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In this study, we revisit and complete the full next-to-leading order corrections to pseudoscalar double-
Dalitz decays within the soft-photon approximation. Comparing to the previous study, we find small
differences, which are nevertheless relevant for extracting information about the pseudoscalar transition
form factors. Concerning the latter, these processes could offer the opportunity to test them—for the first

time—in their double-virtual regime.
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I. INTRODUCTION

Double-Dalitz  decays of pseudoscalar mesons
(P = £¢¢'¢") have attracted attention over the years, both
theoretically [1-11] and experimentally [12-22], for
different reasons. On the one hand, they contain
important—Direct—information about the pseudoscalar
meson structure, which is encoded in their double-virtual
transition form factors (TFFs). Interestingly enough, dou-
ble-virtual effects have never been measured, and are
relevant for predicting the hadronic light-by-light contri-
bution to the anomalous magnetic moment of the muon
[23,24]. On the other hand, the angular distribution
associated to the lepton planes (¢ =¢z,7,) is a
CP-sensitive observable and was indeed the first exper-
imental evidence for the parity of the z° [12,25]. Since no
significant amount of CP violation is expected in these
processes within the standard model, any signal of this
would be very interesting.' However, before extracting any
information from these decays, a careful analysis of the
next-to-leading-order (NLO) radiative corrections (RCs) is
required as we shall see. A partial analysis of the NLO RC
was performed in Ref. [5], finding sizeable corrections. In
this study, we review the RCs evaluated in Ref. [5] and
include their missing diagrams in order to obtain the full
NLO corrections.

The paper is structured as follows: the leading-order (LO)
results and definitions are presented in Sec. II, whereas the
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NLO corrections are introduced in Sec. IIl—which includes
the new corrections as well as analytical and numerical
comparison to previous results in Ref. [5]. Finally, in Sec. IV,
we discuss briefly about experimental prospects regard-
ing TFFs.

II. LO RESULTS

The LO result is given by the tree-level processes
depicted in Fig. 1 (left) [for identical leptons an addi-
tional—exchange—diagram appears, see Fig. 1 (right)],
whose amplitude is related to the anomaly.” Particularly, for
the direct and exchange contribution we obtain

. 2 Fpyy (5125 534) _
lMIf)O = _le4WieﬂypaplllZpgdu(pl)ybv<p2)]

x [a(p3)y’v(pa)l, (1)

4 FPyy(s149 S32)
$14532
x [a(p3)y7v(pa)], (2)

lM%O = +l€ €ﬂu/)0plf4pg2 [Ijt(pl)yl’v(p4)]

respectively, where F pw(q%,q%) is the pseudoscalar
TFF and encodes the meson structure. Note, in particular,
the relative sign for the exchange contributions, which
is generic and arises from Fermi statistics. The amplitude
squared can be expressed then as a combination of
direct (|MEO[?), exchange (|MEC|?) and interference
(QReMPMEO*)  terms. Employing the Cabibbo-
Maksymowicz description [27] for the four-body final
state (see Appendix A), these read

*We use ¥ = +1; see Appendices A and B regarding

conventions, (effective) Lagrangians, and matrix elements.
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The direct (left) and exchange (right) diagrams contributing to the process (the latter one appears for identical fermions in the

|M1i)0‘2 = X12%34 /12<2 - '1%2 + y%z - ’@4 + Y§4 + (’1%2 - Y%z)(/l,%zt - y§4)sin2¢), (3)
88|FP (514,332>|2
mop = e 2 (B )+ 2 -
X14X32
2 (1 2 2 2\(52 2 Va2 g X12434
+4 5()’12 +y34)7 + (A1, — ¥12) (434 — y3a)sin°p——— | |, (4)
X14X32
¢*ReFp (512, 534) Fpy, (5145 532)
2R3M]130MIEO* = WS - /12(8774 - Wz(l + y12y34)(2 - )’%2 - )%4)
X12X34X14X32
+ 4n* (x12y12 + X34Y3) V12 + y34) + (877 — 2(y12 + y34)?)E + 287), (5)

which are in good agreement with Ref. [5]. Exchange
contributions, such as Eq. (4), can be obtained, in general,
from the direct ones by shifting to the exchange variables, a
procedure which is much more efficient and is outlined in
Appendix A.

Finally in this section, we obtain the double-Dalitz
branching ratios in terms of the two-photons decay
(I'4z/T5,) for different pseudoscalars and lepton species
considering both, the case of a constant TFF, and a simple
—but precise low-energy—TFF description in terms of
Padé approximants described in Appendix C. The decay
widths are given, in general, by3

1
Ly = w/ d®4 Mpl* + (|Mg|* + 2ReMp M),

o2 M?

Fzy—T

|Fp,,(0,0)[. (6)

Note, in particular, that direct and exchange terms con-
tribute the same to the total decay width, and it is therefore
sufficient to calculate the direct one. Furthermore, we
introduce a change of variables that improves the numerical

ISee Appendix A for the phase-space boundaries and d®,
definitions.

integration convergence and proves valuable when calcu-
lating the NLO contributions:

S12(34)
2 b
Ma(p)
512534
16m2m? 7)

S12(34) 4m§<b> eXp
dSlzdS34 i d§12d§34

This cancels out the photon propagators in MZEO,
resulting in a flatter—nonpeaked—integrand.® We
quote our LO results in Table I with the only exception
of the #’, which we postpone for a future work. The reason
for this is the presence of resonant structures for the
electronic modes that require certain care when describing
the TFF—especially if dealing with NLO corrections (see
Ref. [28] in this respect for the Dalitz decay case). The
integrals have been performed numerically using the CUBA
library [29] and statistical errors are associated to the MC
procedure alone” and are in good agreement with Ref. [5].
Having introduced the main concepts, we move on to the
NLO results.

*We expect this change of variables to be valuable for Monte
Carlo (MC) generators that would require us to evaluate many
events in the hit-or-miss procedure otherwise.

Furthermore, for the LO calculation, the result was checked
with the NlIntegrate routine in Mathematica.
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TABLE L.

I'yz/T5, in units of 107>, 1076, and 10~° for the 4e, 2¢2u, and 4x modes. The second and third row stand for the sum of

direct and exchange (D + E) and interference (Int) terms, respectively; the third row (Total) is the sum of both. The following rows
correspond to the analogous result for the TFFs described in Appendix C.

7’ - 4e K; — 4de K; — 2e2u K; — 4u n—4de n—2e2u n—4u
D+ E 3.4558(3) 6.2582(6) 2.8589(3) 0.9886(1) 6.4972(6) 3.9961(4) 6.5622(7)
Int —-0.0362(3) —0.0363(4) e —0.0511(1) —0.0362(4) e —0.4883(7)
Total 3.4196(4) 6.2219(7) 2.8589(3) 0.9375(1) 6.4610(7) 3.9961(4) 6.0739(10)
FFp g 3.4692(3) 6.7457(7) 4.8435(5) 1.8417(2) 6.9068(7) 5.9259(6) 10.658(1)
FFiy —0.0369(4) —0.0578(6) o —0.0972(1) —0.0537(5) o —0.818(1)
FFrowl 3.4323(5) 6.6879(9) 4.8435(5) 1.7445(2) 6.8531(9) 5.9259(6) 9.841(1)

ITII. RADIATIVE CORRECTIONS
At the NLO in a, additional amplitudes (MNEO) appear,
resulting in further contributions of the kind

[MJ? = LO + 2Re MO Ms>* + 2Re(MEO M

+ MM+ MYOMEP") + O(a)
=LO + Dir™© + (ExcN© + IntiO + Intht0)
+O(a*), (8)

with obvious identifications.® The different contributions
correspond to, on the one hand, the (TFF-independent)
vacuum polarization (Sec. IIIB) and vertex functions
(Sec. IIIC) and, on the other hand, the additional
(TFF-dependent) three-, four-, and five-point loop ampli-
tudes (Secs. III D and III F). Among the latter, only the five-
point was considered in Ref. [5]. Therefore, our work
completes the—so far missing—full NLO corrections.
Besides, some terms contain infrared (IR) divergencies
that require the inclusion of real photon emission terms;
these are the bremsstrahlung (BS) contributions that we
account for in the soft-photon approximation in analogy to
Ref. [5] (Sec. I A).” When giving our numerical results,
we opt for combining the NLO results with the correspond-
ing BS contribution to obtain a finite IR result. In the
following, we recapitulate the results from each contribu-
tion, commenting on the differences we find with respect to
Ref. [5]. The numerical results and comparison are rel-
egated to Sec. III G.

A. Soft-photon emission

The photon emission graphs are shown in Fig. 2. In this
work, as said, we employ the soft-photon approximation,

NLO tNLO

°In the following, we comment on Dir and Int-* alone—
the remaining contributions can be trivially obtained upon the use
of the exchange variables defined in Appendix A.

"Reference [5] includes also the radiative P — #£7' 'y
decay—besides the soft-photon approximation—for photon
energies above certain threshold. In this study, we focus in the
purely virtual corrections, for which only the soft-photon con-
tribution is required.

which is convenient due to its factorization properties that
allow an easy cancellation of IR divergencies. Furthermore,
in this limit, diagrams like that in Fig. 2 (right) do not
contribute.® Therefore, we only need to account for pure BS
contributions like those in Fig. 2 (left), which then need to
be integrated over the soft-photon energies to cancel the IR
divergencies. The generic contribution can be expressed as

E, d’
M [
M o (27)2

— o AMLO pf
MBS = eM ZQ bk

L Ok /) ©)

14

where Ef = k2 — m2, Q; stands for the lepton charge (we
employ an IR -mass regulanzatlon) and sum over photon
polarizations is implicit. The chosen E, is related to the
four-lepton invariant mass as we shall see, a parameter that
is closely related to the experimental setup. Summarizing,
the NLO contribution can be expressed as

M2 = 2| MYOR(21(py, p2) + 21(p3, pa)
+21(py, ps) + 21(p2. p3) — 21(p2, p4)
—2I(p1.p3) = 1(p1. p1) = 1(p2. P2)
—1(p3. p3) = I(p4, pa)) (10)

where I(p;. p;) =
as [30]

(pi-p;)J(pi, p;), with the latter given

E.  dk 1
Hpi-pj) = /) (27)*2Ey (p - k) (p' - k,)

1 1d 42 0 0_
s ) 7 ) Y|
227)* Jo q my q \q +gq

(11)

with ¢ = xp; + (1 —x)p; and O(m,) terms neglected. The
general integral has been solved in Ref. [31] and is given in
Appendix D. For identical momenta, integration is trivial
and yields

The reason is that such an amplitude is proportional to

em,p(,p’;jklk‘;, with k, — 0.

056010-3



KAMPF, NOVOTNY, and SANCHEZ-PUERTAS PHYS. REV. D 97, 056010 (2018)

[7 D9
- - ) + - (p)
U(ps) U(ps)
£(p3)
(p3) U(ps)

FIG. 2. Photon emission graphs (alternative insertions are implicit). In the soft-photon approximation, only the left diagram
contributes (for identical leptons, exchange diagrams are implied).
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FIG. 3. Contributions to the VP. Counterterms and exchange diagrams are implied.
1 2F 1406 iu Q-
I(p;,pi) = — |In| —= —n( =) . 12
) = gy [ () + 5 (12)

Note the difference with respect to Ref. [5] that seems to assign p;/p? — A;, which is bizarre since—according to their
definitions—A;; — 0, reducing the second term to —1. Given the numerical differences that we anticipate, this could be a
source of them unless it corresponds to a typo. For two different momenta we find, in good agreement with Ref. [5],

Zij Zij+ A 2E 1 Q) 1 Q;
/ Cp)— ij I ij ij 1 c 21 2 i -1 21 1
(pl pj) 877-'2/11‘.]' |:n<zi.j _ﬂi,j) n<m},> +4 " <Qj_) 4 ! <Qj_>

) Tijgrr . T,;Q . TijQ+ . 1,67
+L12 1——1 +L12 1— S —L12 1— / —L12 1——] s (13)

where the variables above have been defined in Appendix D.

B. Vacuum polarization

The vacuum polarization (VP), shown in Fig. 3, induces additional contributions which simply multiply the LO ones as
follows:

MVP = MEP[1(s13) + M(s34)] + (MEO[[1(s14) + T(s32))), (14)

where f[(qz) represents the renormalized vacuum polarization. This implies a summation over the different lepton and
scalar species9 whose individual contributions read

Gln(1+n) q2<0
f(g) = -£6-0+{B =)L) |21+ 6™) ¢ =0 -
(@) =& ¢+ 0> +5 (L)) T R 0<q <,

(
{ ({,H) + li'L':| q* > 4m?

*We consider # = e, y and s = ™ contributions. The latter was not included in Ref. [5], but is added here given that m,, ~ m,. In any
case, this does not produce a large impact. For the 1’ case, an appropriate description for the hadronic vacuum polarlzatlon Would be
required though.
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FIG. 4. Contributions to the vertex corrections. Additional insertion over vertices and lepton legs as well as counterterms and exchange
diagrams are implied.

where 6> = —p* = 1-4m2 /¢*. This produces the following terms for the NLO contributions according to the notation in
Eq. (8):

DN = |Mp°[P2Re(M(s12) +T(s34)).  Int3H© = 2Re[MEP M (T(512) + M(534)))- (16)

The results above are in agreement with respect to those in Ref. [5], up to ambiguities in their NLO definition
QRe MYP MLO* = | MLO12Y »Y I 2Reﬁ1y (s;)) concerning channels with identical leptons. This comment applies as well
to the next section.

C. Vertex corrections

The vertex corrections (including lepton self-energies as usual) are shown in Fig. 4 and amount, in general, to replace the
photon vertex as
2, 10 2 2 2 7" 2
7= PRG) o () = r(FUG) + Fa(g) = 5 - Fag), (17)
me me

where g = p, + pz and § = p, — pz. At LO, Fl(z)(qz) = 1(0), whereas the NLO contributions read

a 1462 l-0¢ my 14262 l-0¢
F =—|(1 1 ) Inf— ) —-1- 1 ]
8F1(s) ﬂ[( + 20 {n(l—i—a) —Hﬂ]) n(m) 40 t l+o o

1+6%2 /1 l-0 20 7 ir 1 - o2
— —In? Lip)|— ) ——+—=In| ——— 18
2% <4n<1—|—0>+ 12<1+o) 2+2n( 452 >>} (18)
al —c> l-0
SoF =— 1 74 19
2(s) r do [n(1+0>+m} (19)

with ¢ = /;; for s = s;; and are in good agreement with the results in Ref. [5]. As a consequence, the correction due to F
factorizes and reduces to that in Eq. (16) upon the ﬁ(s ij) = OF(s;;) replacement. It is easy to see from Eq. (10) that IR

divergencies in Dir™-© arising from F| cancel those of 21(p;, p,) + 21(p3, ps) — >_:I(p;, p;) terms—similarly, for Int3-©,
they cancel half of them. For the case of F,, factorization in the form of Ref. [5] is not obvious. ™ Indeed, we find that

. O 68|FPyy(s12’s34)|2 2 2 2
Dir™NO = X12%m 2((2- (434 — ¥34))2ReF,(s12) + (12) < (34)) (20)
1
e Fp,,(s12.534)Fp,, (S14.532)
Int%w =Re L 3 il /12F2(S12)[252 + W2(2 + Y12Yas — )’%2)()’%4 - /1%4)
X12X34X14X32
+4x,(1 = 2)(v], — 4%,) + E(8n* — zy34(yi2 + y3a) + 4x104%,)] + (12) < (34), (21)

which only reduces to the result in Ref. [5], for the direct term, after ¢ integration—a connection which is unclear if
identical leptons appear. In any case, the differences for the integrated decay width would not exist for direct (and exchange)
terms and are irrelevant for interference terms.

""Particularly, they claim that it reduces to |MUC|22ReF(s;;)2(2 + vy =47
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FIG. 5. The three-point amplitudes for different lepton species (noted in the text as 1D, 2D, 3D and 4D). If identical leptons are
present, exchange diagrams (e.g., £, <> ¢4) arise.

D. Three-point amplitudes

The three-point amplitudes are the first set of RCs that were not computed in Ref. [5], which contains four different
diagrams (and four additional exchange diagrams for identical leptons). Such a contribution is UV divergent for a constant
TFF and would require the same counterterm appearing in P — ¢ decays [32-35]. In the following, we consider a
nonconstant TFF that can be decomposed into massive-like photon propagators (see Appendix C) and refer to Appendix E
for the case of a constant TFF. For identical leptons, the diagrams are shown in Fig. 5 and their amplitudes read"!

d*k [y (P34 + ma)Tspa][itzy,04) Fryy (K, (k + P)?)

iM¥E =C / , 22

D= G Rt PPt pa) = md) P = ) >

iMEP — C3P/ d*k [, Tsp(=pysa + my)v* vo)[i37,04] Fpyy (K. (k + P)?) (23)
» (n)* Kk +PP((k+p)’—mi)  pa(pra—m;)

with MgPDAD given upon (12) <> (34) replacement (exchange terms would have a relative sign and exchanged 2 <> 4

subscripts). In the expressions above, C3p = e*(75) ™" &£ and I'3p = (k*P — (k - P)K)y’ have been introduced. In addition, it

is easy to show using the properties of charge conjugation that M3P = M3 (p; < p,), which is related to y;, — —y, and
¢ — ¢ + nreplacements. Since these are symmetries of M, it is possible to obtain all the DirN-© contributions from only
one of them. Introducing the loop integrals and associated functions'

Iy = Bo(pisg- My, m3) + M3, Co(M?, plyy. mi, My, . MY, m3) (24)
1§ = Coo +M?Cyy + (p2- P)C12. I5 = MPCyp + (py - P)Co, (25)
where C,, = C,,,(M?, pi3,, mg, M3, , M5, . m), the first contribution to Dir""© reads
LO* A 43P eSF}Sw(SlZ’SM) a ” 5 2 Azy342
2ReMp* My = 2Re—4— (Zy =I5 44y12(2 + y3, — A54) —

X34 4 X12X34

n 2MPR(1 = 43,) (2 + ¥3 = 334)) _18 <M2/12(1 — L) 2+ i - ’%4))] (26)
Pisa —mg Py —mg

where ply, —m2 = (M? — 515 + s34 + M?Ay|5)/2 and P - py = (M? + 515 — s34 — M?2y},)/2. The remaining contribu-
tions can be obtained then upon the appropriate {s;;,y;;. ¢} replacements. Regarding contributions of the Inti-O kind, only
P12 <> P34 is a symmetry for MEC, and two terms must be computed. These can be expressed as

SFp,,(514.532) «
JReMLO* A3P — _2Re Pyy\514 2 (Z, - T9)u(1D)|p — (Z2)u(1D)],), 27)
- P $14832(play — m?) 27 2 P 2 P

""To derive these, we made use of the equations of motion for spinors as well as the four-dimensional identity e"ﬁ”"yﬂypyykak/’ =
2ik, k" (g2y” — gpy®)y® (note that €”'2* = +1). For comments on regularization, see Ref. [35].

We use the conventions for the Passarino-Veltman functions in [36]. As explained in Appendix C, the TFF effect can be reduced to a
sum of massive-photon propagators, for which we introduce photon masses My , which should be summed over—see Appendix C for
further details. For a constant TFF, My, — 0.
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U(p1) {(ps)
U(ps) (1)
- (ps) - (p2)
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FIG. 6. The four-point amplitudes for different lepton species (noted as 1D and 2D). Exchange diagrams arise for identical leptons.

e*F; (514:532) «a
2Re MO M3P — —2Re—— 17 — (T}, - 7’9t (2D)|, — (Z'5)tr(2D)] ). (28)
r b 514532(19%34 - mz) 27! ? r ? .

with the remaining ones obtained upon the (12) <> (34) replacement. The meaning for 7 %’b) is identical as in the previous
case and the primed ones amount to the p, — p; replacement. In addition, the following traces have been introduced:

tr(1D)]; = itr[(py + m)y* (Pri3a + m)ly> (P2 — m)y° (#5 + m)y;(Pa — M)y’ 1€upo PiaPho- (29)
tr(2D)|; = itr[(py + m)ly> (=prza + m)y (o — m)y° (p3 + m)y,(pa — m)y*1€,umpe P4 P5s- (30)

The resulting expressions are long but otherwise straightforward to evaluate with Feyncalc [37,38].

E. Four-point amplitudes

The four-point amplitudes were not calculated in Ref. [5] either and amount to a total of two contributions (another two
appear for identical leptons) which are shown in Fig. 6. The first amplitude can be expressed as'

M — Cop / 'k [mipvs|lisraal Fey (R (k+P)?) 1
27)* K2 [(k+ p1)* = mg][(k + pi3a)® = mg](k + P)* 534
Tip = 2i(K}(k + P)*} = (k+ PR (K + P))r° + 26,0k PP (py* (K + P)r* + psr"ir*), (31)
with Cgp = ie*(;27) ™" £ The M3}, amounts to exchanging (12) <> (34) subscripts. Again, the standard reduction into
Passarino-Veltman function can be performed and equations of motion used to simplify expressions. This way, we can
NLO

express the whole result for Dir as

;7*7* (s12(14),s34(32)) a (
$125%4(S14534532) 47 bk

F
2Re M0p ML =F 2¢°Re

plus additional (12) <> (34) terms, where [- - -]; stand for
CupoPhaPhs X W+ m )T (= my)p X w(ps =+ my)y, (s = my )
€upoPaPy X tr(p) + ma)r‘jg) (#2 = ma)y° (P + my)y, (s — my)r"s (33)
for Dir¥-0 and Int¥M0, respectively, and with T%, = T4 4+ T4 4 T4 defined below

i . .
rﬁ) = 2i[y*Cop + m,pi(C1y +2C1p + Cx) + pip3a(Cra + Cop)Y’ + 2iM3, [y* Do
+ m,p}(Dyy + 2Dy + Dy + 3D13 + 3Dy3 4 2D33) + pipaa(Dip + Di3 + Doy
+ 2Da3 + D33) + m,pi(Di3 + Doz + 2D33) + pipaa(Dos + D33)]y° — (p1 = pa). (34)

13 . . . . . . .
Again, we use similar manipulations as in the previous section.
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{(p1) U(ps) (pr) Ups)
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k k k k
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Z(P\) Z(I7|) f(p:s) 5(113)

FIG. 7. The pentagon diagrams contributing to the NLO corrections (noted as 1D, 2D, 3D, and 4D). For identical final state leptons
additional exchange diagrams appear. The photon propagator connecting the two letpons carries always the loop momentum k in our
convention.

2 o 1ol
Fﬁ’) = 26;41//;(7P/)p11/y/17/”y DOO + zeuv/)ﬂp/;4plfpg(yip/1y (DIZ + D22 + D23 + DZ)
+ may*y?(Doz + Dy) + v p347° (Doy + Doz + D)), (35)

3 0 v
rﬂ:) = 26,05 P’ D5V V"1 Do + 2€,p5 Pis P4 D5 (Y P27 D13 + 7 p34y* (D13 + Do)
— may°y"(Dyy + D1y + Dy3)). (36)

Once more, standard Passarino-Veltman DW:Dw(mﬁ,s34,m%,Mz,p%M,p%M,M%/],mg,mﬁ,M%,z) and C,, =
C

W
easily with Feyncalc.

(M3, 534, Pisg. My, . mg, mg) functions have been introduced—see comments in Sec. I D. The traces can be computed

F. Five-point amplitudes

The last set of contributions are the five-point amplitudes. There are a total of four diagrams as shown in Fig. 7 (plus
additional exchange diagrams whenever identical leptons appear). The corresponding amplitudes can be expressed, after
applying the equations of motion, as

. d*k _ _ _ _
iIMI = _66/ (22) (=4(p2 - p3) (7" v2) (37 v4) + 2k, (7" Y P 02) (37 04)

— (17" 02) (3277 vs)) + koks (777 Y"02) (037,777 v4) ) Cok (D3 P2). (37)

) d*k _ _ _ _
iM3E = +€6/ 22)° (=4(p1 - p3)(@1y"v2) (377 v4) + 2Kk [ (1 P37y  02) T3y v4)

— (17 02) (3177 v4)] + Kok (777" v2) (37,77 v4) ) C3E (p3. p1) (38)

) d*k _ _ _ _
iM3p, = +€6/W (=4(p2 - pa) (17" v2) (37" vs) + 2Kk [ (17" Y pavy) (37" v4)

— (7" 02) (37 Y Pavs)) + koks (7" 7"y 02) (37 Yy, 04) ) Cot (P4 P2) (39)

) d*k
iMP = —66/ 2n)

— (17" 02) (7Y P1vs)) + koks (717 "y 02) (37 Yy, 04) ) Cob (P4 P1 ). (40)

(=4(p1 - pa) (17" v2) (37 v4) + 2k [ (01 P47y  v2) (37 04)

where

€uvpa(Pl142P/3)4 + P”kp>FPyy((k - P12)27 (k + P34)2)

[k + 2) = ]k & paa)2(k = pra)?l(k = py)? =] 4

Cou(pipj) = 2

and is in good agreement with Ref. [5]. The decomposition above is convenient, as it isolates the IR-divergent part
contained in the first term. Particularly, taking kK — 0 and retaining only the divergent propagators in the loop integral, it is
easy to show that
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TABLE II.  Results for the NLO RC expressed as 6 = I'}30/I'}9; find details in the text.

7° = 4e K; — 4e K; — 2e2u K; — 4u n—4e n—2e2u n—4u
5 —0.1724(2) —0.2268(2) —0.0798(2) 0.0669(1) —0.2306(1) —0.0864(1) 0.0502(1)
SR 0.0411(1) 0.0534(1) 0.0273(0) 0.0021(0) 0.0543(1) 0.0285(1) 0.0033(2)
grartial —0.1718(2) —0.2262(2) —0.0767(1) 0.0704(1) —0.2301(1) —0.0836(1) 0.0535(1)
5] —0.160(2) —0.218(1) —0.066(1) 0.084(1) . e e
Srr —0.1727(2) —0.2345(1) —0.0842(2) 0.0608(2) —0.2409(1) —0.0900(1) 0.0455(2)
R 0.0411(1) 0.0549(1) 0.0276(0) 0.0022(0) 0.0554(1) 0.0288(1) 0.0033(0)
sp LO e’z | the CUBA library for the numerical integration.16 As said,
Myl = ~(Qi - )M SaA the F; and five-point amplitudes contributions contain IR
ij . . . . .
2 divergencies and are thereby combined with the appropriate
x [ln (M) _ Ziﬂ} Inm, ~ (42)  BSpartstorender an IR-finite result.'” Regarding the cutoff
2ij = Aij energy for the soft photon, this is related to the four-lepton

where Q; ; denotes the charge of the particles. Comparing
to Egs. (10) and (13), DirNt© cancels IR divergences arising
from  2I(py, pa) + 21(pa. p3) = 21(p2. pa) = 21(p1. p3)
terms, whereas Inty-© cancels the I(p, ps) + 1(ps, p3) —
I(ps, ps) — I(py, p3) combination.

At this point it is important to note that the diagrams
above are all related through p; <> p, and p; < py
exchanges—similar to the three-point case. Note, however,
how in this case each of these changes carries a minus sign.
This must actually be this way to cancel the IR divergencies
as it can be observed from Eq. (42). Again, since this is a
symmetry for M0, it is only necessary to calculate one of
the contributions above—all the four Dir¥© terms will be
related upon y;; — —y,; and ¢ — ¢ -+ z. For the Int}j-©
terms, only the combined p,; <> p,4 exchange is a
symmetry, and two terms must be computed, which implies
that, for DirN© (but not for IntN-©), the overall correction
to the decay width vanishes."* Accounting for these
simplifications, the required contributions were computed
in the following way through the use of Feyncalc: first of
all, we evaluated the lepton traces. Then, the resulting terms
of the p; -k kind were canceled against propagators as
much as possible, which leaves the five-point scalar
function and lower-point tensor functions.

G. Full NLO numerical results

Finally, we give the numerical results that we obtain,
which we carry out with the help of Looptools [36,40]
for evaluating the loop integralsl* and the Vegas method in

“This is due to charge conjugation—see for instance the
comments on p. 8§ from Ref. [39].

As a cross-check, we computed independently the scalar
five-point function, D, in terms of four-point functions using the
method in Ref. [41] finding good agreement. We also find
agreement with higher rank five-point functions that we em-
ployed to further cross-check our results—this is not the case for
Feyncalc. Note that the method in Ref. [41] has the advantage of
avoiding singularities in Gram determinants.

invariant mass through the

M
E.= —(1 _XM)’

> X4y = pi M7 (43)

relation. In the following, we take x4, = 0.9985 in analogy
with Ref. [5]—see comments below for different cutoffs.
Expressing Iy, = I'59 + I'YE0, we give the RC in terms of
S = Ty0/T42 in Table II, where the FF subscript
means that a nonconstant TFF was employed (see
Appendix C). For details concerning individual NLO
contributions, we refer to Tables IV and V for constant
and g*-dependent TFFs, respectively. We note that we do
not ascribe any error to the TFF description, which is
intended mainly to illustrate the magnitude of TFF effects
against RC. Concerning extrapolations to different x,,
values, we integrate the divergent Inm, terms, so that

extrapolation to different cutoffs can be obtained through

1—x
8t (Xar) = 8pr)(0.9985) + 5% In < ) 00145'“” > . (44)

with 5lK,

holds in the soft-photon approximation, this is, it is not
meant to be used to obtain a fully inclusive (P — 4£7%)
decay width.

We give as well our result without including three- and
four-point contributions and for a constant TFF (§Fartial
column in Table II). This compares to Ref. [5] results,
which we give for convenience in the fifth column from
Table IL.'® As a result, we find discrepancies at the 1% level,
which is nevertheless often of similar size as TFF effects

given in Table II. We stress that such a result

'®Again, we do not need to integrate Exc or Int\'° terms since
they contribute the same as Dir and Inty-©, respectively. The
same applies to y;; = —y;; and ¢ — ¢ + = related terms.

""We checked that the full and partial contributions were
indlegpendent of the m, parameter as they should be.

These are obtained from the results in Tables VI and VII in
Ref. [5].
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TABLE III. Numerical values for the terms in Eq. (E7) in same units as Table I.

7% = 4e K; — 4e K; — 2e2u K; — 4u n— 4e n—2e2u n—4u
Syv(0.77) —0.0007(0) —0.0010(1) 0.000 20(1) 0.0063(3) —0.0010(1) 0.00020(1) 0.0321(13)
O, —0.0000(0) —0.0000(0) —0.00000(0) —0.0000(0) —0.00000(0) e
3y —0.00005(1) —0.0018(1) .- —0.00006(1) —0.0101(3)

(see Table I and, especially, the 0 case). From our results in
Table IV, we find out that such effects can only arise from
VP, F,, and BS contributions; these corrections were
computed analytically and we agree with all of them except
for their I(p;, p;) result which, as said, is unclear. A
different source of discrepancy would be an underestimated
statistical uncertainty associated to their MC simulation—
in this respect, we note that we checked our results against
the Nlntegrate method in Mathematica for these con-
tributions, finding an excellent agreement.

Finally, it is worth commenting about the three-point
contribution when employing constant TFFs. In such case,
it is necessary to employ yPT, which introduces a counter-
term that is connected to P — £7 decays. We find,
however, that such a practice might be inappropriate for
muons and including the TFF is desirable (for more details,
see Appendix E).

In summary, we find relevant numerical differences for
the contributions calculated in Ref. [5] with a non-negli-
gible effect regarding the extraction of the TFF. Concerning
the new three- and four-point loop contributions, these are
small as compared to the full NLO correction, but of similar
size as F, and 5P contributions. Note, however, that such
considerations have to be taken with care if considering
differential distributions as required in experiments.

IV. TFF EFFECTS

As said, these decays are of interest for obtaining
relevant information on the TFFs; as an example, see the
works in Refs. [4,7,8,10]. In the following, we comment
briefly on some aspects that, we believe, could be tested at
future experiments.

Concerning the 7°, the highest double-virtual region that
can be accessed, ¢7 = ¢3 = g%, = m2/4, is small enough
to rely on a series expansion to parametrize the TFF.
Consequently, such effects would be as small as (m,,/2A)%,
where A is expected to be the order of My , (see

Appendix C and Refs. [24,33,42]). In addition, since the
process peaks at low energies, the double-virtual region
is—experimentally—Iless populated. As a consequence, we
think that only the TFF slope could be accessed exper-
imentally. In this respect, the single result comes from
KTeV [13] (with 30511 events and 0.7% precision), which
found a negative (yet compatible with 0) value, in contra-
diction with current results (find experimental references in
[24]), an outcome that could be due to statistics, system-
atics, or RC. Regarding the latter, from Table I, TFF effects
are of order 0.4%, whereas the differences found for the RC

[5] employed in [13] is of 1.24%, 3 times larger. Of course,
a differential analysis in the lines of Ref. [13] would be of
relevance in order to draw firm conclusions. In this aspect,
the NA62 Collaboration, already successful in obtaining
the best measurement for the 7° — e*e~y [43], could make
advances in this direction.

Concerning the 7, the larger available phase space could
make the process interesting for accessing the double-
virtual region. So far, the only available result is fory — 4e
from the KLOE Collaboration [14] (with 362 events and
10% precision), which did not attempt a fit to the TFF,
likely due to the low statistics. In the future, the REDTOP
Collaboration [44] could have larger statistics for all the 7
channels, which would provide very interesting results—
we note here that, for the electronic channel, TFF effects are
of order 6% (see Table I), whereby the differences found
with respect to RC in Ref. [5] are relevant. What is more, if
entering the # mode, the REDTOP Collaboration would
undoubtedly test the double-virtual region, yet this makes
necessary an appropriate description for the resonant
structure, which is left for future work.

Eventually, if the double-virtual region is accessed, this
might be of interest regarding the HLbL contribution to the
muon g —2 [24]. Another possibility to access such a
region, closely related to this process by crossing, are the
ete™ — PeTe™ processes, in which study of RC is
postponed for future investigation.

V. CONCLUSIONS

In summary, we have revisited and completed the full
NLO corrections to P — £££'¢' processes within the soft-
photon approximation, whose full result is available in a
Mathematica notebook upon request. As a result, we
found differences of the 1% order with respect to the
existing ones [5]—likely to be relevant for extracting
information about the TFF.

Regarding the double-virtual TFF effects, these might be
accessed for the  and 7’ cases. Otherwise, it might be
interesting to look at the ete™ — Pete™ processes, which
are also of relevance for testing exclusive processes in pQCD;
we postpone the study of RC therein for future work.
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help with Feyncalc and Tomas Husek for discussions. This ~ space can be described sequentially in terms of a two-
work was supported by the Czech Science Foundation (Grant ~ body decay in the parent particle rest frame to dilepton
No. GACR 18-17224S) and by the project UNCE/SCI/0130of  subsystems p; + p, = py, and p3 + ps = psa with corre-
Charles University. sponding invariant masses p3, = s, and p3, = s3; and

followed by a sequential two-body decay in the corre-
APPENDIX A: KINEMATICS AND PHASE SPACE  sponding subsystems’ rest frames [see Fig. 8 (right), where

The kinematics of the process is shown in Fig. 8 (lefp), superscripts denote the reference frame]. To see this, insert

with momentum and mass assignment £(p;,m,), the identity as fdﬁij(zp%)_ldsij5(4)(l7ij—Pi — p;) into

2(py.my), € (p3.my), €' (ps,mp). The resulting phase  the four-body phase space to obtain®
|

ds ds
d®,(P; py, P2, 3. Ps) = APy (P; p1o, p3a) X 2—:0@2(1712;191,172) X 2—:d¢2(1734;1937174)~ (A1)

Before continuing, it is useful to introduce some notation, which we choose similar to Ref. [5] for ease of comparison.
Adopting p; ;, ; = p; + p;, + -+ p;, we define the following quantities:

6 = (Plz - P?)/P,Zjv X = P%/P,zy lej = 4x;x;, Zij =2p; - Pj/P%j =1-x—x, (A2)
allowing us to express the energy and momenta of a particle p;;) in the p;; rest frame as
El = si(1£68))/2  pil = JSiki/2.  kj=1/F-wh (A3)

In addition, whenever we use p;;x = p; + pjx configurations (or similar), we employ expressions of the kind 4; ;. Using
this and conventions in Fig. 8, it is possible to express the Lorentz-invariant remaining quantities as

2pi2 - pa = MZZ, (A4)

2P12 - pag =AMy, (AS)

2D34 - P12 = AM?y3y (A6)

2p12 - P3a = M*(zy12y34 — W\/(’ﬁz — ¥1,) (434 — ¥34) cos ) (A7)
AM*w )

eﬂwmp’fpépﬁpi TS \/(’1%2 - y%z)(/1§4 - y§4) sin ¢, (A8)

where p;; = p; — pj, €% = +1, y;; = A;jcos 077" and where z = 21534, W = Wyp34, A = A1234.> With this notation, the
four-body phase space can be expressed as

SA SA
d(I)4 = W dSlzdS34d¢llzd COS 9{2134611 COS 0%4 = W dS]2dS34dy12dy34d¢, (Ag)

with § = 1(1/4) a symmetry factor for different (identical) fermions in the final state. The integration boundaries are the
following:

"Reference [5] uses opposite labeling for particles, so comparing Fig. 8 and Feynman diagrams requires py) <> pa4)-

*For a particle decaying into n particles, d®,(P; py, .... p,) = 2z)*6W (P =31, p) T, (2:)%

“'Their definition for cos 6’5’:‘,( has the wrong sign, which is nevertheless of relevance for the geometrical interpretation alone. In
addition, from their Eq. (3) and Eqs. (B1)—(B5), we infer that they employ €% = —1.

22This iS, = (MZ — S — S34)M_2, W2 = 4S]2534M_4, and A = ]‘4_2((]‘42 — S — S34)2 - 4S]2S34)l/2.
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/
34 ;00034 )
S & /
Py sin 63 ,
/

FIG. 8. The left figure shows the kinematics in the parent particle rest frame. The right one shows the angle of interest (e.g., in the
dilepton reference frame) for phase space 6} and 63*.

4maSS12 (M Zmb) 5 4mi§s34§(M—,/s12)2; llj—ylj<llj7 0S¢S27[ (AIO)

In addition whenever identical leptons are present, it is useful to introduce the shorthand E =

w\/ 25— vh) (434 — ¥34) cos ¢ and > = 4m? /M? with m, = m, = m. With these definitions, the exchange variables
[noted w1th subscrlpt “ex” and defined in analogy to Eqgs. (A4) to (A8)] read™

1

Xu@) =7 (27 + z(1 = y12y34) £ A(y12 = y34) + B), (Al1)
1 /2

Yia(2) = 7 E(le +y34) £ (X2 —x34) | (A12)

— ) z 1_
Eox = ZexY14Y32 — (1" — X120 — X34) — 5 (1+yi2y3) + Pl (A13)

/1 ), 2 1/2
sin g, — _<x12x34( — 1) (43 )’34)> sin ¢, (A14)
x14x32(/1 )’32)(/114 y3z)

where the last two equations allow us to extract ¢,,. This technique has been used to obtain Eq. (4), where the analog of 4,
dex = (1 = x4 — x32)* —4,,,,,)"/?, has been introduced.

Finally, if one is interested in creating a MC generator, it may be useful to assign to each particle a four-momentum (in the
parent particle rest frame) in terms of the phase-space variables as follows™*:

l+o%4 1-06%4
Eip) = Mw’ E3q) = M (A15)
4 4
R x Y EN YT
Pioy =F M\ |72 (0, = yh)3 + M%y, (A16)
- X NP AL (1 —=08)ysq .
Paa) = M7 (B4 = 3 (F cos i & sin ¢p2) - %y, (A17)

with § = 05 34. If required, shifting among reference frames involves a Lorentz boost along the ﬁ34(12) direction with
parameters f1534) = A(1 £ 68)7" and ya34) = (1 £6)/(2x1234))-

The + sign in Xy4(3) is wrong in Ref. [5]; that is, however, irrelevant since these always appear in pairs.
*See the axes orientation in Fig. 8.
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APPENDIX B: CP-VIOLATING TERMS

The effective Lagrangian describing pseudoscalar interactions with real photons is

Lp :ethﬂ”F P—l—ezFLQf;F””F P (B1)
v 4 pw 4 pts

where F,,, = 1€,,,,F"° (€"'?3 = +1). The first part is CP conserving and corresponds to the LO term in chiral perturbation
theory. Higher orders would modify the LO prediction for F'p,, and induce a g*-dependent TFF; all such effects are encoded
in F Pyy(q%, q3), and the result is valid in full generality. Concerning the CP-violating part, the most general structure
features an additional gauge-invariant term [45] besides that in Eq. (B2).” Still, such additional structure is suppressed for
quasireal photons and should play a subleading role, for which we do not include it here, but limit ourselves to correct some
typos in [5].%° Defining the amplitudes as (Z'£'Z¢|S|P) = 1 + iM(27)*8*) (P — Y, p;) [46], the following term arises
besides that in Sec. II:

A ACP .4 F%(s127 S34) - 6 P — -
IMp" = —ie W(gp (P12 P34) — P12P34)(”17p112)(u370v4)’ (B2)

with an additional exchange amplitude if identical leptons appear (again, a relative sign would appear too). This produces
the following contributions to | M |*:

IMGF[? + [MEP* + 2Re(MB" MEP* + [MEPMEP* + MEPMEP* + D < EJ), (B3)
which we find to be

98|F%(S12, s3a)?

|-/\/lgp|2 = ()2 - (’1%2 - y%z + /%4 - y§4)
X12X34
+ (/1%2 - y%z)(/@ - y§4)C052¢} —2zypyuE+ W2(1 - y%z)(l - y§4)), (B4)
S 2ReF p,, (512, 534) FET" (512, 534)
ZReMIL‘)OMLC)P* = 7 X v /1(2(/1%2 - )’%2)(/1%4 - Y%4)
12X34
X Sin¢hCos ¢ — yioy34 \/W2 (/1%2 - Y%z) (/1%4 - Y%4) sing), (BS)

which agrees with Ref. [5] except for the E-term sign. Moreover, we note that the overall sign from Ref. [5] seems to be
opposite as well given their result in Eq. (A15), opposite to Eq. (A8) (see comments below). Besides, whenever identical
leptons are present, the following terms appear:

" ReFET (512, 534) FoT (514 532)
8X12X34X14X32

+ 27722 (1 4 y12y3a) (2 = 1) = w?(1 = y1234) (2 + 32[1 + y12y34])]

+w2(w? = 22) (1= y) (1 = y3y) + 22 (1 = yi3a) (14 yi2ysa)]

+ E[87*z = 272 (1 + 3y12y34) W + 22) + 2(1 + y12534) W (=1 + y12v34) + 22(1 + y12y34))]

+ 2267z — w? = (227 + W)y 1pyas) + 2BY), (B6)

2ReMEP MEPH = — (87*[z — 2% = w?y12y34]

25Consequently, one should modify the gauge structure in Eq. (B2) to [¢7(q12-q2) — q‘fqg]Fgf;l (q% q%)+
(4393950 + (41 - 42)d195 = 414545 — a3 a5)F5y7 (a7 43)-
Moreover, CP violation in double-Dalitz decays does not necessarily arise from the Pyy vertex. Another possibility is CP violation

in P — #¢, which would contribute here, similar to Appendix E. We relegate therefore a more general study for later work.
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eReFp,, (512, S34)F%*(S14, 532)

42
8X12X34X14X32

DRe(MEOMEP* + MLONGPH) — [
X (2[x10%34 — X14X30) + 7P [X12 + X34 + 3(x13 + x24)] — x5 — x5, — 4n?)

- @) xR0 BB~ sing. (B7)

Again, the last equation differs from Ref. [5], which is only correct if both TFFs share the same g> dependency. Moreover,
we note that the overall sign seems ok, but in contradiction to their result equivalent to Eq. (BS).

APPENDIX C: TFF DESCRIPTION

There is plenty of work devoted to the study of the pseudoscalar TFF, F P},y(q%, q3), which is a non-perturbative
object and hard to obtain from first principles. Still, given the kinematics of this process, it is mainly the low-energy
regime that is required alone, yet the loop integrals—especially the three-point ones—require a reasonable high-energy
description as well. For this reason, we follow the work in Refs. [47-50], where the mathematical framework of
Padé approximants was shown to be an excellent tool to implement both regimes for the single-virtual case. This was
extended to the double-virtual case in Refs. [24,33,42] and involves the use of Canterbury approximants. The simplest
approach27 reads

My, M,
FPyy(‘I%v ‘I%) = FPyy 5 . -

, (C1)
q7 _M%/P Q% - M%/P

where Fp,, = Fp,,(0,0) is the normalization that is absorbed when normalizing to I'p_,,,. It must be overemphasized that

M? is not any physical vector meson mass and is related to the slope parameter. From the most updated values in Ref. [24]
and Ref. [52] for the K;** we find

My, =0754(23) GeV; My, =0.724(5) GeV; My, =0837(10) GeV; My, 0.61(2) GeV.  (C2)

When evaluating some loop amplitudes, expressions containing F Pyy(q%, q5)(q} + ie)~'(¢5 + ie)~"! appear. In order to
evaluate the integrals, it is useful to use partial fraction decomposition that, for Eq. (C1), reads

FPyy(Q%? C]%) _ FPyy _ FPyy _ FPyy + FPyy )
4143 aia; (a1 —My,)a5  qi(a3—M3,)  (gi —M7,)(q5 - M7,)

(C3)

Asaconsequence, the loop integrals can be evaluated for arbitrary photon masses My, and a constant TFF; the full result is
obtained by adding the four terms above, which is implicit in the main text. If employing a more elaborated TFF, the
procedure is analog and would produce additional terms.

APPENDIX D: BREMSSTRAHLUNG INTEGRAL
The solution to Eq. (11) has been given in Ref. [31]. The general result reads

I(pip)) = In( =25 ) In =
(Pi- ) (27) pidi [n<zi,j_’1i,j> n<m7>

1 u—u u—u u +u
—1In? Li,(1— Liy( 1 -
+4n<u°+u>+ 12< ; >—|— 12< " )

Twe employ factorized denominators; otherwise, the three-, four-, and five-point loop amplitudes would be hard to evaluate. If
interested in the operator product expansion (OPE) behavior, one should use a model resembling that of LMD + V [51] with parameters
fixed to the taylor expansion rather than masses.

*We take the average result from the two parametrizations employed in Ref. [52], the Bergstrom-Massé-Singer and the D’ Ambrosio-
Isidori-Portolés models, each of them leading to 0.59(2) GeV and 0.62(2) GeV for M, , respectively.

u_api] : (D1)

u=p;j
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where a = (2p; - p; +pl.2j/1,»j)/(2m,2) and v = (a?p? —pj)/( (ap? —pj)) In order to associate the cutoff energy,
E., with the 47 momenta, the parent particle frame should be adopted to evaluate the expression above. Note
that in the soft-photon approximation this coincides with the 4¢ rest frame. We find that, using the notation in
Appendix A,

L+ 6; ju 1 +6;u Aiji Ajiki

0 _ L] . 0 _ Jsl . _ 1] . _ ]l

PL=M—mT S M = M = M (D2)
2

S e A4 =0y v = OuPit =M %ijifi . (D3)

I —z;;+6; M(o;;(1 +6; ji) — (1 +8;.441)) Ty

L1 1 L1, I

QF = (PP £p)) =5 (W46 Ediju) @ = (P5£p)) =5 (146w £ Ajm), (D4)

in analogy with Ref. [5]. Furthermore, we give below the particular value for the new variables that are required in terms of
phase space ones,

Z2(1 = ypoyaa) £AV1 —y3a) + 2 dm2m?
Ry = 025 4( 22X EE e = M) Thaes) ~ g (D3)
2(1 4+ yiayss) A2 + y34) — E dm2m?
Fign gy = ) 4( RIWE s = T Ry o (D6)

L —xpp+x34 F Ay \//12 + y1,) + 4x104f, £ 24y15(1 + x5 — x;4)

1 2 T 2

(D7)

with the remaining {3, /1}2.}% combinations obtained by replacing (12) <> (34). Note, particularly, that x;;z;; and x;;4;; can
be employed instead of z;;, 4;; which are more involved.

APPENDIX E: THREE-POINT AMPLITUDES IN yPT

For a constant TFF—which would correspond to the LO in the chiral expansion—the three-point integrals are divergent.
Particularly, for MID, we find that”

L. 2(Jt'zF‘p _ _
DiviM}, = —5——5——"15= (7 (134 + ma) Py vy) (i37,04)
P34(Pi3g — ma)
2i Pk*(1—d™!
x Div 2’2/d4k S ol — (E1)
z°P k*(k+ P)*((k + py)* — mg)

with obvious results for the additional amplitudes. The loop-integral divergence must cancel when including the appropriate
counterterm. This is the same as that appearing in P — #7 decays, introduced in Ref. [32], and which in this process
manifests as

Lypr D x (W@ FE) (' r°0)0,P,  x(w) = —(r1 (1) +x2(w)) /4, (E2)

#In particular, using dimensional regularization in d = 4 — e dimensions, the divergence for the given integral reads —(3/2)A.(u),
with A.(u) = 2¢™" — yi + In(4zp?), with u the renormalization scale. Note that dimensional regularization entails an additional 1/4
term absent in other regularization schemes.
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£(p1) £(p1)

B £(ps) B (ps) ~ ~ [
- Upy) ~ B Upa) -7 U(p2)
U(ps) U(p2) (pa)
FIG. 9. Counterterm diagrams from yPT. Again, additional diagrams arise if identical leptons appear.
with y the renormalization scale.”® This produces the following amplitudes appearing in Fig. 9:
2.2
. —e“a Fp _ _
iMip = "5y (1) (Y (134 + ma) Py’ v2) (ii37,04), (E3)
P (Piag — ma)
) —e?a’Fp B B
iMy = 55—y (W) (0 Py (—paza + ma)y*vy) (ii37,04), (E4)
P34(Pr3s — mg)
. —e2a’Fp — —
iMip = %Z(ﬂ)(”ﬁl(ﬂm + my) Py vy) (i 7,07), (E5)
P12 (PTos — mp)
i —e*a’Fp B B
iMip = %Z(M)(%PYS(—mm + my )y oy) (i y,02), (E6)
Pi2(Piog — mj)

and corresponding exchange amplitudes whenever identical leptons are present. In the light of the equations above and
Eq. (E1), itis clear that divergences cancel exactly in the same manner as in P — £# decays [33] [see Eq. (2.2) and Eq. (6.1)
therein] as it should be. Concerning the NLO correction, it shifts Z; — Z; — y(u)/2 in Egs. (26) to (28). At this order, the
same counterterm applies to z°, 77, /' and, essentially, to K as well (see Ref. [53]). This may not be appropriate however—
see discussions in Ref. [33]—as it would produce different counterterms for each pseudoscalar and lepton species.’' In
order to show the accuracy of the chiral expansion, we give DirN-C numerically in terms of y. For such purpose, it is

convenient to express it as

THR/TH0 = 6uy (0.77) + Y 8.2(0.77), (E7)
4

where summation is meant for e e~ "~ cases alone, and coefficients, dyy », given in Table III. From the results therein, it
is clear that counterterm effects are irrelevant for the purely electronic channels. For channels including muons, there is
however a delicate cancellation among the loop and counterterms, which makes this contribution quite sensitive to y(0.77),
in contrast to the calculation including the TFF. To find a better agreement with the latter, we find it better to use the y
associated to the same pseudoscalar and lepton from Ref. [33]. Moreover, we found it better to adopt our results in [33]
corresponding to a factorized TFF. Indeed, we employed a more elaborate result for the TFF concerning three-point
corrections and found it irrelevant to include the OPE or not, in contrast to P — £7 decays.

“It is a common practice to use y(0.77); for an arbitrary scale u, y(u) = y(0.77) + 31n(u/0.77) with u in GeV.
'In Ref. [33] it was shown that different pseudoscalars (P = z°, ), TFFs (Fact vs OPE there), and leptonic channels (£ = e, u) lead
X € (2.53 +6.46). For the K, it would give y € (6.68 +7.25) and y € (3.74 +4.28) for £ = e, u and (Fact + OPE).
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APPENDIX F: NUMERICAL NLO CORRECTIONS

See Table IV and V.

TABLE IV. Results for different NLO contributions with a constant TFF. Note that ; and 5P include BS contributions. The units are
chosen analogous to Table L.

7% — eteete

D+E 0.0389(2) ~0.0032(2) ~0.6355(6) ~0.0007(0) ~0.0016(1) 0 ~0.6021(7)
Int —0.0008(1) 0.0000(0) 0.0123(1) —0.0004(0) 0.0005(0) 0.0009(1) 0.0125(2)
Total 0.0381(2) ~0.0032(2) ~0.6232(6) ~0.0011(0) ~0.0011(1) 0.0009(1) ~0.5896(7)
K9 - etemete
D+E 0.0942(1)  —0.0043(0)  —15142(4)  —0.0010(0)  —0.0022(2) 0 —1.4275(4)
Int —0.0010(1) 0.0000(0) 0.0166(2) —0.0007(0) 0.0007(0) 0.0010(2) 0.0166(3)
Total 0.0932(2) —0.0043(0) —1.4979(4) —0.0017(0) —0.0015(2) 0.0010(2) —1.4109(5)
K9 - eteptu
Dir 0.0621(1) —0.0065(0) —0.2748(3) —0.0025(1) —0.0063(4) 0 —0.2280(5)
K = pruptum
D+E 0.0258(0) —0.0043(0) 0.0536(0) —0.0013(0) —0.0024(0) 0 0.0714(1)
Int —0.0014(0) 0.0002(0) —0.0023(0) 0.0005(0) —0.0001(0) —0.0057(1) —0.0087(1)
Total 0.0244(0) ~0.0041(0) 0.0513(0) ~0.0008(1) —0.025(0) ~0.0057(1) 0.0628(1)
n—eteete
D+E 0.0996(1) ~0.0044(0) —~1.6000(5) ~0.0010(1) ~0.0023(2) 0 ~1.5081(5)
Int —0.0010(1) 0.0000(0) 0.0169(2) —0.0007(1) 0.0007(0) 0.0024(2) 0.0183(3)
Total 0.0986(1)  —0.0044(0)  —1.5831(5)  —0.0017(1)  —0.0016(1) 0.00242)  —1.4898(6)
n—eteptu”
D 0.0890(1)  —0.0088(0)  —0.4141(4)  —0.0026(1)  —0.0087(1) 0 ~0.3452(4)
n— uu e
D+E 0.17902)  —0.0275(0) 023242)  —0.0065(2)  —0.0147(5) 0 0.3627(6)
Int ~0.0137(1) 0.0021(1)  —0.0124(1) 0.0009(0) 0.000000)  —0.0347(3)  —0.0578(4)
Total 0.1653(2) —0.0254(1) 0.2200(2) —0.0056(2) —0.0147(5) —0.0347(3) 0.3049(7)
VP F, F 3p 4P 5p NLO
TABLE V. Analogous results to Table V for the g>-dependent TFFs introduced in Appendix C.
7’ — etemete
D+E 0.0392(2)  —0.0032(2)  —0.6391(6)  —0.0007(0) ~0.0017(1) 0 ~0.6055(7)
Int —0.0008(1) 0.0000(0) 0.0126(1) —0.0004(0) 0.0005(0) 0.0009(1) 0.0128(2)
Total 0.0384(2)  —0.0032(2)  —0.6265(6)  —0.0011(0) ~0.0012(1) 0.0009(1) ~0.5927(7)
K9 - efeete
D+E 0.1047(1)  —0.0045(0)  —1.6890(5)  —0.0016(1) ~0.0048(5) 0 ~1.5952(7)
Int —0.0016(1) 0.0000(0) 0.0265(3) —0.0012(1) 0.0013(1) 0.0017(3) 0.0267(4)
Total 0.1031(1)  —0.0045(0)  —1.6625(6)  —0.0028(1) ~0.0035(5) 0.0017(3) ~1.5685(9)
K) —» eteutum
D 0.1067(1)  —0.0107(1)  —0.4763(5)  —0.0067(2) ~0.0209(2) 0 ~0.4079(8)
KY — ptuptpm
D+E 0.0481(0) —0.0080(0) 0.0985(1) —0.0027(1) —0.0070(2) 0 0.1289(2)
Int ~0.0026(2) 0.0004(0)  —0.0044(0)  —0.0013(0) ~0.0007(0) ~0.0142(1) ~0.0228(2)
Total 0.04552)  —0.0076(0) 0.0941(1)  —0.0040(1) ~0.0077(2) ~0.0142(1) 0.1061(3)
n—eteete
D+E 0.1086(1)  —0.0045(0)  —1.7490(5)  —0.0016(1) —0.0044(4) 0 —~1.6509(6)
Int ~0.0015(1) 0.0000(0) 0.0251(2) ~0.0011(1) 0.0012(1) 0.0015(2) 0.0016(6)
Total 0.1070(1)  —0.0045(0)  —1.7239(5)  —0.0027(1) ~0.0032(4) 0.0015(2) ~1.6509(6)
n—eteutu”
D 0.1337(1)  —0.0127(1)  —0.6267(6)  —0.0057(1) ~0.0224(2) 0 ~0.5338(7)
n— pru e
D+E 0.2914(3) —0.0446(0) 0.3679(4) —0.0111(3) —0.0361(11) 0 0.5675(12)
Int ~0.0229(2) 0.0035(1)  —0.0207(2)  —0.0056(2) ~0.0018(1) ~0.0718(6) ~0.1193(7)
Total 0.2685(4) —0.0411(1) 0.3472(4) —0.0167(4) —0.0379(11) —0.0718(6) 0.4482(15)
VP F, F, 3p 4P 5P NLO
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