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In this article, we consider the magnetic corrections to π-π scattering lengths in the frame of the linear
sigma model. For this, we consider all the one-loop corrections in the s, t, and u channels, associated to the
insertion of a Schwinger propagator for charged pions, working in the region of small values of the
magnetic field. Our calculation relies on an appropriate expansion for the propagator. It turns out that
the leading scattering length, l ¼ 0 in the S channel, increases for an increasing value of the magnetic field,
in the isospin I ¼ 2 case, whereas the opposite effect is found for the I ¼ 0 case. The isospin symmetry is
valid because the insertion of the magnetic field occurs through the absolute value of the electric charges.
The channel I ¼ 1 does not receive any corrections. These results, for the channels I ¼ 0 and I ¼ 2, are
opposite with respect to the thermal corrections found previously in the literature.
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I. INTRODUCTION

Scattering lengths were introduced a long time ago in
nuclear physics as an important quantity in order to
calculate low-energy interactions between nucleons and
also in pion-nucleon systems. The scattering lengths of
two-pion systems are relevant in order to explore QCD
predictions in the low-energy sector. They were first
measured by Rosellet et al. [1]. New measurements have
been reported using the formation of pionium atoms in
the DIRAC experiment [2], establishing for the S-wave
π-π scattering lengths a 4% difference between scattering
lengths in the isospin channels I ¼ 0 and I ¼ 2. Another
experimental measurement can be explored in the heavy
quarkonium π0-π0 transitions [3]. In the past, thermal
effects on scattering lengths have been considered by many
authors in the literature, invoking effective approaches as
the Nambu–Jona-Lasinio model [4] or the linear sigma
model [5]. A common result, at least qualitatively, is that

the projection of the scattering lengths in the isospin I ¼ 0
channel grows, whereas it diminishes in the I ¼ 2 channel
for an increasing temperature.
In peripheral heavy ion collisions, huge magnetic fields

appear. In fact, the biggest fields existing in nature. The
interaction between the produced pions in those collision
may be strongly affected by the magnetic field. In this
article, we analyze, in the frame of the linear sigma model,
the influence of the magnetic field on the π-π scattering
lengths. For this purpose, we will use the weak field
expansion of the bosonic Schwinger propagator [6]. We
present in detail the different analytical techniques we have
used for our calculations.

II. LINEAR SIGMA MODEL
AND π-π SCATTERING

The linear sigma model was introduced by Gell-Mann
and Lévy [7] as an effective approach for describing chiral
symmetry breaking via explicit and spontaneous mecha-
nism. In the phase in which the chiral symmetry is broken,
the model is given by

L ¼ ψ̄ ½iγμ∂μ −mψ − gðsþ iπ⃗ · τ⃗γ5Þ�ψ

þ 1

2
½ð∂π⃗Þ2 þm2

ππ⃗
2� þ 1

2
½ð∂σÞ2 þm2

σs2�

− λ2vsðs2 þ π⃗2Þ − λ2

4
ðs2 þ π⃗2Þ2 þ ðεc − vm2

πÞs: ð1Þ
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In this expression, v ¼ hσi is the vacuum expectation
value of the scalar field σ. The idea is to define a new field s
such that σ ¼ sþ v. Obviously, hsi ¼ 0. ψ corresponds to
an isospin doublet associated to the nucleons, π⃗ denotes the
pion isotriplet field, and cσ is the term that breaks explicitly
the SUð2Þ × SUð2Þ chiral symmetry. ϵ is a small dimension-
less parameter. It is interesting to remark that all fields in the
model have masses determined by v. In fact, the following
relations are valid: mψ ¼ gv, m2

π ¼ μ2 þ λ2v2, and m2
σ ¼

μ2 þ 3λ2v2. Perturbation theory at the tree level allows us to
identify the pion decay constants as fπ ¼ v. This model has
been considered in the context of finite temperature by
several authors, discussing the thermal evolution of masses,
fπðTÞ, the effective potential, etc. [8–15].
Since our idea is to use the linear sigma model for

calculating π-π scattering lengths, let us remind the reader
briefly of the formalism. A scattering amplitude has the
general form [16,17]

Tαβ;δγ ¼ Aðs; t; uÞδαβδδγ þ Aðt; s; uÞδαγδβδ
þ Aðu; t; sÞδαδδβγ; ð2Þ

where α, β, γ, and δ denote isospin components.
By using appropriate projection operators, it is possible

to find the isospin-dependent scattering amplitudes

T0 ¼ 3Aðs; t; uÞ þ Aðt; s; uÞ þ Aðu; t; sÞ ð3Þ
T1 ¼ Aðt; s; uÞ − Aðu; t; sÞ; ð4Þ
T2 ¼ Aðt; s; uÞ þ Aðu; t; sÞ; ð5Þ

where TI denotes a scattering amplitude in a given isospin
channel.
As is well known [16], the isospin-dependent scattering

amplitude can be expanded in partial waves TI
l ,

TI
lðsÞ ¼

1

64π

Z
1

−1
dðcos θÞPlðcos θÞTIðs; t; uÞ: ð6Þ

Below the inelastic threshold, the partial scattering
amplitudes can be parametrized as [18]

TI
l ¼

�
s

s − 4mπ2

�1
2 1

2i
ðe2iδIlðsÞ − 1Þ; ð7Þ

where δl is a phase shift in the l channel. The scattering
lengths are important parameters in order to describe low-
energy interactions. In fact, our last expression can be
expanded according to

ℜðTI
lÞ ¼

�
p2

m2
π

�
l
�
aIl þ

p2

m2
π
bIl þ � � �

�
: ð8Þ

The parameters aIl and bIl are the scattering lengths and
scattering slopes, respectively. In general, the scattering
lengths obey ja0j > ja1j > ja2j… If we are only interested

in the scattering lengths aI0, it is enough to calculate the
scattering amplitude TI in the static limit, i.e., when
s → 4m2

π , t → 0, and u → 0:

aI0 ¼
1

32π
TIðs → 4m2

π; t → 0; u → 0Þ: ð9Þ

III. ONE-LOOP MAGNETIC CORRECTIONS
FOR π-π SCATTERING LENGTHS

The tree-level diagrams shown in Fig. 1, where the
continuum line denotes a pion and the dashed line denotes a
sigma meson, contribute to the π-π scattering amplitude.
The diagram with a sigma exchanged meson has to be
considered also in the crossed t and u channels. From these
diagrams, it is possible to get the results shown in Table I.
The isospin-dependent scattering amplitudes at tree level
have the form

T0ðs; t; uÞ ¼ −10λ2 −
12λ4v2

s −m2
σ
−

4λ4v2

t −m2
σ
−

4λ4v2

u −m2
σ
; ð10Þ

T1ðs; t; uÞ ¼ 4λ4v2

u −m2
σ
−

4λ4v2

t −m2
σ
; ð11Þ

T2ðs; t; uÞ ¼ −4λ2 −
4λ4v2

t −m2
σ
−

4λ4v2

u −m2
σ
: ð12Þ

Note that the linear sigma model is in better agreement
at tree level with the experimental results than first-order
chiral perturbation theory.
The magnetic corrections to the scattering lengths will be

calculated using an appropriate expansion of the Schwinger
bosonic propagator, which is given by

iΔðkÞ ¼
Z

∞

0

ds
cosðqBsÞ e

isðk2k−k2⊥
tanðqBsÞ
qBs −m2

πþiϵÞ: ð13Þ

In the above expression, kk and k⊥ represent the parallel
and perpendicular components of the momentum k with
respect to the external magnetic field B. In general, as is
well known, this propagator includes a phase factor, which,
however, does not play any role in our calculation. We
proceed by taking the weak field expansion [6]

FIG. 1. Tree-level diagrams.
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iΔðkÞ ¼ i
k2 −m2

π þ iϵ
−

iðqBÞ2
ðk2 −m2

π þ iϵÞ3

−
2iðqBÞ2k2⊥

ðk2 −m2
π þ iϵÞ4 : ð14Þ

Certainly, only the charged pions will receive a magnetic
correction. There are many diagrams that contribute to the
pion-pion scattering amplitude at the one-loop level. For
each one of these diagrams, we have to add also the
corresponding crossed t- and u-channel diagrams. In Fig. 2,
we have shown only the s-channel contribution.
Explicit expressions will be given only for diagram (a)

and its equivalent diagram in the t channel. When it
corresponds, symmetry factors, isospin index contractions,
and multiplicity factors should be included. We work in the
center-of-mass momentum p ¼ ð2mπ; 0⃗Þ. For our calcu-
lation, since the sigma meson has a much bigger mass than
the pions, its propagator will be contracted to a point, the
so-called high mass limit. A numerical treatment, however,
confirms the validity of such approximation in our case. For
diagram (a) in Fig. 2, we have

iMa;s ¼ −2λ4Ia
Z

d4k
ð2πÞ4 iΔðk0; k⃗; mπÞ

× iΔðk0 − 2mπ; k⃗; mπÞ: ð15Þ

The corresponding t-channel diagram in Fig. 3, where no
external momentum flows through the loop, is given by

iMa;t ¼ −4λ4Ia
Z

d4k
ð2πÞ4 ½iΔðk0; k⃗; mπÞ�2; ð16Þ

where Ia is an isospin term associated to this diagram for the
corresponding channel, which emerges from the contraction
of the external pion isospin indices, which is given by

Ia ¼ ð7δαβδγδ þ 2δαγδβδ þ 2δαδδβγÞ; ð17Þ

where the greek letters denote isospin indices. To get the
scattering lengths in the different isospin channels, we have
used appropriate projectors, contracting them with the
amplitudes [see Eq. (2)] that emerged from our calculation.
Notice that for the determination of the scattering lengths

we only need the imaginary part of our diagrams. It is
natural in this context to choose the π-π center-of-mass
frame of reference for carrying on the calculations in the s
channel. In fact, the scattering lengths are defined in this

TABLE I. Comparison between the experimental values [19],
first-order prediction from chiral perturbation theory [20], and
our results at tree level.

Experimental
results

Chiral perturbation
theory

Linear sigma
model

a00 0.218� 0.02 7m2
π

32πf2π
¼ 0.16 10m2

π

32πf2π
¼ 0.22

b00 0.25� 0.03 m2
π

4πf2π
¼ 0.18 49m2

π

128πf2π
¼ 0.27

a20 −0.0457� 0.0125 −m2
π

16πf2π
¼ −0.044 −m2

π

16πf2π
¼ −0.044

b20 −0.082� 0.008 −m2
π

8πf2π
¼ −0.089 −m2

π

8πf2π
¼ −0.089

a11 0.038� 0.002 m2
π

24πf2π
¼ 0.030 m2

π

24πf2π
¼ 0.030

b11 … 0 m2
π

48πf2π
¼ 0.015

FIG. 2. Relevant one-loop diagrams in the s channel.
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β

FIG. 3. Diagram (a) for the corresponding t channel.
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frame. Let us consider first the s-channel diagram (a). The
idea is to calculate the loop using the weak expansion for
the propagators. Then, we get expressions that involve free
propagators or powers of them. We found it quite useful to
use the following technique, introduced in Ref. [21], where
a proper time representation for the free propagators is
used. The one-loop diagram, at the lowest order, i.e., using
normal free propagators

iLðpÞ ¼
Z

d4k
ð2πÞ4DðkÞDðp − kÞ; ð18Þ

can be written in terms of a proper time representation for
each propagator,

DðkÞ ¼
Z

∞

0

dseisðk2−m2
πþiϵÞ; ð19Þ

as

iLðpÞ ¼
Z

d4k
ð2πÞ4

Z
∞

0

ds1ds2e−iðs1þs2Þm2
π

× eis1ðp−kÞ2eis2k2 : ð20Þ

After integrating the Gaussian term in the loop momen-
tum and introducing the variables

s1 ¼ s
1 − v
2

and s2 ¼ s
1þ v
2

;

we find that the imaginary part, ℑL, is given by

ℑL ¼
Z

1

0

dv
1

2πi

Z
∞

−∞

ds
s
eisð14ð1−v2Þp2−m2

πÞ: ð21Þ

Using the integral representation of the Heaviside
function, we obtain

ℑL ¼
Z

1

0

dvθ

�
1

4
ð1 − v2Þp2 −m2

π

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

p2

s
θðp2 − 4m2

πÞ; ð22Þ

where p is the total momentum that goes into the loop.
If we choose p ¼ ð2mπ; 0⃗Þ, we see that this contribution
vanishes. For higher powers in the denominators, which
appear when magnetic field terms are introduced, we will
use the following identity [22]:

1

N!

�
i∂
∂μ2

�
n
Δ ¼ Δnþ1: ð23Þ

In this way, we found that all the contributions to order
ðqBÞ2 have the general form

Lgeneral term ∝ ðqBÞ2
� ∂
∂μ2π

�
2

×
Z

ds1ds2
d4k
ð2πÞ4 e

is1ðk20−k⃗2−m2
πþiϵÞ

× eis2ððk0−2mπÞ2−k⃗2−μ2πþiϵÞ: ð24Þ
Several of the diagrams that contribute to the s channel

have this form where we have to take derivatives with
respect to a pion mass parameter, taking then, after the
derivation, all masses as the pion mass. Using the identities
shown above, we can see that at the threshold these
contributions vanish. So, the s-channel diagram, calculated
at the center-of-mass momentum p ¼ ð2mπ; 0⃗Þ, does not
contribute to the scattering lengths.
Now, we will proceed with the calculation of the

equivalent t-channel diagram. At the end, we have to also
take into account the u-channel contribution, which is,
however essentially the same as in the t channel. For
this calculation, we will invoke some properties of the
Hurwitz-ζ function. If we consider (16), including the
coupling, the isospin term, and the magnetic field, integrat-
ing the transverse momenta and the proper times, we get

iMa;t ¼ −
8λ4πqB
ð2πÞ4

X∞
l¼0

Z
dk0dk3

×
ð−1Þ

ðqBð2lþ 1Þ − k2k þm2
π − iϵÞ2 : ð25Þ

In the above expression, k2k ¼ k20 − k23. Using the mass

derivative, and the Plemelj decomposition ða� iϵÞ−1 ¼
Pð1=aÞ ∓ iπδðaÞ, where P is the Cauchy principal value,
we get

iMa;t ¼ −
8λ4πqB
ð2πÞ4

� ∂
∂m2

π

�

×
X∞
l¼0

Z
dk0dk3iπδðqBð2lþ 1Þ − k2k þm2

πÞ:

ð26Þ
After some change of variables, the integration in k0
gives us

iMa;t ¼ −
8λ4π2

ð2πÞ4 i
� ∂
∂m2

π

�

×
Z

dk3
qBffiffiffiffiffiffiffiffiffi
2qB

p ζ

�
1

2
;
1

2
þ k23 þm2

π

2qB

�
; ð27Þ

where we have used the Hurwitz-ζ function

ζðs; qÞ ¼
X∞
n¼0

1

ðqþ nÞs : ð28Þ

We may use the identity [23]
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ζðs; aÞ ¼ 1

2
a−s þ a1−s

s − 1
þ Zðs; aÞ

ΓðsÞ ; ð29Þ

where Zðs; aÞ in the large-a (Poincaré) asymptotic expan-
sion takes the form

Zðs; aÞ ∼
X∞
k¼1

B2k

ð2kÞ!
Γð2kþ s − 1Þ

a2kþs−1 : ð30Þ

In our case, a ¼ 1
2
þ 1

2x, where x ¼ qB
k2
3
þm2

π
. Notice that a large-

a value corresponds to a small magnetic field. Expanding
around x ¼ 0, we get

iMa;t ¼ −
8λ4π2qB

ð2πÞ4 ffiffiffiffiffiffiffiffiffi
2qB

p i

� ∂
∂m2

π

�

×
Z

dk3

�
−

ffiffiffi
2

pffiffiffi
x

p −
x3=2

12
ffiffiffi
2

p þO½x�7=2
�
: ð31Þ

Keeping only the magnetic contribution ðqBÞ2, after
integrating in k3, finally, we find for the t-channel
contribution

iMa;t ¼
8λ4π2

ð2πÞ4 i
� ∂
∂m2

π

��ðqBÞ2
12m2

π

�
¼ −

λ4iðqBÞ2
24π2m4

π
: ð32Þ

All the other diagrams reduce to one of the previous
cases, once the sigma propagator is cut, i.e., when the
approximation Δσðk0; k⃗; mσÞ ≈ − i

m2
σ
is used.

After taking all the diagrams into account for the one-
loop magnetic corrections to the π-π scattering amplitudes,
we get the amplitude in the s channel,

ABðs; t; uÞ ¼
�

1
4m2

π−m2
σ

�
2
�
qB
mπ

�
2ðλ6v2Þ

4π2

−
2
�
qB
m2

π

�
2ðλ8v4Þ

6π2m4
σ

; ð33Þ

and for the t and u channels,

ABðt; s; uÞ ¼ ABðu; t; sÞ

¼ −
2
�
qB
m2

π

�
2ðλ8v4Þ

2π2m4
σ

−
2
�
qB
m2

π

�
2ðλ8v4Þ

6π2m4
σ

þ
2
�
qB
m2

π

�
2ðλ8v4Þ

6π2m4
σ

−
2
�
qB
m2

π

�
2ð5λ6v2Þ

12π2m4
σ

−
2
�
qB
m2

π

�
2ðλ6v2Þ

12π2m2
σ

−
2λ4

�
qB
m2

π

�
2

24π2
þ
2
�
qB
mπ

�
2ðλ6v2Þ

4π2m4
σ

:

ð34Þ

IV. RESULTS AND CONCLUSIONS

The magnetic corrections were calculated analytically.
The different parameters in our expressions are renor-
malized at B ¼ 0. The linear sigma model, excluding the
nucleons, has three parameters: m2

π , fπ , and λ2. The first
two parameters, m2

π and fπ , are given by experiments,
and the third one is a free parameter. Notice that fπ is
related to the vacuum expectation value v. In fact, at tree
level, fπ ¼ v. The three parameters are not independent.
If instead of fπ we use the vacuum expectation value v
and consider a mass of the sigma meson mσ ¼ 700 MeV,
we have λ2, v ¼ 90 MeV; if λ2 ¼ 5.6, v ¼ 120 MeV
[24]. We know, however, that the mass of the sigma
meson is about mσ ¼ 550 MeV [25]. Therefore, we need
to find new values for λ and v associated to the new
lower mass of the sigma meson. We found λ2 ¼ 4.26 and
v ¼ 89 MeV, following the philosophy presented in
Ref. [24]. The scattering lengths associated to the isospin
channels I ¼ 0 and I ¼ 2, including our magnetic
corrections, are given by

a00ðBÞ ¼ 0.217þ 3ABðs; t; uÞ þ 2ABðt; s; uÞ
32π

; ð35Þ

a20ðBÞ ¼ −0.041þ 2ABðt; s; uÞ
32π

: ð36Þ

The behavior of the normalized scattering lengths
a0
0
ðBÞ
a0
0

and
a2
0
ðBÞ
a2
0

is shown in Fig. 4.

The channel I ¼ 2 corresponds to the most symmetric
state for a two-pion state in the isospin space. The fact that
the scattering length in this channel increases, due to
magnetic effects, shows that the interaction between pions
becomes more intense. This, in turn, can be associated to a
proximity effect between the pions. In a different context,
we have found recently similar effects when computing the
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0 qB
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FIG. 4. Scattering lengths normalized to B ¼ 0.
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correlation distance for quarks in the quark-gluon plasma.
This magnitude increases as a function of an increasing
external magnetic field [26], with the effect of temperature
being exactly the opposite. A similar result was found, this
time in the context of QCD sum rules, in which the effects
of the magnetic field increase the continuum threshold [27],
whereas temperature induces the opposite effect. We see
that the results found in this article are consistent with this
general picture.
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