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This work sets out to compute and discuss effects of spin, velocity, and dimensionality on interparticle
potentials systematically derived from gauge field-theoretic models. We investigate the interaction of
fermionic particles by the exchange of a vector field in a parity-preserving description in five-dimensional
(5D) space-time. A particular dimensional reduction prescription is adopted—reduction by dimensional
restriction—and special effects, like a pseudospin dependence, show up in four dimensions (4D). What we
refer to as pseudospin shall be duly explained. The main idea we try to convey is that the calculation of the
potentials in five dimensions and the consequent reduction to four dimensions exhibits new effects that are
not present if the potential is calculated in four dimensions after the action has been reduced.
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I. INTRODUCTION

Field-theoretic models à la Kaluza-Klein have had a
remarkable revival after the line of papers quoted in
Refs. [1–10], from which the activity known as Kaluza-
Klein supergravities was boosted. An important question in
connection with higher-dimensional models consists of
computing quantum-mechanical effects. Two routes may
be followed in connection with radiative corrections. In
path i, one may carry out dimensional reduction by
adopting some specific scheme, and then, once the reduc-
tion is carried out to some lower-dimensional space-time,
quantum corrections are computed. Route ii proceeds in the
reversed order: one computes the quantum effects directly in
the higher-dimensional setup of the model and compares
them, afterward, to the quantum corrections computed in the
lower-dimensional version of the model with the towers of
massive fields included. Procedures i and ii may not
coincide. Actually, Álvarez and Faedo [11] carefully dis-
cussed this issue, and they found conditions in which the two
routes yield quantum-mechanically equivalent results.
Back to 1983 and 1984, we point out a series of papers

by Appelquist and Chodos [12,13], in which the authors
consider the five-dimensional Kaluza-Klein model and
compute the one-loop effective potential for the extra
component of the metric in five dimensions, attaining,
therefore, the gravitational analog of the Casimir effect.
Appelquist et al. [14] also inspected how quantum effects
may induce instabilities in the dimensional reduction
process. Ever since, the issue of quantum corrections in

higher dimensions and their residual effects in lower
dimensions has become a very relevant activity in con-
nection with models based on extra dimensions.
The main motivation of the present contribution lies in

the problem of comparing results that follow if we adopt
either of the routes, i or ii, namely, quantum effects
computed prior to or after the dimensional reduction. We
endeavor to tackle this question by considering a semi-
classical aspect attainable from quantum field-theoretic
models: interparticle interaction potentials derived from
the mediation of some intermediating particle. Our paper
sets out to work out a spin- and velocity-dependent
interparticle potential between massive charged spin-1=2
particles in a five-dimensional formulation of parity-
preserving electrodynamics. (The usual Dirac mass term
explicitly breaks parity symmetry in five dimensions. We
keep parity here as a good symmetry and double the
fermion representation, as shall be clarified later on).
Even if no loop correction is computed, the tree-level

one-scalar or one-photon exchange involves a quantum-
mechanical object—the causal propagator—so we get a
semiclassical potential in five dimensions to be suitably
reduced to four dimensions. This shall eventually trigger
some new effect in four dimensions, inherent to the fact that
quantization has already been introduced in five dimen-
sions. The idea of a pseudospin, which will show up in four
dimensions as a result of imposing parity conservation in
five dimensions, is a consequence of considering the
fundamental interaction taking place in five dimensions,
and the way to connect physics in four and five dimensions
will be based on a procedure that we refer to as dimensional
reduction by dimensional restriction. This shall be duly
presented and discussed in Sec. IV. Had we first reduced the
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five-dimensional model and then calculated the interpar-
ticle potential, pseudospin interactions would not appear.
The main point of our investigation is indeed to claim

that an interparticle potential in four space-time dimensions
may exhibit extra spin effects that appear whenever we
adopt the viewpoint that the quantum effects should be
accounted for in five dimensions (where we consider that
the fundamental physics takes place), rather than introduc-
ing quantum effects only after the dimensional reduction
has been performed. In this scenario, deviations between
theoretical results and experimental measurements could,
in some cases, be originated from quantum-mechanical
effects of physics that is processed in extra dimensions.
Even though truly fundamental physics in five dimen-

sions should be associated to the five-dimensional anti-de
Sitter (in connection with the gauge/gravity correspon-
dence) or de Sitter spaces (in connection with the accel-
erated expansion of the Universe), we understand that we
are dealing with physical effects that are far from being
sensitive to possible effects of the cosmological constant.
We are bound to the scales of the Standard Model. Actually,
we are considering electromagnetic effects, and the length
scales involved in the physics we investigate are very far
above the curvature of five-dimensional Anti-de-Sitter
space-time or five-dimensional de-Sitter space-time. This
is our justification to consider that the fundamental physics
underneath our present investigation is consistent with
(1þ 4) Minkowski space-time.
Our paper is organized according to the following

outline. In Sec. II, we review the methodology for comput-
ing the spin- and velocity-dependent interparticle poten-
tials. In Sec. III, we discuss the parity symmetry in 5D
space-time for a massive Dirac spinor field and work out
the potential for the Maxwell electrodynamics. In Sec. IV,
we propose a prescription for restricting the interaction
from five to four dimensions. Next, in Sec. V, we also
obtain the potential for the Proca electrodynamics and show
its asymptotic limits and restriction to four dimensions.
Finally, in Sec. VI, we display our concluding comments.
We shall adopt the natural units ℏ ¼ c ¼ 1.

II. METHODOLOGY AND USEFUL RESULTS

We consider an elastic scattering at tree level of
two particles with initial and final states given by
ðE1;i;p1;i;E2;i;p2;iÞ and ðE1;f;p1;f;E2;f;p2;fÞ, respectively.
It is convenient to work in the c.m. reference frame with
parametrization in terms of the two independent momenta:
the transfer momentum q¼p1;f−p1;i¼−ðp2;f−p2;iÞ
and the average momentum p ¼ ðp1;i þ p1;fÞ=2 ¼
ðp2;i þ p2;fÞ=2. In this case, we have q0 ¼ 0 and q · p ¼
0 to simplify the amplitude.
In the first Born approximation [15], the interparticle

potential in 4D space-time is obtained through Fourier
integral of the nonrelativistic amplitude,

V ¼ −
Z

d3q
ð2πÞ3 e

iq·rMNR; ð1Þ

where MNR is related to the Feynman amplitude, M, by
means of

MNR ¼ 1ffiffiffiffiffiffiffiffiffiffi
2E1;i

p 1ffiffiffiffiffiffiffiffiffiffiffi
2E1;f

p 1ffiffiffiffiffiffiffiffiffiffi
2E2;i

p 1ffiffiffiffiffiffiffiffiffiffiffi
2E2;f

p M: ð2Þ

We assume the metric ημν ¼ diagðþ;−;−;−Þ.
To render this methodology more instructive and useful

to the next sections, let us consider a particular case. For our
purposes, it is convenient to work out the well-known
electromagnetic interaction of fermions in four dimensions,
described by the Lagrangian density

L ¼ −
1

4
F2
μν þ ψ̄ðiγμ∂μ − eγμAμ −mÞψ : ð3Þ

First of all, we need to exhibit the positive-energy
solutions of the free Dirac equation,

½γμpμ −m�ψðpÞ ¼ 0: ð4Þ

Using the decomposition in terms of two-component
spinors, ψ ¼ ðξ; χÞt, and taking the gamma matrices in
the Dirac representation, it is possible to eliminate χ and
show that

ψðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p
� ðEþmÞξ

σ · pξ

�
; ð5Þ

where we have normalized the spinor such that
ψ̄ðpÞψðpÞ ¼ 2mξ†ξ.
The basic spinor, ξ, may assume the two values

ξ ¼
�
1

0

�
;

�
0

1

�
; ð6Þ

which refers to spin-up and -down configurations,
respectively.
Here, we would like to fix some notations. Let us

consider the possibility of a spin flip. Thus, we shall use
ξi and ξf to indicate the initial and final spin states of the
fermion. For this reason, it is also convenient to define the
contractions

δ ¼ ξ†fξi; hSi ¼ ξ†f
σ
2
ξi: ð7Þ

The previous expression is interpreted as the expectation
value of the spin operator.
Now, we apply the Feynman rules for this scattering in

the adopted c.m. frame,
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iM ¼ ψ̄1ðpþ q=2Þfie1γμgψ1ðp − q=2ÞhAμAνi
× ψ̄2ð−p − q=2Þfie2γνgψ2ð−pþ q=2Þ

¼ −e1e2J
μ
ð1ÞhAμAνiJνð2Þ; ð8Þ

where we are using the current Jμ ¼ ψ̄γμψ and hAμAνi is
the propagator in momentum space,

hAμAνi ¼ −
i
q2

�
ημν þ ðα − 1Þ qμqν

q2

�
; ð9Þ

which is obtained after including the gauge-fixing term,
−1
2α ð∂μAμÞ2, to the Lagrangian in Eq. (3).
With the current conservation, qμJμ ¼ 0, and q0 ¼ 0 in

Eq. (8), the nonrelativistic amplitude, Eq. (2), can be
written as

MNR ¼ −
e1e2
q2

Jμð1ÞJð2Þμ
ð2E1Þð2E2Þ

: ð10Þ

One important step of this computation is to declare
which approximation we are dealing with. Throughout this
work, we consider corrections up to Oðjp2j=m2Þ in the
amplitude, without counting the factor 1=q2 in the previous
equation.
Now, we study the currents in order to obtain an

approximation to this amplitude. For the particle −1, we
take the spinor solution, Eq. (5), and consider E1;f ¼
E1;i ¼ E1 ≈m1 þ 1

2m1
ðp2 þ q2

4
Þ such that

J0ð1Þ ≈ 2m1δ1 þ
1

m1

½p2δ1 þ iðq × pÞ · hS1i�; ð11Þ

Jið1Þ ≈ 2piδ1 − 2iϵijkqjhS1;ki: ð12Þ

The current Jμð2Þ is obtained by taking the prescription in
the Jμð1Þ, q → −q, p → −p, and changing the label 1 → 2.

From these considerations, one could check that

Jμð1ÞJð2Þμ
ð2E1Þð2E2Þ

≈δ1δ2

��
1þ p2

m1m2

�
−
1

8

�
1

m2
1

þ 1

m2
2

�
q2

�

þiq ·

�
p×

�
δ1hS2i

�
1

2m2
2

þ 1

m1m2

�
þ1↔2

��

−
1

m1m2

½q2hS1i ·hS2i−ðq ·hS1iÞðq ·hS2iÞ�:

ð13Þ

Once we establish the nonrelativistic amplitude, Eq. (10)
with Eq. (13), we use the prescription described in Eq. (1);
i.e., we carry out the Fourier integral. For this calculation,
we only need the massless limit of Eqs. (A1)–(A3) of the
Appendix. Then, the interparticle potential is given by

VMaxwell ¼ e1e2

�
δ1δ2
4πr

�
1þ p2

m1m2

�
−
δ1δ2
8

�
1

m2
1

þ 1

m2
2

�
δ3ðrÞ

−
2

3

hS1i · hS2i
m1m2

δ3ðrÞþ Qij

4πr3
hS1;iihS2;ji

m1m2

−
L

4πr3
·

�
δ1hS2i

�
1

2m2
2

þ 1

m1m2

�
þ 1↔ 2

��
;

ð14Þ

where we defined the angular momentum, L ¼ r × p, and
quadrupole (or dipole-dipole) tensor Qij ¼ δij − 3

xixj
r2 .

The first contribution is the usual Coulomb interaction
(∼1=4πr), which is the dominant term at large distances.
Next, we have a velocity-dependent term, here parame-
trized in terms of the average momentum p. It also has a
spin-orbit coupling L · S, quadrupole interaction, and
contact terms, i.e., ones with Dirac delta δ3ðrÞ. Because
of our approximations, we do not have a higher-multipole
contribution than a quadrupole. This result coincides with
the one obtained in Refs. [16,17]. We shall see in the
following sections that the calculation of the interparticle
potential in 5D space-time follows procedures similar to the
ones presented in this particular case.

III. MAXWELL ELECTRODYNAMICS
IN FIVE DIMENSIONS

The properties of the interparticle interaction potentials
in arbitrary dimensions have been already established in the
literature for many situations; see Refs. [18–20]. However,
there is a lack of attention to the study related to spin
contributions for space-times with extra dimensions. In this
section, we pursue an investigation of the spin as well as
velocity-dependent interactions in space-time with one
extra dimension. Initially, we concentrate our efforts in
the Maxwell electrodynamics in 5D space-time. Keeping in
mind that electromagnetism is also parity invariant in five
dimensions, we start by studying how to implement the
parity transformation on massive Dirac fermions.
Let us initiate by fixing other conventions. In 5D

Minkowski space-time, we adopt the metric ημ̂ ν̂ ¼
diagðþ;−;−;−;−Þ, where μ̂, ν̂ ¼ ð0; i; 4Þ with i ¼
ð1; 2; 3Þ. One possible choice to satisfy the Clifford algebra,
fγμ̂; γν̂g ¼ 2ημ̂ ν̂, is to take γμ̂ ¼ ðγμ; γ4 ≡ iγ5Þ, where
γ5 ¼ iγ0γ1γ2γ3 and γμ satisfies the Clifford algebra in
four dimensions. Another possibility is γμ̂ ¼ ðiγ5γμ;
γ4 ≡ iγ5Þ. We consider the first one, which will be more
convenient to the evaluations in the nonrelativistic limit.
The Lagrangian for a massive Dirac spinor field in five

dimensions is given by

L ¼ ψ̄iγμ̂∂ μ̂ψ −mψ̄ψ : ð15Þ

We define the parity transformation in 5D space-time as
x00 ¼ x0, x0 ¼ −x and x0

4 ¼ x4. Thus, we maintain the
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usual transformation in four dimensions, and the extra
dimension, x4, stays unaltered in order to have a discrete
transformation. Let us propose the following parity trans-
formation for the spinor field:

ψ 0ðx0Þ ¼ PψðxÞ: ð16Þ

Now, we would like to find an explicit form for the
matrix P. We start by imposing the invariance of the
massless term in Eq. (15). Using Eq. (16) and ψ 0 ¼
ψ 0†γ0 ¼ ψ̄γ0P†γ0, one could obtain the relations

P† ¼ P−1; γ0γiP ¼ −Pγ0γi; γ0γ4P ¼ Pγ0γ4;

ð17Þ

which provide us

P ¼ iγ1γ2γ3: ð18Þ

The factor i is just for future convenience. However, we
have not finished yet; we need to consider the trans-
formation of the mass term in Eq. (15). From the above
result, we find that

mψ 0ψ 0 ¼ mψ̄γ0P†γ0Pψ ¼ −mψ̄ψ ; ð19Þ

so the mass term breaks the parity symmetry in five
dimensions.
One way to circumvent this problem is to double the

spinor field representation. A similar proposal was taken
in Ref. [21], in the context of three-dimensional (3D)
Minkowski space-time, also to conciliate the parity sym-
metry with massive fermions. Another possibility is to
modify the mass term, as done in Ref. [22], but we will not
follow this path here. Therefore, we define a doubled spinor
field:

Ψ ¼
�
ψ

χ

�
: ð20Þ

We also represent the gamma matrices as

Γμ̂ ¼
�
γμ̂ 0

0 −γμ̂

�
; ð21Þ

then, the Dirac conjugate of Ψ takes the form Ψ̄ ¼
Ψ†Γ0 ¼ ðψ̄ ;−χ̄Þ, with ψ̄ ¼ ψ†γ0 and χ̄ ¼ χ†γ0.
The Dirac Lagrangian for the doubled spinor field is

given by

L ¼ Ψ̄iΓμ̂∂ μ̂Ψ −mΨ̄Ψ

¼ ψ̄iγμ̂∂ μ̂ψ þ χ̄iγμ̂∂ μ̂χ −mψ̄ψ þmχ̄χ: ð22Þ
After these considerations, if we implement the parity

transformation on Ψ as

Ψ0 ¼
�
0 P

P 0

��
ψ

χ

�
; ð23Þ

then it is possible to show that the Lagrangian of Eq. (22) is
parity invariant, since the transformation exchanges

ψ̄iγμ̂∂ μ̂ψ ⟷ χ̄iγμ̂∂ μ̂χ; −mψ̄ψ ⟷ mχ̄χ: ð24Þ
It is worth mentioning that, similar to the 3D case [21]

(with τ3−QED), we could introduce other symmetries in
the doubled field formalism. These possibilities shall be
discussed in more details in the concluding comments.
Now, we are ready to start the steps for computing the

interparticle potential in five dimensions. We shall follow
the prescription described in Sec. II. First, we need to obtain
the free positive-energy solution of the Dirac equation,

ðΓμ̂pμ̂ −mÞΨðpÞ ¼ 0; ð25Þ
which is equivalent to

ðγμ̂pμ̂ −mÞψðpÞ ¼ 0; ðγμ̂pμ̂ þmÞχðpÞ ¼ 0: ð26Þ
Then, we consider the decomposition

ψ ¼
�
ξ

φ

�
; χ ¼

�
λ

ζ

�
; ð27Þ

where ξ, φ, λ, and ζ are two-component spinors. Using
Eqs. (26), one can eliminateφ and λ, and the spinors reduce to

ψðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p
� ðEþmÞξ
ðσ · p − ip4Þξ

�
; ð28Þ

χðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p
� ðσ · pþ ip4Þζ

ðEþmÞζ

�
: ð29Þ

The two spinors above were normalized such that the
doubled spinor field, Eq. (20), satisfies Ψ̄ðpÞΨðpÞ ¼
2mðξ†ξþ ζ†ζÞ. Furthermore, they differ by a minus sign
in the extra-dimensional term, i.e., in the p4 term. This sign
is essential to maintain the parity symmetry in five
dimensions and will play an important role in the spin
interactions present in our 5D scenario. We expected to get
more interactions in the doubled field formalism, and the
parity-breaking case is recovered by taking ζ ¼ 0.
Since we are dealing with ξ and ζ, we introduce a label in

the contractions given in Eq. (7), so we define

δξ ¼ ξ†fξi; δζ ¼ ζ†fζi; hSiξ ¼ ξ†f
σ
2
ξi;

hSiζ ¼ ζ†f
σ
2
ζi: ð30Þ

Having established the spinors solutions, we turn to the
calculation of the doubled field vector current,

Jμ̂ ¼ Ψ̄Γμ̂Ψ ¼ ψ̄γμ̂ψ þ χ̄γμ̂χ: ð31Þ
Inserting Eqs. (28) and (29) in Eq. (31) and using the

adopted c.m. frame, one could show that the components of
the current of the particle 1 assume the form
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J0ð1Þ ¼ 2m1ðδξ;1 þ δζ;1Þ þ
1

m1

fðδξ;1 þ δζ;1Þðp2 þ p2
4Þ

þ iðq × pÞ · ½hS1iξ þ hS1iζ�
þ iq4p · ½hS1iξ − hS1iζ�
− ip4q · ½hS1iξ − hS1iζ�g; ð32Þ

Jið1Þ ¼ 2ðδξ;1 þ δζ;1Þpi − 2iϵijkqj½hS1;kiξ þ hS1;kiζ�
þ 2iq4½hS1;iiξ − hS1;iiζ�; ð33Þ

J4ð1Þ ¼ 2ðδξ;1 þ δζ;1Þp4 − 2iq · ½hS1iξ − hS1iζ�: ð34Þ

Before going to the amplitude, it is interesting to look
carefully at these equations and their parity transforma-
tions. According to Eq. (23) and the spinor solution,
Eqs. (28) and (29), one can check that the parity trans-
formations of the components are ξ0 ¼ ζ and ζ0 ¼ −ξ. That
is the reason we put the factor i in P ¼ iγ1γ2γ3, i.e., to get a
real transformation. Since q0 ¼ −q, q0

4 ¼ q4, p0 ¼ −p, and
p0
4 ¼ p4, we note some specific linear combinations of the

spins in order to keep the parity property of the vector in
five dimensions. For example, in the second term of
Eq. (34), we have −2iq0 · ½hS1i0ξ − hS1i0ζ� ¼ −2iq · ½hS1iξ −
hS1iζ�, which is consistent with J04ð1Þ ¼ J4ð1Þ. A similar

argument holds for the other terms. Therefore, it is
suggestive to define

hS�i ¼ hSiξ � hSiζ; ð35Þ

which can be understood as the bilinears

hS�i ¼ ðξ†f; ζ†fÞ S�
�
ξi

ζi

�
; ð36Þ

where

S� ¼ 1

2

�
σ 0

0 �σ

�
: ð37Þ

The hSþi can be interpreted as an expectation value of
the spin, because the operator Sþ satisfies the SUð2Þ
algebra, ½Sþ

i ;S
þ
j � ¼ iϵijkS

þ
k , and its expectation value is

even under parity, hSþi0 ¼ hSþi, as true spin should be. On
the other hand, the operator S− and its expectation value
do not satisfy these properties. Once S− is given by the
combination of two spin σ=2 and under parity satisfies
hS−i0 ¼ −hS−i, we shall call it pseudospin. We highlight
that the pseudospin we introduce here is not the same as the
pseudospin that appears in other contexts; for example, in
condensed matter systems [23] and nuclear physics [24,25].
It is also convenient to define Δ ¼ δξ þ δζ, which is

parity invariant, Δ0 ¼ Δ.
After these definitions, we can recast the components of

the vector current, Eqs. (32)–(34), as follows:

J0ð1Þ ¼ 2m1Δ1 þ
1

m1

½Δ1ðp2 þ p2
4Þ þ iðq × pÞ · hSþ

1 i

þ iq4ðp · hS−
1 iÞ − ip4ðq · hS−

1 iÞ�; ð38Þ

Jið1Þ ¼ 2Δ1pi − 2iϵijkqjhSþ
1;ki þ 2iq4hS−

1;ii; ð39Þ

J4ð1Þ ¼ 2Δ1p4 − 2iq · hS−
1 i: ð40Þ

They exhibit all the contributions of the components in
four dimensions, see Eqs. (11) and (12), and new terms
associated with the extra dimension.
We can now proceed to evaluating the amplitude in the

context of Maxwell electrodynamics in five dimensions. In
a way similar to what was done in Sec. II, one can show that

M5D
NR ¼ −

g1g2
q2 þ q2

4

Jμ̂ð1ÞJð2Þμ̂
ð2E1Þð2E2Þ

; ð41Þ

where g1ð2Þ denotes the coupling constant in five
dimensions.

After some manipulations, we find that

Jμ̂ð1ÞJð2Þμ̂
ð2E1Þð2E2Þ

≈ Δ1Δ2

��
1þ p2

m1m2

þ p2
4

m1m2

�
þ −

1

8

�
1

m2
1

þ 1

m2
2

�
ðq2 þ q2

4Þ
�
þ iq ·

�
p ×

�
Δ1hSþ

2 i
�

1

2m2
2

þ 1

m1m2

��

− p4

�
Δ1hS−

2 i
�

1

2m2
2

þ 1

m1m2

��
þ 1 ↔ 2

�
þ iq4p

�
Δ1hS−

2 i
�

1

2m2
2

þ 1

m1m2

�
þ 1 ↔ 2

�

þ q4q
m1m2

· ½ðhSþ
1 i × hS−

2 iÞ þ ðhSþ
2 i × hS−

1 iÞ� −
1

m1m2

½q2hSþ
1 i · hSþ

2 i þ q2
4hS−

1 i · hS−
2 i�

þ 1

m1m2

½ðq · hSþ
1 iÞðq · hSþ

2 iÞ − ðq · hS−
1 iÞðq · hS−

2 iÞ�: ð42Þ
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Finally, we only need to compute the Fourier integral,

V5D ¼ −
Z

d4q
ð2πÞ4 e

iq·RM5D
NR: ð43Þ

As explained in the Appendix, we shall useR to denote the 4D Euclidean vector, so we avoid confusion with r, used for
the 3D case. Therefore, using the massless Fourier integrals in four dimensions, given by Eqs. (A7)–(A9), we obtain

VMaxwell
5D ¼ g1g2

�
Δ1Δ2

4π2R2

�
1þ p2

m1m2

þ p2
4

m1m2

�
−
Δ1Δ2

8

�
1

m2
1

þ 1

m2
2

�
δ4ðRÞ − 1

2m1m2

½hSþ
1 i · hSþ

2 i þ hS−
1 i · hS−

2 i�δ4ðRÞ

−
ðr × pÞ
2π2R4

·

�
Δ1hSþ

2 i
�

1

2m2
2

þ 1

m1m2

�
þ 1 ↔ 2

�
−
ðx4p − p4rÞ

2π2R4
·

�
Δ1hS−

2 i
�

1

2m2
2

þ 1

m1m2

�
þ 1 ↔ 2

�

−
2

π2m1m2

x4r
R6

· ½ðhSþ
1 i × hS−

2 iÞ þ ðhSþ
2 i × hS−

1 iÞ� −
1

π2R4

1

m1m2

��
1 −

2r2

R2

�
ðhSþ

1 i · hSþ
2 i − hS−

1 i · hS−
2 iÞ

þ 2

R2
ðhSþ

1 i · rÞðhSþ
2 i · rÞ −

2

R2
ðhS−

1 i · rÞðhS−
2 i · rÞ

��
: ð44Þ

The dominant contribution at large distances is given
by the first term (∼1=4π2R2). Similar to the 3D case,
see Eq. (14), we obtain a spin-orbit coupling, L · Sþ,
where L ¼ r × p is the 3D angular momentum, and an
extra component that couples with pseudospin, namely,
the term related to ðx4p − p4rÞ · S−. As anticipated at the
beginning, the doubled spinor formalism provides new
interactions in five dimensions compared the usual
(nondoubled) formalism. For example, we observe a
nontrivial coupling between spin and pseudospin of the
type hSþi × hS−i with a x4r=R6 power-law decay. We can
check that this contribution only exists in the parity-
invariant case. For instance, let us examine its (pseudo)
spin dependence,

ðhSþ
1 i × hS−

2 iÞ þ ðhSþ
2 i × hS−

1 iÞ
¼ 2ðhS1iζ × hS2iξÞ þ 2ðhS2iζ × hS1iξÞ; ð45Þ

so, in the parity-breaking case, we take ζ ¼ 0, which
implies hSiζ ¼ 0 and leads to a trivial contribution.
A similar argument holds for the last term of the potential,
the quadrupolelike interaction, since

ðhSþ
1 i · rÞðhSþ

2 i · rÞ − ðhS−
1 i · rÞðhS−

2 i · rÞ
¼ 2ðhS1iζ · rÞðhS2iξ · rÞ þ 2ðhS1iξ · rÞðhS2iζ · rÞ;

ð46Þ

which also vanishes when hSiζ ¼ 0.
In the next section, we shall develop a prescription to

extract a 4D potential from a 5D result. As we will see, this
prescription enables us to bring some pseudospin contri-
butions to four dimensions.

IV. RESTRICTION TO FOUR DIMENSIONS

To go over into a four-dimensional scenario, one may
consider many different procedures, which are all based on
at least one ansatz. For example, a usual case assumes
compactified extra dimensions that lead to the Kaluza-
Klein expansion modes. Also, we could impose a trivial
reduction [1], in which only field configurations that do not
depend on the extra dimensions are considered and only the
so-called zero modes are accounted for. Another possibility
is to carry out the dimensional reduction by spontaneous
compactification [2]. In this case, we look for the solutions
of the equations of motion that factorize into a four-
dimensional space-time and an internal space. On the other
hand, one could also consider warped geometries—the so-
called brane worlds scenarios—in which the extra dimen-
sions are noncompact [26]. We also highlight a dimensional
reduction prescription that does not assume compactified
extra dimensions nor take dynamical solutions. That is the
case of the Legendre reduction [27], normally adopted for
the construction of off-shell supersymmetric models.
After we have presented and discussed our results for

the interparticle potentials directly in five dimensions, our
purpose in the present section is to carry out the dimen-
sional reduction to four dimensions. Nevertheless, instead
of reducing the action and rederiving the potentials in four
dimensions from the reduced action, we pursue the attain-
ment of the four-dimensional potentials by directly reduc-
ing the expressions calculated in five dimensions in the
previous section. So, we adopt the viewpoint already
alluded to in the Introduction of our paper: the quantum-
mechanical calculation in our case is a semiclassical
derivation of the potential, and it is performed in the
higher dimension to be, after that, reduced to the lower
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dimension. We proceed along the lines of the works quoted
in Refs. [11–14], aiming at a four-dimensional result that
already brings the semiclassical imprints from the five-
dimensional physics. And what we actually conclude is that
this procedure differs from the scheme of first reducing the
action to then derive the potential from the reduced action.
We converge to the claims of the papers by Álvarez and
Faedo [11], who state that the two paths (reduction of the
action followed by the inclusion of quantum effects or,
alternatively, quantum effects worked out in the higher
dimension to then reduce the quantum-corrected quantities
to lower dimensions) may not be equivalent. We shall refer
to the procedure we follow here as reduction by dimen-
sional restriction.
By inspecting the canonical mass dimension of the fields

and coupling constants in five and four dimensions, we have
½ψ ð5Þ� ¼ 2, ½Að5Þμ̂� ¼ 3=2, ½gð5Þ� ¼ −1=2, and ½ψ ð4Þ� ¼ 3=2,
½Að4Þμ� ¼ 1, ½gð4Þ ≡ e� ¼ 0, respectively. If L denotes a

length in the extra dimension, then the factor
ffiffiffiffi
L

p
restores

the correct mass dimension in four dimensions, such that
gð4Þ ¼ gð5Þ=

ffiffiffiffi
L

p
, ψ ð4Þ ¼ ψ ð5Þ

ffiffiffiffi
L

p
, and Að4Þμ̂ ¼ Að5Þμ̂

ffiffiffiffi
L

p
. For

our purposes,we only need the relation between the coupling
constants,which is independent of the dimensional reduction
scheme.
Now, we propose the following procedure. First, we

define the average in the extra dimension of the potential in
five dimensions,

hV5DiL ¼ 1

L

Z
L=2

−L=2
dx4V5D; ð47Þ

and then we extend this to a noncompact case, by taking the
limit L → ∞,

Vres ¼ lim
L→∞

hV5DiL: ð48Þ

We refer to the potential Vres, defined in the previous
equation, as a restricted potential or a restriction of the 5D
potential to 4D space-time.
In principle, one could think that this prescription is only

a statistical procedure, since in Eq. (47) we have an average
in the box −L=2 < x4 < L=2 with equal probability 1=L
and after we take the limit of a noncompact box. However,
we shall also give a physical meaning to this. If we
substitute Eq. (43) in Eq. (47), we have that Eq. (48)
can be recast as

Vres ¼ lim
L→∞

1

L

Z
L=2

−L=2
dx4

�
−
Z

dq4

2π

Z
d3q
ð2πÞ3

× eiq4x4eiq·rM5D
NR½gð5Þ�

�
: ð49Þ

In what follows, we shall use the relation gð5Þ ¼
ffiffiffiffi
L

p
gð4Þ

between the fermionic coupling constants in five and four

dimensions. Before doing that, let us recall that the non-
relativistic tree-level amplitude is proportional to the
square of gð5Þ [see, for example, Eq. (41)], so the factor
1=L cancels against a factor coming from the coupling
constants in M5D

NR½gð5Þ� ¼ LM5D
NR½gð4Þ�. Next, we take the

limit L → ∞ and interchange the integrals over x4 and
spatial momentum; this yields

Vres ¼ −
Z

d3q
ð2πÞ3

Z
dq4

2π

�Z
dx4eiq4x4

�
eiq·rM5D

NR½gð4Þ�

¼ −
Z

d3q
ð2πÞ3

Z
dq4δðq4Þeiq·rM5D

NR½gð4Þ� ð50Þ

or, equivalently,

Vres ¼ −
Z

d3q
ð2πÞ3 e

iq·r½M5D
NRjq4¼0�; ð51Þ

where it is implicit gð5Þ → gð4Þ in the above amplitude.
Equation (50) highlights that our reduction prescription
naturally leads to q4 ¼ 0, in view of the Dirac delta
function, which comes out upon integration over x4.
Once we take q4 ¼ 0 in Eq. (51), we could read the

prescription as a restriction of the interaction to a subspace
of the 5D space-time, without loss of the properties of the
particles in five dimensions, namely, Δ, (pseudo)spin hS�i,
and momentum p, p4. For this reason, we shall avoid the
expression dimensional reduction. This prescription is
just a restriction to the scattering amplitude, in which
the transfer momentum of the extra dimension, q4, could
be considered negligible compared to q in the process.
Remember that we are considering an elastic scattering,
so we also have q0 ¼ 0. Here, we highlight that we
assumed r ≠ 0, so the restricted potential will not con-
template contact terms, i.e., ones with δ3ðrÞ. To go over into
Eq. (51), we interchanged integrals and assumed non-
singular functions.
In our procedure, we draw attention to the fact that, by

taking q4 ¼ 0, we are not setting the fifth component of
the individual momenta to zero; in other words, we do not
disregard the dependence of the fields on the extra space
coordinate, x4. What is zero here is the fifth component of
the momentum transfer: the interaction of the matter
currents with the intermediate boson does not transfer
momentum along the fourth spatial component ðq4Þ of the
momentum transfer. On the other hand, on the basis of our
assumption given by Eq. (48) to carry out the dimensional
reduction, the average taken over the extra dimension goes
from minus to plus infinity; this means that we are neither
dropping out the x4 dependence nor assuming x4 to be
compact. We are rather adopting the viewpoint of a non-
compact extra dimension, along the lines of the idea
proposed by Randall and Sundrum in the works [26].
This is the true reason why we do not consider the influence
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of the Kaluza-Klein tower of massive states. Perhaps, we
should also stress that, by considering the plane wave
solutions given in Eqs. (28) and (29), we are already
anticipating that noncompact dimensions will be present in
our approach, which also confirms that Kaluza-Klein
massive states are not considered here.
Though it is not our case in the present work, we would

like to point out that Kaluza-Klein massive states, which
appear as a consequence of the compactness of the extra
dimension, are of a very high mass, and at the energy
compatible with the calculation of (low-energy) interpar-
ticle potentials, they may be fairly well disregarded.
Actually, they decouple. The momenta transfer in this sort
of considerations is very low to excite the massive Kaluza-
Klein states associated to the compact extra dimensions. If
these states were present, they would contribute as virtual
particles running inside the momentum-space loop inte-
grals that appear in the radiative corrections.
Another point that wewish to stress is that, once the extra

coordinate x4 is noncompact [which becomes explicit
when we take the limit in Eq. (48)], through the uncertainty
principle, by fixing q4 ¼ 0, which is our basic assumption,
we completely lose the localization on x4; this supports our
prescription of taking the limit L → ∞ of Eq. (47). All
possible values of x4 are allowed (complete uncertainty on
x4) once q4 ¼ 0; this supports our prescription of taking
the average on x4.
The procedure of taking the integral in the extra dimension

is not exclusive to this work. In Ref. [28], the authors applied
this integration in the fields and currents—they called it a
concatenation—and this prescription was used in the off-
shell electrodynamics (see, for example, Ref. [29]). In our
case, a different point of view is adopted. First, we carry out
the interparticle potential in five dimensions, taking into
account all the contribution of the fields and currents in five
dimensions, and then we integrate the potential.
Now, let us apply the prescription to the VMaxwell

5D ; i.e., we
use Eq. (48) and integrate Eq. (44), or, equivalently, we take
the 3D Fourier integral of the amplitude, Eqs. (41) and (42),
with q4 ¼ 0, which leads to the following result (for r ≠ 0):

VMaxwell
res ¼ e1e2

4πr

�
Δ1Δ2

�
1þ p2 þ p2

4

m1m2

�
þ

−
L
r2

·

�
Δ1hSþ

2 i
�

1

2m2
2

þ 1

m1m2

�
þ 1 ↔ 2

�

þQij

r2
1

m1m2

½hSþ
1;iihSþ

2;ji − hS−
1;iihS−

2;ji�

þ p4r
r2

·

�
Δ1hS−

2 i
�

1

2m2
2

þ 1

m1m2

�
þ 1 ↔ 2

��
:

ð52Þ
By comparing VMaxwell

res with VMaxwell, calculated directly
in four dimensions, Eq. (14), we note some similarities after
using the following dictionary: δ ↔ Δ and hSi ↔ hSþi.

We do not obtain modifications for the Coulomb term, and
due our approximations, we also do not have interactions
that couple Sþ with S−. The p4 contribution appears
coupled to the pseudospin in a way similar to spin-orbit
coupling, L · hSþi. We highlight a new contribution to the
quadrupole term, namely, a pseudospin interaction, propor-
tional toQijhS−

1;iihS−
2;ji=r2. This new contribution is related

to the interaction intermediate by the extra component of
the Aμ̂. Even if q4 ¼ 0, we have some contributions from
the current, Eq. (40), which exhibits the coupling q · hS−i.
For all dimensional reduction schemes, the main require-

ment should be that the dominant contribution to the
potential at large distances in the reduced four space-time
dimensions, namely, the monopole-monopole interaction,
decays with r−1 and respects the well-known Coulomb’s
law [30,31]. In our prescription, however, we arrive at a
Coulomb potential and obtain an extra contribution to the
quadrupole term due the presence of the pseudospin. We
highlight that this is an effect driven by our reduction
prescription. It is worth it to decompose the (pseudo)spin
contributions to the quadrupole interaction in terms of the
expectation values hSiξ and hSiζ [see definitions in
Eq. (30)]. By using Eq. (35), we obtain

Qij

4πr3
hSþ

1;iihSþ
2;ji − hS−

1;iihS−
2;ji

m1m2

¼ 2
Qij

4πr3
hS1;iiξhS2;jiζ þ hS1;iiζhS2;jiξ

m1m2

: ð53Þ

Hence, the quadrupole interaction appears only as
couplings between hSiξ and hSiζ. For this reason, in the
parity-breaking case (ζ → 0), this interaction vanishes.

V. PROCA ELECTRODYNAMICS IN FIVE
DIMENSIONS

In the previous section, we discussed the interparticle
potential for the Maxwell electrodynamics in five dimen-
sions. We wish now to generalize our results for a massive
(boson) particle exchanged in the scattering process,
described by the Proca Lagrangian,

LProca ¼ −
1

4
F2
μ̂ ν̂ þ

1

2
m2A2

μ̂: ð54Þ

The propagator is given by

hAμ̂Aν̂i ¼ −
i

q2 −m2

�
ημ̂ ν̂ −

qμ̂qν̂
m2

�
: ð55Þ

In a way similar to what was done in Sec. II, we arrive at
M ¼ ig1g2J

μ̂
ð1ÞhAμ̂Aν̂iJν̂ð2Þ. After using the relation between

M and MNR, Eq. (2), we have

M5D
NR ¼ −

g1g2
q2 þ q2

4 þm2

Jμ̂ð1ÞJð2Þμ̂
ð2E1Þð2E2Þ

; ð56Þ
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where, in the last step, we have used the current conservation and q0 ¼ 0.
Note that the current contraction, presented in the last expression, was carried out in Eq. (42). Thus, considering the

prescription in Eq. (43) and using the Fourier integrals, Eqs. (A4)–(A6) in the Appendix, we obtain

VProca
5D ¼ g1g2

�
mK1

4π2R
Δ1Δ2

�
1þ p2

m1m2

þ p2
4

m1m2

þm2

8

�
1

m2
1

þ 1

m2
2

��

−
Δ1Δ2

8

�
1

m2
1

þ 1

m2
2

�
δ4ðRÞ − hSþ

1 i · hSþ
2 i þ hS−

1 i · hS−
2 i

2m1m2

δ4ðRÞ

þm3K1

4π2R
hS−

1 i · hS−
2 i

m1m2

−
1

4π2R2

�
4mK1

R
þ 2m2K0 −

r2

R

�
8mK1

R2
þ 4m2K0

R
þm3K1

��

×
hSþ

1 i · hSþ
2 i − hS−

1 i · hS−
2 i

m1m2

−
1

4π2R2

�
2mK1

R
þm2K0

��
ðr × pÞ ·

�
Δ1hSþ

2 i
�

1

2m2
2

þ 1

m1m2

��

þ ðx4p − p4rÞ ·
�
Δ1hS−

2 i
�

1

2m2
2

þ 1

m1m2

��
þ 1 ↔ 2

�

−
1

4π2R3

�
8mK1

R2
þ 4m2K0

R
þm3K1

�
1

m1m2

½x4r · ½ðhSþ
1 i × hS−

2 iÞ

þ ðhSþ
2 i × hS−

1 iÞ� þ ðhSþ
1 i · rÞðhSþ

2 i · rÞ − ðhS−
1 i · rÞðhS−

2 i · rÞ�
�
: ð57Þ

This potential exhibits all the velocity- and (pseudo)
spin-dependence interactions of the Maxwell case,
Eq. (44), which is recovered in the massless limit. In
the Proca potential, the power-law decay depends on the
modified Bessel function, KνðzÞ, and the range of
z ¼ mR. In the sequel, we shall study its asymptotic
behaviors as R goes to infinity and zero, respectively, and
then present its form upon the reduction by dimensional
restriction.

According to Refs. [32,33], the behavior of the KνðzÞ
when z → ∞ is given by

KνðzÞ ∼
ffiffiffiffiffi
π

2z

r
e−z

�
1þO

�
1

z

��
; ð58Þ

which holds for j arg zj < 3π=2. Since we are using real
values z ¼ mR, the previous condition is automatically
satisfied. Applying this result in Eq. (57), we obtain the
following asymptotic limit:

VProca
5D jR→∞ ∼

g1g2
4

ffiffiffiffiffiffiffi
m
2π3

r
e−mR

�
Δ1Δ2

R3=2

�
1þ p2

m1m2

þ p2
4

m1m2

�

þm2

8

Δ1Δ2

R3=2

�
1

m2
1

þ 1

m2
2

�
þ m2

m1m2

1

R3=2 hS−
1 i · hS−

2 i

−m
ðr × pÞ
R5=2 ·

�
Δ1hSþ

2 i
�

1

2m2
2

þ 1

m1m2

�
þ 1 ↔ 2

�

−m
ðx4p − p4rÞ

R5=2 ·

�
Δ1hS−

2 i
�

1

2m2
2

þ 1

m1m2

�
þ 1 ↔ 2

�

−
m2

m1m2

x4r

R7=2 · ½ðhSþ
1 i × hS−

2 iÞ þ ðhSþ
2 i × hS−

1 iÞ�

þ m2

m1m2

r2

R7=2 ½hSþ
1 i · hSþ

2 i − hS−
1 i · hS−

2 i�

−
m2

m1m2

1

R7=2 ½ðhSþ
1 i · rÞðhSþ

2 i · rÞ − ðhS−
1 i · rÞðhS−

2 i · rÞ�
�
: ð59Þ
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Here, we notice a peculiar behavior. In addition to the
common factor e−mR, we also have fractional power-law
decay in all terms. The dominant monopole-monopole
contribution decays with R3=2. The velocity- and
(pseudo)spin-dependent terms are suppressed by the mass
fermions and have higher power-law decay.
Let us now consider the situation in which z → 0.

The asymptotic limits are given by Refs. [34,35],
respectively,

K0ðzÞ ∼ − log

�
z
2

�
½1þOðz2Þ� − γ½1þOðz2Þ�; ð60Þ

K1ðzÞ ∼
1

z
½1þOðz2Þ� þ z

2
log

�
z
2

�
½1þOðz2Þ�; ð61Þ

where γ ¼ 0.57721… is the Euler-Mascheroni constant.
By taking into account these limits in Eq. (57), one may

obtain

VProca
5D jR→0 ∼

g1g2
4π2R2

�
Δ1Δ2

�
1þ p2

m1m2

þ p2
4

m1m2

þm2

8

�
1

m2
1

þ 1

m2
2

��

þ m2

m1m2

hS−
1 i · hS−

2 i −
�
4

R2
− 2m2

�
log

�
mR
2

�
þ γ

�

−
r2

R2

�
8

R2
þm2

�
1 − 4γ − 4 log

�
mR
2

���� hSþ
1 i · hSþ

2 i − hS−
1 i · hS−

2 i
m1m2

−
�

2

R2
−m2

�
log

�
mR
2

�
þ γ

���
ðr × pÞ ·

�
Δ1hSþ

2 i
�

1

2m2
2

þ 1

m1m2

��

þ ðx4p − p4rÞ ·
�
Δ1hS−

2 i
�

1

2m2
2

þ 1

m1m2

��
þ 1 ↔ 2

�

−
1

R2

�
8

R2
þm2

�
1 − 4γ − 4 log

�
mR
2

���
1

m1m2

½x4r · ½ðhSþ
1 i × hS−

2 iÞ

þ ðhSþ
2 i × hS−

1 iÞ� þ ðhSþ
1 i · rÞðhSþ

2 i · rÞ − ðhS−
1 i · rÞðhS−

2 i · rÞ�
�
: ð62Þ

Next, we present the restriction to four dimensions of the Proca electrodynamics studied in five dimensions. Following
the prescription discussed in Sec. IV, we take the limit q4 → 0 in the nonrelativistic amplitude, Eq. (56) with Eq. (42), and
work out the Fourier integrals in three dimensions for r ≠ 0 [see Eqs. (A1)–(A3) in Appendix], which leads to

VProca
res ¼ e1e2

e−mr

4πr

�
Δ1Δ2

��
1þ p2 þ p2

4

m1m2

��
þ m2

m1m2

hSþ
1 i · hSþ

2 i

−L ·

�
Δ1hSþ

2 i
�

1

2m2
2

þ 1

m1m2

�
þ 1 ↔ 2

� ð1þmrÞ
r2

þ 1

m1m2

QðmÞ
ij

r2
½hSþ

1;iihSþ
2;ji − hS−

1;iihS−
2;ji�

þ p4r ·

�
Δ1hS−

2 i
�

1

2m2
2

þ 1

m1m2

�
þ 1 ↔ 2

� ð1þmrÞ
r2

�
; ð63Þ

where we defined

QðmÞ
ij ¼ ð1þmrÞδij − ð3þ 3mrþm2r2Þxixj

r2
: ð64Þ

It is worth it to compare this potential with the Maxwell
case, Eq. (14). Again, the pseudospin contributions appear
in a coupling with p4 and in the quadrupole term.
Finally, let us discuss an illustrative case in which we do

not take q4 ¼ 0 but we consider small contributions. For
the sake of simplicity, we assume the monopole-monopole
interaction, described by the following amplitude:

M5D
NR ¼ −

g1g2
q2 þ q2

4 þm2
Δ1Δ2: ð65Þ

By plugging this amplitude into Eq. (43) and carrying
out the integration

R
d3q, one arrives at

V ¼ g1g2Δ1Δ2

Z
dq4

ð2πÞ e
iq4x4

�
1

4πr
e−mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þq2

4
=m2

p �
: ð66Þ

Now, if one considers q2
4 ≪ m2, it is possible to approxi-

mate e−mr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þq2

4
=m2

p
≈ e−mre−rq

2
4
=2m, and the Fourier integral
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above reduces to a Gaussian one, which, for large distances
(with mr ≫ m2x2

4), leads to the potential

V ≈ g1g2

�
Δ1Δ2

4πr
e−mr

� ffiffiffiffiffiffiffiffi
m
2πr

r �
1 −

m2x2
4

2mr
þ � � �

�
: ð67Þ

From this example, we conclude that, if we take even a
small q4 contribution, the dominant term decays with
e−mr=r3=2 rather than showing the usual Yukawa-like
profile in four dimensions given by e−mr=r. The term with
x4 dependence falls off with e−mr=r5=2. In our prescription,
after imposing the dimensional restriction, we arrive at the
condition q4 ¼ 0 and, consequently, obtain the expected
Yukawa (or Coulomb in the massless case) dominant
interaction in four dimensions. Moreover, we have shown
that new contributions appear in the spin sector due the
presence of pseudospin as an inheritance of 5D space-time.

VI. CONCLUDING COMMENTS

As it has been discussed over the past sections, our main
endeavour in this paper was to compute photon-mediated
and Proca-mediated parity-preserving interparticle poten-
tials in five dimensions to get their four-dimensional
description by adopting a particular scheme, which we
refer to as reduction by dimensional restriction. The main
feature of this procedure is the prescription that the
mediating particle (in the cases we considered, massless
and massive Abelian vector bosons) does not transfer
momentum in the extra spatial dimension (q4 ¼ 0). Our
claim is that the physics of the interaction process
exchanges momentum only along the q1, q2, and q3

directions in momentum-transfer space (q0 ¼ 0 for an
elastic scattering). With this assumption, we correctly get
the right space dependence of the potentials. Had we
considered a nontrivial momentum transfer along q4, the
dependence of the four-dimensional potentials would not
be the right ones; they would fall off faster with distance (in
the case of the monopole contribution, as an illustration, it
would be r−2 rather than r−1).
The behavior of the potentials with the particles spatial

separation, velocities, and spins is also worked out in details
in the tree-level approximation. And as a consequence of
setting up the physics in five dimensions, there emerges, in
four dimensions, an extra degree of freedom that we name
here pseudospin; that is not the same as the pseudospin that
appears in other contexts, as we have previously pointed out.
Actually, the appearance of the pseudospin in our prescrip-
tion seems to be a new feature, and wewish to go deeper into
this point. The potential obtained in Eq. (52) and the
decomposition of the quadrupole interaction in terms of
two spins in four dimensions, Eq. (53), are our departure to
better understand the role of the pseudospin in four-
dimensional physical processes. This quadrupole-type con-
tribution is a nontrivial consequence of the scheme we are

referring to as dimensional restriction.We have, in particular,
already initiated pursuing a study of the pseudospin in
connection with the multipole structure of the fermionic
current, with particular attention to a possible relationship
between the pseudospin and the electron and muon electric
dipolemoments inmodels inwhichCP violation occurs.We
intend to report on that elsewhere in a forthcoming work.
It is worth it to mention that we have considered in this

paper a particular way to introduce the fermion mass
without breaking parity in five dimensions. We have
doubled the fermion representation and defined parity in
a particular way, by imposing that the fermions of the
doublet are exchanged into one another upon the action of
parity transformation. In connection with the doubling of
the spinors that represent the fermion in five dimensions,
we may introduce a number of different symmetries, as we
highlight in the next paragraph. As a new possibility that
opens up, it would be interesting to understand how these
symmetries may affect four-dimensional physics, espe-
cially in association with the electron’s and muon’s electric
and magnetic dipole moments. This shall be the object of
our immediate interest.
In a way similar to what was done in three dimensions

[21], one may introduce other global (or local) phase
transformations for the doubled spinor field in five dimen-
sions. These transformations are defined by using 8 × 8
matrices, namely,

τ3 ¼
�
0 1

1 0

�
; τ4 ¼ i

�
0 1

−1 0

�
;

τ5 ¼
�
1 0

0 −1

�
: ð68Þ

It is possible to show that the massless term Ψ̄iΓμ̂∂ μ̂Ψ is
invariant under these transformations. However, the mass
term breaks the τ3 and τ4 symmetries. Only the τ5 case is
consistent with a mass term. Furthermore, if we consider
a local τ5 symmetry, we obtain the current Jμ̂5 ≡ Ψ̄Γμ̂τ5Ψ
and an Abelian gauge field, Bμ̂, both pseudovectors in five
dimensions. In this case, beyond the Maxwell-like term in
the Lagrangian, we could also introduce a Chern-Simons
term in five dimensions, without breaking the parity
symmetry. This particular case could be more explored
in connection with topological superconductors [36], for
which a Chern-Simons term plays an important role.
Finally, we point out that applying the dimensional

restriction prescription to go from a (1þ 3)- to a
(1þ 2)-dimensional space-time may be of interest in the
inspection of low-dimensional systems in condensed matter
physics, such as graphene and the charge/spin Hall effect.

ACKNOWLEDGMENTS

We would like to thank Tobias Micklitz for useful and
critical comments and the rich exchange of ideas. This
work was supported by the Foundation for the Support to
Research of the Rio de Janeiro State and National Council

FERMION INTERPARTICLE POTENTIALS IN 5D AND A … PHYS. REV. D 97, 056014 (2018)

056014-11



for Scientific and Technological Development (CNPq/
MCTIC) through the PCI (Institutional Qualification
Program) funds.

APPENDIX: FOURIER INTEGRALS

Below, we present some useful Fourier integrals in three
and four dimensions. Let us initiate with the well-known
3D massive case,

Z
d3q
ð2πÞ3

eiq·r

q2 þm2
¼ e−mr

4πr
; ðA1Þ

Z
d3q
ð2πÞ3

eiq·r

q2 þm2
qi ¼

ixi

4πr3
ð1þmrÞe−mr; ðA2Þ

Z
d3q
ð2πÞ3

eiq·r

q2 þm2
qiqj

¼ δij
3
δ3ðrÞ þ e−mr

4πr3

�
ð1þmrÞδij

− ð3þ 3mrþm2r2Þxixj

r2

�
; ðA3Þ

where r ¼
ffiffiffiffiffi
r2

p
and i, j ¼ 1, 2, 3. From these equations,

one can directly obtain the massless limit.
To avoid confusion, we shall use R to denote the 4D

(Euclidean) vector and xI for its components, with capital
letter I ¼ 1, 2, 3, 4. The 4D massive Fourier integrals are
given by

Z
d4q
ð2πÞ4

eiq·R

q2 þm2
¼ m

4π2R
K1ðmRÞ; ðA4Þ

Z
d4q
ð2πÞ4

eiq·R

q2þm2
qI ¼

ixI

4π2R2

�
2mK1ðmRÞ

R
þm2K0ðmRÞ

�
;

ðA5Þ

Z
d4q
ð2πÞ4

eiq·R

q2þm2
qIqJ

¼ 1

4
δIJδ

4ðRÞþ δIJ
4π2R2

�
2mK1ðmRÞ

R
þm2K0ðmRÞ

�

−
xIxJ

4π2R3

�
8mK1ðmRÞ

R2
þ4m2K0ðmRÞ

R
þm3K1ðmRÞ

�
;

ðA6Þ

where R ¼
ffiffiffiffiffiffi
R2

p
and KνðzÞ is the modified Bessel function

of the second kind with order ν.
By using the asymptotic limits, Eqs. (60) and (61), it is

possible to work out the massless limits, which take the
form

Z
d4q
ð2πÞ4

eiq·R

q2
¼ 1

4π2R2
; ðA7Þ

Z
d4q
ð2πÞ4

eiq·R

q2
qI ¼

i
2π2

xI

R4
; ðA8Þ

Z
d4q
ð2πÞ4

eiq·R

q2
qIqJ ¼

1

4
δIJδ

4ðRÞ þ 1

2π2R4

�
δIJ − 4

xIxJ

R2

�
:

ðA9Þ
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