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INFN Sezione di Catania, Via S.Sofia 64, I-95123 Catania, Italy

(Received 19 August 2017; published 20 March 2018)

Avery simple variational approach to pure SUðNÞ Yang-Mills theory is proposed, based on the Gaussian
effective potential in a linear covariant gauge. The method provides an analytical variational argument for
mass generation. Themethod can be improved order by order by a perturbative massive expansion around the
optimal trial vacuum. At finite temperature, a weak first-order transition is found (at Tc ≈ 250 MeV for
N ¼ 3) where the mass scale drops discontinuously. Above the transition the optimal mass increases linearly
as expected for deconfined bosons. The equation of state is found in good agreement with the lattice data.
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I. INTRODUCTION

In the last decades the dynamics of QCD has been under
intensive theoretical study, aimed at understanding the
properties of matter under the extreme conditions reached
by heavy-ion collisions. Our understanding of the phase
diagram has further motivated the study of pure SUðNÞ
Yang-Mills theory in the IR and at finite temperature,
neglecting quarks as a first approximation. However,
despite the important progresses made, we still miss an
analytical description of SUðNÞ theory from first princi-
ples, because of the breaking down of standard perturbation
theory below the QCD scale.
The numerical simulation of the theory on a lattice has

provided many important insights into the gluon dynamics.
Among them, the dynamical generation of a gluon mass
in the dressed propagator in the Landau gauge [1–8] and
the occurrence of a phase transition with the gluons
that become deconfined above the critical temperature
[9–11]. However, since the numerical simulations can only
provide data in the Euclidean space, no direct information
can be gained in the Minkowski space where the dynamical
properties of the gluon are defined. For instance, no direct
proof of confinement can be obtained on the lattice and
even the definition of mass can only be regarded as an
energy scale without any clear dynamical meaning.
Continuous methods have been developed such as

functional renormalization group [12–15], truncation of
Dyson-Schwinger equations [16–23] and Hamiltonian

approaches [24,25]. They usually require the numerical
solution of integral equations and there is no simple way to
extract analytical results from the data.
On the other hand, effective models have been studied

analytically, but they are not from first principles and are
usually based on some modified quantization procedure
[26–29] or different Lagrangians. For instance, adding a
gluon mass to the Lagrangian is enough for extending the
validity of perturbation theory down to the deep IR,
yielding a very good overall picture of Yang-Mills theory
at one loop [30–32]. In the context of background field
methods the added gluon mass has provided a good
description of the phase diagram at finite temperature,
enforcing the idea that most of the nonperturbative effects
can be embedded in the gluon-mass parameter [33–36].
While those models are important for understanding the
physics of gluons, there is a growing interest in the study of
analytical approaches to the exact SUðNÞ theory.
In this paper, we discuss a very simple variational

approach to SUðNÞ theory, based on the Gaussian effective
potential (GEP) in a linear covariant gauge. We do not
modify the original Lagrangian of the theory but optimize
the perturbative expansion by a variational argument,
yielding a calculational analytical method that already
provides very important predictions at the lowest orders
of the approximation. Among the main results achieved by
the present study we mention: (i) a variational argument
for mass generation; (ii) the prediction of a first-order
deconfinement transition at Tc ≈ 250 MeV for N ¼ 3;
(iii) the formal definition of a perturbative expansion
around the optimized vacuum, allowing for an order-by-
order improvement of the approximation.
The original approach of Ref. [37] is here improved and

extended to finite temperature, yielding analytical results
up to a one-dimensional numerical integration that is
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required for the thermal functions. The perturbative expan-
sion around the vacuum turns out to be the massive
expansion developed in Refs. [38–41] which was found
in excellent agreement with the lattice data [42]. Thus, the
present study enforces the validity of that expansion and
provides a variational argument for its derivation.
Moreover, while by itself the massive expansion cannot
give a genuine proof of mass generation, the variational
nature of the GEP can be used as a tool for demonstrating
that a massless gaussian vacuum of Yang-Mills theory is
unstable against the vacuum of massive gluons [37].
The expansion has been extended to finite temperature in

Ref. [41] allowing for a direct calculation of the gluon
damping rate in the IR and providing a direct proof of
confinement. While in that study the zeroth order mass
parameter was kept fixed, at finite temperature the GEP
provides the free energy and allows us to determine the trial
mass parameter variationally, as a function of temperature.
The optimal mass scale is found discontinuous at the
deconfinement transition, leading to an enhancement of
the mass decrease that was already found in Ref. [41], in
agreement with the observed behavior of the Debye mass in
lattice simulations [10].
The GEP is the energy density of a trial Gaussian

vacuum functional that is centered at a given average value
of the field. The width of the functional is given by the mass
of the trial free theory and is determined variationally at
each value of the average field, yielding an effective
potential that has been studied by several authors, mainly
in the context of spontaneous symmetry breaking and scalar
theories [43–64]. While the GEP is a genuine variational
method [46,47], several extensions to higher orders have
been proposed [56–59]. The idea of an expansion around the
optimized vacuum of the GEP is not new [65] but has not
been developed further. Expanding around the optimized
massive vacuum of the GEP, the unconventional massive
expansion ofRefs. [38–40] is recovered in a naturalway [37].
Thus, the phenomenological success of the expansion might
be due to the variational choice of a zeroth order vacuum
which incorporates most of the nonperturbative effects,
leaving a residual interaction term that can be treated by
perturbation theory.
One of the important merits of the GEP is its paradox of

being a pure variational method disguised as a perturbative
calculation, making use of the standard graphs of pertur-
bation theory. Moreover, in the present context, the
calculation is highly simplified by the assumption that
the average of the gauge field is zero at the minimum of the
potential. In other words, we only need the effective
potential at its minimum where it is a function VðmÞ of
the trial mass parameter m. However, at variance with
perturbation theory, the issue of renormalization is less
standardized in a variational method and the regularization
of the diverging integrals becomes a central aspect of the
calculation.

The paper is organized as follows: in Sec. II the general
formalism is discussed in the simple case of a scalar theory
where standard well known results are recovered by the
method; in Sec. III the delicate issue of regularization of the
diverging integrals and renormalization of the GEP is
addressed; in Sec. IV the GEP for pure SUðNÞ Yang-
Mills theory is studied at T ¼ 0, providing a simple
variational argument for mass generation; in Sec. V the
GEP is extended to finite temperature and the phase
transition is discussed; a general discussion and a summary
of the results follow in Sec. VI.

II. GEP AND MASS GENERATION
IN THE SCALAR THEORY

In order to illustrate the method, in this section we revise
the formalism for the simple case of a self-interacting scalar
theory [46] where the effective potential is well known
and is given by three vacuum graphs as shown in Fig. 1.
The renormalization scheme will be discussed in the next
section. Most of the arguments developed here are quite
general and will be used in the rest of the paper.
Let us consider the Lagrangian

L ¼ 1

2
ϕð−∂2 −m2

BÞϕ −
λ

4!
ϕ4 ð1Þ

where mB is a bare mass. We can split the total Lagrangian
as L ¼ L0 þ Lint where the trial quadratic part is

L0 ¼
1

2
ϕð−∂2 −m2Þϕ ð2Þ

and describes a free scalar particle with a trial mass
m ≠ mB. The new interaction follows as

Lint ¼ −
λ

4!
ϕ4 −

1

2
ðm2

B −m2Þϕ2 ð3Þ

so that the total Lagrangian is left unchanged. If we neglect
the interaction, then a free Hamiltonian H0 is derived from
L0 and its ground state jmi satisfies

H0jmi ¼ E0ðmÞjmi ð4Þ

and depends on the trial mass m. Restoring the interaction
Lint, the full Hamiltonian reads H ¼ H0 þHint and by

FIG. 1. Vacuum graphs contributing to the GEP for the scalar
theory (first row) and pure SUðNÞ Yang-Mills theory
(second row).
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standard perturbation theory, the first-order energy of the
ground state reads

E1ðmÞ ¼ E0ðmÞ þ hmjHintjmi ¼ hmjHjmi ð5Þ

and is equivalent to the first-order effective potential V1ðmÞ
evaluated by perturbation theory in the covariant formalism
with the interaction Lint. Thus, the stationary condition

∂V1ðmÞ
∂m ¼ ∂E1ðmÞ

∂m ¼ 0 ð6Þ

gives the best value ofm that minimizes the vacuum energy
of the ground state jmi.
While being a pure variational method, the first-order

effective potential V1ðmÞ ¼ E1ðmÞ can be evaluated by the
sum of all the vacuum graphs up to first order (the three
loop graphs in Fig. 1). The resulting optimized effective
potential is the GEP. Usually, the effective potential is
evaluated for any value of the average φ ¼ hϕi and the best
m also depends on that average. If the symmetry is not
broken, then the minimum of the effective potential is at
φ ¼ 0 where V1ðmÞ is a function of the trial mass, to be
fixed by the stationary condition Eq. (6). We assume that
the gauge symmetry is not broken in Yang-Mills theory so
that V1ðmÞ at φ ¼ 0 is the effective potential we are
interested in.
The variational nature of the method ensures that the true

vacuum energy is smaller than the minimum of V1ðmÞ. At
the minimum, jmi provides an approximation for the
vacuum and is given by the vacuum of a free massive
scalar particle with mass equal to the optimized mass
parameterm ≠ mB. Of course, the optimal state jmi is just a
first approximation and the actual vacuum is much richer.
However, we expect that a perturbative expansion around
that approximate vacuum would be the best choice for the
Lagrangian L, prompting towards an expansion with an
interaction Lint and a free part L0 that depend onm and can
be optimized by a clever choice of the parameter m.
Different strategies have been proposed for the optimiza-
tion, ranging from the stationary condition of the GEP,
Eq. (6), to Stevenson’s principle of minimal sensitivity
[66]. A method based on the minimal variance has been
recently proposed for QCD and other gauge theories
[57,67–71]. In all those approaches, the underlying idea
is that an optimal choice of m could minimize the effect of
higher orders in the expansion. Since the total Lagrangian
does not depend on m, the physical observables are
expected to be stationary at the optimal m, thus suggesting
the use of stationary conditions for determining the free
parameter. As a matter of fact, if all graphs were summed
up exactly, then the dependence on m would cancel in the
final result, so that the strength of that dependence
measures the weight of the neglected graphs at any order.

Leaving aside the problem of the best choice of m, we
observe that at φ ¼ 0 the calculation of the first-order
effective potential V1ðmÞ is quite straightforward and
follows from the first-order expansion of the effective
action ΓðφÞ

eiΓðφÞ ¼
Z
1PI

DϕeiS0ðϕþφÞþiSintðϕþφÞ ð7Þ

where the functional integral is the sum of all one-particle
irreducible (1PI) graphs and S ¼ S0 þ Sint is the action.
The effective potential then follows as VðmÞ ¼ −Γð0Þ=V4

where V4 is a total space-time volume. The sum of graphs
up to first order gives the first-order effective potential
V1ðmÞ which is the GEP when optimized by Eq. (6).
At finite temperature, the effective potential is replaced

by a density of free energy F ðT;mÞ according to

e−β½V3F ðT;mÞ� ¼
Z

DϕeðS0þSintÞ ð8Þ

where the action S ¼ S0 þ Sint is the integral over imagi-
nary time τ

S ¼
Z

β

0

dτ
Z

d3xL; ð9Þ

β ¼ 1=T and V3 is a total three-dimensional space volume.
The perturbative expansion of the free energy follows by
the same connected graphs contributing to the effective
potential, with loop integrals replaced by a sum over
discrete frequencies and a three-dimensional integration.
In the limit T → 0 the effective potential is recovered as
VðmÞ ¼ F ð0; mÞ and each thermal graph gives the corre-
sponding vacuum term. Because of the one to one corre-
spondence of the graphs we can easily switch from the
thermal to the vacuum formalism when required. Moreover,
at finite temperature, the GEP maintains its genuine
variational nature. In the Hamiltonian formalism, the
variational argument that follows Eq. (5) can be generalized
by Bogolubov’s inequality

F ≤ F 0 þ
1

V3

Tr½Hint expð−βH0Þ�
Tr½expð−βH0Þ�

¼ F 1 ð10Þ

while in the Lagrangian formalism the same result is found
by Jensen-Feynman inequality

F ≤ F 0 −
1

βV3

R
DϕSinteS0R
DϕeS0

¼ F 1 ð11Þ

where F 0 is the free energy obtained by the trial
Lagrangian L0 while F 1 is the first order approximation
which becomes the GEP when optimized. The two inequal-
ities tell us that the expansion must be truncated at first
order for a genuine variational approximation. Here and in
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the next two sections, when not specified, we will deal with
the effective potential and with the renormalization of the
vacuum graphs at zero temperature. The thermal corrections
are finite and do not require any further renormalization.
Since we are interested in the massless Yang-Mills

theory, we set mB ¼ 0 in the interaction Eq. (3) and study
a massless scalar theory as a toy model for the problem of
mass generation. The vertices of the theory can be read
from Lint in Eq. (3) where we set mB ¼ 0 and are used in
Fig. 1 in the vacuum graphs. The usual four-point vertex −λ
is accompanied by the counterterm δΓ ¼ m2 that is denoted
by a cross in the graphs. This counterterm must be regarded
as part of the interaction so that the expansion is not
loopwise and we find one-loop and two-loop graphs
summed together in the first-order effective potential.
That is where the nonperturbative nature of the method
emerges since the expansion in not in powers of λ but of the
whole interaction Lint. The zeroth order (massive) propa-
gator Δm follows from L0

ΔmðpÞ ¼
1

p2 −m2
ð12Þ

and is shown as a straight line in the vacuum graphs.
The tree term is the classical potential and vanishes in the

limit φ → 0. The first one-loop graph in Fig. 1 gives the
standard one-loop effective potential, containing some
effects of quantum fluctuations. It must be added to the
second one-loop graph in Fig. 1, the crossed graph
containing one insertion of the counterterm.
It is instructive to see that the exact sum of all one-loop

graphs with n insertions of the counterterm gives the
standard vacuum energy of a massless particle. In other
words, if we sum all the crossed one-loop graphs the
dependence on m disappears and we are left with the
standard one-loop effective potential of Coleman and
Weinberg [72] V0

1L ¼ −Γ0
1L=V4 where Γ0

1L is the standard
one-loop effective action at φ ¼ 0

eiΓ
0
1L ¼

Z
Dϕe

i
R

1
2
ϕð−∂2Þϕd4x ∼ ½DetðΔ−1

0 Þ�−1
2 ð13Þ

and Δ−1
0 ¼ p2 is the free-particle propagator of a massless

scalar particle. Up to an additive constant, not depending on
m, Eq. (13) can be written as

V0
1L ¼ −i

2V4

Tr logðΔ−1
m þm2Þ ð14Þ

then expanding the log we obtain a massive expansion

V0
1L ¼ −i

2V4

Tr

�
logðΔ−1

m Þ −
X∞
n¼1

ð−m2ΔmÞn
n

�
ð15Þ

that is shown pictorially in Fig. 2 as a sum of crossed one-
loop vacuum graphs. While the sum cannot depend onm, if

we truncate the expansion at any finite order we obtain a
function of the mass parameter. As a test of consistency,
one can easily check that, once renormalized as described
below, the sum of all the crossed one-loop vacuum graphs
in Fig. 2 gives zero exactly.
The calculation of the GEP requires the sum of only the

first two terms of Eq. (15), the two one-loop graphs in
Fig. 1. We cannot add higher-order terms without spoiling
the variational method since the average value of the
Hamiltonian in the trial state jmi is E1ðmÞ ¼ V1ðmÞ,
according to Eq. (5). Using the identity

Δm ¼ −
∂

∂m2
logðΔ−1

m Þ ð16Þ

the sum of one-loop graphs in Fig. 1 can be written as

V1LðmÞ ¼
�
1 −m2

∂
∂m2

�
KðmÞ ¼ KðmÞ − 1

2
m2JðmÞ

ð17Þ

where KðmÞ and JðmÞ are defined as

KðmÞ ¼ −i
2V4

Tr logðΔ−1
m Þ

JðmÞ ¼ i
V4

TrΔm ð18Þ

and because of Eq. (16), satisfy the identity

∂KðmÞ
∂m2

¼ 1

2
JðmÞ: ð19Þ

At T ¼ 0 they can be written as explicit diverging integrals

KðmÞ ¼ 1

2i

Z
d4p
ð2πÞ4 logð−p

2 þm2Þ

JðmÞ ¼ −i
Z

d4p
ð2πÞ4

1

−p2 þm2
ð20Þ

to be regularized in some renormalization scheme. At finite
temperature Eq. (19) still holds, but the integrals acquire a
finite additive thermal part.
We recognize KðmÞ as the standard one-loop effective

potential of Coleman and Weinberg for a massive scalar
particle in the limit φ → 0. This term contains the quantum
fluctuations at one-loop. The second term in Eq. (17) is a
correction coming from the counterterm and arises because
the exact Lagrangian was massless.

FIG. 2. Pictorial display of the right hand side of Eq. (15).
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The calculation of the GEP also requires the two-loop
graph in Fig. 1 which is first-order in λ. It can be recovered
from the crossed one-loop graph by just substituting the
vertex −m2 with the seagull one-loop self energy Σ1L that
reads [57]

Σ1L ¼ λ

2
JðmÞ ð21Þ

and adding a 1=2 symmetry factor. The resulting two-loop
term is

V2LðmÞ ¼ λ

8
½JðmÞ�2: ð22Þ

The GEP follows as the sum V1L þ V2L

VGðmÞ ¼ KðmÞ − 1

2
m2JðmÞ þ λ

8
½JðmÞ�2: ð23Þ

At this stage we have just recovered the GEP in the limit
φ → 0 and Eq. (23) agrees with the well known GEP in that
limit [46,56,57,59,60].
More precisely, VG is the GEP when m is optimized by

the stationary condition Eq. (6) that reads

∂VGðmÞ
∂m2

¼ 1

2

�∂JðmÞ
∂m2

��
λJðmÞ
2

−m2

�
¼ 0 ð24Þ

yielding the usual gap equation of the GEP

m2 ¼ λJðmÞ
2

: ð25Þ

From a mere formal point of view, if Eq. (25) has a nonzero
solution, the GEP predicts the existence of a mass for the
massless scalar theory. That is of special interest because
for mB ¼ 0 the Lagrangian in Eq. (1) has no energy scale,
just like Yang-Mills theory and QCD in the chiral limit.
Thus, it can be regarded as a toy model for the more general
problem of mass generation and chiral symmetry breaking.

III. RENORMALIZATION OF THE GEP

The scalar theory has been studied by many authors in
the past, using different regulators, ranging from the
insertion of a cut-off to dimensional regularization and,
of course, to lattice regularization. The resulting physical
theories are not always equivalent and the problem of
triviality is still not totally solved. The issue is quite subtle
and has to do with the physical meaning that we give to the
theory in a four dimensional space. The regularization of
the GEP has also been addressed by many methods
[44,46,60–64]. The most intuitive way of regularizing
the integrals is by inserting a large but finite cutoff Λ
which provides the physical units of the theory, as in lattice
calculations where the finite lattice spacing a cuts the

energies larger than Λ ∼ 1=a. In the Euclidean space, the
integral J reads

JðmÞ ¼
Z

Λ2

0

p2dp2

16π2

�
1

p2 þm2

�
> 0 ð26Þ

and is a finite positive-definite function of the mass
parameter. The gap equation, Eq. (25), has a well defined
solution at m2 ¼ m2

0 ¼ cλλΛ2=ð32π2Þ where cλ is a coef-
ficient of order unity, with 0 < cλ < 1 and cλ ≈ 1 in the
limit λ → 0. Since the derivative

∂JðmÞ
∂m2

< 0 ð27Þ

is negative for any value of m2, the derivative of the
effective potential in Eq. (24) changes sign at m ¼ m0 and
becomes positive for m > m0. Thus, the GEP has an
absolute minimum at m0 and the simple cutoff regulariza-
tion predicts a mass. The existence of a minimum at m ¼
m0 > 0makes sense when compared with the data of lattice
simulations that predict the existence of a finite mass in the
limit m2

B → 0þ of the unbroken-symmetry theory [73].
However, that mass is not a dynamical mass and arises from
the quadratic divergence of J because no special symmetry
protects the theory. That is not a desirable feature in a toy
model for Yang-Mills theory since Becchi-Rouet-Stora-
Tyutin (BRST) invariance, which is not broken on the
lattice, forbids the appearance of diverging mass terms. In
that context, dimensional regularization is the first choice
since it leaves BRSTunbroken and is the simplest and usual
way to cancel the quadratic divergence.
Having set d ¼ 4 − ϵ, in the limit ϵ → 0 the integral J is

redefined as Jμϵ where μ is an arbitrary scale of the order of
m and expanding in powers of ϵ

JðmÞ ¼ −
m2

16π2

�
2

ϵ
þ log

μ̄2

m2
þ 1þOðϵÞ

�
ð28Þ

where μ̄ ¼ ð2 ffiffiffi
π

p
μÞ expð−γ=2Þ. Integrating Eq. (19) and

neglecting an integration constant (that does not depend
on m)

KðmÞ ¼ −
m4

64π2

�
2

ϵ
þ log

μ̄2

m2
þ 3

2
þOðϵÞ

�
: ð29Þ

In the usual approach of Coleman andWeinberg [72], the
divergences are absorbed by the (infinite) integration
constants that are traded as finite and physical renormalized
parameters. Following that approach, we could hide the
poles in the definition of an energy scale Λϵ such that

logΛ2
ϵ ¼ log μ̄2 þ 2

ϵ
þ 1 ð30Þ
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and write the integrals K, J as simply as

JðmÞ ¼ m2

16π2
log

m2

Λ2
ϵ

KðmÞ ¼ m4

64π2

�
log

m2

Λ2
ϵ
−
1

2

�
: ð31Þ

If Λϵ were traded as a finite unknown energy scale, then the
regularized expressions of J and K would be finite.
Let us investigate the limits of Eq. (31) when the

definition of Λϵ, Eq. (30), is taken literally, in the attempt
to give it a physical meaning. While ϵ might even be a
complex variable and the physical meaning of the poles is
quite obscure in general, Eq. (30) only makes sense if we
assume that ϵ is real, at least. Moreover, the expansion can
only be trusted if jϵ logðμ̄2=m2Þj ≪ 1which is equivalent to
say that

log
Λ2
ϵ

m2
≈
2

ϵ
→ �∞ ð32Þ

yieldingm ≪ Λϵ if ϵ > 0 andm ≫ Λϵ if ϵ < 0. Thus, if we
literally assume to work in a ð4 ∓ jϵjÞ-dimensional space-
time, Eq. (31) holds asymptotically for a very small or a
very large mass compared to Λϵ. The energy scale Λϵ can
be regarded as a very large UV cutoff or a very small IR
cutoff, according to the sign of ϵ. In both cases, we must
face the non-intuitive result that the regularized J and its
derivative change sign according to the value of m: for
m ≪ Λϵ the integral J is negative while for m ≫ Λϵ the
derivative of J becomes positive, which is at odds with the
intuitive result obtained by a simple cutoff in Eqs. (26),
(27). Actually, we must recognize that dimensional regu-
larization is not neutral but its way to make sense of
divergences is part of the physical interpretation of a field
theory, with scaleless integrals that vanish exactly and a
less marked difference between UV and IR divergences.
Moreover, the use of dimensional regularization is con-
troversial in the scalar theory and different physical theories
seem to arise when the limit d → 4 is taken from above
(d > 4) or below (d < 4), as first pointed out by Stevenson
[62] in 1987. While it is still not obvious if any of them
describes the lattice-regulated scalar theory, they could be
very relevant for our toy model of Yang-Mills theory. After
reviewing them briefly, we will show how a dimensional
regularization scheme can be set up for the variational
effective potential of Yang-Mills theory.

A. The autonomous theory (d < 4)

The autonomous renormalization of scalar theory
[46,61] can be easily recovered by dimensional regulari-
zation for d < 4 [62,64]. It shows spontaneous symmetry
breaking and asymptotic freedom but cannot be connected,
perturbatively, to the usual low energy phenomenology that

emerges by perturbation theory and 1=N expansion
[62,63].
The search for a minimum of the GEP yields the coupled

equations [61,64]

m2
0 ¼

1

3
λφ2

0

m2
0 ¼ −

λ

2
Jðm0Þ ð33Þ

where φ0 is the optimal average value of the scalar field that
would eventually break the symmetry if a solution exists. In
that case, the other stationary point at φ ¼ 0 is a maximum
where Eq. (25) holds. If the symmetry is broken Eq. (25) is
replaced by the second of Eq. (33), which has the opposite
sign and has a physical solution if ϵ → 0þ (d < 4). In fact,
using the first of Eq. (31), the new gap equation reads

1

α
¼ log

Λϵ

m0

ð34Þ

where α ¼ λ=ð16π2Þ is a bare effective coupling and
Λϵ → ∞ in the limit ϵ → 0þ so that α → 0þ is positive.
The solution m0 of the gap equation can be regarded as a
physical scale which breaks the symmetry according to the
first of Eq. (33). Assuming that m0 takes some fixed
phenomenological value, the large scale Λϵ can be
eliminated as

Λϵ ¼ m0e1=α ð35Þ

so that the theory shows asymptotic freedom. Inserting the
explicit expressions of J andK in the effective potential, the
GEP at its minimum is [61,64]

VG ¼ −
m4

0

128π2
< 0 ð36Þ

and Λϵ can be sent to infinity (ϵ → 0þ) yielding a finite
energy density, spontaneous symmetry breaking and a
finite physical mass m0.
At variance with perturbation theory, in principle, the

variational method does not require the use of a renormal-
ized coupling. However, it is useful to parametrize the gap
equation in terms of a finite running coupling αμ which can
be defined according to [60,64]

1

α
¼ 1

αμ
þ log

Λϵ

μ
> 0 ð37Þ

where μ is any finite scale. The gap equation, Eq. (34), is
written as a finite renormalized gap equation

1

αμ
¼ log

μ

m0

ð38Þ
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where m0 is assumed to be the physical RG invariant mass.
As a toy model of Yang-Mills theory, we assume that
αμ > 0, so that μ must be larger than m0 and the running of
αμ takes place in the UV sector, limited from below by the
Landau pole at μ ¼ m0. The beta function is negative and
the running coupling shows asymptotic freedom. A plot of
the coupling αμ is shown (up to a factor) as a solid line on
the right side of Fig. 3. The breaking of symmetry and the
existence of a mass scale seem to reverse the usual trivial
behavior of the scalar theory. The autonomous behavior is
separated from the usual weak coupling limit which is
observed below the Landau pole. However, we must
mention that Eq. (38) is just a possible reparametrization
of Eq. (34); it is not necessary, since the effective potential
is anyway RG invariant at its minimum; and besides, the
parametrization is not unique. It has some features that
make it a good candidate as a physical renormalized
coupling at the scale μ: in fact, reversing Eq. (37) it can
be written in the perturbative weak coupling limit as αμ ¼
α½1þOðαÞ� and αμ → α in the UV limit μ → Λϵ. But, it is
not obvious how αμ is related to the four-point function at
the scale μ. Moreover, the parametrization is not unique: the
existence of a RG invariant energy scale m0 allows us to
define a generic scale

Λ0
ϵ ¼ m0

�
Λϵ

m0

�
ν

ð39Þ

and a different running coupling α0μ according to

1

α
¼ 1

α0μ
þ 1

ν
log

Λ0
ϵ

μ
ð40Þ

yielding by Eq. (34) the finite equation

1

α0μ
¼ 1

ν
log

μ

m0

: ð41Þ

Thus, the coefficient of the beta function is somehow
arbitrary and we do not expect that any serious prediction
can be made without an explicit calculation of the four-
point function. Quite interesting, the exponent ν can be
taken negative, inverting the sign of the beta function.
However, assuming that α0μ > 0, we obtain μ < m0 if
ν < 0. The negative beta function would be defined below
the Landau pole, and the new parametrization would
describe the IR sector of the theory showing the same
behavior that is predicted by perturbation theory and 1=N
expansion: an increasing running coupling and triviality.
For a negative ν, a plot of α0μ is shown as a solid line on the
left side of Fig. 3. We observe that if ν < 0 then Λ0

ϵ → 0 in
the limit ϵ → 0þ when Λϵ → ∞. Let us consider the special
case ν ¼ −1 and call δϵ ¼ Λ0

ϵ in order to make clear that
it is an infinitesimal IR scale, δϵ → 0. Eq. (34) can be
written as

1

α
¼ log

m0

δϵ
ð42Þ

which has the same identical content as before, but in terms
of the IR vanishing scale δϵ ¼ m0 expð−1=αÞ. Thus the
same theory now looks trivial. It is important to see that
different parametrizations for ν ¼ �1, predicting opposite
beta functions, refer to different ranges of μ, separated by
the Landau pole. Thus the respective weak coupling limits
cannot be connected by perturbation theory, yielding a
double-valued beta which is legitimate when the running
coupling is not a monotone function. In fact, joining
together the outcome of Eq. (41) for �ν we obtain

1

α0μ
¼

				 1ν log
μ

m0

				 ð43Þ

which holds for any μ ≠ m0, as shown in Fig. 3 where jνj is
arbitrarily chosen to match the strong coupling αs at
μ ¼ 2 GeV.

B. The precarious theory (d > 4)

Despite its name, the precarious renormalization of
scalar theory [46] predicts the same phenomenology of
perturbation theory and 1=N expansion [63]. Its handling
by a cutoff is problematic since it seems to be unstable until
the cut-off is sent to infinite. It emerges in a natural and
straightforward way by dimensional regularization in
d > 4, as first shown by Stevenson [62].
In the limit ϵ → 0−, the energy scale Λϵ goes to zero

according to Eq. (30). Let us call it δϵ in order to make clear
that δϵ ¼ Λϵ → 0. In the same limit, the coupled equations

 0

 0.5

 1

 1.5

 2

 0.01  0.1  1  10

μ 
=

 m
0

α μ

μ (GeV)

FIG. 3. The running coupling αμ of Eq. (43) is shown for m0 ¼
0.73 GeV (solid line), together with the lattice data of Ref. [4] for
the strong coupling αs of Yang-Mills theory in the Taylor scheme.
The exponent ν is arbitrarily fixed by matching the data at
μ ¼ 2 GeV. The dotted line is the analytical result of Ref. [39],
obtained by a one-loop expansion around the Gaussian massive
vacuum at m ¼ m0 ¼ 0.73 GeV.
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for the minimum of the GEP, Eq. (33), have no solution
because the bare coupling α would become negative in
Eq. (34). There is no spontaneous symmetry breaking and
the minimum of the effective potential is at φ ¼ 0. At that
point, having ruled out the breaking of symmetry, Eq. (25)
holds and can be written as

1

α
¼ log

m0

δϵ
ð44Þ

which has the opposite sign of Eq. (34). In the limit δϵ → 0
the bare coupling α is positive and an acceptable solution
m0 exists. As before, we assume that m0 is a RG invariant
physical mass which is generated dynamically in the
massless theory. Thus, the small energy scale δϵ can be
eliminated as δϵ ¼ m0 expð−1=αÞ in the effective potential.
We observe that Eq. (44) is identical to Eq. (42), and the
theory appears as trivial.
At its minimum φ ¼ 0, the effective potential is given by

Eq. (23) and inserting the regularized expressions of the
integrals J, K, as given by Eq. (31) with Λϵ ¼ δϵ → 0, we
can write it as

VGðmÞ ¼ m4

128π2

�
α

�
log

m2

δ2ϵ

�
2

− 2 log
m2

δ2ϵ
− 1

�
ð45Þ

which obviously makes sense only if m ≫ δϵ. Eliminating
δϵ by Eq. (44) the renormalized GEP reads

VGðmÞ ¼ m4

128π2

�
α

�
log

m2

m2
0

�
2

þ 2 log
m2

m2
0

− 1

�
ð46Þ

and is shown in Fig. 4. The only physical point is the
absolute minimum at m2 ¼ m2

0 where the effective poten-
tial does not depend on the bare coupling α and takes the
value

VGðm0Þ ¼ −
m4

0

128π2
< 0: ð47Þ

Then we can safely send ϵ → 0. We obtain the same
identical vacuum energy that was found in Eq. (36) by the
autonomous renormalization in d < 4, but here the mass
m0 is generated without any symmetry breaking.
We observe that the stationary point m0 is the physical

mass that emerges as the pole of the self-consistent
propagator. Actually, up to first order, the self-energy is
the sum of the tree-level counterterm −m2 and the seagull
graph Σ1L in Eq. (21), so that the self-consistency condition
m ¼ m0 is equivalent to the vanishing of the first-order self
energy [57]

Σ1 ¼ −m2 þ λ

2
JðmÞ ¼ 0 ð48Þ

which is just the stationary condition Eq. (25) satisfied
by m0.

As discussed for d < 4, we do not need to introduce any
running coupling in the variational calculation, because the
effective potential is finite in units ofm0. However, it might
be useful to reparametrize the gap equation by a finite
running coupling αμ which can be defined as before [62]

1

α
¼ 1

αμ
þ log

μ

δϵ
> 0 ð49Þ

where μ is an arbitrary energy scale. The gap equation,
Eq. (44), is thenwritten as a finite renormalized gap equation

1

αμ
¼ log

m0

μ
ð50Þ

wherem0 is thephysicalRG invariantmass. Sincewe assume
that αμ > 0, here μmust be smaller thanm0 and the running
of αμ takes place in the IR sector, below the Landau pole at
μ ¼ m0. While we could deduce, naively, that the theory is
trivial and the beta function is positive, again we must
recognize that the parametrization is not unique and the
running of αμ is limited in the IR sector. In fact, Eq. (50) is
identical to Eq. (41) for ν ¼ −1 and the present theory gives
the same running predicted by the autonomous theory in the
IR sector. Again, the existence of the RG invariant mass m0

allows us to define a new energy scale

Λ0
ϵ ¼ m0

�
δϵ
m0

�
ν

ð51Þ

and a different running coupling α0μ according to

1

α
¼ 1

α0μ
þ 1

ν
log

μ

Λ0
ϵ

ð52Þ

yielding by Eq. (44) the finite equation

1

α0μ
¼ 1

ν
log

m0

μ
: ð53Þ

Joining together the outcomeofEq. (53) for�νweobtain the
same identical result of Eq. (43) which holds for any μ ≠ m0

and is shown as a solid line in Fig. 3. We conclude that, up to
an unknown factor ν, the beta function might have the same
behavior in both renormalization schemes.

C. A toy model for Yang-Mills theory

When regularized dimensionally, two different renor-
malized theories seem to emerge in the limit d → 4.
However, for many aspects, the two renormalized theories
appear as two sides of the same coin. Both theories share a
dynamical mass generation, the same vacuum energy
density, a Landau pole at μ ¼ m0 and can be parametrized
by the same running coupling which is not monotone,
showing asymptotic freedom in the UV and a trivial
Gaussian fixed point in the IR.
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In both cases the Landau pole that emerges in the
reparametrization has no effect on the effective potential
which is RG invariant and is valid at any energy scale.
Actually, at variance with perturbation theory, the varia-
tional method does not even require the use of a running
coupling. However, the existence of the pole says that the
two weak-coupling limits cannot be connected by pertur-
bation theory which must break down at the scale μ ≈m0.
In fact, by general arguments, perturbation theory predicts
that the beta function must be unique at the lowest orders of
approximation and cannot depend on the special regulari-
zation scheme. But, if the running coupling is not a
monotone function, a double valued beta function is found,
taking different (opposite) values in different sectors that
cannot be connected by perturbation theory. That scenario
is only compatible with the existence of a RG invariant
phenomenological energy scale where perturbation theory
breaks down.
Ifwe look at the strong couplingαs ofYang-Mills theory in

the Taylor scheme, a non-monotonic behavior is found in the
Landau gauge on the lattice [4], assuming that the ghost-
gluonvertex is regular and a running coupling can be defined
from the product of the dressing functions of two-point
correlators. Some lattice data of Ref. [4] are shown in Fig. 3
together with the analytical prediction of Ref. [39], obtained
by a one-loop massive expansion around the zeroth-order
Gaussian propagator ð−p2 þm2

0Þ−1 with m0 ¼ 0.73 GeV.
The energy μ ≈ 0.7 GeV, where the coupling reaches its

maximum, is the phenomenological scale where perturba-
tion theory breaks down. Somehow, the running coupling
αμ of Eq. (43) can be seen as a zeroth-order Gaussian
approximation for the strong coupling αsðμÞ of Yang-Mills
theory. Actually, that is no coincidence since a gauge
invariant effective potential will be derived in the next
section for Yang-Mills theory, which is exactly the same
GEP of Eq. (46) and Fig. 4, apart from a normalization

factor and the precise definition of the effective coupling α.
Thus, irrespective of the agreement with the lattice-
regulated scalar theory, the dimensional-regulated GEP
of scalar theory is a useful toy model for pure Yang-
Mills theory.
The two scalar theories only differ because of the

breaking of symmetry which appears for d < 4; while,
for d > 4, a dynamical mass generation occurs without any
symmetry breaking. Since gauge symmetry is not broken in
Yang-Mills theory, we expect that the correct phenomenol-
ogy can only be reproduced if we adopt the second scheme
and regularize the theory keeping d > 4.

IV. GEP AND MASS GENERATION
IN SUðNÞ THEORY

The Lagrangian of pure SUðNÞYang-Mills theory can be
written as

L ¼ LYM þ Lfix þ LFP ð54Þ

where LYM is the Yang-Mills term

LYM ¼ −
1

2
TrðF̂μνF̂

μνÞ ð55Þ

Lfix is a gauge fixing term and LFP is the ghost Lagrangian
arising from the Faddev-Popov determinant. In terms of the
gauge fields, the tensor operator F̂μν is

F̂μν ¼ ∂μÂν − ∂νÂμ − ig½Âμ; Âν� ð56Þ

where

Âμ ¼
X
a

T̂aA
μ
a ð57Þ

and the generators of SUðNÞ satisfy the algebra

½T̂a; T̂b� ¼ ifabcT̂c ð58Þ

with the structure constants normalized according to

fabcfdbc ¼ Nδad: ð59Þ

If a generic linear covariant gauge-fixing term is chosen

Lfix ¼ −
1

ξ
Tr½ð∂μÂ

μÞð∂νÂ
νÞ�; ð60Þ

where ξ > 0 is an arbitrary positive number, the total action
can be written as Stot ¼ S0 þ SI where the free-particle
term is

FIG. 4. The renormalized GEP of Eq. (46) is shown in units of
m0 for different values of the strong coupling αs, having
set α ¼ 9N

8π αs.
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S0 ¼
1

2

Z
AaμðxÞδabΔ−1

0
μνðx; yÞAbνðyÞddxddy

þ
Z

ω⋆
aðxÞδabG−1

0 ðx; yÞωbðyÞddxddy ð61Þ

and the interaction is

SI ¼
Z

ddx½L3g þ L4g þ Lgh� ð62Þ

with the usual local interaction terms that read

L3g ¼ −gfabcð∂μAaνÞAμ
bA

ν
c

L4g ¼ −
1

4
g2fabcfadeAbμAcνA

μ
dA

ν
e

Lgh ¼ −gfabcð∂μω
⋆
aÞωbA

μ
c: ð63Þ

In Eq. (61), Δ0 and G0 are the standard free-particle
propagators for gluons and ghosts and their Fourier trans-
forms are

Δ0
μνðpÞ ¼ Δ0ðpÞ½tμνðpÞ þ ξlμνðpÞ�

Δ0ðpÞ ¼
1

−p2
; G0ðpÞ ¼

1

p2
: ð64Þ

Here the transverse and longitudinal projectors are
defined as

tμνðpÞ ¼ gμν −
pμpν

p2
; lμνðpÞ ¼

pμpν

p2
ð65Þ

where gμν is the metric tensor.
As discussed in Refs. [39,40], an unconventional mas-

sive expansion can be introduced by adding and subtracting
mass terms δSi in the total action, just like we did for the
scalar theory in Eqs. (2), (3). The method can be gener-
alized by redefining the free and interacting parts of the
action

S0 → S0 −
X
i

δSi

SI → SI þ
X
i

δSi: ð66Þ

For the gluon we can take

δSg ¼
1

2

Z
AaμðxÞδabδΓμνðx; yÞAbνðyÞddxddy ð67Þ

where the vertex function δΓμν is given by a shift of the
inverse propagator

δΓμνðx; yÞ ¼ ½Δ−1
0

μνðx; yÞ − Δ−1
m

μνðx; yÞ� ð68Þ

and Δm
μν is the massive free-particle propagator

Δ−1
m

μνðpÞ ¼ ΔT
mðpÞ−1tμνðpÞ þ ΔL

mðpÞ−1lμνðpÞ

ΔT
mðpÞ ¼

1

−p2 þm2
; ΔL

mðpÞ ¼
ξ

−p2 þm2
L

ð69Þ

As a general variational ansatz, the two masses m and mL
can be different.
In principle, we would also have the freedom to insert a

mass shift δSgh for the ghost

δSgh ¼
Z

ω⋆
aðxÞδabδΓðx; yÞωbðyÞddxddy ð70Þ

together with its counterterm δΓ

δΓðx; yÞ ¼ ½G−1
0 ðx; yÞ − G−1

M ðx; yÞ� ð71Þ

where GM would be a massive ghost propagator

GM ¼ 1

p2 −M2
: ð72Þ

One could wonder if the inclusion of a mass parameter in
the trial ghost propagator could shift the pole of the ghost at
one-loop, yielding a phenomenological mass which would
be at odds with the lattice data for the dressed ghost
propagator. However, in the massive expansion of the
propagators [39,40] the counterterm cancels the shift at
tree level and any real mass term can only arise from loops.
That is the reason why no mass would arise for the photon
in QED by the same method. It can be easily shown [71]
that the ghost self energy is of order Oðp2Þ and vanishes
when the external momentum p → 0, so that the dressed
ghost propagator still has a pole at p2 ¼ 0. That is an other
way to see that the gluon mass arises from gluon loops in
the expansion and is not a mere shift by a mass parameter.
The case of a finite ghost trial-mass M > 0 has been

explored in Ref. [74] and found to be sub-optimal when
compared with the standard choice of a massless ghost.
Then, we will assume M ¼ 0 in the present variational
study. It must be mentioned that, if the ghost mass M were
regarded as an independent variational parameter, then its
stationary point would be at M ¼ 0 because there are no
ghost-gluon vertices in the first order effective potential.
Actually, the ghost contribution would be maximal at that
stationary point, because of the wrong sign of ghost
statistics. However, as discussed in the next section, in
the more general context of the finite temperature formal-
ism, a maximal ghost energy minimizes the eventual
weakening of Jensen-Feynman inequality that might occur
in non-Abelian theories. While that weakening cannot be
avoided entirely, we will suggest a rigorous way to control
the error on the variational bound. Let us take aside the
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problem for a while and assume that the GEP can be trusted
as a variational method.
Since we have not changed the total action at all, we

know that the sum of all graphs contributing to the
longitudinal gluon polarization must give zero, because
of gauge invariance. Thus, the exact longitudinal part of the
gluon propagator must be equal to the free longitudinal
propagator ΔL

0 ðpÞ ¼ ξ=ð−p2Þ. While, in principle, mL
could be used as a variational parameter, we expect that
the best result is achieved if the trial ΔL

m is taken to be equal
to the exact ΔL

0 by setting mL ¼ 0 in Eq. (69).
Having setM ¼ mL ¼ 0, the variational ansatz becomes

the same that was used in the massive expansion of
Refs. [39,40,42] where no ghost and longitudinal masses
were inserted. Only the pole of the transverse free-particle
propagator is shifted and compensated by inserting a
transverse counterterm

δΓμνðpÞ ¼ −m2tμνðpÞ ð73Þ
among the vertices of the interaction, while the gauge-
dependent longitudinal part of the gluon propagator is left
unchanged and equal to the exact result. As shown in
Ref. [42], that massive expansion is in very good agreement
with the data of lattice simulations. Moreover, that choice
of counterterms has the merit of providing a fully gauge
invariant GEP at T ¼ 0, as shown below.
The calculation of the GEP follows the same steps as for

the scalar theory. The GEP is obtained as the first-order
effective potential in the covariant formalism, including the
counterterms among the interaction vertices and in the
limit of a vanishing background field, i.e., assuming that
hAaμi ¼ 0 since gauge symmetry is not broken in the
vacuum. The effective action reads

eiΓðaÞ ¼
Z
1PI

DA;ωeiS0ðaþA;ωÞþiSintðaþA;ωÞ ð74Þ

and the effective potential follows as V ¼ −Γð0Þ=V4 and is
the sum of all connected 1PI vacuum graphs. The first order
graphs contributing to the GEP are shown in the second row
of Fig. 1.
The zeroth order gluon and ghost loops in Fig. 1 give

V0 ¼
i

2V4

logDetΔμν
m −

i
V4

logDetG0: ð75Þ

The determinant of Δμν
m can be split as the product of

determinants in the orthogonal Lorentz subspaces,
DetΔμν

m ¼ Det½ΔT
mtμν�Det½ΔL

0l
μν�, yielding

V0 ¼
iðd − 1Þ
2V4

Tr logΔT
m þ i

2V4

Tr logΔL
0 −

i
V4

Tr logG0:

ð76Þ

where d ¼ 4 in a four dimensional space-time.

The constant gauge dependent (infinite) term Tr log ξ is
canceled by an equal factor in the normalization of the
Faddeev-Popov functional, so that usingΔL

0=ξ ¼ −G0, one-
half of the ghost cancels the longitudinal term yielding

V0ðmÞ ¼ NA½ðd − 1ÞKðmÞ − Kð0Þ� ð77Þ

where NA ¼ N2 − 1.
The crossed one-loop graphs in Fig. 1 are obtained by

one insertion of the counterterms. Since there are no ghost
and longitudinal counterterms, there is only one crossed
loop for the transverse gluon. The identity Eq. (16) changes
its sign for ΔT

m and inserting the counterterm of Eq. (73) the
sum of all one-loop graphs (zeroth and first order) can be
written as

V1LðmÞ ¼
�
1 −m2

∂
∂m2

�
V0ðmÞ ð78Þ

which reads

V1LðmÞ
NA

¼ ðd − 1Þ
�
KðmÞ − 1

2
m2JðmÞ

�
− Kð0Þ: ð79Þ

The functions KðmÞ and JðmÞ were defined in Eq. (20) and
their explicit regularized expression were given in Eq. (31).
The formal result of Eq. (79) is gauge invariant and also
valid at finite temperature, since Eq. (16) still holds when
the integrals K, J acquire a thermal part.
The first-order effective potential also includes the two-

loop gluon graph in Fig. 1. For mL ¼ 0 each loop of the
longitudinal propagator contributes a factor ξJð0Þ which is
zero by dimensional regularization, so that the two-loop
term is also gauge invariant at T ¼ 0. The same identical
expression would be obtained in Landau gauge (ξ ¼ 0) if
mL > 0. The calculation is formally different in the finite
temperature formalism and will be studied in the next
section. Here, we examine the vacuum part that contributes
to the GEP at T ¼ 0 and is relevant for discussing the
issue of mass generation. Inserting the seagull one-loop
graph [71]

Π1L ¼ −
ðd − 1Þ2Ng2

d
JðmÞ ð80Þ

the two-loop term reads

V2LðmÞ ¼ NANg2ðd − 1Þ3
4d

½JðmÞ�2: ð81Þ

Setting d ¼ 4 and adding the one-loop term of Eq. (79), in
terms of the new effective coupling α

α ¼ 9Ng2

32π2
¼ 9N

8π
αs; αs ¼

g2

4π
ð82Þ
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a gauge invariant GEP is found that can be written as

VGðmÞ
3NA

¼ KðmÞ −m2

2
JðmÞ þ 2π2α½JðmÞ�2 ð83Þ

having dropped the constant Kð0Þ which is zero at T ¼ 0.
That is the same identical result obtained in Eq. (23) for the
scalar theory, provided that the effective coupling α is
replaced by λ=ð16π2Þ. Thus, using the same dimensional
regularization scheme of Sec. III and keeping d > 4, the
renormalized GEP of Eq. (46) is recovered in units of the
optimal gluon-mass parameter m0. Inserting the correct
normalization factor, the GEP reads

VGðmÞ
3NA

¼ m4

128π2

�
α

�
log

m2

m2
0

�
2

þ 2 log
m2

m2
0

− 1

�
ð84Þ

and was shown in Fig. 4. That figure shows the existence of
two competing stationary points for the vacuum: an
unstable stationary point at m ¼ 0 and a stable minimum
at m ¼ m0.
The existence of a stable massive vacuum is a remarkable

nonperturbative prediction of the present variational
method and can be regarded as an argument for mass
generation in pure Yang-Mills theory. We are tempted to
identify the unstable stationary point at m ¼ 0 with the
massless scaling solution of Schwinger-Dyson equations.
That solution is not found in lattice simulations.
In the next section, we will show that the two stationary

points acquire a very different behavior at finite temper-
ature. The massless vacuum at m ¼ 0 develops a thermal
mass that increases with temperature like for a standard
massless boson, while the minimum at m ¼ m0 shows a
decrease of the mass until a weak first order transition
occurs before the merging of the minima.
As shown in Fig. 4, when written in physical units ofm0,

the renormalized GEP is not very sensitive to the actual
value of the strong coupling αs, especially at the stationary
points that might be identified as physical configurations.
Thus everything seems to be settled by the physical scale
m0, while the coupling αs must be regarded as a bare
coupling at the scale Λϵ according to our renormalization
scheme discussed in Sec. III. Its actual value should be
almost irrelevant and will be fixed by the principle of
minimal sensitivity [66] as the stationary point of the
critical temperature.
Since there is no scale in the original Lagrangian, the

actual value of the mass m0 cannot be predicted by
the theory and must come from the phenomenology. The
massive expansion of Refs. [39,40] arises as the natural
expansion around the best trial massive vacuum atm ¼ m0.
By that expansion, at one loop, the gluon propagator was
found in perfect agreement with the data of lattice simu-
lations [42] in the Landau gauge. The inverse dressing
function, which is basically given by the gluon self-energy,

is determined without any free parameter and is not
monotone, with a pronounced minimum that allows us
to fix the energy scale with good accuracy. As shown in
Fig. 3, the one-loop analytical expression for the running
coupling reproduces the lattice data very well. Sharing the
same units of the lattice data in the Landau gauge, the scale
m0 ¼ 0.73 GeV is extracted forN ¼ 3 [39,42]. We will use
that scale in the next sections.

V. THE GEP AT FINITE TEMPERATURE AND
DECONFINEMENT

At finite temperature, supposing that Jensen-Feynman
inequality Eq. (11) holds, the first-order free energy is
bounded below by the exact free energy F ðTÞ that can be
expressed as

e−β½V3F ðTÞ� ¼ Z ¼
Z

DA;ωeðS0þSintÞ ð85Þ

where the thermal action is the integral over imaginary time
defined in Eq. (9). If we split the action as in the previous
section, inserting the mass term Eq. (67) in the free part and
the counterterm Eq. (73) among the vertices, the free
energy in Eq. (85) is expanded by the same formal massive
expansion as before. The first-order approximation
F 1ðT;mÞ depends on the mass parameter m and is given
by the same graphs in the second row of Fig. 1. When
optimized it gives the GEP, while the optimal value of m
that minimizes F 1ðT;mÞ provides the best trial mass
parameter mðTÞ at finite temperature, so that mð0Þ ¼ m0.
In non-Abelian theories, the GEP might be bounded

below by an approximate free energy rather than the exact
free energy. Actually, the existence of ghosts in the
covariant formalism and the appearance of states with
negative norm in the Hamiltonian formalism might limit
the use of Jensen-Feynman inequality Eq. (11) and
Bogolubov’s inequality Eq. (10), respectively, unless we
have some physical evidence about the safe cancellation of
the unphysical degrees of freedom in the averages.
However, we can show that a weaker form of Jensen-
Feynman inequality still holds for the GEP.
The partition function in Eq. (85) can be written as

Z ¼
Z

DA;ωeS
0
DetMFPðAÞ ð86Þ

whereMFPðAÞ is the Faddev-Popov matrix, which is linear
in the field Aμ

a, and S0 is the original total action without any
ghost term, obtained by settingωa ¼ 0 in the sum S0 þ Sint.
We can also define zeroth order free energy F 0

0 and
partition function Z0

0 without ghost terms as

e−β½V3F 0
0
� ¼ Z0

0 ¼
Z

DAeS
0
0 ð87Þ
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where S00 is the quadratic part of S0, including the gluon-
mass term. The exact free energy F exact follows as

F exact ¼ F 0
0 − T log heS0intDetMFPðAÞi0 ð88Þ

where S0int ¼ S0 − S00 and the average over Aμ
a is defined

according to

h…i0 ¼
1

Z0
0

Z
DAeS

0
0ð…Þ: ð89Þ

In Eq. (88), we can use Jensen inequality in the pure
bosonic average of the convex exponential function and
write

F exact ≤ F 0
1 þ F gh ð90Þ

where

F 0
1 ¼ F 0

0 − ThS0inti0 ð91Þ

is the sum of all first-order gluon graphs in the second row
of Fig. 1 and gives the gluon contribution to the first-order
free energy, while F gh is a ghost free-energy given by

F gh ¼ −ThlogDetMFPðAÞi0 ð92Þ

which is different from the sum of all first-order ghost
graphs F gh

1 contributing to the GEP in Fig. 1. If the ghost
term F gh were known exactly, then its sum with the gluon
first-order term F 0

1 would provide through Eq. (90) a pure
variational approximation, bounded below by the exact free
energy.
We can loop expandF gh by inserting the explicit form of

the matrix MFP. In any linear covariant gauge

MFPðAÞ ¼ G−1
M þ δMðAÞ ð93Þ

where the massive ghost propagator was defined in Eq. (72)
and takes account of a generic shift of the pole, while
δMðAÞ is the sum of the ghost vertex of Lgh in Eq. (63)
(proportional to the gauge field Aμ

a) and the ghost counter-
term δΓ of Eq. (71). Expanding the log we obtain

βF gh ¼ Tr logGM − TrðGMδΓÞ

þ 1

2
hTr½GMδMðAÞGMδMðAÞ�i0 þ… ð94Þ

which is a sum of vacuum ghost graphs with insertions of
the standard vertices. The first two terms of the expansion
are just the first-order ghost graphs in Fig. 1 and give the
ghost term F gh

1 contributing to the GEP. The third term is
the two-loop graph

F gh
2L ∼ α

Z
GMΔmGM ð95Þ

which might be added to the first-order terms for improving
the approximation, as discussed by previous work in the
Lagrangian and Hamiltonian formalism [24,58]. We
observe that, while the bound in Eq. (90) is exact, any
arbitrary truncation of the expansion would invalidate it.
Thus, there is no way to tell if adding the two-loop term
would give a better result compared with the simple GEP
where only the first-order terms are retained. Denoting by
δF the difference between the exact ghost term and the
first-order terms retained in the GEP

δF ¼ F gh − F gh
1 ð96Þ

We can write the exact bound in Eq. (90) as

FGEP ¼ F 0
1 þ F gh

1 ≥ F exact − δF : ð97Þ

The GEP might actually fall below the exact free energy,
but we can minimize the problem by maximizing the ghost
term F gh

1 in the GEP, as suggested by Eq. (96). In fact, it
can be easily shown that δF ≥ 0 and F gh

1 is bounded above
by the exact ghost term F gh. By use of Jensen inequality in
the average of the log in Eq. (92)

F gh ≥ −T½Tr log hMFPðAÞi0�
¼ T½Tr logG0� ¼ F gh

1 jM¼0 ð98Þ

and sinceF gh
1 is maximal at its stationary pointM ¼ 0, that

point is also the safest choice that maximizes the ghost term
without reaching the exact value F gh. Having shown that
δF is positive, we could estimate its value by an explicit
evaluation of the two-loop term in Eq. (95) in order to keep
the approximation under control. We must mention that the
GEP might be closer to the exact free energy than expected
by the mathematical bound of Eq. (97) since δF is just the
maximal error that we have been able to establish in the
worst case. In fact, by a comparison with the data of lattice
simulations, we will show that at finite temperature the
GEP does very well, better than expected by the present
analysis.
At finite temperature, the explicit calculation of the GEP

follows by the graphs of Fig. 1. The sum of one-loop graphs
is still given by Eq. (79) where the integralsK, J in Eq. (18)
now include a sum over discrete frequencies and their
explicit expressions in Eq. (20) are replaced by

KðT;mÞ ¼ 1

2
T
X
n

Z
d3p
ð2πÞ3 logðp

2 þ ω2
n þm2Þ

JðT;mÞ ¼ T
X
n

Z
d3p
ð2πÞ3

1

p2 þ ω2
n þm2

ð99Þ
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having used in Eq. (18) the massive free propagator

Δmðωn;pÞ ¼
1

p2 þ ω2
n þm2

ð100Þ

in the Euclidean spacewherepμ ¼ ðωn;pÞ andωn ¼ 2πnT.
In the limit T → 0 the vacuum integrals in Eq. (20) are
recovered as JðmÞ ¼ Jð0; mÞ and KðmÞ ¼ Kð0; mÞ. We
denote them by JVðmÞ and KVðmÞ, respectively. They
contain the diverging part of the integrals and can be
regularized as discussed in the previous sections. Their
explicit expression is given by Eq. (31). The thermal parts
are finite but depend on T. We denote them by JTðT;mÞ and
KTðT;mÞ, respectively. Omitting the arguments for brevity,
they can be written by an explicit calculation as

KT ¼ K − KV ¼ −
1

6π2

Z
∞

0

nðϵk;mÞ
ϵk;m

k4dk

JT ¼ J − JV ¼ 1

2π2

Z
∞

0

nðϵk;mÞ
ϵk;m

k2dk ð101Þ

where ϵk;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and nðϵÞ ¼ ½expðβϵÞ − 1�−1 is the

Bose distribution.
The first-order free energy F 1ðT;mÞ can be written as

the sum of one-loop and two-loop terms

F 1ðT;mÞ ¼ F 1LðT;mÞ þ F 2LðT;mÞ: ð102Þ

The sum of one-loop graphs is obtained by just setting
d ¼ 4 in Eq. (79)

F 1LðT;mÞ ¼ 3NA

h
KðT;mÞ− 1

2
m2JðT;mÞ

i
−NAKðT;0Þ:

ð103Þ

The second term F 2LðT;mÞ is the two-loop graph in the
second row of Fig. 1. Because of the breaking of Lorentz
invariance at finite T, its expression gets formally different
than the vacuum term in Eq. (81) and also becomes gauge
dependent. In order to make contact with previous ana-
lytical and numerical work in the Landau gauge we set
ξ ¼ 0, which is the most common choice for the study of
the correlators, so that the scale m0 ¼ 0.73 GeV will be
used. In fact, that scale was extracted by matching the
predictions of the massive expansion with the data of
numerical simulations in the Landau gauge [39,42].
Assessing the whole gauge dependence of the GEP at
finite temperature is not an easy task, as the scalem0 should
be also changed by matching the gauge-dependent corre-
lators in a different gauge.
Following the same steps of the previous sections, in the

Landau gauge, the seagull graph of the gluon self energy
can be written as [71]

Πμν
ab ¼ −δabNg2T

X
n

Z
d3p
ð2πÞ3 ½2δ

μνΔm þ pμpνΔ0Δm�

ð104Þ

where Δm ¼ ΔmðpÞ is the Euclidean propagator in
Eq. (100). Integrating the single terms, it can be written as

Πμν
ab ¼ −δabNg2½2δμνJ þ Iμν� ð105Þ

where

Iμν ¼ T
X
n

Z
d3p
ð2πÞ3 p

μpνΔmðpÞΔ0ðpÞ: ð106Þ

The trace of Iμν is Iμμ ¼ J, so that at T ¼ 0, by Lorentz
invariance, the self energy of Eq. (80) is recovered for
d ¼ 4. At finite temperature, Iμν is still diagonal but
I00 ≠ Iii. By rotational invariance, using the trace again,
we can write

I11 ¼ I22 ¼ I33 ¼ 1

3
ðJ − I00Þ ð107Þ

which holds separately for the thermal and vacuum parts.
While the vacuum part is just I00V ¼ IiiV ¼ JV=4, the thermal
part can be obtained by an explicit integration as

I00T ¼ 1

m2
ðhm − h0Þ ð108Þ

where hm is the integral

hm ¼ 1

2π2

Z
∞

0

ϵk;mnðϵk;mÞk2dk ð109Þ

that can be evaluated exactly for m ¼ 0 yielding

h0 ¼ −3KTðT; 0Þ ¼
π2T4

30
: ð110Þ

Closing the second loop with the transverse gluon
propagator (ξ ¼ 0) and inserting the symmetry factor 1=4

F 2L ¼ −
1

4
Πμν

abT
X
n

Z
d3p
ð2πÞ3ΔmðpÞtμνðpÞδab: ð111Þ

Then, using Eq. (105), the two-loop term reads

F 2L ¼ NANg2

4
ð7J2 − IμνIμνÞ ð112Þ

and its inclusion in Eq. (102) together with Eq. (103) gives
the first-order free energy in closed form. When optimized,
it provides the GEP at finite temperature. With some abuse
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of language we can denote the first-order free energy by
FGðT;mÞ and call it the GEP.
It is useful to separate the thermal and vacuum parts of

the GEP. If we do that and use the explicit regularized
expressions Eq. (31) for the vacuum parts JV , KV , the total
first-order free energy of Eqs. (102), (103), (112) can be
easily shown to become

FGðT;mÞ ¼ FGð0; mÞ þ ΔFGðT;mÞ ð113Þ

where the vacuum part FGð0; mÞ ¼ VGðmÞ is just the GEP
at T ¼ 0, given by Eq. (84) when expressed in terms ofm0.
The thermal part ΔFGðT;mÞ vanishes at T ¼ 0 and can be
written as

ΔFGðT;mÞ
3NA

¼ KT þ π2

270
T4 þ αm2

4
JT log

m2

m2
0

þ 2π2α

�
J2T −

�
2

3

�
4
�
JT
4
− I00T

�
2
�
: ð114Þ

The GEP is shown in Fig. 5 for different values of the
temperature and in Fig. 6 for several values of the coupling
αs. As already discussed in the previous sections, the GEP is
not very sensitive to the coupling, especially in the physical
ranges around the minima and for T < 2Tc ≈ 0.5 GeV.
While the physical value of the GEP was not sensitive at

all to a change of αs at T ¼ 0, other observables, at finite
temperature, might depend on αs because the variational
method is not an exact calculation. In lattice simulations,
the bare coupling and the cutoff are finite, since the lattice
spacing cannot be set to zero. However, a stationary regime
is reached where the physical predictions seem to be not
sensitive to the actual value of the bare coupling. In the
present calculation, because of the approximations, we fail
to reach an exactly stationary regime for all the thermal

observables. Albeit small, a residual sensitivity to the bare
αs is found, posing the problem of the choice of the
coupling. We argue that, for any finite value of coupling
and cutoff, the outcome of the variational calculation is
more reliable and closer to the lattice data if the physical
observables are less sensitive to the arbitrary value of the
bare coupling. Thus, the best agreement with the data of
lattice simulations is expected in the range 0.6 < αs < 1.2
where a real plateau is observed, rather than in the limit
αs → 0 where a slightly larger sensitivity is found. For that
reason, even if αs should be sent to zero in the limit ϵ → 0,
we prefer to keep αs fixed at the optimal value αs ¼ 0.9 in
the following discussion and in the comparison with the
lattice data. We checked that any other choice does not
introduce important changes in the results.
At finite temperature, we observe that the minima of the

GEP have a very different behavior. The absolute minimum
at m ¼ m0 is almost frozen when T ≪ m0, as expected for
a massive confined gluon. When the temperature increases
the minimum moves backwards, so that the optimal mass
parametermðTÞ is a decreasing function of the temperature,
in fair agreement with the decrease of mass that is observed
on the lattice below Tc [10]. The unstable minimum, at
m ¼ 0 in Fig. 4, moves forward when T > 0 and its mass
value increases almost linearly like the thermal mass of a
massless boson. It gets deeper with increasing temperature.
Thus the GEP seems to show the competition between a
confined boson with a dynamical mass and a free boson
with a thermal mass. As shown in Fig. 5, at a critical
temperature Tc ≈ 0.35 m0 the minima reach the same free
energy before they can merge, so that a weak first-order
phase transition is predicted with a discontinuous drop of
the optimal mass parametermðTÞ that is displayed in Fig. 7.
The free energy at the minima is shown in Fig. 8 across the
transition. Below the transition point, the upper curve is the

FIG. 5. The renormalized GEP of Eqs. (113), (114) is shown in
units of m0 for αs ¼ 0.9 and different values of the temperature.

FIG. 6. The renormalized GEP of Eqs. (113), (114) is shown in
units of m0 for T=m0 ¼ 0.25 and different values of the strong
coupling αs.
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GEP at the unstable thermal mass, while the lower curve is
the GEP at the stable dynamical mass. Above the transition
point they reverse. At any temperature, the physical free
energy is the lower curve FGðT;mðTÞÞ.
The slight effect of a change of αs on the critical

temperature is less than �1% in Fig. 9, where it is shown
at a very enlarged scale. Apart the effect of the scale, the
critical temperature is basically unchanged for a large range
of αs, including the phenomenological interval 0.4 < αs <
1.2 which would be ranged by a running coupling in the

IR. The plateau has a stationary point at αs ≈ 0.9
where Tc ¼ 0.349 m0. We take that as the best predic-
tion of the GEP according to the principle of minimal
sensitivity [66].
Using the scale m0 ¼ 0.73 GeV that arises for N ¼ 3

from the massive expansion at one-loop [37–42], we
predict Tc ¼ 255 MeV, which is very close to the value
Tc ¼ 270 MeV that is found on the lattice [10].
It is important to mention that if the bare coupling were

sent to zero in the limit ϵ → 0, the resulting qualitative
picture would remain basically unchanged. In the limit
αs → 0, the deconfinement transition still takes place,
is weakly first order and with a critical temperature Tc ≈
0.32 m0 not too far from that found on the plateau.
The only relevant difference is in the behavior of the
unstable minimum, whose position does not change with
the temperature and remains fixed at m ¼ 0 for every value
of T, even if it gets deeper and eventually becomes the
stable minimum above Tc. Thus, in the limit αs → 0, the
optimal mass parameter is m ≈m0 for T < Tc, and m ¼ 0
for T > Tc. In the same limit, the critical temperature can
be estimated by observing that the gluon thermal term is
exponentially suppressed at m ≈m0 and cancels the oppo-
site ghost term, so that the minimum of FGðT;mÞ is
basically frozen at the vacuum value FGðT;mÞ ≈
VGðm0Þ ¼ −3NAm4

0=ð128π2Þ if T ≪ m0. On the other
hand, setting α ¼ 0 in Eq. (114), the unstable minimum
atm ¼ 0 is given by FGðT; 0Þ ¼ −3NAπ

2T4=135, so that a
first order phase transition occurs at Tc ≈ ð135

128
Þ14 m0

π ¼
0.32 m0 where the optimal mass parameter drops to zero.
The equation of state can be studied by introducing

pressure and entropy density according to
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FIG. 7. The optimal mass parametermðTÞ which minimizes the
GEP is shown as a function of temperature for αs ¼ 0.9.
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scale, as a function of the coupling αs. The minor effect of its
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the calculation. The right hand scale is obtained by taking
m0 ¼ 0.73 GeV.
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p ¼ −½FGðT;mðTÞÞ − FGð0; m0Þ�

s ¼ −
∂
∂T FGðT;mðTÞÞ: ð115Þ

The reader might have noticed in Fig. 5 that below Tc the
minimum at m ¼ m0 moves slightly upwards. That behav-
iour gives an unphysical negative entropy for a limited
range of temperatures, as reported by other massive
approximations at one-loop [33,35] and by other variational
methods [75]. That minor shortcoming might be expected
since the contribution of the massless ghost is enhanced
when T ≪ m compared to the massive gluon. The problem
becomes more evident if we look at the ratio p=T4 in the
limit T → 0. That ratio should be exponentially suppressed
and dominated by the lightest glueball mass, in agreement
with the data of lattice simulations [76–78]. By inspection
of Eq. (114), we observe that while the thermal functions
KT , JT , I00T are exponentially suppressed, the second term
on the right hand side contributes with the fourth power of
T, originating from the massless ghost loop in Eq. (110)
which, besides, is taken with the opposite sign. When all
other terms are suppressed, the ghost loop dominates the
leading behavior yielding a finite nonzero ratio in the limit
T → 0

p
T4

→ −
NAπ

2

90
ð116Þ

and a negative entropy in the same limit. That seems to be a
shortcoming of the Landau gauge, since the same identical
finite values were found in Refs. [34,35] in that gauge.
The same authors find smaller finite values and a positive
entropy in the Landau-De Witt gauge by a two-loop cal-
culation. As discussed in Ref. [75], one would be tempted
to cancel the unphysical term by hand, but that term gives
an important contribution above the transition where it
cancels unphysical gluon terms.
On the other hand, the mismatch can only be observed

below Tc where the exact free-energy is almost constant
and the pressure is basically zero, so that even a very small
(positive) deviation can give an increasing free-energy and
a decreasing pressure. Actually, the effect can be hardly
seen in Fig. 10 where the pressure of Eq. (115) is shown
together with the recent lattice data of Ref. [76] which are
consistent with previous existing data [77,78]. We observe
that the figure is not a fit and that there are no free
parameters in the calculation. Moreover, in units of Tc the
pressure in Fig. 10 does not even depend on the energy
scale m0. Thus, it is remarkable that the data points fall so
close to the prediction of the calculation, at least for
T < 2Tc. As shown in the figure, the GEP provides a
pressure that seems to be bounded above by the data points,
as expected if the GEP were bounded below by the exact
free energy, suggesting that the error in the ghost free-
energy δF might be very small in Eq. (97). For comparison,

in Fig. 10 the pressure is also shown for a coupling
αs ¼ 0.6, smaller than the optimal value αs ¼ 0.9. While
the predictions are not sensitive to the choice of the
coupling at low temperature, above 1.5 Tc the pressure
acquires a slight dependence on it and the agreement with
the data improves by decreasing αs.
The problem of a negative entropy becomes more evident

in Fig. 11 where the entropy density of Eq. (115) is shown
together with the lattice data of Ref. [76]. The small jump of
the entropy density at T ¼ Tc is Δs=T3

c ¼ 2.7 yielding a
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FIG. 10. Equation of state. The pressure is evaluated by
Eq. (115) and shown in units of Tc for the optimal coupling
αs ¼ 0.9 (solid line) and for αs ¼ 0.6 (broken line). The squares
are the lattice data of Ref. [76].
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FIG. 11. Equation of state.The entropy density is evaluated by
Eq. (115) and shown in units of Tc for the optimal coupling
αs ¼ 0.9 (solid line) and for αs ¼ 0.6 (broken line). The squares
are the lattice data of Ref. [76].
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latent heatΔH0 ¼ 2.7 T4
cwhich is larger than thevalues 1.3–

1.5 found in lattice simulations [76–78]. However, we expect
that the overall picture of dynamical mass generation,
deconfinement transition and equation of state might
improve greatly by adding higher-order terms of the expan-
sion in the free energy, as it is the case for the dressed
propagatorwhich gets on top of the lattice datawhen the one-
loop terms are added to the zeroth-order massive propagator
Δm ¼ 1=ðp2 þm2

0Þ [39,40,42].

VI. DISCUSSION

The self-consistency gap equation of the GEP, Eq. (25)
has attracted a lot of attention in the past [19,20,45] as a
basic physical tool for explaining the dynamical mass
generation of Yang-Mills theories. The main difficulty of
handling the gap equation has always been the regulariza-
tion of the diverging integral JðmÞ and its physical mean-
ing. Here, we have shown that, by dimensional
regularization in d > 4, the GEP provides a reasonable
account of the general features of Yang-Mills theory. The
existence of a deep minimum at m ¼ m0 ≠ 0 can be
regarded as a variational argument for dynamical mass
generation in the original scale-less theory.
In order to enforce our confidence on the genuine

physical nature of the minimum, we explored the model
at finite temperature. The emerging scenario for the
equation of state and the deconfinement transition is in
very good agreement with the data of lattice simulations,
leaving no doubt about the physical interpretation of the
minima in the GEP.
Moreover, the method provides a perturbative tool for

improving the results order by order. The expansion around
the optimal vacuum of the GEP turns out to be the massive
expansion developed in Refs. [38–40] which provides
accurate and analytical expressions for the propagators at
one-loop already. Once the nonperturbative effects are
embedded in the optimal variational mass, the residual
interaction can be described by perturbation theory yielding
a powerful analytical tool for QCD in the IR.

Thus, we argue that the present variational estimate of
the thermodynamical potentials might be improved by
inclusion of higher order terms. Second order extensions
of the GEP have been discussed by several authors [56–59].
In general, they do not retain the genuine variational
property of the GEP but different optimization strategies
have been proposed ranging from the principle of minimal
sensitivity [66] to the method of minimal variance [68–71].
Explicit massive two-loop thermal graphs have been
evaluated in Ref. [35]. Here, we limited the calculation
at the first order, just because we preferred to maintain the
genuine variational nature of the method unspoiled, as
much as Jensen-Feynman inequality allows in presence of
ghost fields. Nevertheless, the pure GEP provides a
remarkably good picture of the deconfinement transition.
From first principles, without any fit parameter, the simple
first-order calculation predicts a weak first order transition
at Tc ≈ 250 MeV for N ¼ 3, with a pressure which is very
close to the data points of lattice simulations. We must
mention that the method fails to predict a continuous
transition for N ¼ 2. That could be the consequence of a
known issue for the GEP which usually predicts a weak
first-order transition even when the transition is second-
order, e.g. for the scalar theory [46,56]. In that case, a
continuous transition is restored by inclusion of second
order terms [56]. Moreover, the GEP is known [43,63] to
predict the correct N → ∞ limit of 1=N expansions, so that
its reliability increases when N is large.
Finally, even if the present variational study is limited to

the low temperature range T < m0, where no resummation
of hard thermal loops is required because of the finite mass
in the loops, the effects of a finite mass become negligible
for large energies and T ≫ m0 and the standard results of
perturbation theory would be recovered by the massive
expansion in that limit.
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