent scalars that determine the curvature [19]. In
vacuum there are only four nonvanishing such scalars,
because any curvature invariant can be expressed as a
function of a set of the six fundamental (real) invariant
eigenvalues of the Weyl tensor. Since the traces of both
the Weyl tensor and its dual vanish, there are four
independent scalars left [11]. These scalars may be taken
to be the real and imaginary parts of the invariants I, J,
where I ≔ C̃μνρσC̃

μνρσ and J ≔ C̃μνρσC̃
ρσ
αβC̃

αβμν, C̃μνρσ being
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FIG. 1. The LPIs for the real parts of (a) ψ4 and (b) ψ0 and for
their first three ∂ρ derivatives along the EH as functions of
advanced time, v, for axisymmetric (m ¼ 0) perturbations of EK.
The inset in (b) shows ∂2

ρψ0 as a function of v. The imaginary
parts of the fields behave qualitatively similarly at late times.
Initial data have no support on the EH. Data here and in the
figures below are extracted on the surface θ ¼ π=4.
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the self-dual of the Weyl tensor. Our spacetime is even
more restricted, because the HH tetrad is a transverse frame
(ψ1 ¼ 0 ¼ ψ3). Since the background is a known EK
spacetime, specifically the Weyl scalar ψ2 is known and
is constant along the EH, only two algebraically indepen-
dent curvature scalars remain. These scalars can be taken to
be the real and imaginary parts of ξ ≔ ψ0ψ4 [11].
We show next that along the EH of EK both the real and

the imaginary parts of ξ vanish at late advanced times, so
that I → 3ψ2

2 and J → −ψ3
2. As ψ2 is that of the back-

ground EK, i.e., finite along the EH, both I and J have
limits that exist as v → ∞. As I, J exhaust all the
algebraically independent curvature invariants, all scalars
made from polynomials in the Weyl tensor have limits that
exist as v → ∞. We therefore show that the EH of EK does
not evolve an instability in ξ.
Specifically, Fig. 3 shows the real and imaginary parts of

ξ for both the axisymmetric and nonaxisymmetric cases
along the EH of EK as functions of advanced time. We find
that in the axisymmetric case ℜðξÞ;ℑðξÞ ∼ v−8 for v ≫ M.
In the nonaxisymmetric case ℜðξÞ;ℑðξÞ ∼ v−1 for v ≫ M,
so that in either case spacetime curvature along the EH
decays to that of the EK background at late advanced times.
As argued above, this demonstrates that the EH of the EK
spacetime is indeed stable against linearized gravitational
perturbations [20].
One may ask why the blowing up of the Weyl scalar ψ4

does not signify instability, as claimed by [7,8]. After all,
ψ4 is a scalar under coordinate transformations, and
therefore all observers would presumably agree on its
blowing up. The resolution of this conundrum is that the

Weyl scalars are not invariant under transformations of the
tetrad vectors. Indeed, under type-III rotations the null
tetrad basis vectors l → A−1l, n → An, m → eiϑm, and
m̄ → eiϑm̄, where the two real parameters A, ϑ describe
rescaling and rotation, correspondingly, of the tetrad
vectors [21]. We can choose ϑ in a way that makes, say,
ℜðψ4Þ ¼ 0, or if we choose another value of ϑwe can make
ℑðψ4Þ ¼ 0. More importantly, we can choose the rescaling
function A ¼ M=v; i.e., as our null observer moves along
the EH she continuously rescales her tetrad vector l linearly
in advanced time, and her tetrad vector n inversely in
advanced time. Correspondingly, ψ4 → ψ 0

4 ∼ v−2ψ4, and
ψ0 → ψ 0

0 ∼ v2ψ0. Therefore, ψ 0
4 ∼ v−1=2 and ψ 0

0 ∼ v−1=2 as
v ≫ M. We refer to this dynamical HH tetrad as the
symmetric tetrad. We conclude that the blowup of ψ4 in
the HH tetrad is a consequence of a problem with the tetrad:
if one generalizes the tetrad to a dynamical HH tetrad (“the
symmetric tetrad”) in which the basis vectors are contin-
uously rescaled as discussed above, both Weyl scalars ψ 0

4

and ψ 0
0 decay to zero. The Beetle-Burko scalar ξ is,

however, invariant also under tetrad vector transformations,
and therefore is unchanged by this rescaling. Both curva-
ture invariants I, J approach their EK values at late
advanced times along the EH. EK are stable because there
exist observers for whom initially small ψ 0

4;ψ
0
0 remain

small along the EH and decay to zero. Notice that a family
of observers, separated by time translations, who fall into
EK and make measurements in the symmetric tetrad are
non-parallel-propagated observers. In this family of observ-
ers, asymptotically late daughters see no instability.
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FIG. 2. The (real parts of the) fields (a) ψ4 and (b) ψ0 and their
first three transverse derivatives along the EH as functions of
advanced time for nonaxisymmetric (m ¼ 2) perturbations of
EK, for initial data that have support on the EH. In panel (a) we
show four reference lines, corresponding to v3=2þn, and in panel
(b) we show the reference lines for v−5=2þn. The imaginary parts
behave qualitatively similarly at late times.
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FIG. 3. The real and imaginary parts of ξ as functions of
advanced time along the EH of EK. Panels (a) and (b) are for the
real and imaginary parts, respectively, of the axisymmetric
(m ¼ 0) case, and panels (c) and (d) are for the real and imaginary
parts, respectively, of the nonaxisymmetric (m ¼ 2) case. The
m ¼ 2 results are obtained for initial data having support on the
EH, and the m ¼ 0 results are obtained for initial data that do not
have support on the EH.
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Our analysis does not show that any curvature scalar
of higher order (i.e., a curvature scalar that includes
gradients of the Weyl scalars) does not blow up along
the EH with infinite advanced time. However, we cannot
rule out the possibility that curvature scalars of high enough
orders do. If that is the case, there might be a nonscalar
polynomial singularity (“whimper singularity”) evolving,
which would be asymptotically delayed [22]. Whimper
singularities have the feature that in a suitably rotated tetrad
the singular behavior disappears. That is, they signify a
problem with parallel transport, not a genuine singularity of
spacetime, in the sense that there could be (null) observers
who are not parallelly propagated, who experience no
singular behavior.
Consider next a scalar field. Figure 4 shows the LPIs for

the axisymemtric (m ¼ 0) and nonaxisymmetric (m ¼ 2)
cases. In both cases we obtain asymptotic LPI values that
agree with [8]. Specifically, in the axisymmetric case we
find q ¼ 2; 2; 0;−1 and in the nonaxisymmetric case q ¼
1=2;−1=2;−3=2;−5=2 for n ¼ 0, 1, 2, 3, respectively. We
find that the scalar field itself decays to zero with advanced
time, but transverse gradients thereof blow up, consistent
with previous results.

Consider for simplicity an EH null observer on the
rotation axis of EK. The gradient of the scalar field,
∂ρϕ, blows up for m ¼ 2 with advanced time. However,
observers who use different coordinates disagree on
what the gradient is. The only observer-independent way
to consider the gradient is to consider a scalar under
coordinate transformations. Specifically, ð∇αϕ∇αϕÞ1=2 ∼
ð∂ρϕ∂vϕÞ1=2 ∼ v−1=2 → 0 as v → ∞. Consider next
higher-order gradients, say, ∇α1;…;αnϕ. Also in this
case, the scalar ð∇α1;…;αnϕ∇α1;…;αnϕÞ1=2 ∼ v−1=2 vanishes
at infinite advanced time.
We cannot calculate the perturbations of the Riemann

tensor in the scalar field case, as we have a fixed Kerr
background. However, we can use the (linearized)
Einstein equations to find the Ricci tensor: we write
the Einstein equations as Rμν ¼ 8πðTμν − Tgμν=2Þ. We
can then calculate the scalar field energy-momentum
tensor from the scalar field perturbation ϕ, Tμν½ϕ� ¼
ðgμαgνβ þ gμβgνα − gμνgαβÞ∂αϕ∂βϕ. The Ricci scalar R ∼
ð∂ρϕ∂vϕÞ ∼ v−1 → 0 as v → ∞ for m ¼ 2. The curvature
scalar RμνRμν ∼ ð∂ρϕ∂vϕÞ2 ∼ v−2 in the nonaxisymmetric
case. We conjecture that all other curvature scalar poly-
nomials made with R and Rμν are also well behaved as
v → ∞ along the EH. We cannot, however, find a compete
set of algebraically independent scalar polynomials as we
did in the gravitational case.
We next examine scalars constructed from gradients of R

and Rμν. Consider ∇μR∇μR. Comparing with R2, we now
introduce one additional ∂ρ and one additional ∂v deriva-
tive. The effects of both tend to cancel each other, and this
scalar behaves like v−2 in the nonaxisymmetric case. We
also find that scalars such as ∇σRμν∇σRμν ∼ v−2 and
Rμν∇μR∇νR ∼ v−3. We did not find a scalar made with
derivatives of the curvature that does not decay to zero. We
propose that in this case, neither a scalar polynomial
singularity nor a nonscalar polynomial one evolves.
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