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Using a vacuum domain structure model, we calculate trivial static potentials in various representations of
F4, E6, and G2 exceptional groups by means of the unit center element. Due to the absence of the nontrivial
center elements, the potential of every representation is screened at far distances. However,
the linear part is observed at intermediate quark separations and is investigated by the decomposition of
the exceptional group to its maximal subgroups. Comparing the group factor of the supergroup with the
corresponding one obtained from the nontrivial center elements ofSUð3Þ subgroup shows thatSUð3Þ is not the
direct cause of temporary confinement in any of the exceptional groups. However, the trivial potential obtained
from the group decomposition into the SUð3Þ subgroup is the same as the potential of the supergroup itself. In
addition, any regular or singular decomposition into the SUð2Þ subgroup that produces the Cartan generator
with the same elements as h1, in any exceptional group, leads to the linear intermediate potential of the
exceptional gauge groups. The otherSUð2Þ decompositionswith theCartan generator different fromh1 are still
able to describe the linear potential if the number of SUð2Þ nontrivial center elements that emerge in the
decompositions is the same. As a result, it is the center vortices quantized in terms of nontrivial center elements
of the SUð2Þ subgroup that give rise to the intermediate confinement in the static potentials.

DOI: 10.1103/PhysRevD.97.056015

I. INTRODUCTION AND MOTIVATION

Quantum chromodynamics is the theory of strong
interactions. Quarks interact via gluons that are strong
force carriers and are attributed to the adjoint representation
of the SUð3Þ gauge group. The non-Abelian nature of
gluons causes QCD to be fundamentally a nonperturbative
theory in the infrared sector. To understand the phenomena
of the low energy regime, such as confinement, some
topological field configurations, such as center vortices
[1–15], are believed to play the key role in the nontrivial
vacuum of QCD. They assign a criterion to confinement
through the area-law falloff of the Wilson loop, which is
one of the most efficient order parameters for investigating
the large distance behavior of QCD.
In the center vortex model, confinement is the result

of the interaction between center vortices and the Wilson
loop. In fact, the Wilson loop running around the vortex
measures the vortex flux, which is quantized in terms of the

gauge group center. A center vortex, which is topologically
linked to a Wilson loop, changes the Wilson loop by a
group factor zn:

WðCÞ → ðznÞkWðCÞ; ð1Þ

where zn ¼ expð2πinN Þ, n ¼ 1; 2;…; N − 1, and k represents
the N-ality of the representation r. This property implies
a linear potential between static quarks, which means
confinement.
The thick center vortex model developed by Faber

et al. [16] is aimed at studying the potentials of higher
representations of SUðNÞ gauge groups. In this model,
the quark-antiquark static potential behaves differently in
three regions. At short distances, the interaction is deter-
mined by one-gluon exchange, which leads to a Coulomb-
like potential [17–19]. At intermediate distances, the string
tension of the linear potential is proportional to Casimir
scaling. In the asymptotic region, potentials of all repre-
sentations with zero N-ality are screened. However, the
potential of nonzero N-ality representations becomes par-
allel to the one of the lowest representation with the same
N-ality [16,20–23].
In 2007, Greensite et al. [24] claimed that there is no

obvious reason to exclude the trivial center element from
the model. In fact, even in G2 gauge theory, which only
includes one trivial center element, one expects a linear
potential from the breakdown of the perturbation theory to
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the onset of screening while all asymptotic string tensions
are zero. Monte Carlo numerical lattice calculations for G2

[25–27] also confirm a confining potential, despite the
absence of nontrivial center elements. In the new model, a
vacuum domain is a closed tube of magnetic flux that,
unlike a vortex, is quantized in units corresponding to the
gauge group trivial center. The string tensions are produced
from random spatial variations of the color magnetic flux
quantized in terms of unity. But, what accounts for the
intermediate linear potential in such gauge groups? To
answer this question and by using the idea of domain
structures, Deldar et al. [28–30] showed that SUð2Þ and
SUð3Þ subgroups of G2 have an important role in the
intermediate confinement of G2. In fact, they were moti-
vated by the two works in Refs. [24,31]. Holland et al. [31]
investigated that a scalar Higgs field in the fundamental
representation of G2 can break to SUð3Þ representations.
So, one is able to interpolate between exceptional and
ordinary confinement. Moreover, Greensite et al. [24] used
the Abelian dominance idea to study SUð3Þ and SUð2Þ
dominance in the G2 gauge theory. Therefore, it seems
interesting to investigate how confinement appears in a
theory with exceptional gauge groups in the framework of
the vacuum domain structure model.
In this paper, using the same method as in Refs. [28–30],

we present a general scheme to understand what kind of
group decompositions lead to the temporary confinement of
the exceptional gauge groups in the vacuum domain struc-
ture model. In the next section, the thick center vortex and
vacuum domain structure models are discussed briefly. In
Sec. III, some properties of exceptional groups are inves-
tigated. We apply F4, E6, and G2 in the vacuum domain
structure model and calculate the potentials in different
representations in Sec. IV. The decomposition of these gauge
groups into their subgroups is investigated as well.

II. THICK CENTER VORTEX MODEL AND
VACUUM DOMAIN STRUCTURES

A center vortex is a closed tube of magnetic flux that is
quantized in terms of the nontrivial center elements of the
gauge group. It might be considered as linelike (in three
dimensions) or as a surfacelike (in four dimensions) object.
In a pure non-Abelian gauge theory, the random fluctua-
tions in the number of center vortices that pierce the
minimal area of the Wilson loop give rise to the asymptotic
string tension. In fact, a thin center vortex is capable of
inducing the linear potential for the fundamental represen-
tation of the gauge group. Thickening the center vortices
leads to a bigger piercing area and these topological objects
should be described by a profile function. Therefore, the
gauge group centers in Eq. (1) should be replaced by a
group factor,

WðCÞ → Gr½α⃗nC�WðCÞ; ð2Þ

where the group factor is described as

Gr½α⃗nCðxÞ� ¼
1

dr
Tr½expðiα⃗nC · H⃗Þ�; ð3Þ

in which dr depicts the dimension of the group represen-
tation; Hi, i ¼ 1;…; N − 1, are simultaneous diagonal
generators of the group spanning the Cartan subalgebra;
and n represents the type of center vortex. Vortices of type n
and type N − n are complex conjugates of each other and
their magnetic fluxes are in the opposite directions.
Therefore,

Gr½α⃗nCðxÞ� ¼ G�
r ½α⃗N−n

C ðxÞ�: ð4Þ
The function α⃗nCðxÞ is the vortex profile ansatz. It depends
on the location of the vortex midpoint x, from the Wilson
loop, the shape of the contour C, and the vortex type n.
Mathematically, there are various candidates that can
simulate a well-defined potential, but all of them should
obey the following conditions:
(1) As R → 0, then α → 0.
(2) When the vortex core lies entirely outside the

minimal planar area enclosed by the Wilson loop,
there is no interaction:

exp½iα⃗nC · H⃗� ¼ I ⇒ α⃗nC ¼ 0: ð5Þ
(3) Whenever the vortex core is completely inside the

planar area of the Wilson loop,

exp½iα⃗nC · H⃗� ¼ znI ⇒ α⃗nC ¼ α⃗nmax: ð6Þ

Here, we have chosen the flux profile introduced in
Ref. [16]:

α⃗nCðxÞ ¼
α⃗nmax

2

�
1 − tanh

�
ayðxÞ þ b

R

��
; ð7Þ

where a and b are free parameters of the model. The
distance between the vortex midpoint and the nearest
timelike leg of the Wilson loop is measured by yðxÞ:

yðxÞ ¼
�
x − R for jR − xj ≤ jxj
−x for jR − xj > jxj : ð8Þ

It seems changing the ansatz may have no effect on the
extremum points of the group factor Gr½α⃗ðxÞ� [32], whereas
an alteration of α⃗nCðxÞ is influential in the potential itself in a
way that string tension ratios might be more or less in
agreement with Casimir scaling [21,30].
Now we are able to write the Wilson loop for SUðNÞ

gauge groups:

hWðCÞi ¼
Y
x

�
1 −

XN−1

n¼1

fnð1 − Gr½α⃗nCðxÞ�Þ
�
hW0ðCÞi; ð9Þ
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where fn shows the probability that the midpoint of a center
vortex is located at any plaquette in the plane of the Wilson
loop. The probability of locating center vortices of any type
at any two plaquettes is independent, which is an over-
simplification of the model. hW0ðCÞi is the Wilson loop
expectation value when no vortices are linked with the loop.
It should be noted that in addition to the regions associated
with the nontrivial center elements, the domains corre-
sponding to unity center elements are also allowed in the
vacuum. Therefore, the sum in Eq. (9) should contain
n ¼ 0 as well. Using the fact that fn ¼ fN−n, the static
potential between a color and an anticolor source induced
by thick center vortices and vacuum domains is

VðRÞ ¼ −
Xm¼þ∞

m¼−∞
ln

�
1 −

XN−1

n¼0

fnð1 − ReGr½α⃗nCðxmÞ�Þ
�
;

ð10Þ
where n ¼ 0 denotes a vacuum domain type vortex and
n ¼ 1;…; N − 1 indicates the type of center vortex.

III. SOME PROPERTIES OF
EXCEPTIONAL GROUPS

The ideas of symmetries and Lie exceptional groups
have always been attractive in modern high energy physics.
G2 is the simplest exceptional gauge group that confirms
the chance of having confinement without the center [31].
G2 gauge theory is a theoretical laboratory in which SUðNÞ
subgroups are embedded. This provides us with an under-
standing not only about the exceptionalG2 confinement but
also about the SUð3Þ confinement that happens in nature.
In this section, we briefly explain some properties of the
exceptional groups applied in this article, including their
subgroups and Dynkin diagrams.
In general, there are five distinguishable exceptional

groups named G2, F4, E6, E7, and E8. The subscripts
point out the ranks of the groups. The numbers of simple
roots and simultaneous diagonal generators of simple Lie
groups are equivalent to their rank. One may draw the
whole root diagram by having simple roots and the angles
between them in a simple Lie group. The angle between
simple roots in a Dynkin diagram is always obtuse. Three,
two, one or no lines between simple roots measure their
mid angles, which are 150°, 135°, 120°, or 90°, respectively
[33]. Figure 1 depicts Dynkin diagrams of the exceptional
groups used in this research. Filled circles represent shorter
roots and empty ones show longer roots in terms of their
length.
Using Dynkin diagrams, one is able to find the sub-

groups of every lie group. There are three different sorts of
maximal subgroups [34]:

(i) Regular maximal nonsemisimple subgroups,
(ii) Regular maximal semisimple subgroups,
(iii) Singular (special) maximal subgroups.

The sum of the ranks of the regular subgroups is equal to
the rank of their supergroup. However, this is not true for
the singular subgroups. It should be noted that if a factor
Uð1Þ appears in a subgroup, it makes the subgroup as a
nonsemisimple one.
In this article, we briefly discuss how to derive the

subgroups of F4 and use the same method for other
exceptional groups. The extended Dynkin diagram is
structured by adding the most negative root (−γ) to the
set of simple roots (Fig. 2). Then, by omitting the original
βi roots, regular subgroups will emerge one by one. For
example, in Fig. 2, eliminating the root β2 leads to the
SUð3Þ × SUð3Þ subgroup of F4. Moreover, when the root
β4 is omitted, the SOð9Þ subgroup of F4 is obtained. It
should be pointed out that omitting the root β3 gives off the
SUð2Þ × SUð4Þ subgroup. In some references, it has been
claimed as a direct subgroup of F4 [35] and in some others
it is not [36,37]. However, it is a direct subgroup of SOð9Þ.
Therefore, it might be, at least, considered as an indirect
subgroup of F4. To achieve singular maximal subgroups of
exceptional groups, a determined method does not exist and
each subgroup has to be extracted individually [34]. All
maximal subgroups of the F4 exceptional group have been
presented in Table I.

FIG. 1. Dynkin diagrams of G2, F4, and E6 exceptional groups.

FIG. 2. Three different regular maximal subgroups of F4

obtained from its extended Dynkin diagram by omitting the
original simple roots one by one.
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Based on the branching rules, an irreducible representa-
tion of a group can be decomposed into the irreps of its
subgroup as follows [36]:

RðGÞ ¼ ⨁
i
miRiðgÞ; ð11Þ

where RðGÞ is an irrep of the supergroupG and RiðgÞ is the
irrep of the subgroup g. mi is the degeneracy of the
representation RiðgÞ in the decomposition of representation

RðGÞ]36,37 ]. To be more precise, we consider one of the
regular subgroups of F4:

F4 ⊃ SUð3Þ × SUð3Þ:

Using the branching rules, one might write [36–38]

26 ¼ ð8; 1Þ ⊕ ð3; 3Þ ⊕ ð3̄; 3̄Þ: ð12Þ

From Eq. (11), it is obvious that the first numbers in each
parenthesis could be considered as the degeneracy of the
second representation emerging in the decomposition:

26 ¼ 8ð1Þ þ 3ð3Þ þ 3ð3̄Þ: ð13Þ

Therefore, anF4 “quark” is made up of three SUð3Þ quarks,
three antiquarks, and one singlet.

IV. CONFINEMENT WITHOUT A CENTER

A. F4 exceptional group

The F4 exceptional group has rank four and contains
four Cartan generators. The diagonal generators for the
fundamental 26-dimensional representation of F4 are
[39,40]

h1 ¼ N1ðD5
5 þD6

6 −D7
7 þD8

8 −D9
9 −D10

10Þ;
h2 ¼ N2ðD3

3 þD4
4 −D5

5 −D6
6 þD10

10 −D11
11Þ;

h3 ¼
N3

2
ðD2

2 − 2D3
3 −D4

4 þD6
6 −D8

8 þD9
9

−D10
10 þD11

11 −D12
12Þ;

h4 ¼
N4

2
ð−2D2

2 þD3
3 −D4

4 þD5
5 −D6

6 þD7
7

−D9
9 þD12

12 −D13
13Þ; ð14Þ

where

Db
a ¼ Iab − Ib̄a; ð15Þ

and Iab are 26 × 26 matrices with the following matrix
elements:

ðIabÞjk ¼ δajδbk: ð16Þ

Subscripts j and k take on the same values as a and b such
that a; b∶ − 13 ≤ j, k ≤ 13 with zero excluded.
Using the standard normalization condition

Tr½ha; hb� ¼
1

2
δab; ð17Þ

we calculate the normalization factors as follows:

N1 ¼ N2 ¼
1

2
ffiffiffi
6

p ;

N3 ¼ N4 ¼
1

2
ffiffiffi
3

p : ð18Þ

To find the maximum amount of the domain structure
flux, we use Eq. (6), using the fact that the F4 gauge group
includes only one trivial center element,

exp½iα⃗ · H⃗� ¼ I; ð19Þ

and we find

αmax
1 ¼ 2π

ffiffiffiffiffi
24

p
;

αmax
2 ¼ 6π

ffiffiffiffiffi
24

p
;

αmax
3 ¼ 4π

ffiffiffiffiffi
48

p
;

αmax
4 ¼ 2π

ffiffiffiffiffi
48

p
: ð20Þ

Now, one can calculate the static potential of Eq. (10) for
the fundamental representation of the F4 exceptional gauge
group. This potential has been pictured in Fig. 3 for
R ∈ ½1; 100�. The free parameters of the model are chosen
to be a ¼ 0.05, b ¼ 4, and f ¼ 0.1 in every calculation of
this article.

TABLE I. Maximal subgroups of some exceptional groups
[37]. [R] and [S] represent regular and singular subgroups of each
group, respectively.

E6 F4 G2

SUð3Þ×SUð3Þ
×SUð3Þ [R]

SUð3Þ×SUð3Þ [R] SUð3Þ [R]

SUð2Þ×SUð6Þ [R] SUð2Þ×Spð6Þ [R] SUð2Þ × SUð2Þ [R]
SOð10Þ ×Uð1Þ [R] SOð9Þ [R] SUð2Þ [S]
SUð3Þ × G2 [S] SUð2Þ × G2 [S]
SUð3Þ [S] SUð2Þ [S]
Spð8Þ [S]
G2 [S]
F4 [S]
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In Fig. 3, the linear potential is demonstrably located in
the approximate range of R ∈ ½2; 9�. In addition, at large
distances where the vacuum domain is entirely located
inside of the Wilson loop, a flat potential is induced. Hence,
one can deduce that in groups without a nontrivial center,
static potentials of all representations behave like a SUðNÞ
representation with zero N-ality.
The adjoint representation of F4 is 52 dimensional. As a

consequence, like any gauge group, the “bosonic gluons”
of the F4 exceptional group are made of the adjoint
representation. Thus, mathematically one can derive the
way of screening of color sources in any representation
from tensor products of that representation with the adjoint
one; i.e., when a singlet emerges, it means screening. So,
for the fundamental representation, one may write

26 × 52 ¼ 26 ⊕ 273 ⊕ 1053: ð21Þ

Therefore, the fundamental representation of F4 cannot be
screened just by one set of “gluons”. Energetically speak-
ing, color sources in the fundamental representation of F4

are not screened until the potential reaches that extent
where four sets of “gluons” pop out of the vacuum:

26 × 52 × � � � × 52
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{4 times

¼ 1 ⊕ 46ð26Þ ⊕ 10ð52Þ ⊕ � � � : ð22Þ

These tensor products have been calculated by the LieART
project in Mathematica [41]. The numbers out of the
parentheses are the degeneracy of the representations being
repeated in the tensor product. Therefore, four F4 “gluons”
are able to screen an F4 “quark” to create a color singlet
hybrid qGGGG. Moreover, two “quarks” form a singlet.

26 × 26 ¼ 1 ⊕ 26 ⊕ 52 ⊕ 273 ⊕ 324: ð23Þ

As in SUðNÞ gauge groups, three F4 “quarks” can create a
baryon:

26 × 26 × 26 ¼ 1 ⊕ 5ð26Þ ⊕ 2ð52Þ ⊕ 4ð273Þ ⊕ 3ð324Þ
⊕ 3ð1053Þ ⊕ 1274 ⊕ 2652 ⊕ 2ð4096Þ:

ð24Þ
Evidently, the function ReGr½α⃗nCðxÞ� looks predominant

in the potential formula in Eq. (10). It shows that the group
factor varies between 1 and expð2πinkN Þ, corresponding to the
N-ality=k of the representation and the vortex type n. An
unaffected Wilson loop that has not been pierced by any
vortex means ReGr½α⃗nCðxÞ� ¼ 1. When the vortex is linked
to theWilson loop, the group factor deviates from 1. Hence,
to investigate what happens to the F4 potentials, one may
study the behavior of the group factor.
In Ref. [32], it has been proven that the third

Cartan generator of the SUð4Þ gauge group, i.e., H3 ¼
1

2
ffiffi
6

p diag½1; 1; 1;−3�, can produce the total potential indi-

vidually. In the F4 exceptional group, one might use only
h1 or h2 Cartan generators or both of them together to find
the same group factor and also the same potential as if we
apply all four Cartan generators in our calculations. This
property will be helpful in the decomposition of the F4

representations into its subgroups. In fact, when the
identical diagonal generators are constructed, the same
potentials as the F4 itself will be achieved.
In Fig. 4, the real part of the group factor versus the

location x of the vacuum domain midpoint has been plotted,
for R ¼ 100 and in the range x ∈ ½−200; 300�, by

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  10  20  30  40  50  60  70  80  90  100

V
(R

)

R

Fund. Rep.

FIG. 3. The potential between two static sources in the
fundamental representation of F4 for R ∈ ½1; 100�. Screening is
clearly observed at large quark separations while the potential is
linear at intermediate distances. The free parameters of the model
have been chosen to be a ¼ 0.05, b ¼ 4, and f ¼ 0.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

-200 -100  0  100  200  300

R
e 

G
f[α

]

x

all Cartan generators

h1 and h2 only

FIG. 4. The real part of the group factor versus x, the location of
the vacuum domain midpoint, for the fundamental representation
of the F4 exceptional gauge group in the range x ∈ ½−200; 300�,
by applying h1 and h2 Cartan generators (stars) and all diagonal
generators (solid line). It is clear that the two sets of data are the
same. The distance R between color and anticolor sources is
equal to 100.
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considering all generators and also by utilizing only h1 and
h2. It is clear that both diagrams in Fig. 4 are identical and
the group factor reaches the minimum amount of ≈0.076 at
x ¼ 0 and x ¼ 100. To confirm our conclusion, we have
plotted a similar diagram in Fig. 5 but by using only h3 or
h4 diagonal generators. In this figure, the group factor
reaches the minimum amount equal to ≈ − 0.23, which is
way less than the minimum amount of the F4 group factor.
It has been shown that [32] the group factor reaches the

minimum points where 50% of the vortex maximum flux
enters the Wilson loop. These points are responsible for
the intermediate linear potential. We aim to show that the
SUðNÞ subgroups of the exceptional groups might be the
reason for the appearance of the linear potential at inter-
mediate distances. It means that the minimum points of the
group factor could be explained by the group decomposi-
tion into the subgroups.

1. SUð3Þ × SUð3Þ decomposition

Using the decomposition in Eq. (13), we are able to
reconstruct Cartan generators of F4 with respect to its
SUð3Þ subgroup,

H26
a ¼ 1ffiffiffi

6
p diag½0;…; 0

zfflfflffl}|fflfflffl{8 times

; λ3a; λ3a; λ3a;−ðλ3aÞ�;−ðλ3aÞ�;−ðλ3aÞ��;

ð25Þ
where λ3a, a ¼ 3, 8 are Cartan generators of SUð3Þ in the
fundamental representation:

λ33 ¼
1

2
diag½1;−1; 0�;

λ38 ¼
1

2
ffiffiffi
3

p diag½1; 1;−2�: ð26Þ

Meanwhile, the matrices of Eq. (25) are normalized using
the normalization conditions in Eq. (17). If the matrix H26

3

in Eq. (25) is considered, its components are identical to the
ones for the Cartan generators h1 and h2 of Eq. (14). But
this is not the case withH26

8 . To examine the results coming
out of these two matrices, one is supposed to establish the
same normalization condition as in Eq. (19):

expðiα26max1H
26
3 þ iα26max2H

26
8 Þ ¼ I: ð27Þ

In this case, we have six distinctive equations and find

α26max1 ¼ 2π
ffiffiffi
6

p
;

α26max2 ¼ 6π
ffiffiffi
2

p
: ð28Þ

Now, the potential of Eq. (10) could be calculated using
Eqs. (25) and (28). This potential is identical to the one in
Fig. 3, despite the difference between H26

8 and h1 or h2. To
investigate this matter, one might manually estimate the
value of ReGr½α� when the vacuum domain is completely
inside the Wilson loop:

ReG1
r ½α�SU3×SU3

¼ 1

26
× ReðTr½expðiα26max1 ·H

26
3 Þ�Þ ≈ 0.076

ð29Þ

ReG2
r ½α�SU3×SU3

¼ 1

26
× ReðTr½expðiα26max2 ·H

26
8 Þ�Þ ≈ 0.076:

ð30Þ

It is clear that both group factor functions earned by either
α26max1 or α26max2 reach the same amount, which is the
minimum amount of the F4 group factor in Fig. 4 as well.
Consequently, based on the analogy of the group factor
functions acquired by both H26

3 and H26
8 , we claim that,

although the second matrix of SUð3Þ × SUð3Þ has different
components, it has the same effect as the Cartan h1 on the
F4 group. Then, the trivial static potential of the F4

exceptional group is similar to the potential gained by
its SUð3Þ × SUð3Þ subgroup. Therefore, it seems that this
decomposition could be generalized for higher representa-
tions to find the corresponding potential.
The decomposition of the 52-dimensional adjoint rep-

resentation of the F4 is [36–38]

52 ¼ ð8; 1Þ ⊕ ð1; 8Þ ⊕ ð6̄; 3Þ ⊕ ð6; 3̄Þ;
52 ¼ 8ð1Þ þ 1ð8Þ þ 6ð3Þ þ 6ð3̄Þ: ð31Þ

This shows that F4 “gluons” are made of the usual SUð3Þ
gluons (representation 8) and some additional gluons
consist of SUð3Þ quarks (representation 3) and antiquarks
(representation 3̄) and also eight singlets. It is clear that
these representations have different trialities.
Using Eq. (31), the Cartan generators of F4 in the adjoint

representation might be reconstructed as follows:

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-200 -100  0  100  200  300

R
e 

G
f[α

]

x

all Cartan generators

h3 and h4 only

FIG. 5. The same as Fig. 4 but in comparison with the group
factor when only h3 or h4 is used.
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H52
a ¼ 1ffiffiffiffiffi

18
p diag½0;…; 0

zfflfflffl}|fflfflffl{8 times

; λ8a; λ3a; � � � λ3a
zfflfflfflfflffl}|fflfflfflfflffl{6 times

;

−ðλ3aÞ�;…;−ðλ3aÞ�
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{6 times

�; ð32Þ

where λ3a, a ¼ 3, 8, are the same generators as in Eq. (26)
and λ8a are simultaneous diagonal generators of the SUð3Þ
gauge group in the adjoint eight-dimensional representa-
tion. Using Eq. (19), the maximum values of the vortex flux
for the adjoint representation of the F4 ⊃ SUð3Þ × SUð3Þ
decomposition are

α52max1 ¼ 6π
ffiffiffi
2

p
;

α52max2 ¼ 6π
ffiffiffi
6

p
: ð33Þ

The potential between static sources in the fundamental
and adjoint representations of the F4 exceptional gauge
group has been plotted in Fig. 6, along with the higher
representations in the range R ∈ ½1; 100�. The decomposi-
tion of the higher representations and the corresponding
Cartan generators have been presented in Appendix A. In
Fig. 6, screening is observed for the potentials of every
representation at far distances. Since F4 does not own any
nontrivial center element, all representations act like
SUðNÞ representations with zero N-ality. Hence, screening
was anticipated. Another reason for this phenomenon is the
creation of gluons in the QCD vacuum that are able to
screen the initial static color charges and produce a flat
potential at high levels of energy:

52 × 52 ¼ 1 ⊕ 52 ⊕ 324 ⊕ � � � ;
273 × 52 × 52 × 52 ¼ 1 ⊕ 15ð26Þ ⊕ � � � ;

324 × 52 × 52 ¼ 1 ⊕ 26 ⊕ 3ð52Þ ⊕ � � � : ð34Þ

Furthermore, in Fig. 6, there are linear parts at intermediate
distance scales for all representations that are situated at the
interval R ∈ ½2; 9�, approximately. The linear potentials
have been depicted in the lower diagram of Fig. 6. The
slope of the linear potentials of different representations are
given in the fourth column of Table II, as well as the
potential ratios (krkF) in the last column. It is observed that
potential ratios are qualitatively in agreement with Casimir
scaling (Cr

CF
), which is presented in the third column of

Table II. However, Casimir scaling has not been proved
numerically for F4.
Figure 7 presents the point-by-point ratio of the potential

of each representation to the fundamental one in the range
R ∈ ½1; 20�. These ratios start up at the ratios of the
corresponding Casimirs. However, they abruptly decline
at intermediate intervals. The inclination becomes more
pronounced as the dimension of the representations grows;

 0

 1

 2

 3

 4

 5

 6

 7

 0  20  40  60  80  100

V
(R

)

R

26

52
273
324

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2  3  4  5  6  7  8  9

V
(R

)

R

26
52

273
324

FIG. 6. Upper diagram: The potential between static color
sources in the fundamental, adjoint, 273-dimensional, and 324-
dimensional representations of the F4 exceptional gauge group in
the range R ∈ ½1; 100�. All potentials are screened at far distances,
while linearity is evident at intermediate parts. Lower diagram:
The same as the upper diagram but in the range R ∈ ½2; 9�. The
slopes of the potentials have been given in the fourth row of
Table II. The potentials are in agreement with Casimir scaling
qualitatively.

TABLE II. Casimir numbers and Casimir ratios of different
representations of the F4 exceptional group are presented in the
second and third columns, respectively [42].a The slopes of the
linear potentials of Fig. 6 and the potential ratios are given in the
fourth and fifth columns, respectively. The numbers in paren-
theses show the fit error.

Rep. Casimir number Cr
CF

Potential slope kr
kF

26 2
3

1 0.252(7) 1
52 1 1.5 0.331(7) 1.31(1)
273 2 2 0.374(8) 1.48(1)
324 13

9
2.16 0.38(1) 1.5(1)

aIt should be noted that Casimir scaling of the representation
273 has not been reported in this reference.
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e.g., the deviation from the exact Casimir scaling is more
significant for representations 273 and 324.
To investigate whether the linear potentials of the F4

exceptional group are caused by the nontrivial center
elements of the SUð3Þ × SUð3Þ subgroup or not, one
may plot the group factor function ReGr½α⃗� with respect
to the nontrivial center elements of SUð3Þ. Using the same
method as in Refs. [28–30] and Eqs. (13) and (31), we are
able to compose matrices containing center elements of
SUð3Þ depending on the N-ality of each representation.
Thus,

Z26
SUð3Þ ¼ diag½1; 1; 1; 1; 1; 1; 1; 1; zI3×3; zI3×3; zI3×3;

z�I3×3; z�I3×3; z�I3×3�;
Z52

SUð3Þ ¼ diag½1; 1; 1; 1; 1; 1; 1; 1; I8×8; zI3×3; zI3×3;
zI3×3; zI3×3; zI3×3; zI3×3; z�I3×3;

z�I3×3; z�I3×3; z�I3×3; z�I3×3; z�I3×3�; ð35Þ

where z ¼ expð� 2πi
3
Þ is the SUð3Þ nontrivial center

element. We previously mentioned that z and z� vortices
carry the same magnetic fluxes but in the opposite
directions. Interestingly, the numbers of z and z� vortices
that appear in the above decompositions of Eq. (35) are the
same. Therefore, one might conclude that the F4 vacuum
domain consists of the SUð3Þ center vortices. For our
purpose, we use the normalization condition as follows:

exp½iα⃗ · H⃗26 or 52� ¼ Z26 or 52
SUð3Þ I; ð36Þ

where H26 and H52 are the generators depicted in Eqs. (25)
and (32), respectively. Solving the corresponding equations
results in

α26−nonmax1 ¼ 2π
ffiffiffi
6

p
;

α26−nonmax2 ¼ 2π
ffiffiffi
2

p
; ð37Þ

and

α52−nonmax1 ¼ 6π
ffiffiffi
2

p
;

α52−nonmax2 ¼ 2π
ffiffiffi
6

p
; ð38Þ

where the term “non” denotes a nontrivial center element. It
should be mentioned that an unusual normalization con-
dition has been applied in Eq. (36). Therefore, neither the
G2 potentials nor the SUð3Þ ones are expected. However, as
the Cartan generators of Eq. (25) are taken, we expect the
potentials obtained from Eqs. (37) and (38) to be parallel to
the corresponding ones in Fig. 6, in some range of R. To
study this fact more accurately, we study the group factor
function.
The minimum points of the group factor function, which

happen at the positions where half of the vortex flux enters
the Wilson loop, are responsible for the intermediate linear
potential. Therefore, we compare the group factors of
different representations of F4 obtained from the trivial
center element with the ones calculated from the decom-
position into the SUð3Þ subgroup.
Figure 8 shows the real part of the group factor function

for both fundamental and adjoint representations of the
group F4 and the SUð3Þ subgroup using its nontrivial
center elements. The discrepancies in the minimum
amounts of the group factors in these figures are undeni-
able. As a result, one might say that the center elements of
the SUð3Þ subgroup are not the direct factors for the
confinement of the F4 static potentials. The same reason is
applicable for the higher representations of the F4 excep-
tional group. The calculations of the higher representations
have been presented in Appendix A.
So far, we have shown that the decomposition of the F4

representations into the SUð3Þ subgroup leads to the Cartan
generators that give the exact potential of F4, and Casimir
scaling is also achieved.However, theSUð3Þ nontrivial center
elements are not responsible for the linearity observed in the
potentials of theF4 representations. So, what accounts for the
temporary confining potential? To answer this question, we
study other subgroups of F4. Greensite et al. [24] found that
SUð3Þ andZ3-projected lattices are successful in reproducing
the asymptotic string tension of G2 gauge theory. However,
no correlation between the gauge invariant Wilson loops and
theSUð3Þ andZ3-projected loops is observed. They conclude
that the results of the SUð3Þ and Z3 projections in G2 gauge
theory are misleading. Therefore, they look for the smallest
subgroup ofG2, i.e., SUð2Þ, and theWilson loop imposing a
“maximal SUð2Þ” gauge is calculated. It is observed that the
potential of the fullG2 theory is approximately parallel to the
one obtained from the SUð2Þ-only Wilson loop. However,
SUð2Þ projection also appears to be problematic.
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FIG. 7. Potential ratios of the F4 representations to the
fundamental one in the range R ∈ ½0; 20�. These ratios start up
at the values of the corresponding Casimir ratios presented in
Table II.
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2. SUð2Þ × Spð6Þ subgroup
We try to achieve pure SUðNÞ subgroups of F4 out of

this decomposition. One may focus on the Spð6Þ to branch
it out to its SUð2Þ subgroups, using the following process:

Spð6Þ ⊃ SUð2Þ × Spð4Þ ðRÞ ð39Þ

and then

Spð4Þ ⊃ SUð2Þ × SUð2Þ ðRÞ: ð40Þ

Therefore, F4 branches to a pure SUð2Þ subgroup. For the
fundamental and adjoint representations of F4, one may
have [36,37]

F4 ⊃ SUð2Þ × Spð6Þ
26 ¼ ð2; 6Þ ⊕ ð1; 14Þ;
52 ¼ ð3; 1Þ ⊕ ð1; 21Þ ⊕ ð2; 140Þ: ð41Þ

In the next step,

Spð6Þ ⊃ SUð2Þ × Spð4Þ
6 ¼ ð2; 1Þ ⊕ ð1; 4Þ;

14 ¼ ð1; 1Þ ⊕ ð1; 5Þ ⊕ ð2; 4Þ;
140 ¼ ð1; 4Þ ⊕ ð2; 5Þ;
21 ¼ ð3; 1Þ ⊕ ð1; 10Þ ⊕ ð2; 4Þ: ð42Þ

Then,

Spð4Þ ⊃ SUð2Þ × SUð2Þ
4 ¼ ð2; 1Þ ⊕ ð1; 2Þ;
5 ¼ ð1; 1Þ ⊕ ð2; 2Þ;
10 ¼ ð3; 1Þ ⊕ ð1; 3Þ ⊕ ð2; 2Þ: ð43Þ

Ultimately, for the F4 exceptional group, pure SUð2Þ
subgroups are formed:

26¼ ð2;1Þ⊕ ð2;1Þ⊕ ð1;2Þ⊕ ð2;1Þ⊕ ð2;1Þ⊕ ð1;2Þ
⊕ ð1;1Þ⊕ ð1;1Þ⊕ ð2;2Þ⊕ ð2;1Þ⊕ ð1;2Þ
⊕ ð2;1Þ⊕ ð1;2Þ;

52¼ ð3;1Þ⊕ ð3;1Þ⊕ ð3;1Þ⊕ ð1;3Þ⊕ ð2;2Þ⊕ ð2;1Þ
⊕ ð1;2Þ⊕ ð2;1Þ⊕ ð1;2Þ⊕ ð2;1Þ⊕ ð1;2Þ⊕ ð1;1Þ
⊕ ð2;2Þ⊕ ð1;1Þ⊕ ð2;2Þ⊕ ð2;1Þ⊕ ð1;2Þ⊕ ð1;1Þ
⊕ ð2;2Þ⊕ ð1;1Þ⊕ ð2;2Þ: ð44Þ

The Cartan generators extracted out of these decomposi-
tions are

H26
SUð2Þ ¼

1ffiffiffi
6

p diag½0; 0; 0; 0; σ23; 0; 0; 0; 0; σ23; 0; 0; σ23; σ23;

0; 0; σ23; 0; 0; σ
2
3�;

H52
SUð2Þ ¼

1

3
ffiffiffi
2

p diag½0; 0; 0; 0; 0; 0; 0; 0; 0; σ33; σ23; σ23; 0; 0;

σ23; 0; 0; σ
2
3; 0; 0; σ

2
3; 0; σ

2
3; σ

2
3; 0; σ

2
3; σ

2
3; 0; 0; σ

2
3;

0; σ23; σ
2
3; 0; σ

2
3; σ

2
3�; ð45Þ

where σ23 ¼ 1
2
diag½1;−1� and σ33 ¼ diag½1; 0;−1� are diago-

nal generators of the SUð2Þ gauge group in the fundamental
and adjoint representations, respectively. Hence, with
respect to the SUð2Þ subgroup, we can reconstruct just
one diagonal generator. It should be recalled that matrices of
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FIG. 8. The real part of the group factor versus the location x of
the vacuum domain midpoint, for R ¼ 100 and in the range
x ∈ ½−200; 300�, for the fundamental and adjoint representation
of F4 (solid lines) in comparison with the corresponding ones
obtained from the SUð3Þ × SUð3Þ decomposition using its non-
trivial center elements (dashed lines). The minimum values of the
F4 group factor for the fundamental and adjoint representations
are 0.076 and −0.076, respectively. It is clear that the minimum
value of the group factors for the SUð3Þ × SUð3Þ decomposition
is not identical to the corresponding ones for F4.
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Eq. (45) are normalized with the normalization condition in
Eq. (17). Considering the normalization coefficient, it is
obvious that the components of these matrices are identical
toH26

3 andH52
3 in Eqs. (25) and (32), respectively. Therefore,

one expects the potential between static color sources in the
fundamental and adjoint representations to be the same as in
Fig. 6, using the maximum flux values below:

α26max ¼ 4π
ffiffiffi
6

p
;

α52max ¼ 12π
ffiffiffi
2

p
: ð46Þ

The next step is to investigate if the nontrivial center
element of SUð2Þ, i.e., zSUð2Þ

1 ¼ eiπ , is responsible for the
confinement of F4. So, we calculate the maximum flux
values from Eq. (6).
Similar to what we did for the SUð3Þ subgroup, we are

going to develop matrices containing the nontrivial center
element of the SUð2Þ subgroup corresponding to the
decomposition of Eq. (44):

Z26
SUð2Þ ¼ diag½1; 1; 1; 1; z1I2×2; 1; 1; 1; 1; z1I2×2; 1; 1;

z1I2×2; z1I2×2; 1; 1; z1I2×2; 1; 1; z1I2×2�;
Z52

SUð2Þ ¼ diag½1; 1; 1; 1; 1; 1; 1; 1; 1; I3×3; z1I2×2; z1I2×2;
1; 1; z1I2×2; 1; 1; z1I2×2; 1; 1; z1I2×2; 1; z1I2×2;

z1I2×2; 1; z1I2×2; z1I2×2; 1; 1; z1I2×2; 1; z1I2×2;

z1I2×2; 1; z1I2×2; z1I2×2�; ð47Þ
where In×n are square identity matrices. Because the
representations 2 and 2̄ are the same in SUð2Þ, the vortices
z1 and z�1 are the same in this gauge group. It is observed
that there are an even number of z1 vortices in the
decompositions of Eq. (47). Therefore, the vacuum domain
or the trivial vortex might be thought to have these center
vortices inside.
The maximum flux condition of Eq. (6) could be written

as follows:

exp½iα⃗ · H⃗ð26Þ or ð52Þ
SUð2Þ � ¼ Zð26Þ or ð52Þ

SUð2Þ I; ð48Þ
which leads to the amounts

α26−nonmax ¼ 2π
ffiffiffi
6

p
;

α52−nonmax ¼ 6π
ffiffiffi
2

p
: ð49Þ

To compare the extremums of the group factor function
of the F4 exceptional group with its SUð2Þ subgroup, the
real part of this function has been plotted versus the
location of the vortex midpoint for the fundamental and
adjoint representations in Fig. 9. It is observed that the
group factors corresponding to this decomposition reach
the amounts 0.076 and −0.076 at x ¼ 50 for the funda-
mental and adjoint representations, respectively. These
amounts are identical to the corresponding ones for F4,

which occur at x ¼ 0 and x ¼ 100. Since the extremums at
x ¼ 50 imply the complete interaction between vortices
and the Wilson loop that results in a linear asymptotic
potential, it is the center element of the SUð2Þ subgroup
that gives rise to the intermediate linear potential of F4.
The other chain of possible decomposition is

F4 ⊃ SUð2Þ × Spð6Þ ðRÞ
Spð6Þ ⊃ SUð2Þ × SUð2Þ ðSÞ: ð50Þ

This decomposition generates matrices similar to h3 and h4.
According to our previous discussion in Fig. 5, when h3 or
h4 is applied, the minimum points of the group factor
function are not identical to the ones for the F4 gauge
group. Using this fact, one might conclude that this
decomposition is not responsible for the confinement in F4.
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FIG. 9. The same as Fig. 8 but the dashed lines represent the
group factor for the SUð2Þ×SPð6Þ⊃SUð2Þ×SUð2Þ×SPð4Þ⊃
SUð2Þ×SUð2Þ×SUð2Þ×SUð2Þ decomposition. In each dia-
gram, the minimum values of the F4 group factor are the same
as the corresponding ones obtained from the SUð2Þ subgroup.
These values are 0.076 and −0.076 for the fundamental and
adjoint representations, respectively.
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3. SOð9Þ subgroup
Another regular maximal subgroup of F4 group is

SOð9Þ. To extract a pure SUðNÞ subgroup out of this
subgroup, one might choose the following decomposition
process:

SOð9Þ ⊃ SUð2Þ × SUð4Þ ðRÞ: ð51Þ

We present three methods to decompose SUð4Þ into the
SUð2Þ subgroups:

(i) A regular decomposition as follows:

SUð4Þ ⊃ SUð2Þ × SUð2Þ × Uð1Þ: ð52Þ

There is a Uð1Þ factor in this decomposition that
makes it a nonsemisimple maximal subgroup. In
fact, theUð1Þ that appears in some branching rules is
a trivial Abelian Lie group composed by all 1 × 1
matrices of eiϕ with real ϕ [43]. This factor is
excluded in the branching rules [36,44]. In our case,
we ignore it since it has no effect on our calculations.
If we evade the Uð1Þ factor in Eq. (52), the same
results as in Eq. (44), where F4 has been decom-
posed into its pure SUð2Þ subgroups, are achieved.
Hence, this decomposition could be responsible for
the intermediate linear potentials, as well. As the
results for the fundamental and adjoint representa-
tions are the same as in Fig. 9, we just present the
detailed calculations for the higher representations in
Appendix B.

(ii) SUð4Þ has a singular subgroup,

SUð4Þ ⊃ Spð4Þ ðSÞ; ð53Þ

and it could be decomposed as follows:

Spð4Þ ⊃ SUð2Þ × SUð2Þ ðRÞ: ð54Þ

The exact decompositions as in Eq. (44) and Cartan
generators of Eq. (45) are obtained. Therefore, the
same results are achieved. Consequently, singular
maximal subgroups are able to bring out the same
potentials as F4 as well. Furthermore, this decom-
position could also describe the linear potential of
F4 correctly.

(iii) Another chain of breaking to SUðNÞ subgroups
could be a singular decomposition:

SUð4Þ ⊃ SUð2Þ × SUð2ÞðSÞ: ð55Þ

Although this decomposition seems to be similar to
Eq. (52), due to the branching rules, representations
decompose in a way that they produce exact ma-
trices as h3 and h4 of Eq. (14) in the fundamental
representation of F4. We previously learned that

induced potentials by these matrices have different
behaviors according to Fig. 5.

So far, we can conclude that, in order to determine the
subgroups whose Cartan decompositions result in a well-
defined potential, one has to compare reconstructed Cartan
matrices produced by means of the subgroups with the ones
of the main exceptional group itself. In the F4 case, the
potential out of applying all of its Cartan generators is the
same as the case where just h1 or h2 is used. Therefore, any
regular or singular subgroup that is able to reconstruct the
same diagonal matrices as one of these two generators
produces the same potential as that of F4 itself.

4. SUð2Þ × G2 subgroup

Ultimately, we are going to investigate the results of a
direct singular maximal subgroup of the F4 exceptional
group, i.e., SUð2Þ × G2, because it shows a different
behavior. To make a pure SUðNÞ subgroup out of this
singular subgroup, one may choose to break G2 into its
SUð3Þ subgroup:

G2 ⊃ SUð3Þ ðRÞ: ð56Þ

It is obviously not a pure subgroup because it contains both
SUð2Þ and SUð3Þ subgroups. However, if one considers the
representations of SUð2Þ as degeneracies of the irreducible
representations of SUð3Þ in the branching rules, the result
will be the same as the F4 ⊃ SUð3Þ × SUð3Þ decomposi-
tion. We have argued that this decomposition is not
responsible for the F4 confinement.
A more challenging procedure is the following decom-

position:

F4 ⊃ SUð2Þ × G2 ðSÞ
26 ¼ ð5; 1Þ ⊕ ð3; 7Þ;
52 ¼ ð3; 1Þ ⊕ ð1; 14Þ ⊕ ð5; 7Þ: ð57Þ

G2 might be decomposed as

G2 ⊃ SUð2Þ × SUð2Þ ðRÞ
7 ¼ ð2; 2Þ ⊕ ð1; 3Þ;
14 ¼ ð3; 1Þ ⊕ ð2; 4Þ ⊕ ð1; 3Þ: ð58Þ

Finally,

26 ¼ ð5; 1Þ ⊕ ð2; 2Þ ⊕ ð1; 3Þ ⊕ ð2; 2Þ ⊕ ð1; 3Þ
⊕ ð2; 2Þ ⊕ ð1; 3Þ

52 ¼ ð3; 1Þ ⊕ ð3; 1Þ ⊕ ð2; 4Þ ⊕ ð1; 3Þ ⊕ ð2; 2Þ
⊕ ð1; 3Þ ⊕ ð2; 2Þ ⊕ ð1; 3Þ ⊕ ð2; 2Þ ⊕ ð1; 3Þ
⊕ ð2; 2Þ ⊕ ð1; 3Þ ⊕ ð2; 2Þ ⊕ ð1; 3Þ: ð59Þ
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Using these decompositions, we can reproduce Cartan
generators in the fundamental and adjoint representations
as follows:

H26
SUð2Þ×G2

¼ 1

3
ffiffiffi
2

p diag½0; 0; 0; 0; 0; σ23; σ23; σ33; σ23; σ23; σ33;

σ23; σ
2
3; σ

3
3�;

H52
SUð2Þ×G2

¼ 1

3
ffiffiffi
6

p diag½0; 0; 0; 0; 0; 0; σ43; σ43; σ33; σ23; σ23;

σ33; σ
2
3; σ

2
3; σ

3
3; σ

2
3; σ

2
3; σ

3
3; σ

2
3; σ

2
3; σ

3
3; σ

2
3; σ

2
3; σ

3
3�:
ð60Þ

In these matrices, the normalization coefficients have been
computed from Eq. (17). σ23, σ33, and σ43 are Cartan
generators of the SUð2Þ gauge group in the fundamental,
adjoint and four-dimensional representations, respectively.
After an initial review, the elements of these matrices are
not fully the same as the corresponding ones in Eqs. (25)
and (32) or (45). Accordingly, the trivial static potentials,
when we consider the trivial center element of the SUð2Þ
subgroup, are not identical to those of the F4 exceptional
group itself. We have investigated this subgroup in
Ref. [45]. However, there is another aspect of this decom-
position that is appealing.
The center element matrices of the SUð2Þ ×G2 sub-

group of F4 in the fundamental and adjoint representations
are given by

Z26
SUð2Þ×G2

¼ diag½1; 1; 1; 1; 1; z1I2×2; z1I2×2; I3×3;
z1I2×2; z1I2×2; I3×3;

z1I2×2; z1I2×2; I3×3�;
Z52

SUð2Þ×G2
¼ diag½1; 1; 1; 1; 1; 1; z1I4×4; z1I4×4; I3×3;
z1I2×2; z1I2×2; I3×3; z1I2×2; z1I2×2; I3×3; z1I2×2;

z1I2×2; I3×3; z1I2×2; z1I2×2;

I3×3; z1I2×2; z1I2×2; I3×3�: ð61Þ

Now, putting the above matrices in Eq. (6), the maximum
flux values are calculated as follows:

α26-nonmax ¼ 6π
ffiffiffi
2

p
;

α52-nonmax ¼ 6π
ffiffiffi
6

p
: ð62Þ

Figure 10 shows the group factor function versus the vortex
midpoint x for the fundamental and adjoint representations,
respectively. As observed, the group factor has a totally
different behavior in comparison with Fig. 9. The minimum
points of the F4 representations occur at x ¼ 0 and
x ¼ 100, where half of the vortex flux enters the Wilson
loop. These points are responsible for the intermediate
linear potentials of F4. Now, we focus on the

decomposition of the representations to the SUð2Þ ×G2

subgroup. When the vortex midpoint is located at x ¼ 50, it
means that the vortex is completely inside the Wilson loop.
The nonzero value of the group factor at this point results in
a linear potential at large distances. As the value of the
group factor at this point is equal to the corresponding one
for F4, the slope of this linear potential seems to be
identical to the intermediate linear potentials of F4.
Therefore, one might say that the SUð2Þ ×G2 ⊃ SUð2Þ ×
SUð2Þ × SUð2Þ subgroup of F4 is responsible for the
intermediate confinement of this exceptional group.
An interesting point here is that Cartan generators of this

decomposition are different from h1 and h2. However, the
minimum points of the F4 group factor can still be
investigated correctly via this decomposition. The question
is why this happens. In fact, the N-ality of the SUðNÞ
representations or the center element matrix obtained from
the group decompositions has the predominant responsibil-
ity here. The representations could be classified by their
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FIG. 10. The same as Fig. 9 but for the SUð2Þ × G2 subgroup.
In both figures, the minimum values of the F4 group factor are
identical to the amount of the group factor corresponding to the
SUð2Þ × G2 decomposition at x ¼ 50. Therefore, the slope of the
intermediate linear of F4 is the same as the asymptotic one for
the SUð2Þ ×G2 subgroup.
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N-ality. This means that the Wilson loop of the represen-
tations with the same N-ality is affected by a vortex type n
in the same manner. To make it more clear, we investigate
center element matrices of the fundamental representation
in Eq. (47), obtained from the SUð2Þ × Spð6Þ subgroup,
and also in Eq. (61), by means of the SUð2Þ ×G2

subgroup, which have different elements. In the former
one, there exist fourteen 1’s and six z1I2×2’s, while in the
latter one, in Eq. (61), there exist five 1’s, six z1I2×2’s, and
three I3×3’s. The number of z1I2×2 center elements is the
same in both matrices, which corresponds to the funda-
mental representation with 2-ality¼ 1. Elements 1 and I3×3
with zero 2-ality have no effect on the Wilson loop. So, the
other elements of these two matrices do not affect the
Wilson loop. As a result, although the matrices of Eqs. (45)
and (60) have different elements and the potentials of these
two generators behave differently, the number of center
vortices that emerge in both decompositions is the same.
Thus, the group factor reaches the same minimum amount
in both of them. Regarding 52-dimensional adjoint repre-
sentation, the same process comes about.

B. E6 exceptional group

E6 is the third exceptional group in terms of largeness. It
makes a 78-dimensional space with 78 generators and,
similar to SUð3Þ, has Z3 as its group center [27]. Here, we
mostly focus on its trivial center to investigate the static
potential behavior. As the rank of E6 is six, it possesses six
diagonal matrices that are shown as follows for the
fundamental representation [46]:

h271 ¼ N1diag½−1;þ1; 0; 0; 0; 0; 0; 0; 0;−1; 0; 0; 0;−1;

þ 1;−1;−1;þ1;þ1;þ1; 0;−1;þ1; 0; 0; 0; 0�;
h272 ¼ N2diag½0;−1;þ1; 0; 0; 0; 0; 0;−1;þ1; 0;−1;−1;

þ 1; 0;þ1; 0; 0; 0;−1;þ1; 0;−1;þ1; 0; 0; 0�;
h273 ¼ N3diag½0; 0;−1;þ1; 0; 0; 0;−1;þ1; 0;−1;þ1; 0; 0;

0;−1;þ1; 0;−1;þ1; 0; 0; 0;−1;þ1; 0; 0�;
h274 ¼ N4diag½0; 0; 0;−1;þ1; 0;−1;þ1; 0; 0; 0;−1;þ1;

− 1; 0;þ1; 0;−1;þ1; 0; 0; 0; 0; 0;−1;þ1; 0�;
h275 ¼ N5diag½0; 0; 0; 0;−1;þ1; 0;−1;−1;−1;þ1;þ1; 0;

þ 1;−1; 0; 0;þ1; 0; 0; 0; 0; 0; 0; 0;−1;þ1�;
h276 ¼ N6diag½0; 0; 0;−1;−1;−1;þ1;þ1; 0; 0;þ1; 0; 0; 0;

0; 0;−1; 0; 0;−1;−1;þ1;þ1;þ1; 0; 0; 0�: ð63Þ

These matrices are normalized and their normalization
coefficients could be calculated from Eq. (17):

N1 ¼ � � � ¼ N6 ¼
1

2
ffiffiffi
6

p : ð64Þ

It should be noted that, due to the similarity of these
matrices, one can use only h271 to calculate the potential of
the fundamental representation of E6. The maximum flux
values for the domain structures, calculated from the
condition in Eq. (19), are

αmax
1 ¼ � � � ¼ αmax

6 ¼ 2π
ffiffiffiffiffi
24

p
: ð65Þ

On the other hand, if we include the nontrivial flux
condition in Eq. (6), the maximum amounts for the vortex
fluxes are

αnonmax1 ¼ αnonmax4 ¼∓ 4π

3

ffiffiffi
6

p
;

αnonmax3 ¼ αnonmax6 ¼∓ 4π
ffiffiffi
6

p
;

αnonmax2 ¼ αnonmax5 ¼∓ 8π

3

ffiffiffi
6

p
; ð66Þ

where “non” indicates the answer pertaining to the non-
trivial center elements. Negative answers have been gained
by type 1 vortices when Eq. (6) is equal to z1 ¼ expð2πi

3
Þ

and positive answers correspond to the type 2 vortices
[z2 ¼ expð−2πi

3
Þ]. Static potentials obtained by both of these

maximum trivial and nontrivial flux values in Eqs. (65) and
(66) have been depicted in Fig. 11. As could have been
predicted, at far distances, the potential obtained from the
trivial center element of E6 has been screened while the
potential corresponding to the nontrivial center element is
linear. This fact could be investigated by tensor products of
the E6 “quark” and “gluons”:

27 × 78 ¼ 27 ⊕ 351 ⊕ 1728: ð67Þ

It is seen that E6 “gluons” are not able to screen the
potential of the E6 “quarks”. Similar to SUðNÞ gauge
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FIG. 11. Potential of the fundamental representation of E6

using trivial and nontrivial center elements for R ∈ ½1; 100�.
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groups, one “quark” and one “antiquark” can join to create
a meson,

27 × 27 ¼ 1 ⊕ 78 ⊕ 650; ð68Þ

and three “quarks” form a baryon,

27 × 27 × 27 ¼ 1 ⊕ 2ð78Þ ⊕ 3ð650Þ ⊕ 2925

⊕ 3003 ⊕ 25824: ð69Þ

Now, we aim to follow the same procedure applied for
F4 to explain what actually accounts for the temporary
confinement in the trivial static potential of the E6 excep-
tional group. The main question is, which kinds of center
vortices have filled the E6 QCD vacuum that give rise to the
intermediate confining potential obtained by the trivial
center element? In general, we have three candidates:

(i) Nontrivial center elements of the E6 excep-
tional group;

(ii) Nontrivial center elements of its SUð3Þ maximal
subgroup;

(iii) Nontrivial center elements of its maximal SUð2Þ
subgroup.

To answer this question properly, the group factor
function using Eq. (63) for both trivial and nontrivial
center elements of the E6 exceptional group have been
demonstrated in Fig. 12. Consequently, nontrivial center
elements of E6 are not the direct reason of the intermediate
linear part in the trivial potential of E6. Then, we go for
some of the maximal subgroups of E6 that have been
mentioned in Table I.

1. SUð3Þ × SUð3Þ × SUð3Þ subgroup
The fundamental representation decomposes as [36–38]

27 ¼ ð3; 3̄; 1Þ ⊕ ð1; 3; 3Þ ⊕ ð3̄; 1; 3̄Þ: ð70Þ

Thus, if we assume the first two representations in the
parentheses in Eq. (70), as degeneracies step by step, one
might have

27 ¼ 9ð1Þ ⊕ 3ð3Þ ⊕ 3ð3̄Þ: ð71Þ

Although E6 has a nontrivial center element, the method of
decomposing its representations leads to the SUð3Þ repre-
sentations with different trialities. Therefore, an E6 “quark”
could be decomposed into three SUð3Þ quarks, three
antiquarks, and nine singlets. Now, two Cartan generators
with regard to this subgroup are reconstructed from
Eq. (71):

H27
a ¼ 1ffiffiffi

6
p diag½0; 0; 0; 0; 0; 0; 0; 0; 0; λ3a; λ3a; λ3a;

− ðλ3aÞ�;−ðλ3aÞ�;−ðλ3aÞ��; ð72Þ

where a ¼ 3, 8. Now, one can consider the condition in
Eq. (19) and find

α27max1 ¼ 2π
ffiffiffi
6

p
;

α27max2 ¼ 6π
ffiffiffi
2

p
: ð73Þ

The potential between the fundamental sources of the E6

using the six Cartan generators in Eq. (63) has been
presented in Fig. 13, which overlaps completely with the
data obtained from the above values in Eq. (73) and Cartan
generators of Eq. (72). This fact is the result of the identical
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FIG. 12. Solid line represents the group factor of the funda-
mental representation of E6 versus the location x of the vacuum
domain midpoint, using the trivial center element, for R ¼ 100 in
the range x ∈ ½−200; 300�. The dashed line shows the same
function versus the location x of the nontrivial center vortex.
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components of H27
3 and h271 . Although H27

8 has different
matrix elements, it has the same effect as H27

3 on the E6

potentials. A similar discussion has been given in the F4 ⊃
SUð3Þ × SUð3Þ decomposition. Therefore, one might use
the SUð3Þ subgroup decomposition to find the E6 adjoint
potential.
Reconstruction of Cartan generators in the adjoint

representation of E6 with respect to its SUð3Þ subgroup
is possible only when we want to calculate the trivial static
potential because they are identical. This method is not
applicable for the potentials obtained by the nontrivial
center elements.
The adjoint representation might be decomposed as

follows:

78 ¼ ð8; 1; 1Þ ⊕ ð1; 8; 1Þ ⊕ ð1; 1; 8Þ ⊕ ð3; 3; 3̄Þ
⊕ ð3̄; 3̄; 3Þ ¼ 16ð1Þ ⊕ 8 ⊕ 9ð3̄Þ ⊕ 9ð3Þ: ð74Þ

So, an E6 “gluon” has been decomposed into nine SUð3Þ
quarks, nine antiquarks, one gluon, and 16 singlets. Hence,
the Cartan generators structured from the SUð3Þ decom-
position are

H78
a ¼ 1

2
ffiffiffi
6

p diag½0;…; 0
zfflfflffl}|fflfflffl{8 times

; 0;…; 0
zfflfflffl}|fflfflffl{8 times

; λ8a;

−ðλ3aÞ�;…;−ðλ3aÞ�
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{9 times

; λ3a;…; λ3a
zfflfflfflfflffl}|fflfflfflfflffl{9 times

�: ð75Þ

Applying the maximum flux condition of Eq. (19) for these
Cartan generators, we have

α78max1 ¼ 4π
ffiffiffi
6

p
;

α78max2 ¼ 12π
ffiffiffi
2

p
: ð76Þ

The potential between static color sources using the trivial
center element of the E6 exceptional gauge group for the
fundamental and adjoint representations has been plotted in
Fig. 14. The screening is visible at large distances, while
the intermediate parts are linear. The lower diagram shows
the linear parts of the potentials in the interval R ∈ ½3; 10�.
We have fitted our data to the equation VðRÞ ¼ aRþ b.
The slopes of the potentials have been found to be 0.251(3)
and 0.309(5) for the fundamental and adjoint representa-
tions, respectively. Therefore, the ratio of the adjoint
potential to the fundamental one in this range is 1.23(5).
In fact, the ratio of the adjoint potential to the fundamental
one starts from 1.384, which is the Casimir scaling of the
adjoint representation [42]. But, similar to Fig. 7, the
adjoint potential ratio differs from the exact value of
Casimir scaling at intermediate distances.
To find what accounts for the intermediate linear pote-

ntial, one needs to construct a matrix that consists of SUð3Þ
center elements with respect to Eqs. (70) and (74):

Z27
SUð3Þ ¼ diag½1; 1; 1; 1; 1; 1; 1; 1; 1; zI3×3; zI3×3;

zI3×3; z�I3×3; z�I3×3; z�I3×3�;

Z78
SUð3Þ ¼ diag½0;…; 0

zfflfflffl}|fflfflffl{8 times

; 0;…; 0
zfflfflffl}|fflfflffl{8 times

; I8×8;

z�I3×3;…; z�I3×3
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{9 times

; zI3×3;…; zI3×3
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{9 times

�: ð77Þ

Similar to F4, the numbers of z and z� vortices are the same
in the above matrices. Using Eq. (6), we have

α27-nonmax1 ¼ 2π
ffiffiffi
6

p
; α27-nonmax2 ¼ 2π

ffiffiffi
2

p
;

α78-nonmax1 ¼ 4π
ffiffiffi
6

p
; α78-nonmax1 ¼ 4π

ffiffiffi
2

p
: ð78Þ

Using the above amounts, one might plot the group
factor for the fundamental and adjoint representations in

 0

 1

 2

 3

 4

 5

 6

 0  10  20  30  40  50  60  70  80  90  100

V
(R

)

R

Rep.27 of E6
Rep. 78 of E6

 0

 0.5

 1

 1.5

 2

 2.5

 3  4  5  6  7  8  9  10

V
(R

)

R

Rep. 27 of E6
Rep. 78 of E6

FIG. 14. Upper diagram: Trivial static potentials of the E6
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Fig. 15 and compare them with the corresponding ones for
E6. In this figure, we can observe that the minimum values
are not the same. Thus, nontrivial center elements of the
SUð3Þ subgroup are not in charge of the confining part in
the trivial potential of E6. The third possibility to inves-
tigate the linearity of the E6 trivial potentials in Fig. 14 is
the nontrivial center element of the SUð2Þ subgroups.

2. SUð2Þ × SUð6Þ subgroup
Now, we decompose E6 into the SUð2Þ × SUð6Þ sub-

group and have

27 ¼ ð2; 6̄Þ ⊕ ð1; 15Þ;
78 ¼ ð3; 1Þ ⊕ ð1; 35Þ ⊕ ð2; 20Þ: ð79Þ

Then, one can choose the following maximal subgroup of
SUð6Þ to decompose its representations:

SUð6Þ⊃SUð2Þ×SUð4Þ×Uð1Þ ðRÞ
6¼ð2;1Þ⊕ ð1;4Þ;
15¼ð1;1Þ⊕ ð2;4Þ⊕ ð1;6Þ;
20¼ð1;4Þ⊕ ð1; 4̄Þ⊕ ð2;6Þ;
35¼ð1;1Þ⊕ ð3;1Þ⊕ ð1;15Þ⊕ ð2;4Þ⊕ ð2; 4̄Þ; ð80Þ

and for SUð4Þ,

SUð4Þ ⊃ SUð2Þ × SUð2Þ ×Uð1Þ ðRÞ
4 ¼ ð2; 1Þ ⊕ ð1; 2Þ;
6 ¼ ð1; 1Þ ⊕ ð1; 1Þ ⊕ ð2; 2Þ;

15 ¼ ð1; 1Þ ⊕ ð3; 1Þ ⊕ ð1; 3Þ ⊕ ð2; 2Þ ⊕ ð2; 2Þ: ð81Þ

Finally, we have

27¼ ð2;1Þ⊕ ð2;1Þ⊕ ð1;2Þ⊕ ð2;1Þ⊕ ð2;1Þ⊕ ð1;2Þ
⊕ ð1;1Þ⊕ ð2;1Þ⊕ ð1;2Þ⊕ ð2;1Þ⊕ ð1;2Þ⊕ ð1;1Þ
⊕ ð1;1Þ⊕ ð2;2Þ;

78¼ ð3;1Þ⊕ ð1;1Þ⊕ ð3;1Þ⊕ ð1;1Þ⊕ ð3;1Þ⊕ ð1;3Þ
⊕ ð2;2Þ⊕ ð2;2Þ⊕ ð2;1Þ⊕ ð1;2Þ⊕ ð2;1Þ⊕ ð1;2Þ
⊕ ð2;1Þ⊕ ð1;2Þ⊕ ð2;1Þ⊕ ð1;2Þ⊕ ð2;1Þ⊕ ð1;2Þ
⊕ ð2;1Þ⊕ ð1;2Þ⊕ ð1;1Þ⊕ ð1;1Þ⊕ ð2;2Þ⊕ ð1;1Þ
⊕ ð1;1Þ⊕ ð2;2Þ⊕ ð2;1Þ⊕ ð1;2Þ⊕ ð2;1Þ⊕ ð1;2Þ
⊕ ð1;1Þ⊕ ð1;1Þ⊕ ð2;2Þ⊕ ð1;1Þ⊕ ð1;1Þ⊕ ð2;2Þ:

ð82Þ

In Eqs. (80)–(82), the Uð1Þ factor has been ignored.
Reconstruction of the Cartan generators for the SUð2Þ
subgroup of E6 and for the fundamental and adjoint
representations using the decompositions in Eq. (82) is
as follows:

H27
SUð2Þ ¼

1ffiffiffi
6

p diag½0; 0; 0; 0; σ23; 0; 0; 0; 0; σ23; 0; 0; 0; σ23;

0; 0; σ23; 0; 0; σ
2
3; σ

2
3�;

H78
SUð2Þ ¼

1

2
ffiffiffi
6

p diag½0;…; 0
zfflfflffl}|fflfflffl{35 times

; σ33; σ
2
3;…; σ23

zfflfflfflfflffl}|fflfflfflfflffl{20 times

�: ð83Þ

It should be noted that, for the sake of simplicity, the
components of the matrix H78

SUð2Þ are not in order because it
does not have any effect on our calculations.
To make a comparison with the potentials obtained from

the trivial center element of the E6 exceptional group and
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FIG. 15. The real part of the group factor function versus the
location x of the vacuum domain midpoint, for R ¼ 100 and in
the range x ∈ ½−200; 300�, for the fundamental and adjoint
representation of E6 (solid lines) in comparison with the same
function versus the location x of the vortex midpoint obtained
from the SUð3Þ × SUð3Þ × SUð3Þ decomposition (dashed lines).
The minimum points of the E6 group factor that occur at x ¼ 0
and x ¼ 100 reach the amounts 0.111 and −0.025 for the
fundamental and adjoint representations, respectively, whereas
these amounts are approximately 0 and −0.038 for the SUð3Þ
subgroup.
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its SUð2Þ subgroup, one can utilize Eq. (83) in Eq. (19) and
find

α27max ¼ 4π
ffiffiffi
6

p
;

α78max ¼ 8π
ffiffiffi
6

p
: ð84Þ

Static potentials obtained by these maximum flux values
and Cartans of Eq. (83) are identical to the E6 potentials in
Fig. 14. These results were foreseeable due to the similarity
of the matrix components of Eq. (83) with the correspond-
ing Cartan generators of E6 in Eqs. (72) and (75).
Matrices made of center elements of the SUð2Þ subgroup

considering Eq. (82) are

Z27
SUð2Þ ¼ ½1; 1; 1; 1; z1I2×2; 1; 1; 1; 1; z1; I2×2; 1; 1; 1;

z1I2×2; 1; 1; z1I2×2; 1; 1; z1I2×2; z1I2×2�;

Z78
SUð2Þ ¼ ½1;…; 1

zfflfflffl}|fflfflffl{35 times

; I3×3; z1I2×2;…; z1I2×2
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{20 times

�: ð85Þ

So, using Eq. (6), the flux maximum values are

α27-nonmax ¼ 2π
ffiffiffi
6

p
;

α78-nonmax ¼ 4π
ffiffiffi
6

p
: ð86Þ

Using these values, we are able to plot the group factor
function for the nontrivial center element of the SUð2Þ
subgroup and compare the results with the same function
obtained by the trivial center element of the E6 exceptional
group or its SUð3Þ subgroup. Figure 16 depicts this
comparison. It is clear that the minimum points are
identical. So, one can conclude that the nontrivial center
element of the SUð2Þ subgroup is responsible for the
linearity at intermediate distance scales.

3. F4 subgroup

There is another way to decompose E6 into its subgroup
without having a Uð1Þ factor in the final result. For
instance, the decomposition chain described below can
satisfy our assumption and reconstruct matrices with the
same components as in Eq. (83):

E6 ⊃ F4 ðSÞ
F4 ⊃ SUð2Þ × Spð6Þ ðRÞ

Spð6Þ ⊃ SUð2Þ × Spð4Þ ðRÞ
Spð4Þ ⊃ SUð2Þ × SUð2Þ ðRÞ: ð87Þ

Therefore, we expect the same result as the E6 ⊃ SUð2Þ ×
SUð6Þ decomposition.

4. G2 subgroup

In the F4 exceptional group case, its singular maximal
SUð2Þ × G2 subgroup has a property that could not
produce the same potential as F4 itself, because its
reconstructed Cartan matrices consist of different compo-
nents from h1 and h2 original Cartan generators of F4.
However, they are still able to produce the same linear part
as some of the other SUð2Þ subgroups of F4. Here, for E6,
the branching G2 singular maximal subgroup into the
SUð2Þ × SUð2Þ subgroup attributes similarly to the
SUð2Þ × G2 subgroup of F4. According to the branching
rules, the decomposition for the fundamental representation
of the E6 is as follows:

E6 ⊃ G2 ðSÞ
27 ¼ 27

78 ¼ 14 ⊕ 64: ð88Þ

Then,
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FIG. 16. The same as Fig. 15 but the dashed lines represent the
group factor corresponding to the SUð2Þ × SUð6Þ subgroup of
E6. It is clear that in both diagrams, the minimum values are
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G2 ⊃ SUð2Þ × SUð2Þ ðRÞ
27 ¼ ð3; 3Þ ⊕ ð2; 4Þ ⊕ ð2; 2Þ ⊕ ð1; 5Þ ⊕ ð1; 1Þ;
14 ¼ ð1; 3Þ ⊕ ð2; 4Þ ⊕ ð3; 1Þ;
64 ¼ ð4; 2Þ ⊕ ð3; 5Þ ⊕ ð3; 3Þ ⊕ ð2; 6Þ ⊕ ð2; 4Þ ⊕ ð2; 2Þ

⊕ ð1; 5Þ ⊕ ð1; 3Þ: ð89Þ

Therefore,

H27
E6⊃G2

¼ 1

3
ffiffiffi
6

p diag½σ33; σ33; σ33; σ43; σ43; σ23; σ23; σ53; 0�;

H78
E6⊃G2

¼ 1

6
ffiffiffi
6

p diag½σ33; σ43; σ43; 0; 0; 0; σ23; σ23; σ23; σ23; σ53;

σ53; σ
5
3; σ

3
3; σ

3
3; σ

3
3; σ

6
3; σ

6
3; σ

4
3; σ

4
3; σ

2
3; σ

2
3; σ

5
3; σ

3
3�;
ð90Þ

and

Z27
E6⊃G2

¼ diag½I3×3; I3×3; I3×3; z1I4×4; z1I4×4;
z1I2×2; z1I2×2; I5×5; 1�;

Z78
E6⊃G2

¼ diag½I3×3; z1I4×4; z1I4×4; 1; 1; 1;
z1I2×2; z1I2×2; z1I2×2; z1I2×2;

I5×5; I5×5; I5×5; I3×3; I3×3; I3×3;

z1I6×6; z1I6×6; z1I4×4; z1I4×4;

z1I2×2; z1I2×2; I5×5; I3×3�; ð91Þ

The flux condition of Eq. (19) gives

α27-nonmax ¼ 6π
ffiffiffi
6

p
;

α78-nonSUð2Þ- max ¼ 12π
ffiffiffi
6

p
: ð92Þ

Figure 17 shows the group factor obtained from this
decomposition versus the location x of the vortex midpoint.
It is observed that the amount of the group factor when the
vortex is completely inside the Wilson loop is equal to the
minimum values of the E6 group factor. Therefore, this
decomposition is able to describe E6 temporary confine-
ment. It should be pointed out that the numbers of center
elements that emerge in the center element matrices of
Eqs. (85) and (90) are the same. So, an argument similar to
that of the SUð2Þ ×G2 subgroup of F4 could be
applied here.

C. G2 exceptional group

G2 is the simplest exceptional group with rank 2 and
likewise SUð3Þ. All of its representations are real and it is
its own universal covering group. Despite F4 and E6

exceptional groups that do not have numerical supports
yet, pending future investigations, there are lattice

calculations in favor of the G2 exceptional gauge group
[25–27,31,47–50].
In Refs. [28–30], the static potentials of the G2 excep-

tional gauge group have been investigated, and the dom-
inant role of nontrivial center elements of its SUð2Þ and
SUð3Þ subgroups on the intermediate confinement has been
studied. In this research, we are going to insert our
generalized method to calculate the potentials of higher
representations of G2 as well.
To begin, one needs the original Cartan generators of the

G2 exceptional group to simulate the static potential using
the vacuum domain structure model. The Cartan generators
of G2 in the fundamental seven-dimensional representation
are as follows [28,46]:

h71 ¼
1

2
ffiffiffi
2

p diag½þ1;−1; 0; 0;−1;þ1; 0�;

h72 ¼
1

2
ffiffiffi
6

p diag½þ1;þ1;−2; 0;−1;−1;þ2�: ð93Þ

These matrices are normalized with the Eq. (17) condition.
Plotting the potential of Eq. (10) requires the group factor
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FIG. 17. The same as Fig. 15 but the dashed lines represent the
group factor of the G2 subgroup.
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in Eq. (3) and the flux profile in Eq. (7). In order to compute
the maximum value of the flux profile, one has to apply the
trivial flux condition in Eq. (19) and solve three indepen-
dent equations:

exp

�
α7max1

2
ffiffiffi
2

p þ α7max2

2
ffiffiffi
6

p
�
¼ I;

exp

�
−α7max1

2
ffiffiffi
2

p þ α7max2

2
ffiffiffi
6

p
�
¼ I;

exp

�
−α7max2ffiffiffi

6
p

�
¼ I; ð94Þ

to find

α7max1 ¼ 2π
ffiffiffi
2

p
;

α7max2 ¼ 2π
ffiffiffi
6

p
: ð95Þ

It can be easily shown that the first Cartan generator h71 in
Eq. (93), with the maximum flux value of αmax

1 ¼ 4π
ffiffiffi
2

p
, is

capable of producing the whole G2 potential individually,
without using h72. In the next stage, we are going to
calculate reconstructed Cartan generators in 7-, 14-, 27-,
64-, 77-, and 770-dimensional representations from the
decomposition of G2 into its SUð3Þ subgroup.

1. SUð3Þ subgroup
The decomposition of the fundamental representation

into the SUð3Þ subgroup is as follows [36,37]:

G2 ⊃ SUð3Þ ðRÞ
7 ¼ 3 ⊕ 3̄ ⊕ 1: ð96Þ

The reconstructed Cartan generator with respect to this
decomposition is

H7
a ¼

1ffiffiffi
2

p diag½λ3a;−ðλ3aÞ�; 0�; ð97Þ

with a ¼ 3, 8. It is clear that the decomposition of this
representation into the SUð3Þ subgroup results in the same
matrices as Eq. (93). Similar to the F4 and E6 exceptional
groups, one is able to use SUð3Þ subgroups to reproduce
the group potentials. This matter enables us to calculate the
potentials of higher representations by taking the same
procedure. The decomposition of the higher representations
of G2 into the SUð3Þ subgroup is [37]

14 ¼ 3 ⊕ 3̄ ⊕ 8;

27 ¼ 8 ⊕ 6 ⊕ 6̄ ⊕ 3 ⊕ 3̄ ⊕ 1;

64 ¼ 15 ⊕ 1̄5 ⊕ 8 ⊕ 8 ⊕ 6 ⊕ 6̄ ⊕ 3 ⊕ 3̄;

77 ¼ 27 ⊕ 15 ⊕ 1̄5 ⊕ 8 ⊕ 6 ⊕ 6̄;

770 ¼ 15 ⊕ 1̄5 ⊕ 10 ⊕ 1̄0 ⊕ 8 ⊕ 6 ⊕ 6̄ ⊕ 3 ⊕ 3̄ ⊕ 1:

ð98Þ

So, the corresponding Cartan generators are decomposed as
follows:

H14
a ¼ 1ffiffiffi

8
p diag½λ3a;−ðλ3aÞ�; λ8a�;

H27
a ¼ 1ffiffiffiffiffi

18
p diag½λ8a; λ66;−ðλ6aÞ�; λ3a;−ðλ3aÞ�; 0�;

H64
a ¼ 1

8
diag½λ15a ;−ðλ15a Þ�; λ8a; λ8a; λ6a;−ðλ6aÞ�; λ3a;

− ðλ3aÞ��;

H77
a ¼ 1ffiffiffiffiffiffiffiffi

110
p diag½λ27a ; λ15a ;−ðλ15a Þ�; λ8a; λ6a;−ðλ6aÞ��;

H770
a ¼ 1

2
ffiffiffiffiffi
22

p diag½λ15a ;−ðλ15a Þ�; λ10a ;−ðλ10a Þ�; λ8a;

λ6a;−ðλ6aÞ�; λ3a;−ðλ3aÞ�; 0�; ð99Þ

where the upper indices of the λa’s indicate the dimensions
of the SUð3Þ representations. The maximum flux values
extracted from Eq. (19) are

α14max1 ¼ 2π
ffiffiffi
8

p
; α14max2 ¼ 2π

ffiffiffiffiffi
24

p
;

α27max1 ¼ 6π
ffiffiffi
2

p
; α27max2 ¼ 6π

ffiffiffi
6

p
;

α64max1 ¼ 16π; α64max2 ¼ 16π
ffiffiffi
3

p
;

α77max1 ¼ 2π
ffiffiffiffiffiffiffiffi
110

p
; α77max2 ¼ 2π

ffiffiffiffiffiffiffiffi
330

p
;

α77
0

max1 ¼ 4π
ffiffiffiffiffi
22

p
; α77

0
max2 ¼ 4π

ffiffiffiffiffi
66

p
: ð100Þ

The trivial static potentials of Eq. (10) for the funda-
mental, adjoint, 27-, 64-, 77-, and 770-dimensional repre-
sentations have been plotted in Fig. 18. Screening is
observed for all representations, which is a consequence
of the adjoint “gluons” that pop out of the vacuum due to
high energies and screen the initial color sources. The
tensor products of all representations, when they create a
singlet, are an implication of this phenomenon:
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7 × 14 × 14 × 14 ¼ 1 ⊕ 10ð7Þ ⊕ 6ð14Þ ⊕ � � � ;
14 × 14 ¼ 1 ⊕ 14 ⊕ 27 ⊕ � � � ;

27 × 14 × 14 ¼ 1 ⊕ 3ð7Þ ⊕ 3ð14Þ ⊕ � � � ;
64 × 14 × 14 × 14 ¼ 2ð1Þ ⊕ 20ð7Þ ⊕ � � � ;

77 × 14 × 14 ¼ 1 ⊕ 2ð7Þ ⊕ 4ð14Þ ⊕ � � � ;
770 × 14 × 14 ¼ 1 ⊕ 3ð14Þ ⊕ 3ð27Þ ⊕ � � � : ð101Þ

The lower diagram of Fig. 18 shows the linear parts of the
potentials in the range R ∈ ½3; 7�. The slopes of the linear
potentials and the potential ratios (krkF) are listed in the fourth
and fifth columns of Table III, respectively. Comparing kr

kF
values with the values of Cr

CF
shows that potentials are in

qualitative agreement with Casimir scaling. The point-by-
point ratios of the potentials have been plotted in Fig. 19 in
the range R ∈ ½1; 20�. The potential ratios start at accurate
Casimir ratios. However, they plummet considerably at
larger distances of R. In fact, the potential ratios almost

reach a plateau at R → ∞. To investigate the reason why
the potentials are linear at intermediate distances, we study
the effects of the subgroups of G2.
The G2 exceptional group owns three direct maximal

subgroups, which are presented in Table I. Like those of the
F4 and E6 exceptional groups, the center elements of the
SUð3Þ subgroup are not a direct cause of intermediate
confining potentials of G2 in several representations.
Hence, we do not give a detailed calculation for this
subgroup, because the results are the same as those of
F4 and E6. So, we study the other subgroup ofG2. It should
be mentioned that SUð2Þ × SUð2Þ is a regular subgroup.
Hence, it proves that these features do not appear exclu-
sively for singular maximal subgroups.

2. SUð2Þ × SUð2Þ subgroup
Using this subgroup, the fundamental and adjoint rep-

resentations can be decomposed as follows [36,37]:
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FIG. 18. Upper diagram: Static potentials of the G2 exceptional
group for the fundamental, adjoint, 27, 64, 77, and 770 repre-
sentations in the range R ∈ ½1; 100�. All potentials are screened at
far distances and are linear at intermediate distance scales. Lower
diagram: Linear parts of the potentials in the range [3,7]. The
slopes of the potentials are given in the fourth column of Table III.

TABLE III. The second column lists the Casimir numbers of
several representations of the G2 exceptional group [25–27,42].
The Casimir ratios, slopes of the potentials obtained from the
lower diagram of Fig. 18, and the potential ratios are given in
the third, fourth, and fifth columns, respectively. The numbers in
the parentheses indicate the fit error.

Rep. Casimir numbers Cr
CF

Potential slope kr
kF

7 1
2

1 0.329(8) 1

14 1 2 0.488(8) 1.48(1)
27 7

6
2.33 0.50(2) 1.52(1)

64 7
4

3.5 0.57(3) 1.74(3)

770 2 4 0.63(4) 1.91(4)

77 5
2

5 0.68(5) 2.06(5)
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G2 ⊃ SUð2Þ × SUð2Þ ðRÞ
7 ¼ ð2; 2Þ ⊕ ð1; 3Þ;
14 ¼ ð1; 3Þ ⊕ ð3; 1Þ ⊕ ð2; 4Þ: ð102Þ

Therefore, the reconstructed diagonal matrices for the
fundamental and adjoint representations of G2 with respect
to the SUð2Þ × SUð2Þ subgroup are

H7
SUð2Þ ¼

1ffiffiffi
6

p diag½σ23; σ23; σ33�;

H14
SUð2Þ ¼

1

2
ffiffiffi
6

p diag½σ33; 0; 0; 0; σ43; σ43�: ð103Þ

It is seen that the elements of these matrices are not
identical to H7

3 and H14
3 in Eqs. (96) and (98), respectively.

Therefore, the trivial potentials obtained from this decom-
position are not the same as the original ones for G2.
Nevertheless, the center element matrix of the SUð2Þ
subgroup is

Z7
SUð2Þ ¼ ½z1I2×2; z1I2×2; I3×3�;

Z14
SUð2Þ ¼ ½I3×3; 1; 1; 1; z1I4×4; z1I4×4�: ð104Þ

So, if one uses the nontrivial maximum flux condition in
Eq. (6), the nontrivial maximum flux values are

α7-nonmax -SUð2Þ ¼ 2π
ffiffiffi
6

p
;

α14-nonmax -SUð2Þ ¼ 2π
ffiffiffiffiffi
24

p
: ð105Þ

The group factor function of the fundamental and adjoint
representations obtained from this decomposition have
been illustrated in Fig. 20, as well as the corresponding
ones for G2. The detailed calculation for the higher
representations has been given in Appendix C. In this
figure, the minimum points of the G2 group factor, which
occur at x ¼ 0 and x ¼ 100, reach the values −0.142 and
−0.143 for the fundamental and adjoint representations,
respectively. The corresponding group factors of the
SUð2Þ × SUð2Þ subgroup reach the same amounts at
x ¼ 50. Therefore, similar to the F4 and E6 cases, the
nontrivial center of the SUð2Þ subgroup induces temporary
confinement in the G2 exceptional group.
Now, we go one step further and decompose the SUð3Þ

subgroup into its SUð2Þ subgroup. This decomposition
enables us to give a comprehensive conclusion from
this work.

3. SUð3Þ ⊃ SUð2Þ × Uð1Þ subgroup
The decomposition of the fundamental and adjoint

representations of G2 into the SUð3Þ subgroup are

G2 ⊃ SUð3Þ
7 ¼ 3 ⊕ 3̄ ⊕ 1;

14 ¼ 3 ⊕ 3̄ ⊕ 8: ð106Þ

In the next step,

SUð3Þ ⊃ SUð2Þ ×Uð1Þ ðRÞ
3 ¼ 2 ⊕ 1;

8 ¼ 3 ⊕ 2 ⊕ 2 ⊕ 1. ð107Þ

It should be recalled that the Uð1Þ factor has been ignored
in these decompositions. Ultimately, one could have
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FIG. 20. The real part of the group factor function versus the
location x of the vacuum domain midpoint, for R ¼ 100 and in
the range x ∈ ½−200; 300�, for the fundamental and adjoint
representation of G2 (solid lines) in comparison with the same
function versus the location x of the vortex midpoint obtained
from the SUð2Þ × SUð2Þ decomposition (dashed lines). The
minimum points of the G2 group factor, which occur at x ¼ 0
and x ¼ 100, reach the amounts −0.142 and −0.143 for the
fundamental and adjoint representations, respectively.
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7 ¼ 2 ⊕ 1 ⊕ 2 ⊕ 1 ⊕ 1;

14 ¼ 2 ⊕ 1 ⊕ 2 ⊕ 1 ⊕ 3 ⊕ 2 ⊕ 2 ⊕ 1. ð108Þ

Using the above decompositions, one is able to reconstruct
the Cartan matrices for the fundamental and adjoint
representations as follows:

H7
SUð3Þ⊃SUð2Þ ¼

1ffiffiffi
2

p diag½σ23; 0; σ23; 0; 0�;

H14
SUð3Þ⊃SUð2Þ ¼

1

2
ffiffiffi
2

p diag½σ23; 0; σ23; 0; σ33; σ23; σ23; 0�: ð109Þ

We are going to investigate the role of this decomposition in
the intermediate linear potentials of G2. So, the matrices of
the center elements are calculated as

Z7
SUð3Þ⊃SUð2Þ ¼ diag½z1I2×2; 1; z1I2×2; 1; 1�;

Z14
SUð3Þ⊃SUð2Þ ¼ diag½z1I2×2; 1; z1I2×2; 1; I3×3; z1I2×2;

z1I2×2; 1�: ð110Þ

Using the maximum flux condition in Eq. (6), we find

α7-nonmax ¼ 2π
ffiffiffi
2

p
;

α14-nonmax ¼ 4π
ffiffiffi
2

p
: ð111Þ

The group factor function of the fundamental and adjoint
representations obtained from this decomposition have
been illustrated in Fig. 21, as well as the corresponding
ones for G2. It is observed that in each diagram the
minimum values of the two graphs are identical. Hence,
the SUð2Þ gauge group has a dominant role in the linear
part of the trivial potentials of the exceptional gauge
groups.

V. CONCLUSION

In this article, we have presented a generalized scenario
whereby the static potentials in different representations of
exceptional gauge groups could be calculated by means of
their unit center elements in the framework of the vacuum
domain structure model. Although G2 and F4 exceptional
groups do not possess any nontrivial center elements and
confinement is not expected, linear potential is observed for
all representations at intermediate distances. This fact is
also correct for the E6 exceptional gauge group, when one
uses only the trivial center element in the calculation.
In addition, to calculate these types of trivial potentials,
there is no need to use all the Cartan generators of the gauge
group. For example, concerning the G2, F4, and E6

exceptional groups, it seems adequate to consider only
their first Cartan generators, which are h71, h

26
1 , and h271 in

their fundamental representations, respectively. On the
other hand, if the Cartan generators reconstructed by
the group decomposition into the maximal subgroups
have the same elements as h1, they are able to simulate
the exact static potentials as the exceptional supergroups,
themselves. Thus, one is able to apply these subgroup
decompositions to gain the static potential of the higher
representations of the exceptional groups. Hence, Casimir
scaling of different representations of these groups is
observed. This method is not applicable for the potentials
obtained by the nontrivial center elements of E6; i.e., the
potentials calculated by the nontrivial center elements in the
thick center vortex model are not identical to the potentials
of their subgroups. Hence, it seems that this method is just
valid when we use only the unit center element of the gauge
groups to calculate the static potentials.
To find the reason for the temporary confinement at

intermediate distances, we have turned to the center
elements of the SUðNÞ subgroups by which their center
vortices indirectly produce the intermediate linear part in
the supergroups. So, the group factor function ReGr½α⃗ðxÞ�
has been investigated in different representations of the G2,
F4, and E6 exceptional gauge groups using the unit center
element only. Comparison of this function with the corre-
sponding one obtained from the nontrivial center elements
of the SUðNÞ subgroups shows that the center vortices of

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-200 -100  0  100  200  300

R
e 

G
f[α

]

x

Rep. 7 of G2
Rep. 7 of the SU(2) subgroup

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-200 -100  0  100  200  300

R
e 

G
r[α

]

x

Rep. 14 of G2
Rep. 14 of the SU(2) subgroup
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group factor for the SUð3Þ ⊃ SUð2Þ ×Uð1Þ decomposition.
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the SUð3Þ subgroups in none of these exceptional groups
could be responsible for the intermediate linear potential,
since the group factor functions reach different minimum
amounts. However, by means of the trivial center element
of this subgroup, the same potential as the exceptional
group itself is produced.
Any regular or singular decomposition into the SUð2Þ

subgroup that produces a Cartan generator with the same
elements as h1 gives rise to the linear intermediate parts in
the potentials of the supergroups. In fact, the extremums of
ReGr½α⃗ðxÞ�, which occur at the points where 50% of the
vacuum domain flux enters the Wilson loop, are respon-
sible for the intermediate linear potential. When the center
element obtained from these SUð2Þ decompositions lies
entirely inside the Wilson loop, the corresponding group
factor reaches a value that is equal to the extremum values
of ReGr½α⃗ðxÞ� for the given exceptional group.
Furthermore, there are some subgroups such as SUð2Þ ×

SUð2Þ for G2 and SUð2Þ ×G2 for the F4 and G2 singular
subgroup of E6 that produce different potentials from their
supergroup. Yet, they are responsible for the temporary

confinement in different representations. In fact, if the
number of center elements or center vortices in the matrix
of center elements obtained from two different decom-
positions is the same, the corresponding group factors reach
the same value when the vortex is located completely inside
the Wilson loop. The dominant role of the SUð2Þ subgroup
in observing the temporary confinement obtained by the
unit center element is not exclusive to the exceptional
gauge groups. In the next work, we argue that this dominant
role of the SUð2Þ subgroup is seen for the trivial potentials
of the SUðNÞ gauge groups as well. We should mention
that, due to the oversimplification of the model, the results
that have been presented in this paper seem to be restricted
in the framework of the vacuum domain structure and thick
center vortex models.

APPENDIX A: F4 ⊃ SUð3Þ × SUð3Þ
The decompositions of 273- and 324-dimensional irreps

of F4 to the irreps of the SUð3Þ × SUð3Þ subgroup are as
follows [36,37]:

273 ¼ ð1; 1Þ ⊕ ð8; 1Þ ⊕ ð3; 3Þ ⊕ ð3̄; 3̄Þ ⊕ ð10; 1Þ ⊕ ð1̄0; 1Þ ⊕ ð6; 3̄Þ ⊕ ð6̄; 3Þ ⊕ ð3; 6̄Þ ⊕ ð3̄; 6Þ
⊕ ð15; 3Þ ⊕ ð1̄5; 3̄Þ ⊕ ð8; 8Þ; ðA1Þ

324 ¼ ð1; 1Þ ⊕ ð8; 1Þ ⊕ ð1; 8Þ ⊕ ð3̄; 3̄Þ ⊕ ð3; 3Þ ⊕ ð6; 3̄Þ ⊕ ð6̄; 3Þ ⊕ ð27; 1Þ ⊕ ð6̄; 6̄Þ ⊕ ð6; 6Þ ⊕ ð15; 3Þ
⊕ ð1̄5; 3̄Þ ⊕ ð8; 8Þ: ðA2Þ

Thus, the Cartan diagonal generators reconstructed by taking advantage of Eqs. (A1) and (A2) are

H273
a ¼ 1

3
ffiffiffiffiffi
14

p diag½0;0;…;0
zfflfflffl}|fflfflffl{8times

;λ3a;λ3a;λ3a;−ðλ3aÞ�;−ðλ3aÞ�;−ðλ3aÞ�;0;…;0
zfflfflffl}|fflfflffl{10times

;0;…;0
zfflfflffl}|fflfflffl{10times

;

−ðλ3aÞ�;…;−ðλ3aÞ�
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

;

6 times

;λ3a;…;λ3a
zfflfflfflffl}|fflfflfflffl{6times

;−ðλ6aÞ�;−ðλ6aÞ�;−ðλ6aÞ�;λ6a;λ6a;λ6a;λ3a;…;λ3a
zfflfflfflffl}|fflfflfflffl{15times

;;−ðλ3aÞ�;…;−ðλ3aÞ�
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{15times

;λ8a;…;λ8a
zfflfflfflffl}|fflfflfflffl{8times

�;
ðA3Þ

H324
a ¼ 1

9
ffiffiffi
2

p diag½0; 0;…; 0
zfflfflffl}|fflfflffl{8 times

; λ8a; λ3a;…; λ3a
zfflfflfflfflffl}|fflfflfflfflffl{3 times

;−ðλ3aÞ�;…;−ðλ3aÞ�
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{3 times

; ðλ3aÞ�;…;−ðλ3aÞ�
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{6 times

; λ3a;…; λ3a
zfflfflfflfflffl}|fflfflfflfflffl{6 times

;

0;…; 0
zfflfflffl}|fflfflffl{27 times

;−ðλ6aÞ�;…;−ðλ6aÞ�
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{6 times

; λ6a;…; λ6a
zfflfflfflfflffl}|fflfflfflfflffl{6 times

; λ3a;…; λ3a
zfflfflfflfflffl}|fflfflfflfflffl{15 times

;−ðλ3aÞ�;…;−ðλ3aÞ�
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{15 times

; λ8a;…; λ8a
zfflfflfflfflffl}|fflfflfflfflffl{8 times

�: ðA4Þ

Using the trivial flux condition in Eq. (19), the maximum flux values are calculated as follows:

α273max1 ¼ 6π
ffiffiffiffiffi
14

p
; α273max2 ¼ 6π

ffiffiffiffiffi
42

p
; α324max1 ¼ 18π

ffiffiffi
2

p
; α324max2 ¼ 18π

ffiffiffi
6

p
: ðA5Þ

The static potential calculated by means of the above equations has been given in Fig. 6. We can build up the center element
matrices:
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Z273
SUð3Þ ¼ diag½1; 1;…; 1

zfflfflffl}|fflfflffl{8 times

; znI3×3;…; znI3×3
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{3 times

; z�nI3×3;…; z�nI3×3
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{3 times

; 1;…; 1
zfflfflffl}|fflfflffl{10 times

; 1;…; 1
zfflfflffl}|fflfflffl{10 times

; znI3×3;…; znI3×3
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{6 times

; z�nI3×3;…; z�nI3×3
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{6 times

;

z�nI6×6;…; z�nI6×6
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{3 times

; znI6×6;…; znI6×6
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{3 times

; znI3×3;…; znI3×3
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{15 times

; z�nI3×3;…; z�nI3×3
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{15 times

; I8×8;…; I8×8
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{8 times

�; ðA6Þ

Z324
SUð3Þ ¼ diag½1; 1;…; 1

zfflfflffl}|fflfflffl{8 times

; I8×8z�nI3×3;…; z�nI3×3
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{3 times

; znI3×3;…; znI3×3
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{3 times

; z�nI3×3;…; z�nI3×3
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{6 times

; znI3×3;…; znI3×3
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{6 times

;

1;…; 1
zfflfflffl}|fflfflffl{27 times

; z�nI6×6;…; z�nI6×6
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{6 times

; znI6×6;…; znI6×6
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{6 times

; znI3×3;…; znI3×3
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{15 times

; z�nI3×3;…; z�nI3×3
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{15 times

; I8×8;…; I8×8
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{8 times

�: ðA7Þ

Then, we use the nontrivial flux profile condition of Eq. (6) to estimate the maximum flux values for these representations:

α273−nonmax1 ¼ 6π
ffiffiffiffiffi
14

p
α273−nonmax2 ¼ 2π

ffiffiffiffiffi
42

p
α324−nonmax1 ¼ 18π

ffiffiffi
2

p
α324−nonmax2 ¼ 6π

ffiffiffi
6

p
: ðA8Þ

Accordingly, using Eqs. (A2)–(A4) and (A8), the group
factor functions could be plotted in Fig. 22.

APPENDIX B: F4 ⊃ SOð9Þ ⊃ SUð2Þ × SUð4Þ
Representations 273 and 324 of the F4 exceptional group

can be decomposed to the representations of the SOð9Þ
subgroup as follows:
F4 ⊃ SOð9Þ 273 ¼ 9 ⊕ 16 ⊕ 36 ⊕ 84 ⊕ 128;

324 ¼ 1 ⊕ 9 ⊕ 16 ⊕ 44 ⊕ 126 ⊕ 128: ðB1Þ
In the next step,

SOð9Þ ⊃ SUð2Þ × SUð4Þ
9 ¼ ð3; 1Þ ⊕ ð1; 6Þ;

16 ¼ ð2; 4Þ ⊕ ð2; 4̄Þ;
36 ¼ ð3; 1Þ ⊕ ð1; 15Þ ⊕ ð3; 6Þ;
44 ¼ ð1; 1Þ ⊕ ð5; 1Þ ⊕ ð3; 6Þ ⊕ ð1; 200Þ;
84 ¼ ð1; 1Þ ⊕ ð1; 10Þ ⊕ ð1; 1̄0Þ ⊕ ð3; 6Þ ⊕ ð3; 15Þ;
126 ¼ ð1; 6Þ ⊕ ð3; 10Þ ⊕ ð3; 1̄0Þ ⊕ ð1; 15Þ ⊕ ð3; 15Þ;
128 ¼ ð2; 4Þ ⊕ ð2; 4̄Þ ⊕ ð4; 4Þ ⊕ ð4; 4̄Þ ⊕ ð2; 20Þ

⊕ ð2; 2̄0Þ: ðB2Þ
Now, we decompose SUð4Þ into its SUð2Þ subgroup:

SUð4Þ⊃ SUð2Þ×SUð2Þ×Uð1Þ; 4¼ ð2;1Þ⊕ ð1;2Þ;
6¼ ð1;1Þ⊕ ð1;1Þ⊕ ð2;2Þ;

10¼ ð2;2Þ⊕ ð3;1Þ⊕ ð1;3Þ;
15¼ ð1;1Þ⊕ ð2;2Þ⊕ ð2;2Þ⊕ ð3;1Þ⊕ ð1;3Þ;
20¼ ð2;1Þ⊕ ð2;1Þ⊕ ð1;2Þ⊕ ð1;2Þ⊕ ð3;2Þ⊕ ð2;3Þ;
200 ¼ ð1;1Þ⊕ ð1;1Þ⊕ ð1;1Þ⊕ ð2;2Þ⊕ ð2;2Þ⊕ ð3;3Þ:

ðB3Þ
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FIG. 22. The same as Fig. 8 but for representations 273 and
324. The minimum values of the F4 group factor for representa-
tions 273 and 324 are −0.025 and 0.037, respectively. It is seen
that the minimum values of the group factors for the SUð3Þ ×
SUð3Þ decomposition are not identical to the corresponding ones
for F4.
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Ultimately we have

273 ¼ ð1; 1Þ ⊕ � � � ⊕ ð1; 1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{19 times

⊕ ð3; 1Þ ⊕ � � � ⊕ ð3; 1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{8 times

⊕ ð2; 2Þ ⊕ � � � ⊕ ð2; 2Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{17 times

⊕ ð2; 1Þ ⊕ � � � ⊕ ð2; 1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{24 times

⊕ ð1; 2Þ ⊕ � � � ⊕ ð1; 2Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{24 times

⊕ ð1; 3Þ ⊕ � � � ⊕ ð1; 3Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{6 times

⊕ ð2; 3Þ ⊕ � � � ⊕ ð2; 3Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{4 times

⊕ ð3; 2Þ ⊕ � � � ⊕ ð3; 2Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{4 times

ðB4Þ

324 ¼ 1 ⊕ ð1; 1Þ ⊕ � � � ⊕ ð1; 1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{18 times

⊕ ð3; 1Þ ⊕ � � � ⊕ ð3; 1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{11 times

⊕ ð2; 2Þ ⊕ � � � ⊕ ð2; 2Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{21 times

⊕ ð2; 1Þ ⊕ � � � ⊕ ð2; 1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{24 times

⊕ ð1; 2Þ ⊕ � � � ⊕ ð1; 2Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{24 times

⊕ ð1; 3Þ ⊕ � � � ⊕ ð1; 3Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{10 times

⊕ ð2; 3Þ ⊕ � � � ⊕ ð2; 3Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{4 times

⊕ ð3; 2Þ ⊕ � � � ⊕ ð3; 2Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{4 times

⊕ ð3; 3Þ ⊕ ð5; 1Þ ðB5Þ

and

H273
SUð2Þ ¼

1

3
ffiffiffiffiffi
14

p diag½0;…; 0
zfflfflffl}|fflfflffl{91 times

; σ23;…; σ23
zfflfflfflfflffl}|fflfflfflfflffl{70 times

; σ33;…; σ33
zfflfflfflfflffl}|fflfflfflfflffl{14 times

�;

H324
SUð2Þ ¼

1

9
ffiffiffi
2

p diag½0;…; 0
zfflfflffl}|fflfflffl{105 times

; σ23;…; σ23
zfflfflfflfflffl}|fflfflfflfflffl{78 times

; σ33;…; σ33
zfflfflfflfflffl}|fflfflfflfflffl{21 times

�: ðB6Þ

The matrices made of the center elements of the SUð2Þ
gauge group corresponding to the duality of its represen-
tation with respect to Eqs. (B4) and (B5) are as follows:

Z273
SUð2Þ ¼ diag½1;…;1

zfflfflffl}|fflfflffl{91 times

; z1I2×2;…; z1I2×2
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{70 times

; I3×3;…; I3×3
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{14 times

�;

Z324
SUð2Þ ¼ diag½1;…;1

zfflfflffl}|fflfflffl{105 times

; z1I2×2;…; z1I2×2
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{78 times

; I3×3;…; I3×3
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{21 times

�:
ðB7Þ

The maximum flux values could be calculated from the
nontrivial flux condition of Eq. (6):

α273-nonSUð2Þ- max ¼ 6π
ffiffiffiffiffi
14

p
; α324-nonSUð2Þ- max ¼ 18π

ffiffiffi
2

p
: ðB8Þ

The group factor functions of these representations have
been given in Fig. 23.

APPENDIX C: G2 ⊃ SUð2Þ × SUð2Þ
Decompositions of the G2 representations into the

SUð2Þ × SUð2Þ regular subgroup representations are
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FIG. 23. The real part of the group factor versus the location x
of the vacuum domain midpoint, for R ¼ 100 and in the range
x ∈ ½−200; 300�, for representations 273 and 324 of F4 (solid
lines) in comparison with the one obtained from the SOð9Þ ⊃
SUð2Þ × SUð4Þ decomposition using its nontrivial center ele-
ments (dashed lines). In each diagram, the minimum values are
identical.
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27 ¼ ð3; 3Þ ⊕ ð2; 4Þ ⊕ ð2; 2Þ ⊕ ð1; 5Þ ⊕ ð1; 1Þ;
64 ¼ ð4; 2Þ ⊕ ð3; 5Þ ⊕ ð3; 3Þ ⊕ ð2; 6Þ ⊕ ð2; 4Þ ⊕ ð2; 2Þ ⊕ ð1; 5Þ ⊕ ð1; 3Þ;
77 ¼ ð5; 1Þ ⊕ ð4; 4Þ ⊕ ð3; 7Þ ⊕ ð3; 3Þ ⊕ ð2; 6Þ ⊕ ð2; 4Þ ⊕ ð1; 5Þ ⊕ ð1; 1Þ;
770 ¼ ð4; 4Þ ⊕ ð3; 5Þ ⊕ ð3; 3Þ ⊕ ð3; 1Þ ⊕ ð2; 6Þ ⊕ ð2; 4Þ ⊕ ð2; 2Þ ⊕ ð1; 7Þ ⊕ ð1; 3Þ: ðC1Þ

The Cartan generators could be reconstructed as follows:

H27
SUð2Þ ¼

1

3
ffiffiffi
6

p diag½σ33; σ33; σ33; σ43; σ43; σ23; σ23; σ53; 0�;

H64
SUð2Þ ¼

1

8
ffiffiffi
3

p diag½σ23; σ23; σ23; σ23; σ53; σ53; σ53; σ33; σ33; σ33; σ63; σ63; σ43; σ43; σ23; σ23; σ53; σ33�;

H77
SUð2Þ ¼

1ffiffiffiffiffiffiffiffi
330

p diag½0; 0; 0; 0; 0; σ43; σ43; σ43; σ43; σ73; σ73; σ73; σ33; σ33; σ33; σ63; σ63; σ43; σ43; σ53; 0�;

H770
SUð2Þ ¼

1

2
ffiffiffiffiffi
66

p diag½σ43; σ43; σ43; σ43; σ53; σ53; σ53; σ33; σ33; σ33; 0; 0; 0; σ63; σ63; σ43; σ43; σ23; σ23; σ73; σ33�: ðC2Þ

The center element matrices of the SUð2Þ × SUð2Þ subgroup are

Z27
SUð2Þ ¼diag½I3×3;I3×3;I3×3;z1I4×4;z1I4×4;z1I2×2;z1I2×2;I5×5;1�;

Z64
SUð2Þ ¼diag½z1I2×2;z1I2×2;z1I2×2;z1I2×2;I5×5;I5×5;I5×5;I3×3;I3×3;I3×3;z1I6×6;z1I6×6;z1I4×4;z1I4×4;z1I2×2;z1I2×2;I5×5;I3×3�;

Z77
SUð2Þ ¼diag½1;1;1;1;1;z1I4×4;z1I4×4;z1I4×4;z1I4×4;I7×7;I7×7;I7×7;I3×3;I3×3;I3×3;z1I6×6;z1I6×6;z1I4×4;z1I4×4;I5×5;1�;

Z770
SUð2Þ ¼diag½z1I4×4;z1I4×4;z1I4×4;z1I4×4;I5×5;I5×5;I5×5;I3×3;I3×3;I3×3;1;1;

1;z1I6×6;z1I6×6;z1I4×4;z1I4×4;z1I2×2;z1I2×2;I7×7;I3×3�: ðC3Þ

Using the nontrivial maximum flux condition of Eq. (6), we find

α27-nonSUð2Þ- max ¼ 6π
ffiffiffi
6

p
; α64-nonSUð2Þ- max ¼ 16π

ffiffiffi
3

p
; α77-nonSUð2Þ- max ¼ 2π

ffiffiffiffiffiffiffiffi
330

p
; α77

0-non
SUð2Þ- max ¼ 4π

ffiffiffiffiffi
66

p
: ðC4Þ

The group factor of representations 27, 64, 77, and 770 have been presented in Figs. 24–27.
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FIG. 24. The same as Fig. 20 but for representation 27. The
extremum values of the F4 group factor at x ¼ 0 and x ¼ 100 are
approximately equal to 0.111.
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FIG. 25. The same as Fig. 20 but for representation 64. The
extremum values of the F4 group factor at x ¼ 0 and x ¼ 100 are
approximately equal to 0.
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