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We find the general analytical solution of the viscous relativistic hydrodynamic equations (in the absence
of bulk viscosity and chemical potential) for a Bjorken expanding fluid with an ideal gas equation of state
and a constant shear viscosity relaxation time. We analytically determine the hydrodynamic attractor of this
fluid and discuss its properties. We show for the first time that the slow-roll expansion, a commonly used
approach to characterize the attractor, diverges. This is shown to hold also in a conformal plasma. The
gradient expansion is found to converge in an example where causality and stability are violated.
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I. INTRODUCTION

Relativistic hydrodynamics has played a key role in our
understanding of the novel properties of the quark-gluon
plasma (QGP) formed in ultrarelativistic heavy ion colli-
sions (for a review, see [1]). The basic picture is that the hot
and dense matter formed in these collisions behaves as a
relativistic fluid in which dissipative effects are surprisingly
small in comparison to other fluids in nature [2]. However,
recent experimental observations [3–9] have suggested that
the strongly interacting matter produced in small collision
systems (such as proton-nucleus and even proton-proton
collisions) also displays the same liquidlike properties
found in large nucleus-nucleus collisions. This finding
was accompanied by a number of theoretical studies on the
emergence of hydrodynamic behavior from microscopic
models (see, for instance, [10–21]), which have contributed
to assess the domain of applicability of relativistic hydro-
dynamics as an effective theory for rapidly expanding
systems.
Excluding the contribution from other conserved quan-

tities (such as baryon number), the equations of motion
of relativistic hydrodynamics stem from the conservation
laws of energy and momentum, ∇μTμν ¼ 0, with Tμν being
the energy-momentum tensor of the fluid. Quite generally,
one may write Tμν ¼ Tμν

ideal þ Πμν with Tμν
ideal being the

energy-momentum tensor of an ideal fluid constructed
using the local energy density ε and flow velocity uμ
(i.e., the standard hydrodynamic fields) and Πμν being a
dissipative contribution whose explicit form can only be
found with additional assumptions. In the Landau frame
[22] (used throughout this paper), in the absence of bulk
viscous effects Πμν ¼ πμν, with πμν ¼ Δμν

αβT
αβ being the

shear stress tensor constructed using the tensor projector

Δμν
αβ ¼ ðΔμ

αΔν
β þ Δν

αΔ
μ
βÞ=2 − ΔαβΔμν=3 defined by the pro-

jection operator transverse to the flow Δμν ¼ gμν − uμuν
(gμν is the spacetime metric). In the gradient expansion
approach [23], the dissipative fluxes, such as πμν, are
organized as a formal expansion in powers of the spacetime
gradients of the hydrodynamic fields taking into account all
the possible structures compatible with the symmetries,
whose conformal limit was originally worked out in the
Landau frame to second order in gradients in [24,25] while
Ref. [26] extended the expansion to third order.
However, in the relativistic regime this approach faces

considerable challenges since the equations of motion
obtained from this formalism generally display acausal
behavior and instabilities (at least at the linear level) [27,28]
already at first order in the gradient expansion, i.e.,
relativistic Navier-Stokes theory, which are not resolved
by the inclusion of second order derivatives of the hydro-
dynamic fields [29] unless some type of resummation
involving the hydrodynamic fields is employed [30].
With the recent evidence that the gradient series has zero
radius of convergence in the relativistic regime both at
strong coupling [31,32] and in kinetic theory models
[33,34], it is unlikely that any of these problems are
resolved perturbatively by going to even higher orders
in the expansion. This motivates the search for a mean-
ingful definition of viscous relativistic hydrodynamics
that does not resort to an expansion in gradients of the
hydrodynamic fields.
At least in the linear regime, causality and stability can

be obtained by extending the set of dynamical variables to
include not only the hydrodynamic fields but also the
dissipative fluxes, as in Israel-Stewart (IS) theory [35].
Other approaches include, for instance, divergence type
theories [36]. In IS πμν is defined dynamically via
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additional equations of motion, which were originally
determined by requiring that the second law of thermody-
namics is satisfied. In this approach quantities such as
πμν=ðεþ PÞ (with P ¼ PðεÞ being the equilibrium pres-
sure) are assumed to be small, though it is important to
remark that this assumption does not necessarily imply an
expansion in gradients.
An interesting property displayed by IS theory and

other more modern approaches such as [37] is that the
first-order relaxation-type equations obeyed by πμν imply
that these quantities must also be specified on the
spacelike hypersurface that defines the initial value
problem. Since the conservation laws couple the hydro-
dynamic fields to the dissipative fluxes, the solution for
the hydrodynamic fields fε; uμg is expected to be
sensitive to the choices made for the initial conditions
of πμν. In equilibrium this dependence is of course erased
but one may ask whether there is some type of non-
equilibrium regime in which such a dependence is
minimal. In this regard, one may define a nonequilibrium
hydrodynamic attractor by the condition that for a large
set of initial conditions.1 the system’s dynamics collapses
at large times onto a single encompassing behavior,
before true thermal equilibrium is reached.
This feature was observed [12] in a numerical simulation

of strongly coupled N ¼ 4 supersymmetric Yang-Mills
(SYM) theory with large number of colors undergoing
Bjorken flow [40] and its meaning was clarified in [41] via
a study of conformal IS theory also assuming Bjorken
symmetry. Since then, such dynamical attractor behavior
has been investigated in other works [20,21,30,42–45]. The
presence of an attractor solution restores the large degree of
universality usually associated with hydrodynamic behav-
ior without relying on the gradient expansion.
In Bjorken expanding systems the symmetries are so

powerfully constraining that it is possible to investigate
the large order limit of the gradient expansion in a
systematic manner [31] (the same holds for fluids
embedded in an expanding Universe [32]), which is not
feasible in less symmetric situations. This allowed the
authors of Ref. [41] to show that the hydrodynamic
attractor corresponds to a resummation of the gradient
series, establishing an interesting link between hydrody-
namics and the mathematics of resurgence theory, later
pursued by other works [32,42,46,47].
The numerically obtained attractor solutions found so far

indicate that it is possible to find universal hydrodynamic
behavior far-from-equilibrium, regardless of the details of
the initial state of the system. However, even though one
may now associate hydrodynamic behavior with such

non-equilibrium attractors, it is not straightforward to
clearly state its domain of validity or even how to clearly
define attractors (besides by explicit numerical inspection
involving a large number of initial conditions).
Given the simplicity of the hydrodynamic equations in

Bjorken flow, in this case it is possible to use different
ways to identify the non-equilibrium attractor, as dis-
cussed in [41]. One method involves defining the
boundary condition of the fields at very early times.
Another possibility is the resummation of the divergent
gradient series. The last method is the analog of the
slow-roll expansion used in cosmology [48] whose zeroth
order term already generally gives a decent appro-
ximation for the attractor in the Bjorken case. Further
progress in identifying the virtues and issues with these
approaches could be achieved by having an analytical
example where the fluid’s evolution towards the attractor
can be investigated in a simpler way.
In this paper we show that the equations of viscous

relativistic hydrodynamics (neglecting effects from bulk
viscosity and chemical potential) can be solved analytically
when the shear relaxation time is constant, the equation of
state of state is that of an ideal gas ε ¼ 3P, and the system
undergoes Bjorken expansion. Differently than other stud-
ies, here we analytically determine the hydrodynamic
attractor of this system in closed form and discuss its
properties. We perform the first study of the large order
behavior of the slow-roll expansion and compare it to the
analytical attractor. We find that the slow-roll expansion in
hydrodynamics diverges. This is also the case for con-
formal fluids. We investigate the role played by the values
of the transport coefficients on the convergence of the
gradient expansion and show that the series can actually
converge if the transport coefficients do not fulfill the
standard conditions for causality and stability determined
from well-known linearized analyses [27] (see also [49]).
We also discuss the generalized gradient expansion series
first presented in [33] and we apply it here to find solutions
of IS theory. In contrast to the other series discussed, this
one appears to converge and offers a very good description
of the analytical solution already at second order.
This paper is organized as follows. In the next section

we define the viscous hydrodynamic equations we use and
obtain their full analytical solution, under the conditions
mentioned above. We analytically determine in Sec. III the
nonequilibrium attractor and discuss several of its proper-
ties. Our conclusions and outlook are presented in Sec. IV.
Definitions: Throughout this work we use natural

units ℏ ¼ c ¼ kB ¼ 1 and Milne coordinates where xμ ¼
ðτ; x; y; ςÞ, with proper-time and spacetime rapidity defined
in terms of standard Minkowski coordinates as follows:
τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and ς ¼ tanh−1ðz=tÞ. In these coordinates,

the metric is ds2 ¼ gμνdxμdxν ¼ dτ2 − dx2 − dy2 − τ2dς2,
and the corresponding nonzero Christoffel symbols are
Γτς
ς ¼ Γς

ςτ ¼ 1=τ and Γτ
ςς ¼ τ.

1Initial conditions for the dissipative fluxes are not, in fact,
completely arbitrary. For instance, one may require the weak
energy condition, Tμνtμtν ≥ 0 where tμ is an arbitrary time-like
4-vector [38], to be satisfied. For a discussion on related topics,
see [39].
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II. ANALYTICAL SOLUTION OF VISCOUS
RELATIVISTIC HYDRODYNAMICS

IN BJORKEN FLOW

The set of viscous relativistic hydrodynamic equations
we use is given by

Dεþ ðεþ PÞθ − πμνσμν ¼ 0 ð1Þ

ðεþ PÞDuμ − Δμ
λ∇λPþ Δμ

λ∇μπ
μλ ¼ 0 ð2Þ

τRΔ
μν
αβDπαβ þ δππθπ

μν þ τππΔ
μν
αβπ

αλσβλ − 2τRΔ
μν
αβπ

α
λω

βλ

þ πμν ¼ 2ησμν; ð3Þ

where D ¼ uμ∇μ is the comoving covariant derivative,
θ ¼ ∇μuμ is the local expansion rate, σμν ¼ Δαβ

μν∇αuβ is the
shear tensor, ωμν ¼ ðΔλ

μ∇λuν − Δλ
ν∇λuμÞ=2 is the vorticity

tensor, η is the shear viscosity, and τR is the shear relaxation
time. We neglect all effects from bulk viscous pressure and
assume an ideal gas equation of state, ε ¼ 3P, at zero
chemical potential. The equations above may be derived
using the Boltzmann equation in the 14-moment approxi-
mation or in the relaxation time approximation (RTA), as
shown in Refs. [37,50,51]. In the 14-moment approxima-
tion and for a massless gas, one can show that δππ ¼ 4=3τR,
τππ ¼ 10=21τR and η ¼ ðεþ PÞτR=5 [37,50,51]. For now,
we assume a more general expression for τππ, where
τππ ¼ λτR. In this paper we further assume that τR is
constant, an assumption that plays a crucial role in
determining the analytical solution derived below.
We impose Bjorken symmetry and, thus, in our coor-

dinate system uμ ¼ ð1; 0; 0; 0Þ. This implies that only the
first and the third equations above contain nontrivial
information. The symmetries further constrain the expan-
sion rate of the fluid, θ ¼ 1=τ, and its shear tensor, σμν,
which becomes diagonal

σμν ¼ diag

�
0;−

1

3τ
;−

1

3τ
;
2

3τ

�
: ð4Þ

Furthermore, the shear stress tensor will also become
diagonal and can be described with only one independent
degree of freedom,

πμν ¼ diagð0;−π=2;−π=2; πÞ: ð5Þ

Therefore, even though homogeneous, the system is not
static and, at sufficiently early times, the gradients θ and σμν

can become large enough to drive the system far away from
local thermodynamic equilibrium. On the other hand, the
gradients of any scalar, such as the chemical potential and
temperature, are always zero, prohibiting the existence of
any heat flow or diffusion. Finally, in this geometry the
vorticity tensor is also always zero

ωμν ¼ 0: ð6Þ

The evolution of the fluid is then described by the following
set of coupled differential equations,

dε
dτ

þ ðεþ PÞ
τ

−
π

τ
¼ 0; ð7Þ

τR
dπ
dτ

þ π þ
�
4

3
þ λ

�
τR

π

τ
¼ 4

3

η

τ
: ð8Þ

It is convenient to rewrite these equations in terms
of the dimensionless field, χ ≡ π=ðεþ PÞ, and define
the dimensionless propertime variable τ̂ ¼ τ=τR,
which is the inverse Knudsen, KN ¼ 1=τ̂, in Bjorken
flow [33]. With these changes of variables, the equations
simplify to

1

ετ̂4=3
dðετ̂4=3Þ

dτ̂
¼ 4

3

χ

τ̂
; ð9Þ

and

dχ
dτ̂

þ λ
χ

τ̂
þ 4

3τ̂
χ2 þ χ −

3

4

a
τ̂
¼ 0; ð10Þ

with

a ¼ 16

9ðτRTÞ
η

s
: ð11Þ

Causality and stability around equilibrium at the linear-
ized level hold when η=ðsτRTÞ ≤ 1=2 [49], i.e., a ≤ 8=9.
Even though a ¼ 16=45 and λ ¼ 10=21 in the 14-
moment approximation, we kept a and λ above as
arbitrary constants since the general analytical solution
of these equations can be found for any a ≥ 0 and
λ ∈ R, as we show below.2

Equation (10) is a Riccati equation that can be solved
independently of (9), a direct consequence of the constant
τR assumption.3 First order nonlinear ODEs of Riccati type
can always be written as second order linear ODE’s and, as

2We note that in conformal fluids τR ∼ 1=T and η=s is
constant, which still leads to a constant a, as defined in (11).
However, there is no known analytical solution to (3) that
smoothly connects to the Navier-Stokes solution at large times.
Therefore, in this paper we only investigate the case of a
conformal fluid numerically, see Sec. III D.

3Equations similar to (9) and (10) may be derived using the
slightly more general equation of state, ε ¼ c2sP, where 0 < c2s ≤
1=3 is a constant. In this case, the equation of motion for χ would
still be of Riccati type and the general procedure used to solve
such equation, described in this section, would also lead to an
analytical solution as long as effects from bulk viscosity are still
neglected. For simplicity, in this paper we focus on the case where
c2s ¼ 1=3, as remarked before.
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a matter of fact, this can be done in the present case using a
new variable yðτ̂Þ defined via

1

y
dy
dτ̂

¼ 4

3

χ

τ̂
: ð12Þ

Inserting this into (10), provides

d2y
dτ̂2

þ
�
1þ 1þ λ

τ̂

�
dy
dτ̂

−
a
τ̂2
y ¼ 0: ð13Þ

This linear ODE can be solved and the general solution is

yðτ̂Þ ¼ Aτ̂−ðλþ1Þ=2 expð−τ̂=2Þ
×
h
M

−λþ1
2
;
ffiffiffiffiffiffiffi
λ2þ4a

p
2

ðτ̂Þ þ αW
−λþ1

2
;
ffiffiffiffiffiffiffi
λ2þ4a

p
2

ðτ̂Þ
i
; ð14Þ

where A and α are constants and Mk;μðzÞ and Wk;μðzÞ are
Whittaker functions.4 Using (14), one can find the follow-
ing analytical solution for the energy density

εðτ̂Þ ¼ ε0

�
τ̂0
τ̂

�
4=3 yðτ̂Þ

yðτ̂0Þ

¼ ε0

�
τ̂0
τ̂

�4
3
þλþ1

2

exp

�
−
τ̂ − τ̂0
2

�

×

2
64 M

−λþ1
2
;
ffiffiffiffiffiffiffi
λ2þ4a

p
2

ðτ̂Þ þ αW
−λþ1

2
;
ffiffiffiffiffiffiffi
λ2þ4a

p
2

ðτ̂Þ
M

−λþ1
2
;
ffiffiffiffiffiffiffi
λ2þ4a

p
2

ðτ̂0Þ þ αW
−λþ1

2
;
ffiffiffiffiffiffiffi
λ2þ4a

p
2

ðτ̂0Þ

3
75 ð15Þ

and the normalized shear stress tensor component

χðτ̂Þ ¼ π

εþ P
¼

3ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aþ λ2

p
− λÞM

1
2
−λ
2
;1
2

ffiffiffiffiffiffiffiffiffiffi
4aþλ2

p ðτ̂Þ − 6αW
1
2
−λ
2
;1
2

ffiffiffiffiffiffiffiffiffiffi
4aþλ2

p ðτ̂Þ

8
�
M

−1þλ
2
;1
2

ffiffiffiffiffiffiffiffiffiffi
4aþλ2

p ðτ̂Þ þ αW
−1þλ

2
;1
2

ffiffiffiffiffiffiffiffiffiffi
4aþλ2

p ðτ̂Þ
� : ð16Þ

One can see that the value of A in (14) does not enter
in either ε or π. Thus, the constants that define the initial-
value problem at τ̂ ¼ τ̂0 > 0 are ε0 and α, since the latter can
bewritten in terms of χðτ̂0Þ. One important constraint for this
solution is that α must be such that yðτ̂Þ remains non-
negative for all τ̂ ≥ τ̂0 to make sure that the energy density is
positive-definite and there are no zeros in the denominators
of the expressions above. Equations (15) and (16) define the
general analytical solution of the viscous hydrodynamic
equations in Bjorken flow with a constant relaxation time.
As such, they can be easily implemented in studies of
different hydrodynamic schemes and their comparison to
exact solutions in kinetic theory, such as [53].

III. ANALYTICAL NONEQUILIBRIUM
ATTRACTOR

In this section we investigate the solution of the hydro-
dynamic equations and the corresponding nonequilibrium

attractor. No significant change is observed when λ is taken
into account and, thus, we set λ ¼ 0 in the following (this
approximation was also used in [41]). For convenience, we
repeat the equation for χ in this case below

τ̂
dχ
dτ̂

þ 4

3
χ2 þ τ̂χ −

3a
4

¼ 0: ð17Þ

The general analytical solution of this equation can also be
written in terms of Bessel functions

χðτ̂Þ ¼ 3
ffiffiffi
a

p
4

×

"
αðK ffiffi

a
p

−1
2
ðτ̂
2
Þ þK ffiffi

a
p þ1

2
ðτ̂
2
ÞÞ þ I ffiffi

a
p

−1
2
ðτ̂
2
Þ− I ffiffi

a
p þ1

2
ðτ̂
2
Þ

αðK ffiffi
a

p
−1
2
ðτ̂
2
Þ−K ffiffi

a
p þ1

2
ðτ̂
2
ÞÞ þ I ffiffi

a
p

−1
2
ðτ̂
2
Þ þ I ffiffi

a
p þ1

2
ðτ̂
2
Þ

#

ð18Þ
and the corresponding expression for the energy density is

εðτ̂Þ ¼ ε0e−
1
2
ðτ̂−τ̂0Þ

�
τ̂0
τ̂

�5
6

"
αðK ffiffi

a
p

−1
2
ðτ̂
2
Þ − K1

2
þ ffiffi

a
p ðτ̂

2
ÞÞ þ I ffiffi

a
p

−1
2
ðτ̂
2
Þ þ I1

2
þ ffiffi

a
p ðτ̂

2
Þ

αðK ffiffi
a

p
−1
2
ðτ̂0
2
Þ − K1

2
þ ffiffi

a
p ðτ̂0

2
ÞÞ þ I ffiffi

a
p

−1
2
ðτ̂0
2
Þ þ I1

2
þ ffiffi

a
p ðτ̂0

2
Þ

#
: ð19Þ

We note that α ≤ 0, which guarantees that the denominator
of the above equations is always nonzero. Also, the general
solution (18) cannot be simply decomposed in terms of an

attractor plus transient corrections. Both contributions are
present in the numerator and the denominator of the
analytical solution.
In all the previous studies on nonequilibrium attractors in

Bjorken flow the attractor per se was only found numeri-
cally using basically three different approaches [41]:

4We refer the reader to Ref. [52] for more details concerning
the analytical structure of these functions.
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(i) Explicit construction by solving the corresponding
differential equation fixing a specific boundary
condition at very early times.

(ii) Resummation of the gradient series.
(iii) Slow-roll expansion.
We will use the analytical solution found here to

illustrate how these approaches fare at identifying the
analytical attractor and its properties.

A. The attractor solution

From the analytical solution derived in the previous
section, it is straightforward to see that the solution (18)
completely loses the information about the initial condi-
tions (encoded in α) at late times. This happens because the
Bessel functions display the following asymptotic form for
sufficiently large values of its argument, KνðxÞ ∼ e−x=

ffiffiffi
x

p
and IνðxÞ ∼ ex=

ffiffiffi
x

p
. Therefore, the terms containing

Kνðτ̂=2Þ become significantly smaller compared to the
terms containing Iνðτ̂=2Þ as time increases. At a sufficiently
long time, the solution (18) can be approximated as

χðτ̂Þ → χattðτ̂Þ ¼
3

ffiffiffi
a

p
4

"
I ffiffi

a
p

−1
2
ðτ̂
2
Þ − I ffiffi

a
p þ1

2
ðτ̂
2
Þ

I ffiffi
a

p
−1
2
ðτ̂
2
Þ þ I ffiffi

a
p þ1

2
ðτ̂
2
Þ

#
: ð20Þ

This expression corresponds to the exact solution for
α ¼ 0 and it represents the nonequilibrium attractor
solution of the hydrodynamic equations investigated here.
The typical attractor behavior is illustrated in Fig. 1 for the
RTA case where a ¼ 16=45. One can see that (20) is the
only solution of the differential equation that smoothly
connects to the positive χ branch at early times,
i.e., limτ̂→0χðτ̂Þja¼16

45
¼ 1=

ffiffiffi
5

p
.

When discussing the attractor solution in Bjorken flow, a
common procedure consists in analyzing the behavior of χ

at τ̂ → 0. In our case this gives two limiting values: 3
ffiffiffi
a

p
=4

for α ¼ 0 and −3
ffiffiffi
a

p
=4 if α ≠ 0. Therefore, the attractor is

the only solution that goes to 3
ffiffiffi
a

p
=4 at τ̂ ¼ 0. Indeed, this

limiting behavior of the attractor in Bjorken flow has been
used in previous works as a way to define it [41]. In this
case, one may find the attractor numerically by identifying
it as the solution that obeys this boundary condition.

B. Resummation of the gradient series

The formal gradient expansion solution is represented as
the late time series χðτ̂Þ ¼ ð3a=4ÞP∞

n¼0 cn=τ̂
n, where the

corresponding coefficients of the series are given by

cnþ1 ¼ ncn − a
Xn
m¼0

cn−mcm; ð21Þ

with c0 ¼ 0 and c1 ¼ 1. It is interesting to notice that when
causality and stability are fulfilled, i.e., for a ≤ 8=9, the
gradient series diverges since for large n the first term in
(21) dominates leading to factorial growth.
Setting a ¼ 1 is particularly interesting since in this case

one can show that all cn≥1 ¼ 1, which leads to

χðτ̂Þ ¼ 3

4

X∞
n¼1

1

τ̂n
: ð22Þ

In contrast to the other examples in Bjorken flow, this series
has a nonzero radius of convergence, i.e., for any τ̂ > 1
(which overlaps with the expected domain of the late time
series) this can be summed up to give

χðτ̂Þ → 3

4ðτ̂ − 1Þ : ð23Þ

However, we remark that this nonzero radius of conver-
gence was possible only when a was taken in the acausal
region. Convergent series can also be obtained for other
values of a, e.g., a ¼ 4 and 9. However, all these values are
in the acausal regime.
Now, to see that resumming the gradient series does lead

to the attractor, we note that the full analytical solution in
the case a ¼ 1 is

χðτ̂Þja¼1 ¼
3

4

�1
τ̂ þ αð1þ 1

τ̂Þe−τ̂
1 − 1

τ̂ þ α
τ̂ e

−τ̂

�
ð24Þ

and correspondingly the attractor solution (20) is simply

χðτ̂Þja¼1;att ¼
3

4ðτ̂ − 1Þ ; ð25Þ

which matches the result obtained from the gradient series.
Even though there is a pole in τ̂ ¼ 1, we note that the
expression above is meaningful for larger times.

FIG. 1. Analytical nonequilibrium attractor (20) in solid red
for the RTA value a ¼ 16=45 (and λ ¼ 0). The dashed curves
correspond to the solution in Eq. (18) for different initial
conditions (parametrized by α), which collapse onto the attractor
before local equilibrium is reached (where χ vanishes).
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The current example with a ¼ 1 shows in a very clear
manner that the attractor can be defined via a resummation
of the gradient series. Furthermore, it is straightforward to
find a late time trans-series representation for the general
analytical solution in (24). The first terms are

χðτ̂Þ ¼ 3

4

X∞
n¼0

1

τ̂nþ1
−
3

4
αe−τ̂

X∞
n¼0

1

τ̂n

�
1þ 1

τ̂
þ nþ 1

τ̂2

�

þOðα2e−2τ̂Þ ð26Þ

¼ 3

4

1

ðτ̂ − 1Þ −
3

4
αe−τ̂

τ̂2

ðτ̂ − 1Þ2 þOðα2e−2τ̂Þ; ð27Þ

where one can see that α, the parameter that defines the
initial condition, plays the role of the trans-series expansion
parameter [46]. In this case, the contribution from each
term in the trans-series can be easily determined since their
corresponding power series representation converge (no
Borel transforms are needed). For the causal configuration
where a ≤ 8=9, this is not the case and one must resort to
resurgence theory to resum the series. In this case, one can
compare the result from the resummation directly to the
analytical expression for the attractor, which may lead to
further insight into the application of resurgence ideas in
hydrodynamics. However, this is beyond the scope of the
present paper and we leave this interesting task for a
future study.

C. Divergence of the slow-roll expansion

Reference [41] suggested another way to characterize the
attractor based on the analog of the slow-roll expansion
used in cosmology [48]. This can be done systematically
[43] by including a small parameter ϵ (not to be confused
with the energy density ε) in the differential equation

ϵτ̂
dχ
dτ̂

þ 4

3
χ2 þ τ̂χ −

3a
4

¼ 0 ð28Þ

where now χ ¼ χðτ̂; ϵÞ is also a function of ϵ. The next step
is to look for a series solution in powers of ϵ for χ

χðτ̂; ϵÞ ¼
X∞
n¼0

χnðτ̂Þϵn: ð29Þ

Clearly, the full answer is only obtained in the limit ϵ → 1.
In practice, ϵ is taken to 1 already after including only a few
terms, given the apparent convergence of this procedure
found in previous works. The zeroth order term gives two
solutions and the one that recovers the Navier-Stokes (NS)
limit at late times, χNS ∼ 3a=ð4τ̂Þ, is

χ0ðτ̂Þ ¼
3

8

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ̂2 þ 4a

p
− τ̂

�
: ð30Þ

The other terms with n ≥ 1 can be found from the
recurrence relation

χnðτ̂Þ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ̂2 þ 4a
p

�
τ̂
dχn−1
dτ̂

þ 4

3

Xn−1
m¼1

χn−mχm

�
: ð31Þ

Each term of the series can be determined analytically,
which may be used to study the large order behavior of the
slow-roll expansion in hydrodynamics. We show in Fig. 2 a
comparison between the analytical attractor in (25) (solid
black curve) and the result from the slow-roll expansion
computed at different orders for a ¼ 16=45. One can see
that there is an improvement when going from 0 to 2rd
order as the latter gives a good representation for the
attractor for τ̂ ≥ 3. However, as we increase the order of the
expansion, already at n ¼ 6 the result oscillates signifi-
cantly, which indicates that the slow-roll expansion does
not converge. In fact, this is indeed the case as shown in
Fig. 3 which shows for the first time the large order
behavior of the slow-roll expansion in hydrodynamics. One
can see that for different values of τ̂ the series appears to
diverge. This behavior persisted for all values of a in the
causal regime5 Therefore, both the gradient series and the
slow-roll expansion diverge in hydrodynamics. However,
this divergence does not mean that such series are not
useful. As a matter of fact, when properly truncated
divergent series provide extremely powerful approxima-
tions to the solutions of several problems [54].
To illustrate that this is the case here, we plot the relative

difference between the attractor and the two different series
representations. In Fig. 4 we plot

FIG. 2. Comparison between the analytical attractor in (25) for
a ¼ 16=45 and the result from the slow-roll expansion, computed
at different orders.

5The maximum number of terms we could investigate numeri-
cally goes to roughly 100. Going to larger times also did not
change this behavior. We also checked values of a in the acausal
regime. Again, no qualitative difference was found.
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R½n� ¼
R τ̂f
τ̂0
dτ̂jχattðτ̂Þ −

P
n
m¼0 χnðτ̂ÞjR τ̂f

τ̂0
dτ̂χattðτ̂Þ

ð32Þ

for the slow-roll expansion and also the corresponding
expression for the gradient series (τ̂0 ¼ 1 and τ̂f ¼ 50).
This quantity is defined in a way that maximizes
the differences between these functions and the attractor.
We see that n ¼ 2 seems to be the optimal truncation for the
gradient series while for the slow-roll expansion one finds
n ¼ 3. Altogether, the slow-roll expansion provides a much
more accurate description of the attractor than the gradient
series does at any order in the truncation (this is still the
case when larger values of n are considered). However, for
large values of n, the description already becomes very
poor. Nevertheless, we note that the truncated slow-roll
series is found to oscillate around the attractor while the
gradient series completely misses the behavior of the
attractor, leading to very different divergence patterns.

Therefore, the gradient expansion and the slow-roll
series cannot be used to systematically approximate the
hydrodynamic solution via the inclusion of higher order
contributions. Nevertheless, the optimal truncation of these
series can be extremely useful as they provide excellent
approximations for the solution of the equations in the
attractor regime.

D. Divergence of the slow-roll expansion
in conformal hydrodynamics

To show that the divergence of the slow-roll expansion is
not particular to the model studied here, in this section we
determine the large order behavior of this series also in
conformal hydrodynamics. In this case, the equations of
motion are still given by (8) but now τR ¼ cR=T, with cR
being a constant. We still assume λ ¼ 0 for simplicity. We
also note that in contrast with the previous case involving
a constant relaxation time, in a conformal fluid cη ¼ η=s
is constant and, for instance, for a massless gas within the
14-moment approximation cR ¼ 5η=s [37,55,56].
The equation for the energy density in the conformal

fluid is still the same as (9) but the corresponding equation
for normalized shear stress tensor component is

cRτ
dχ
dτ

þ 4cR
3

χ2 þ χðτTÞ − 4

3
cη ¼ 0: ð33Þ

We now follow [41] and define the variable w ¼ τT
(the reciprocal of the Knudsen number for this conformal
fluid), with which one can eliminate T from the equation
above and find a single equation that determines the state of
the fluid

w̄
3
ð χ þ 2Þχ0 þ 4

3
χ2 þ χw̄ −

4

3
cη=R ¼ 0; ð34Þ

where w̄ ¼ w=cR, cη=R ¼ cη=cR [43], and χ0 ¼ dχ=dw̄. We
follow the same procedure as before to obtain the slow-roll
expansion χðw̄Þ ¼ P∞

n¼0 ϵ
nχnðw̄Þ. The zeroth order term

that recovers the NS limit is

χ0ðw̄Þ ¼
1

8

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9w̄2 þ 64cη=R

q
− 3w̄

�
ð35Þ

while the higher order terms are given by

χnðw̄Þ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9w̄2 þ 64cη=R
q �

2w̄χ0n−1 þ w̄χn−1χ00

þ
Xn−1
m¼1

ð4χn−mχm þ w̄χn−m−1χ
0
mÞ
�
: ð36Þ

The terms can be computed analytically but now the
expressions are considerably more complicated. This limits
our ability to go to a very large order in this expansion, in

FIG. 4. Comparison between the relative difference between
the attractor and the gradient and slow-roll expansions defined in
(32) as a function of the truncation order n (with a ¼ 16=45).

FIG. 3. Large order behavior of the slow-roll expansion in
hydrodynamics. J½n� ¼ jχnj1=n as a function of n for a ¼ 16=45
and different times τ̂ ¼ 0.5, 1, 2, 5.
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comparison to the constant τR case. Our results for this
series are shown in Fig. 5 for cR ¼ 5cη. Until the order we
were able to compute, the series is found to diverge. We
also checked that the same behavior holds when the values
for cη and cR are taken from strongly coupledN ¼ 4 SYM
theory [24]. This shows that the divergence of the slow-roll
expansion is not an exclusive feature of the set of hydro-
dynamic equations obtained when the shear relaxation time
is constant.

E. Generalized gradient expansion

In [33] a new type of expansion was proposed to provide
a different resummation of the famous Chapman-Enskog
series for the Boltzmann equation [23]. After just a few
iterations, this new series appeared to converge very rapidly
to the exact solution for the shear stress tensor computed
using the Boltzmann equation in the relaxation time
approximation.
In this approach, the coefficients of the gradient expan-

sion [see (21)] are allowed to depend on time, i.e., we
assume the following representation for the solution

χðτ̂Þ ¼ 3a
4

X∞
n¼0

cnðτ̂Þ
τ̂n

: ð37Þ

This expansion is, in principle, more general, since it allows
the expansion coefficients to have a time dependence that
cannot be expanded in powers of 1=τ̂. The time dependence
of the generalized coefficients cnðτ̂Þ cannot be determined
a priori, but must be obtained by solving a simple set of
coupled first order linear differential equations, which can
be solved analytically. These equations are obtained by
inserting (37) into (17) and collecting the terms with the
same power in 1=τ̂. This procedure rearranges the terms of
the expansion in a specific way that it naturally captures
non-perturbative exponentially small terms in Knudsen

number at late times ∼e−τ̂. This is mathematically justified
if the series (37) converges absolutely.
Another important point concerns the initial conditions.

To solve the original equation for χ one needs to specify the
initial condition χ0 ≡ χðτ̂0Þ defined at some initial time τ̂0.
On the other hand, since the coefficients cn’s now obey first
order differential equations, one also needs to specify their
initial conditions at τ̂0. It is natural to assume that the initial
condition for the full solution is taken care of by the zeroth
order term, i.e., c0ðτ̂0Þ ¼ 4χ0=ð3aÞ, with cn>0ðτ̂0Þ ¼ 0—
this considerably simplifies the solutions of our hierarchy
of equations order by order [33]. Also, it shows that (37)
has the potential to capture both the late time asymptotics
as well as the early time dynamics driven by the initial
condition.
In our case, the equation at zeroth order and its solution

are given by

dc0
dτ̂

þ c0 ¼ 0 ⇒ c0ðτ̂Þ ¼
4χ0
3a

e−ðτ̂−τ̂0Þ ð38Þ

and at first order one finds

dc1
dτ̂

þ c1 ¼ 1 − ac0ðτ̂Þ2 ⇒ c1ðτ̂Þ

¼ ð1 − e−ðτ̂−τ̂0ÞÞ
�
1 −

16χ20
9a

e−ðτ̂−τ̂0Þ
�
: ð39Þ

One can see that the zeroth order solution decays exponen-
tially in time with a rate given by the relaxation time—this
generates all the other nonperturbative terms in Knudsen
number ∼e−1=KN. The differential equation that determines
the higher order terms ðn ≥ 1Þ is

dcnþ1

dτ̂
þ cnþ1 ¼ ncn − a

Xn
m¼0

cn−mcm: ð40Þ

This equation can be easily solved iteratively to determine
the coefficients at arbitrary order in an analytical manner.
Clearly, at late times the solutions of these equations give
coefficients that are asymptotic to those defined by (21).
However, we emphasize that in contrast to the usual
gradient expansion the current procedure leads to a late
time expansion that also includes exponentially small terms
characteristic of resurgent behavior.
In order to investigate how this series describes the

analytical attractor in (20) we set τ̂0 ¼ 0 and χ0 ¼ 3
ffiffiffi
a

p
=4,

which gives c0ðτ̂Þ ¼ e−τ̂=
ffiffiffi
a

p
and c1ðτ̂Þ ¼ ð1 − e−τ̂Þ2 for

the first terms. We show in Fig. 6 a comparison between the
analytical attractor and the result obtained from the new
series, which approaches the analytical solution already at
second order. While we have not been able to verify if
this new expansion converges absolutely, in Fig. 7 we show
that the relative absolute difference between the analytical
attractor and the new expansion,

FIG. 5. Large order behavior of the slow-roll expansion in
conformal hydrodynamics. J½n� ¼ jχnj1=n as a function of n with
cη=R ¼ 1=5 and w̄ ¼ 0.5, 1, 2, 5.
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δnðτ̂Þ ¼
jχattðτ̂Þ − 3a

4

P
n
m¼0

cmðτ̂Þ
τ̂m j

χattðτ̂Þ
; ð41Þ

decreases significantly when more terms are included in the
expansion (our maximum number of terms here was 15).
Even if this series is later shown to also be divergent, one
can see that it provides an excellent approximation to the
attractor already at low orders in comparison to previous
approaches.

IV. CONCLUSIONS

In this paper we investigated the solutions of Israel-
Stewart theory under Bjorken scaling, in the absence of
bulk viscous pressure contributions, assuming an equation
of state ε ¼ 3P and zero chemical potential, and for a
constant relaxation time. Our goal was to investigate the
emergent universal behavior of these solutions at late times
where all the information about the initial conditions is lost.

We demonstrated that the equations of motion of Israel-
Stewart theory under these conditions can be solved
analytically. We determined an analytical expression for
the hydrodynamic attractor for the first time and checked if
it could be reproduced, even in an approximate form, by a
series expansion. In particular, we considered two expan-
sion methods that are commonly employed in this area: the
gradient expansion and the slow-roll series.
When analyzing the gradient expansion, we confirmed

that the series diverges for the values of transport coef-
ficients that arise from the Boltzmann equation.
Interestingly enough, we found that the series can converge
depending on the values of η=ðsTτRÞ and in these cases the
series can even be explicitly resummed. However, we note
that this was only possible for parameter choices that lead
to acausal propagation in the fluid and, consequently, are
unphysical.
More importantly, we demonstrated for the first time that

the slow-roll expansion, which is widely employed to find
approximate expressions for the hydrodynamic attractor,
has zero radius of convergence. This was found by showing
that the terms in the series display factorial growth, for all
values of time. We note that this result also holds for a
conformal fluid. Nevertheless, both series investigated have
an optimal truncation that is actually able to provide a
reasonable description of the attractor solution at late times.
Therefore, these expansions can still be used to describe the
universal hydrodynamic properties of a fluid, even though
they cannot be systematically improved by the inclusion of
higher order terms.
Finally, we showed an example of a series that appears to

converge rapidly. This expansion was first proposed in [33],
to find approximate solutions of the Boltzmann equation,
where it also appeared to converge. Within this approach,
the coefficients of the gradient expansion are assumed to
display a non-trivial time dependence, which cannot be
simply expanded in powers of Knudsen number. Such a
time dependence is obtained directly from the equations of
motion, by obtaining and solving the simple first order
differential equations satisfied by each coefficient. If this
series does in fact converge, it is currently the only option
to systematically approximate the hydrodynamic attractor
of a given system. Despite the apparent success of this
method, we stress that it has only been developed so far in
Bjorken flow and it remains a challenge to generalize it to
more general flow patterns.
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FIG. 7. Relative absolute difference between the analytical
attractor and the generalized gradient series for a ¼ 16=45
computed at different orders.

FIG. 6. Comparison between the analytical attractor in (25) for
a ¼ 16=45 and the result from the generalized gradient expan-
sion, computed at different orders.
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