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In this study, we revisit and complete the full next-to-leading order corrections to pseudoscalar double-
Dalitz decays within the soft-photon approximation. Comparing to the previous study, we find small
differences, which are nevertheless relevant for extracting information about the pseudoscalar transition
form factors. Concerning the latter, these processes could offer the opportunity to test them—for the first
time—in their double-virtual regime.
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I. INTRODUCTION

Double-Dalitz decays of pseudoscalar mesons
(P → l̄ll̄0l0) have attracted attention over the years, both
theoretically [1–11] and experimentally [12–22], for
different reasons. On the one hand, they contain
important—Direct—information about the pseudoscalar
meson structure, which is encoded in their double-virtual
transition form factors (TFFs). Interestingly enough, dou-
ble-virtual effects have never been measured, and are
relevant for predicting the hadronic light-by-light contri-
bution to the anomalous magnetic moment of the muon
[23,24]. On the other hand, the angular distribution
associated to the lepton planes (ϕ≡ ϕl̄l;l̄0l0) is a
CP-sensitive observable and was indeed the first exper-
imental evidence for the parity of the π0 [12,25]. Since no
significant amount of CP violation is expected in these
processes within the standard model, any signal of this
would be very interesting.1 However, before extracting any
information from these decays, a careful analysis of the
next-to-leading-order (NLO) radiative corrections (RCs) is
required as we shall see. A partial analysis of the NLO RC
was performed in Ref. [5], finding sizeable corrections. In
this study, we review the RCs evaluated in Ref. [5] and
include their missing diagrams in order to obtain the full
NLO corrections.
The paper is structured as follows: the leading-order (LO)

results and definitions are presented in Sec. II, whereas the

NLO corrections are introduced in Sec. III—which includes
the new corrections as well as analytical and numerical
comparison to previous results in Ref. [5]. Finally, in Sec. IV,
we discuss briefly about experimental prospects regard-
ing TFFs.

II. LO RESULTS

The LO result is given by the tree-level processes
depicted in Fig. 1 (left) [for identical leptons an addi-
tional—exchange—diagram appears, see Fig. 1 (right)],
whose amplitude is related to the anomaly.2 Particularly, for
the direct and exchange contribution we obtain

iMLO
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FPγγðs12; s34Þ
s12s34

ϵμνρσp
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ρ
34½ūðp1Þγνvðp2Þ�
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ρ
32½ūðp1Þγνvðp4Þ�

× ½ūðp3Þγσvðp2Þ�; ð2Þ

respectively, where FPγγðq21; q22Þ is the pseudoscalar
TFF and encodes the meson structure. Note, in particular,
the relative sign for the exchange contributions, which
is generic and arises from Fermi statistics. The amplitude
squared can be expressed then as a combination of
direct (jMLO

D j2), exchange (jMLO
E j2) and interference

(2ReMLO
D MLO�

E ) terms. Employing the Cabibbo-
Maksymowicz description [27] for the four-body final
state (see Appendix A), these read
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jMLO
D j2 ¼ e8jFPγγðs12; s34Þj2

x12x34
λ2ð2 − λ212 þ y212 − λ234 þ y234 þ ðλ212 − y212Þðλ234 − y234Þsin2ϕÞ; ð3Þ

jMLO
E j2 ¼ e8jFPγγðs14; s32Þj2

x14x32

�
λ2exð2 − ðλ214 þ λ232ÞÞ þ 2ðx12 − x34Þ2

þ λ2
�
1

2
ðy12 þ y34Þ2 þ ðλ212 − y212Þðλ234 − y234Þsin2ϕ

x12x34
x14x32

��
; ð4Þ

2ReMLO
D MLO�

E ¼ e8ReFPγγðs12; s34ÞF�
Pγγðs14; s32Þ

8x12x34x14x32
λ2ð8η4 − w2ð1þ y12y34Þð2 − y212 − y234Þ

þ 4η2ðx12y12 þ x34y34Þðy12 þ y34Þ þ ð8η2 − zðy12 þ y34Þ2ÞΞþ 2Ξ2Þ; ð5Þ

which are in good agreement with Ref. [5]. Exchange
contributions, such as Eq. (4), can be obtained, in general,
from the direct ones by shifting to the exchange variables, a
procedure which is much more efficient and is outlined in
Appendix A.
Finally in this section, we obtain the double-Dalitz

branching ratios in terms of the two-photons decay
(Γ4l=Γ2γ) for different pseudoscalars and lepton species
considering both, the case of a constant TFF, and a simple
—but precise low-energy—TFF description in terms of
Padé approximants described in Appendix C. The decay
widths are given, in general, by3

Γ4l ¼ 1

2M

Z
dΦ4jMDj2 þ ðjMEj2 þ 2ReMDM�

EÞ;

Γ2γ ¼
πα2M3

4
jFPγγð0; 0Þj2: ð6Þ

Note, in particular, that direct and exchange terms con-
tribute the same to the total decay width, and it is therefore
sufficient to calculate the direct one. Furthermore, we
introduce a change of variables that improves the numerical

integration convergence and proves valuable when calcu-
lating the NLO contributions:

s12ð34Þ → 4m2
aðbÞ exp

s̄12ð34Þ
4m2

aðbÞ
;

ds12ds34 → ds̄12ds̄34
s12s34

16m2
am2

b

: ð7Þ

This cancels out the photon propagators in MLO
D ,

resulting in a flatter—nonpeaked—integrand.4 We
quote our LO results in Table I with the only exception
of the η0, which we postpone for a future work. The reason
for this is the presence of resonant structures for the
electronic modes that require certain care when describing
the TFF—especially if dealing with NLO corrections (see
Ref. [28] in this respect for the Dalitz decay case). The
integrals have been performed numerically using the CUBA

library [29] and statistical errors are associated to the MC
procedure alone5 and are in good agreement with Ref. [5].
Having introduced the main concepts, we move on to the
NLO results.

FIG. 1. The direct (left) and exchange (right) diagrams contributing to the process (the latter one appears for identical fermions in the
final state).

3See Appendix A for the phase-space boundaries and dΦ4

definitions.

4We expect this change of variables to be valuable for Monte
Carlo (MC) generators that would require us to evaluate many
events in the hit-or-miss procedure otherwise.

5Furthermore, for the LO calculation, the result was checked
with the NIntegrate routine in Mathematica.
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III. RADIATIVE CORRECTIONS

At the NLO in α, additional amplitudes (MNLO) appear,
resulting in further contributions of the kind

jMj2 ¼ LOþ 2ReMNLO
D MLO�

D þ 2ReðMNLO
E MLO�

E

þMNLO
D MLO�

E þMNLO
E MLO�

D Þ þOðα6Þ
≡ LOþ DirNLO þ ðExcNLO þ IntNLOD þ IntNLOE Þ
þOðα6Þ; ð8Þ

with obvious identifications.6 The different contributions
correspond to, on the one hand, the (TFF-independent)
vacuum polarization (Sec. III B) and vertex functions
(Sec. III C) and, on the other hand, the additional
(TFF-dependent) three-, four-, and five-point loop ampli-
tudes (Secs. III D and III F). Among the latter, only the five-
point was considered in Ref. [5]. Therefore, our work
completes the—so far missing—full NLO corrections.
Besides, some terms contain infrared (IR) divergencies
that require the inclusion of real photon emission terms;
these are the bremsstrahlung (BS) contributions that we
account for in the soft-photon approximation in analogy to
Ref. [5] (Sec. III A).7 When giving our numerical results,
we opt for combining the NLO results with the correspond-
ing BS contribution to obtain a finite IR result. In the
following, we recapitulate the results from each contribu-
tion, commenting on the differences we find with respect to
Ref. [5]. The numerical results and comparison are rel-
egated to Sec. III G.

A. Soft-photon emission

The photon emission graphs are shown in Fig. 2. In this
work, as said, we employ the soft-photon approximation,

which is convenient due to its factorization properties that
allow an easy cancellation of IR divergencies. Furthermore,
in this limit, diagrams like that in Fig. 2 (right) do not
contribute.8 Therefore, we only need to account for pure BS
contributions like those in Fig. 2 (left), which then need to
be integrated over the soft-photon energies to cancel the IR
divergencies. The generic contribution can be expressed as

jMj2 ¼
Z

Ec

0

d3k
ð2πÞ32Ek

jMBSj2;

MBS ¼ eMLO
X
f

Qf
pf · ε�γ
pf · kγ

þOðkγÞ ð9Þ

where E2
k ¼ k2γ −m2

γ , Qf stands for the lepton charge (we
employ an IR-mass regularization) and sum over photon
polarizations is implicit. The chosen Ec is related to the
four-lepton invariant mass as we shall see, a parameter that
is closely related to the experimental setup. Summarizing,
the NLO contribution can be expressed as

jMSFj2 ¼ e2jMLOj2ð2Iðp1; p2Þ þ 2Iðp3; p4Þ
þ 2Iðp1; p4Þ þ 2Iðp2; p3Þ − 2Iðp2; p4Þ
− 2Iðp1; p3Þ − Iðp1; p1Þ − Iðp2; p2Þ
− Iðp3; p3Þ − Iðp4; p4ÞÞ; ð10Þ

where Iðpi; pjÞ ¼ ðpi · pjÞJðpi; pjÞ, with the latter given
as [30]

Jðpi; pjÞ ¼
Z

Ec

0

d3k
ð2πÞ32Ek

1

ðp · kγÞðp0 · kγÞ

¼ 1

2ð2πÞ2
Z

1

0

dx
q2

�
ln

�
4E2

c

m2
γ

�
þ q0

q
ln

�
q0 − q
q0 þ q

��
;

ð11Þ
with q ¼ xpi þ ð1 − xÞpj andOðmγÞ terms neglected. The
general integral has been solved in Ref. [31] and is given in
Appendix D. For identical momenta, integration is trivial
and yields

TABLE I. Γ4l=Γ2γ in units of 10−5, 10−6, and 10−9 for the 4e, 2e2μ, and 4μ modes. The second and third row stand for the sum of
direct and exchange (Dþ E) and interference (Int) terms, respectively; the third row (Total) is the sum of both. The following rows
correspond to the analogous result for the TFFs described in Appendix C.

π0 → 4e KL → 4e KL → 2e2μ KL → 4μ η → 4e η → 2e2μ η → 4μ

Dþ E 3.4558(3) 6.2582(6) 2.8589(3) 0.9886(1) 6.4972(6) 3.9961(4) 6.5622(7)
Int −0.0362ð3Þ −0.0363ð4Þ � � � −0.0511ð1Þ −0.0362ð4Þ � � � −0.4883ð7Þ
Total 3.4196(4) 6.2219(7) 2.8589(3) 0.9375(1) 6.4610(7) 3.9961(4) 6.0739(10)
FFDþE 3.4692(3) 6.7457(7) 4.8435(5) 1.8417(2) 6.9068(7) 5.9259(6) 10.658(1)
FFInt −0.0369ð4Þ −0.0578ð6Þ � � � −0.0972ð1Þ −0.0537ð5Þ � � � −0.818ð1Þ
FFTotal 3.4323(5) 6.6879(9) 4.8435(5) 1.7445(2) 6.8531(9) 5.9259(6) 9.841(1)

6In the following, we comment on DirNLO and IntNLOD alone—
the remaining contributions can be trivially obtained upon the use
of the exchange variables defined in Appendix A.

7Reference [5] includes also the radiative P → l̄ll̄0l0γ
decay—besides the soft-photon approximation—for photon
energies above certain threshold. In this study, we focus in the
purely virtual corrections, for which only the soft-photon con-
tribution is required.

8The reason is that such an amplitude is proportional to
ϵμνρσp

μ
ijklk

ρ
γ , with kγ → 0.
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Iðpi; piÞ ¼
1

4π2

�
ln

�
2Ec

mγ

�
þ 1þ δi;jkl

2λi;jkl
ln

�
Ω−

i

Ωþ
i

��
: ð12Þ

Note the difference with respect to Ref. [5] that seems to assign pi=p0
i → λii, which is bizarre since—according to their

definitions—λii → 0, reducing the second term to −1. Given the numerical differences that we anticipate, this could be a
source of them unless it corresponds to a typo. For two different momenta we find, in good agreement with Ref. [5],

Iðpi; pjÞ ¼
zij

8π2λi;j

�
ln

�
zi;j þ λi;j
zi;j − λi;j

�
ln

�
2Ec

mγ

�
þ 1

4
ln2

�
Ω−

i

Ωþ
i

�
−
1

4
ln2

�Ω−
j

Ωþ
j

�

þ Li2

�
1 −

ϒijΩþ
i

xijλij

�
þ Li2

�
1 −

ϒijΩ−
i

xijλij

�
− Li2

�
1 −

ϒijΩþ
j

xijλij

�
− Li2

�
1 −

ϒijΩ−
j

xijλij

��
; ð13Þ

where the variables above have been defined in Appendix D.

B. Vacuum polarization

The vacuum polarization (VP), shown in Fig. 3, induces additional contributions which simply multiply the LO ones as
follows:

MVP ¼ MLO
D ½Π̂ðs12Þ þ Π̂ðs34Þ� þ ðMLO

E ½Π̂ðs14Þ þ Π̂ðs32Þ�Þ; ð14Þ

where Π̂ðq2Þ represents the renormalized vacuum polarization. This implies a summation over the different lepton and
scalar species9 whose individual contributions read

Π̂lðq2Þ ¼ − α
3π ð83 − σ2 þ 1

2
ð3 − σ2ÞðσLÞÞ

Π̂sðq2Þ ¼ − α
6π ð13 þ σ2 þ σ2

2
ðσLÞÞ

σL ¼

8>>>>>><
>>>>>>:

σ ln
�
σ−1
1þσ

�
q2 < 0

−2ð1þ ð3σ2Þ−1Þ q2 → 0

−2ρtan−1ðρ−1Þ 0 < q2 < 4m2
l;s

σ

�
ln
�
1−σ
σþ1

�
þ iπ

�
q2 > 4m2

l;s

ð15Þ

FIG. 2. Photon emission graphs (alternative insertions are implicit). In the soft-photon approximation, only the left diagram
contributes (for identical leptons, exchange diagrams are implied).

FIG. 3. Contributions to the VP. Counterterms and exchange diagrams are implied.

9We consider l ¼ e, μ and s ¼ π� contributions. The latter was not included in Ref. [5], but is added here given thatmμ ∼mπ . In any
case, this does not produce a large impact. For the η0 case, an appropriate description for the hadronic vacuum polarization would be
required though.
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where σ2 ¼ −ρ2 ¼ 1–4m2
l;s=q

2. This produces the following terms for the NLO contributions according to the notation in
Eq. (8):

DirNLO ¼ jMLO
D j22ReðΠ̂ðs12Þ þ Π̂ðs34ÞÞ; IntNLOD ¼ 2Re½MLO

D MLO�
E ðΠ̂ðs12Þ þ Π̂ðs34ÞÞ�: ð16Þ

The results above are in agreement with respect to those in Ref. [5], up to ambiguities in their NLO definition
(2ReMVPMLO� ¼ jMLOj2Pg

P
lg 2ReΠ̂lgðsijÞ) concerning channels with identical leptons. This comment applies as well

to the next section.

C. Vertex corrections

The vertex corrections (including lepton self-energies as usual) are shown in Fig. 4 and amount, in general, to replace the
photon vertex as

γμ → γμF1ðq2Þ þ
iσμλ

2ml
qλF2ðq2Þ ¼ γμðF1ðq2Þ þ F2ðq2ÞÞ −

q̄μ

2ml
F2ðq2Þ; ð17Þ

where q ¼ pl þ pl̄ and q̄ ¼ pl − pl̄. At LO, F1ð2Þðq2Þ ¼ 1ð0Þ, whereas the NLO contributions read

δF1ðsÞ ¼
α

π

��
1þ 1þ σ2

2σ

�
ln

�
1 − σ

1þ σ

�
þ iπ

��
ln

�
ml

mγ

�
− 1 −

1þ 2σ2

4σ

�
ln

�
1 − σ

1þ σ

�
þ iπ

�

−
1þ σ2

2σ

�
1

4
ln2

�
1 − σ

1þ σ

�
þ Li2

�
2σ

1þ σ

�
−
π2

2
þ iπ

2
ln

�
1 − σ2

4σ2

���
; ð18Þ

δF2ðsÞ ¼
α

π

1 − σ2

4σ

�
ln

�
1 − σ

1þ σ

�
þ iπ

�
; ð19Þ

with σ ¼ λij for s ¼ sij and are in good agreement with the results in Ref. [5]. As a consequence, the correction due to F1

factorizes and reduces to that in Eq. (16) upon the Π̂ðsijÞ → δF1ðsijÞ replacement. It is easy to see from Eq. (10) that IR
divergencies in DirNLO arising from F1 cancel those of 2Iðp1; p2Þ þ 2Iðp3; p4Þ −

P
iIðpi; piÞ terms—similarly, for IntNLOD ,

they cancel half of them. For the case of F2, factorization in the form of Ref. [5] is not obvious.10 Indeed, we find that

DirNLO ¼ e8jFPγγðs12; s34Þj2
x12x34

λ2ðð2 − ðλ234 − y234ÞÞ2ReF2ðs12Þ þ ð12Þ ↔ ð34ÞÞ ð20Þ

IntNLOD ¼ Re
e8FPγγðs12; s34ÞF�

Pγγðs14; s32Þ
8x12x34x14x32

λ2F2ðs12Þ½2Ξ2 þ w2ð2þ y12y34 − y212Þðy234 − λ234Þ

þ 4x12ð1 − zÞðy212 − λ212Þ þ Ξð8η2 − zy34ðy12 þ y34Þ þ 4x12λ212Þ� þ ð12Þ ↔ ð34Þ; ð21Þ
which only reduces to the result in Ref. [5], for the direct term, after ϕ integration—a connection which is unclear if
identical leptons appear. In any case, the differences for the integrated decay width would not exist for direct (and exchange)
terms and are irrelevant for interference terms.

FIG. 4. Contributions to the vertex corrections. Additional insertion over vertices and lepton legs as well as counterterms and exchange
diagrams are implied.

10Particularly, they claim that it reduces to jMLOj22ReF2ðsijÞ2ð2þ y2ij − λ2ijÞ−1.
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D. Three-point amplitudes

The three-point amplitudes are the first set of RCs that were not computed in Ref. [5], which contains four different
diagrams (and four additional exchange diagrams for identical leptons). Such a contribution is UV divergent for a constant
TFF and would require the same counterterm appearing in P → l̄l decays [32–35]. In the following, we consider a
nonconstant TFF that can be decomposed into massive-like photon propagators (see Appendix C) and refer to Appendix E
for the case of a constant TFF. For identical leptons, the diagrams are shown in Fig. 5 and their amplitudes read11

iM3P
1D ¼ C3P

Z
d4k
ð2πÞ4

½ū1γλðp134 þmaÞΓ3Pv2�½ū3γλv4�
k2ðkþ PÞ2ððkþ p2Þ2 −m2

aÞ
FPγγðk2; ðkþ PÞ2Þ
p2
34ðp2

134 −m2
aÞ

; ð22Þ

iM3P
2D ¼ C3P

Z
d4k
ð2πÞ4

½ū1Γ3Pð−p234 þmaÞγλv2�½ū3γλv4�
k2ðkþ PÞ2ððkþ p1Þ2 −m2

aÞ
FPγγðk2; ðkþ PÞ2Þ
p2
34ðp2

234 −m2
aÞ

; ð23Þ

with M3P
3D;4D given upon ð12Þ ↔ ð34Þ replacement (exchange terms would have a relative sign and exchanged 2 ↔ 4

subscripts). In the expressions above, C3P ¼ e4ð i
16π2

Þ−1 α
2π and Γ3P ¼ ðk2P − ðk · PÞ=kÞγ5 have been introduced. In addition, it

is easy to show using the properties of charge conjugation thatM3P
2D ¼ M3P

1Dðp1 ↔ p2Þ, which is related to y12 → −y12 and
ϕ → ϕþ π replacements. Since these are symmetries ofMLO

D , it is possible to obtain all the DirNLO contributions from only
one of them. Introducing the loop integrals and associated functions12

I1 ¼ B0ðp2
134;M

2
V2
; m2

aÞ þM2
V1
C0ðM2; p2

134; m
2
a;M2

V1
;M2

V2
; m2

aÞ ð24Þ

Ia
2 ¼ C00 þM2C11 þ ðp2 · PÞC12;Ib

2 ¼ M2C12 þ ðp2 · PÞC22; ð25Þ

where Cμν ¼ CμνðM2; p2
134; m

2
a;M2

V1
;M2

V2
; m2

aÞ, the first contribution to DirNLO reads

2ReMLO�
D M3P

1D ¼ 2Re
e8F�

Pγγðs12; s34Þ
x34

α

4π

�
ðI1 − Ia

2Þ
�
4λy12ð2þ y234 − λ234Þ −

λzy34Ξ
x12x34

þ 2M2λ2ð1 − λ212Þð2þ y234 − λ234Þ
p2
134 −m2

a

�
− Ib

2

�
M2λ2ð1 − λ212Þð2þ y234 − λ234Þ

p2
134 −m2

a

��
; ð26Þ

where p2
134 −m2

a ¼ ðM2 − s12 þ s34 þM2λy12Þ=2 and P · p2 ¼ ðM2 þ s12 − s34 −M2λy12Þ=2. The remaining contribu-
tions can be obtained then upon the appropriate fsij; yij;ϕg replacements. Regarding contributions of the IntNLOD kind, only
p1;2 ↔ p3;4 is a symmetry for MLO

E , and two terms must be computed. These can be expressed as

2ReMLO�
E M3P

1D ¼ −2Re
e8F�

Pγγðs14; s32Þ
s14s32ðp2

134 −m2Þ
α

2π
ððI1 − Ia

2Þtrð1DÞjP − ðIb
2Þtrð1DÞjp2

Þ; ð27Þ

�(p3)

�(p4)

�(p1)

�(p2)

�(p3)

�(p4)

�(p1)

�(p2)

�(p3)

�(p4)

�(p1)

�(p2)

�(p3)

p4)

(p1)

�(p2)

�(

�

FIG. 5. The three-point amplitudes for different lepton species (noted in the text as 1D, 2D, 3D and 4D). If identical leptons are
present, exchange diagrams (e.g., l̄2 ↔ l̄4) arise.

11To derive these, we made use of the equations of motion for spinors as well as the four-dimensional identity ϵαβμνγμγργνkαkρ ¼
2ikαkρðgαργβ − gβργαÞγ5 (note that ϵ0123 ¼ þ1). For comments on regularization, see Ref. [35].

12We use the conventions for the Passarino-Veltman functions in [36]. As explained in Appendix C, the TFF effect can be reduced to a
sum of massive-photon propagators, for which we introduce photon massesMV1;2

which should be summed over—see Appendix C for
further details. For a constant TFF, MVi

→ 0.
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2ReMLO�
E M3P

2D ¼ −2Re
e8F�

Pγγðs14; s32Þ
s14s32ðp2

234 −m2Þ
α

2π
ððI 0

1 − I 0a
2Þtrð2DÞjP − ðI 0b

2Þtrð2DÞjp1
Þ; ð28Þ

with the remaining ones obtained upon the ð12Þ ↔ ð34Þ replacement. The meaning for I ða;bÞ
1;2 is identical as in the previous

case and the primed ones amount to the p2 → p1 replacement. In addition, the following traces have been introduced:

trð1DÞjl ¼ itr½ðp1 þmÞγλðp134 þmÞ=lγ5ðp2 −mÞγσðp3 þmÞγλðp4 −mÞγν�ϵμνρσpμ
14p

ρ
32; ð29Þ

trð2DÞjl ¼ itr½ðp1 þmÞ=lγ5ð−p234 þmÞγλðp2 −mÞγσðp3 þmÞγλðp4 −mÞγν�ϵμνρσpμ
14p

ρ
32: ð30Þ

The resulting expressions are long but otherwise straightforward to evaluate with Feyncalc [37,38].

E. Four-point amplitudes

The four-point amplitudes were not calculated in Ref. [5] either and amount to a total of two contributions (another two
appear for identical leptons) which are shown in Fig. 6. The first amplitude can be expressed as13

iM4P
1D ¼ C4P

Z
d4k
ð2πÞ4

½ū1Γλ
4Pv2�½ū3γλv4�FPγγðk2; ðkþ PÞ2Þ

k2½ðkþ p1Þ2 −m2
a�½ðkþ p134Þ2 −m2

a�ðkþ PÞ2
1

s34
;

Γλ
4P ¼ 2iðkλðkþ PÞ2=k − ðkþ PÞλk2ð=kþ PÞÞγ5 þ 2ϵμνρσkμPρðpν

1γ
λð=kþ PÞγσ þ pν

2γ
σ=kγλÞ; ð31Þ

with C4P ¼ ie4ð i
16π2

Þ−1 α
4π. The M4P

2D amounts to exchanging ð12Þ ↔ ð34Þ subscripts. Again, the standard reduction into
Passarino-Veltman function can be performed and equations of motion used to simplify expressions. This way, we can
express the whole result for DirNLO as

2ReMLO�
DðEÞM

4P
1D ¼∓ 2e8Re

F�
Pγ�γ� ðs12ð14Þ; s34ð32ÞÞ
s12s234ðs14s34s32Þ

α

4π
ð½� � ��1 þ ½� � ��2 þ ½� � ��3Þ; ð32Þ

plus additional ð12Þ ↔ ð34Þ terms, where ½� � ��i stand for

ϵμνρσp
μ
12p

ρ
34 × trðp1 þmaÞΓλðiÞ

4P ðp2 −maÞγν × trðp3 þmbÞγλðp4 −mbÞγσ;
ϵμνρσp

μ
14p

ρ
32 × trðp1 þmaÞΓλðiÞ

4P ðp2 −maÞγσðp3 þmbÞγλðp4 −mbÞγν; ð33Þ

for DirNLO and IntNLOD , respectively, and with Γλ
4P ¼ Γλð1Þ

4P þ Γλð2Þ
4P þ Γλð3Þ

4P defined below

Γλð1Þ
4P ¼ 2i½γλC00 þmapλ

1ðC11 þ 2C12 þ C22Þ þ pλ
1p34ðC12 þ C22Þ�γ5 þ 2iM2

V2
½γλD00

þmapλ
1ðD11 þ 2D12 þD22 þ 3D13 þ 3D23 þ 2D33Þ þ pλ

1p34ðD12 þD13 þD22

þ 2D23 þD33Þ þmapλ
2ðD13 þD23 þ 2D33Þ þ pλ

2p34ðD23 þD33Þ�γ5 − ðp1 → p2Þ; ð34Þ

�(p3)

�(p4)

�(p1)

�(p2)

�(p1)

�(p2)

�(p3)

�(p4)

FIG. 6. The four-point amplitudes for different lepton species (noted as 1D and 2D). Exchange diagrams arise for identical leptons.

13Again, we use similar manipulations as in the previous section.
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Γλð2Þ
4P ¼ 2ϵμνρσPρpν

1γ
λγμγσD00 þ 2ϵμνρσp

μ
34p

ν
1p

ρ
2ðγλp1γ

σðD12 þD22 þD23 þD2Þ
þmaγ

λγσðD23 þD2Þ þ γλp34γ
σðD22 þD23 þD2ÞÞ; ð35Þ

Γλð3Þ
4P ¼ 2ϵμνρσPρpν

2γ
σγμγλD00 þ 2ϵμνρσp

μ
34p

ν
1p

ρ
2ðγσp2γ

λD13 þ γσp34γ
λðD13 þD12Þ

−maγ
σγλðD11 þD12 þD13ÞÞ: ð36Þ

Once more, standard Passarino-Veltman Dμν ¼ Dμνðm2
a; s34; m2

a;M2; p2
134; p

2
234;M

2
V1
; m2

a; m2
a;M2

V2
Þ and Cμν ¼

Cμνðm2
a; s34; p2

134;M
2
V1
; m2

a; m2
aÞ functions have been introduced—see comments in Sec. III D. The traces can be computed

easily with Feyncalc.

F. Five-point amplitudes

The last set of contributions are the five-point amplitudes. There are a total of four diagrams as shown in Fig. 7 (plus
additional exchange diagrams whenever identical leptons appear). The corresponding amplitudes can be expressed, after
applying the equations of motion, as

iM5P
1D ¼ −e6

Z
d4k
ð2πÞ4 ð−4ðp2 · p3Þðū1γνv2Þðū3γσv4Þ þ 2kα½ðū1γνγαp3v2Þðū3γσv4Þ

− ðū1γνv2Þðū3p2γ
αγσv4Þ� þ kαkβðū1γνγαγηv2Þðū3γηγβγσv4ÞÞC5Pνσðp3; p2Þ; ð37Þ

iM5P
2D ¼ þe6

Z
d4k
ð2πÞ4 ð−4ðp1 · p3Þðū1γνv2Þðū3γσv4Þ þ 2kα½ðū1p3γ

αγνv2Þðū3γσv4Þ

− ðū1γνv2Þðū3p1γ
αγσv4Þ� þ kαkβðū1γηγαγνv2Þðū3γηγβγσv4ÞÞC5Pνσðp3; p1Þ ð38Þ

iM5P
3D ¼ þe6

Z
d4k
ð2πÞ4 ð−4ðp2 · p4Þðū1γνv2Þðū3γσv4Þ þ 2kα½ðū1γνγαp4v2Þðū3γσv4Þ

− ðū1γνv2Þðū3γσγαp2v4Þ� þ kαkβðū1γνγαγηv2Þðū3γσγβγηv4ÞÞC5Pνσðp4; p2Þ ð39Þ

iM5P
4D ¼ −e6

Z
d4k
ð2πÞ4 ð−4ðp1 · p4Þðū1γνv2Þðū3γσv4Þ þ 2kα½ðū1p4γ

αγνv2Þðū3γσv4Þ

− ðū1γνv2Þðū3γσγαp1v4Þ� þ kαkβðū1γηγαγνv2Þðū3γσγβγηv4ÞÞC5Pνσðp4; p1Þ; ð40Þ

where

C5Pνσðpi; pjÞ ¼
ϵμνρσðpμ

12p
ρ
34 þ PμkρÞFPγγððk − p12Þ2; ðkþ p34Þ2Þ

k2½ðkþ p2
i Þ −m2

i �ðkþ p34Þ2ðk − p12Þ2½ðk − pjÞ2 −m2
j �
; ð41Þ

and is in good agreement with Ref. [5]. The decomposition above is convenient, as it isolates the IR-divergent part
contained in the first term. Particularly, taking k → 0 and retaining only the divergent propagators in the loop integral, it is
easy to show that

FIG. 7. The pentagon diagrams contributing to the NLO corrections (noted as 1D, 2D, 3D, and 4D). For identical final state leptons
additional exchange diagrams appear. The photon propagator connecting the two letpons carries always the loop momentum k in our
convention.
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M5P
D jIR ¼ −ðQi ·QjÞMLO e2

8π

zij
λij

×

�
ln

�
zij þ λij
zij − λij

�
− 2iπ

�
lnmγ; ð42Þ

where Qi;j denotes the charge of the particles. Comparing
to Eqs. (10) and (13), DirNLO cancels IR divergences arising
from 2Iðp1; p4Þ þ 2Iðp2; p3Þ − 2Iðp2; p4Þ − 2Iðp1; p3Þ
terms, whereas IntNLOD cancels the Iðp1; p4Þ þ Iðp2; p3Þ −
Iðp2; p4Þ − Iðp1; p3Þ combination.
At this point it is important to note that the diagrams

above are all related through p1 ↔ p2 and p3 ↔ p4

exchanges—similar to the three-point case. Note, however,
how in this case each of these changes carries a minus sign.
This must actually be this way to cancel the IR divergencies
as it can be observed from Eq. (42). Again, since this is a
symmetry for MLO

D , it is only necessary to calculate one of
the contributions above—all the four DirNLO terms will be
related upon yij → −yij and ϕ → ϕþ π. For the IntNLOD
terms, only the combined p1;3 ↔ p2;4 exchange is a
symmetry, and two terms must be computed, which implies
that, for DirNLO (but not for IntNLO), the overall correction
to the decay width vanishes.14 Accounting for these
simplifications, the required contributions were computed
in the following way through the use of Feyncalc: first of
all, we evaluated the lepton traces. Then, the resulting terms
of the pi · k kind were canceled against propagators as
much as possible, which leaves the five-point scalar
function and lower-point tensor functions.

G. Full NLO numerical results

Finally, we give the numerical results that we obtain,
which we carry out with the help of Looptools [36,40]
for evaluating the loop integrals15 and the Vegas method in

the CUBA library for the numerical integration.16 As said,
the F1 and five-point amplitudes contributions contain IR
divergencies and are thereby combined with the appropriate
BS parts to render an IR-finite result.17 Regarding the cutoff
energy for the soft photon, this is related to the four-lepton
invariant mass through the

Ec ¼
M
2
ð1 − x4lÞ; x4l ¼ p2

4lM
−2 ð43Þ

relation. In the following, we take x4l ¼ 0.9985 in analogy
with Ref. [5]—see comments below for different cutoffs.
Expressing Γ4l ¼ ΓLO

4l þ ΓNLO
4l , we give the RC in terms of

δðFFÞ ¼ ΓNLO
4l =ΓLO

4l in Table II, where the FF subscript
means that a nonconstant TFF was employed (see
Appendix C). For details concerning individual NLO
contributions, we refer to Tables IV and V for constant
and q2-dependent TFFs, respectively. We note that we do
not ascribe any error to the TFF description, which is
intended mainly to illustrate the magnitude of TFF effects
against RC. Concerning extrapolations to different x4l
values, we integrate the divergent lnmγ terms, so that
extrapolation to different cutoffs can be obtained through

δðFFÞðx4lÞ ¼ δðFFÞð0.9985Þ þ δIRðFFÞ ln
�
1 − x4l
0.0015

�
; ð44Þ

with δIRðFFÞ given in Table II. We stress that such a result
holds in the soft-photon approximation, this is, it is not
meant to be used to obtain a fully inclusive (P → 4lγ)
decay width.
We give as well our result without including three- and

four-point contributions and for a constant TFF (δPartial

column in Table II). This compares to Ref. [5] results,
which we give for convenience in the fifth column from
Table II.18 As a result, we find discrepancies at the 1% level,
which is nevertheless often of similar size as TFF effects

TABLE II. Results for the NLO RC expressed as δ ¼ ΓNLO
4l =ΓLO

4l ; find details in the text.

π0 → 4e KL → 4e KL → 2e2μ KL → 4μ η → 4e η → 2e2μ η → 4μ

δ −0.1724ð2Þ −0.2268ð2Þ −0.0798ð2Þ 0.0669(1) −0.2306ð1Þ −0.0864ð1Þ 0.0502(1)
δIR 0.0411(1) 0.0534(1) 0.0273(0) 0.0021(0) 0.0543(1) 0.0285(1) 0.0033(2)
δPartial −0.1718ð2Þ −0.2262ð2Þ −0.0767ð1Þ 0.0704(1) −0.2301ð1Þ −0.0836ð1Þ 0.0535(1)
[5] −0.160ð2Þ −0.218ð1Þ −0.066ð1Þ 0.084(1) � � � � � � � � �
δFF −0.1727ð2Þ −0.2345ð1Þ −0.0842ð2Þ 0.0608(2) −0.2409ð1Þ −0.0900ð1Þ 0.0455(2)
δIRFF 0.0411(1) 0.0549(1) 0.0276(0) 0.0022(0) 0.0554(1) 0.0288(1) 0.0033(0)

14This is due to charge conjugation—see for instance the
comments on p. 8 from Ref. [39].

15As a cross-check, we computed independently the scalar
five-point function, D0, in terms of four-point functions using the
method in Ref. [41] finding good agreement. We also find
agreement with higher rank five-point functions that we em-
ployed to further cross-check our results—this is not the case for
Feyncalc. Note that the method in Ref. [41] has the advantage of
avoiding singularities in Gram determinants.

16Again, we do not need to integrate Exc or IntNLOE terms since
they contribute the same as Dir and IntNLOD , respectively. The
same applies to yij → −yij and ϕ → ϕþ π related terms.

17We checked that the full and partial contributions were
independent of the mγ parameter as they should be.

18These are obtained from the results in Tables VI and VII in
Ref. [5].

RADIATIVE CORRECTIONS TO DOUBLE-DALITZ DECAYS … PHYS. REV. D 97, 056010 (2018)

056010-9



(see Table I and, especially, the π0 case). From our results in
Table IV, we find out that such effects can only arise from
VP, F1, and BS contributions; these corrections were
computed analytically and we agree with all of them except
for their Iðpi; piÞ result which, as said, is unclear. A
different source of discrepancy would be an underestimated
statistical uncertainty associated to their MC simulation—
in this respect, we note that we checked our results against
the NIntegrate method in Mathematica for these con-
tributions, finding an excellent agreement.
Finally, it is worth commenting about the three-point

contribution when employing constant TFFs. In such case,
it is necessary to employ χPT, which introduces a counter-
term that is connected to P → l̄l decays. We find,
however, that such a practice might be inappropriate for
muons and including the TFF is desirable (for more details,
see Appendix E).
In summary, we find relevant numerical differences for

the contributions calculated in Ref. [5] with a non-negli-
gible effect regarding the extraction of the TFF. Concerning
the new three- and four-point loop contributions, these are
small as compared to the full NLO correction, but of similar
size as F2 and 5P contributions. Note, however, that such
considerations have to be taken with care if considering
differential distributions as required in experiments.

IV. TFF EFFECTS

As said, these decays are of interest for obtaining
relevant information on the TFFs; as an example, see the
works in Refs. [4,7,8,10]. In the following, we comment
briefly on some aspects that, we believe, could be tested at
future experiments.
Concerning the π0, the highest double-virtual region that

can be accessed, q21 ¼ q22 ¼ q2max ¼ m2
π=4, is small enough

to rely on a series expansion to parametrize the TFF.
Consequently, such effects would be as small as ðmπ=2ΛÞ4,
where Λ is expected to be the order of MVπ0

(see
Appendix C and Refs. [24,33,42]). In addition, since the
process peaks at low energies, the double-virtual region
is—experimentally—less populated. As a consequence, we
think that only the TFF slope could be accessed exper-
imentally. In this respect, the single result comes from
KTeV [13] (with 30511 events and 0.7% precision), which
found a negative (yet compatible with 0) value, in contra-
diction with current results (find experimental references in
[24]), an outcome that could be due to statistics, system-
atics, or RC. Regarding the latter, from Table I, TFF effects
are of order 0.4%, whereas the differences found for the RC

[5] employed in [13] is of 1.24%, 3 times larger. Of course,
a differential analysis in the lines of Ref. [13] would be of
relevance in order to draw firm conclusions. In this aspect,
the NA62 Collaboration, already successful in obtaining
the best measurement for the π0 → eþe−γ [43], could make
advances in this direction.
Concerning the η, the larger available phase space could

make the process interesting for accessing the double-
virtual region. So far, the only available result is for η → 4e
from the KLOE Collaboration [14] (with 362 events and
10% precision), which did not attempt a fit to the TFF,
likely due to the low statistics. In the future, the REDTOP
Collaboration [44] could have larger statistics for all the η
channels, which would provide very interesting results—
we note here that, for the electronic channel, TFF effects are
of order 6% (see Table I), whereby the differences found
with respect to RC in Ref. [5] are relevant. What is more, if
entering the η0 mode, the REDTOP Collaboration would
undoubtedly test the double-virtual region, yet this makes
necessary an appropriate description for the resonant
structure, which is left for future work.
Eventually, if the double-virtual region is accessed, this

might be of interest regarding the HLbL contribution to the
muon g − 2 [24]. Another possibility to access such a
region, closely related to this process by crossing, are the
eþe− → Peþe− processes, in which study of RC is
postponed for future investigation.

V. CONCLUSIONS

In summary, we have revisited and completed the full
NLO corrections to P → l̄ll̄0l0 processes within the soft-
photon approximation, whose full result is available in a
Mathematica notebook upon request. As a result, we
found differences of the 1% order with respect to the
existing ones [5]—likely to be relevant for extracting
information about the TFF.
Regarding the double-virtual TFF effects, these might be

accessed for the η and η0 cases. Otherwise, it might be
interesting to look at the eþe− → Peþe− processes, which
are also of relevance for testing exclusive processes in pQCD;
we postpone the study of RC therein for future work.
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APPENDIX A: KINEMATICS AND PHASE SPACE

The kinematics of the process is shown in Fig. 8 (left),19

with momentum and mass assignment lðp1; maÞ,
l̄ðp2; maÞ, l0ðp3; mbÞ, l̄0ðp4; mbÞ. The resulting phase

space can be described sequentially in terms of a two-
body decay in the parent particle rest frame to dilepton
subsystems p1 þ p2 ≡ p12 and p3 þ p4 ≡ p34 with corre-
sponding invariant masses p2

12 ¼ s12 and p2
34 ¼ s34 and

followed by a sequential two-body decay in the corre-
sponding subsystems’ rest frames [see Fig. 8 (right), where
superscripts denote the reference frame]. To see this, insert
the identity as

R
dp⃗ijð2p0

ijÞ−1dsijδð4Þðpij − pi − pjÞ into
the four-body phase space to obtain20

dΦ4ðP;p1; p2; p3; p4Þ ¼ dΦ2ðP;p12; p34Þ ×
ds12
2π

dΦ2ðp12;p1; p2Þ ×
ds34
2π

dΦ2ðp34;p3; p4Þ: ðA1Þ

Before continuing, it is useful to introduce some notation, which we choose similar to Ref. [5] for ease of comparison.
Adopting pi1i2…in ≡ pi1 þ pi2 þ � � � þ pin , we define the following quantities:

δij ¼ ðp2
i − p2

jÞ=p2
ij; xi ¼ p2

i =p
2
ij; w2

ij ¼ 4xixj; zij ¼ 2pi · pj=p2
ij ¼ 1 − xi − xj; ðA2Þ

allowing us to express the energy and momenta of a particle piðjÞ in the pij rest frame as

Eij
iðjÞ ¼

ffiffiffiffiffi
sij

p ð1� δijÞ=2; pij
iðjÞ ¼

ffiffiffiffiffi
sij

p
λij=2; λij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2ij − w2

ij

q
: ðA3Þ

In addition, whenever we use pijk ¼ pi þ pjk configurations (or similar), we employ expressions of the kind λi;jk. Using
this and conventions in Fig. 8, it is possible to express the Lorentz-invariant remaining quantities as

2p12 · p34 ¼ M2z; ðA4Þ

2p̄12 · p34 ¼ λM2y12 ðA5Þ

2p̄34 · p12 ¼ λM2y34 ðA6Þ

2p̄12 · p̄34 ¼ M2ðzy12y34 − w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ212 − y212Þðλ234 − y234Þ

q
cosϕÞ ðA7Þ

ϵμνρσp
μ
1p

ν
2p

ρ
3p

σ
4 ¼ −

λM4w
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ212 − y212Þðλ234 − y234Þ

q
sinϕ; ðA8Þ

where p̄ij ≡ pi − pj, ϵ0123 ¼ þ1, yij ¼ λij cos θ
ij
i
21 and where z ¼ z12;34, w ¼ w12;34, λ ¼ λ12;34.

22 With this notation, the
four-body phase space can be expressed as

dΦ4 ¼
Sλ

214π6
ds12ds34dϕλ12d cos θ121 λ34d cos θ343 ¼ Sλ

214π6
ds12ds34dy12dy34dϕ; ðA9Þ

with S ¼ 1ð1=4Þ a symmetry factor for different (identical) fermions in the final state. The integration boundaries are the
following:

19Reference [5] uses opposite labeling for particles, so comparing Fig. 8 and Feynman diagrams requires p1ð3Þ ↔ p2ð4Þ.

22This is, z ¼ ðM2 − s12 − s34ÞM−2, w2 ¼ 4s12s34M−4, and λ ¼ M−2ððM2 − s12 − s34Þ2 − 4s12s34Þ1=2.

20For a particle decaying into n particles, dΦnðP;p1;…; pnÞ ¼ ð2πÞ4δð4ÞðP −
P

n
i¼1 piÞ

Q
n
i¼1

dp⃗i

ð2πÞ32Ei
.

21Their definition for cos θijij;k has the wrong sign, which is nevertheless of relevance for the geometrical interpretation alone. In
addition, from their Eq. (3) and Eqs. (B1)–(B5), we infer that they employ ϵ0123 ¼ −1.
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4m2
a ≤ s12 ≤ ðM − 2mbÞ2; 4m2

b ≤ s34 ≤ ðM −
ffiffiffiffiffiffi
s12

p Þ2; −λij ≤ yij ≤ λij; 0 ≤ ϕ ≤ 2π: ðA10Þ

In addition, whenever identical leptons are present, it is useful to introduce the shorthand Ξ ¼
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλ212 − y212Þðλ234 − y234Þ
p

cosϕ and η2 ¼ 4m2=M2 with ma ¼ mb ≡m. With these definitions, the exchange variables
[noted with subscript “ex” and defined in analogy to Eqs. (A4) to (A8)] read23

x14ð32Þ ¼
1

4
ð2η2 þ zð1 − y12y34Þ � λðy12 − y34Þ þ ΞÞ; ðA11Þ

y14ð32Þ ¼
1

λex

�
λ

2
ðy12 þ y34Þ � ðx12 − x34Þ

�
; ðA12Þ

Ξex ¼ zexy14y32 − ðη2 − x12 − x34Þ −
z
2
ð1þ y12y34Þ þ

1

2
Ξ; ðA13Þ

sinϕex ¼ −
�
x12x34ðλ212 − y212Þðλ234 − y234Þ
x14x32ðλ214 − y232Þðλ214 − y232Þ

�
1=2

sinϕ; ðA14Þ

where the last two equations allow us to extract ϕex. This technique has been used to obtain Eq. (4), where the analog of λ,
λex ¼ ðð1 − x14 − x32Þ2 − 4x14x32Þ1=2, has been introduced.
Finally, if one is interested in creating a MC generator, it may be useful to assign to each particle a four-momentum (in the

parent particle rest frame) in terms of the phase-space variables as follows24:

E1ð2Þ ¼ M
1þ δ� λy12

4
; E3ð4Þ ¼ M

1 − δ� λy34
4

; ðA15Þ

p⃗1ð2Þ ¼∓ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x12
4

ðλ212 − y212Þ
r

x̂þM
λ� ð1þ δÞy12

4
ŷ; ðA16Þ

p⃗3ð4Þ ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x34
4

ðλ234 − y234Þ
r

ð∓ cosϕx̂� sinϕẑÞ −M
λ� ð1 − δÞy34

4
ŷ; ðA17Þ

with δ ¼ δ12;34. If required, shifting among reference frames involves a Lorentz boost along the p⃗34ð12Þ direction with
parameters β12ð34Þ ¼ λð1� δÞ−1 and γ12ð34Þ ¼ ð1� δÞ=ð2x12ð34ÞÞ.

p3

p4

p34

p34
3 sin θ34

3

p1

p2
p12

p12
1 sin θ12

1

ẑ

x̂

ŷ

φ
p34
3

p34
4

p34
12

θ34
3

θ34
3,12

p12
1

p12
2

p12
34 θ12

1

θ12
1,34

φ

FIG. 8. The left figure shows the kinematics in the parent particle rest frame. The right one shows the angle of interest (e.g., in the
dilepton reference frame) for phase space θ121 and θ343 .

23The � sign in x14ð32Þ is wrong in Ref. [5]; that is, however, irrelevant since these always appear in pairs.
24See the axes orientation in Fig. 8.
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APPENDIX B: CP-VIOLATING TERMS

The effective Lagrangian describing pseudoscalar interactions with real photons is

LPγγ ¼ e2
FPγγ

4
FμνF̃μνPþ e2

FCP
Pγγ

4
FμνFμνP; ðB1Þ

where F̃μν ¼ 1
2
ϵμνρσFρσ (ϵ0123 ¼ þ1). The first part is CP conserving and corresponds to the LO term in chiral perturbation

theory. Higher orders would modify the LO prediction for FPγγ and induce a q2-dependent TFF; all such effects are encoded
in FPγγðq21; q22Þ, and the result is valid in full generality. Concerning the CP-violating part, the most general structure
features an additional gauge-invariant term [45] besides that in Eq. (B2).25 Still, such additional structure is suppressed for
quasireal photons and should play a subleading role, for which we do not include it here, but limit ourselves to correct some
typos in [5].26 Defining the amplitudes as hl̄0l0l̄ljSjPi≡ 1þ iMð2πÞ4δð4ÞðP −

P
ipiÞ [46], the following term arises

besides that in Sec. II:

iMCP
D ¼ −ie4

FCP
Pγγðs12; s34Þ
s12s34

ðgρσðp12 · p34Þ − pσ
12p

ρ
34Þðū1γρv2Þðū3γσv4Þ; ðB2Þ

with an additional exchange amplitude if identical leptons appear (again, a relative sign would appear too). This produces
the following contributions to jMj2:

jMCP
D j2 þ jMCP

E j2 þ 2ReðMCP
D MCP�

E þ ½MLO
D MCP�

D þMLO
D MCP�

E þD ↔ E�Þ; ðB3Þ

which we find to be

jMCP
D j2 ¼ e8jFCP

Pγγðs12; s34Þj2
x12x34

ðz2½2 − ðλ212 − y212 þ λ234 − y234Þ

þ ðλ212 − y212Þðλ234 − y234Þcos2ϕ� − 2zy12y34Ξþ w2ð1 − y212Þð1 − y234ÞÞ; ðB4Þ

2ReMLO
D MCP�

D ¼ e82ReFPγγðs12; s34ÞFCP�
Pγγ ðs12; s34Þ

x12x34
λðzðλ212 − y212Þðλ234 − y234Þ

× sinϕ cosϕ − y12y34

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ðλ212 − y212Þðλ234 − y234Þ

q
sinϕÞ; ðB5Þ

which agrees with Ref. [5] except for the Ξ-term sign. Moreover, we note that the overall sign from Ref. [5] seems to be
opposite as well given their result in Eq. (A15), opposite to Eq. (A8) (see comments below). Besides, whenever identical
leptons are present, the following terms appear:

2ReMCP
D MCP�

E ¼ −
e8ReFCP

Pγγðs12; s34ÞFCP�
Pγγ ðs14; s32Þ

8x12x34x14x32
ð8η4½z − z2 − w2y12y34�

þ 2η2½2z2ð1þ y12y34Þðz − 1Þ − w2ð1 − y12y34Þð2þ 3z½1þ y12y34�Þ�
þ w2½2ðw2 − z2Þð1 − y212Þð1 − y234Þ þ z2ð1 − y212y

2
34Þð1þ y12y34Þ�

þ Ξ½8η4z − 2η2ð1þ 3y12y34Þðw2 þ z2Þ þ zð1þ y12y34Þð2w2ð−1þ y12y34Þ þ z2ð1þ y12y34ÞÞ�
þ Ξ2½6η2z − w2 − ð2z2 þ w2Þy12y34� þ zΞ3Þ; ðB6Þ

25Consequently, one should modify the gauge structure in Eq. (B2) to ½gρσðq12 · q2Þ − qσ1q
ρ
2�FCP1

Pγγ ðq21; q22Þþ
½q21q22gρσ þ ðq1 · q2Þqρ1qσ2 − q21q

ρ
2q

σ
2 − q22q

ρ
1q

σ
1�FCP2

Pγγ ðq21; q22Þ.
26Moreover, CP violation in double-Dalitz decays does not necessarily arise from the Pγγ vertex. Another possibility is CP violation

in P → l̄l, which would contribute here, similar to Appendix E. We relegate therefore a more general study for later work.
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2ReðMLO
D MCP�

E þMLO
E MCP�

D Þ ¼
�
e8ReFPγγðs12; s34ÞFCP�

Pγγ ðs14; s32Þ
8x12x34x14x32

4λ

× ð2½x12x34 − x14x32� þ η2½x12 þ x34 þ 3ðx13 þ x24Þ� − x213 − x224 − 4η4Þ

− ð2 ↔ 4Þ
�
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ðλ212 − y212Þðλ234 − y234Þ

q
sinϕ: ðB7Þ

Again, the last equation differs from Ref. [5], which is only correct if both TFFs share the same q2 dependency. Moreover,
we note that the overall sign seems ok, but in contradiction to their result equivalent to Eq. (B5).

APPENDIX C: TFF DESCRIPTION

There is plenty of work devoted to the study of the pseudoscalar TFF, FPγγðq21; q22Þ, which is a non-perturbative
object and hard to obtain from first principles. Still, given the kinematics of this process, it is mainly the low-energy
regime that is required alone, yet the loop integrals—especially the three-point ones—require a reasonable high-energy
description as well. For this reason, we follow the work in Refs. [47–50], where the mathematical framework of
Padé approximants was shown to be an excellent tool to implement both regimes for the single-virtual case. This was
extended to the double-virtual case in Refs. [24,33,42] and involves the use of Canterbury approximants. The simplest
approach27 reads

FPγγðq21; q22Þ ¼ FPγγ

M2
VP

q21 −M2
VP

M2
VP

q22 −M2
VP

; ðC1Þ

where FPγγ ≡ FPγγð0; 0Þ is the normalization that is absorbed when normalizing to ΓP→2γ . It must be overemphasized that
M2 is not any physical vector meson mass and is related to the slope parameter. From the most updated values in Ref. [24]
and Ref. [52] for the KL

28 we find

MVπ0
¼ 0.754ð23Þ GeV; MVη

¼ 0.724ð5Þ GeV; MVη0 ¼ 0.837ð10Þ GeV; MVKL
0.61ð2Þ GeV: ðC2Þ

When evaluating some loop amplitudes, expressions containing FPγγðq21; q22Þðq21 þ iϵÞ−1ðq22 þ iϵÞ−1 appear. In order to
evaluate the integrals, it is useful to use partial fraction decomposition that, for Eq. (C1), reads

FPγγðq21; q22Þ
q21q

2
2

¼ FPγγ

q21q
2
2

−
FPγγ

ðq21 −M2
VP
Þq22

−
FPγγ

q21ðq22 −M2
VP
Þ þ

FPγγ

ðq21 −M2
VP
Þðq22 −M2

VP
Þ : ðC3Þ

As a consequence, the loop integrals can be evaluated for arbitrary photonmassesMVP
and a constant TFF; the full result is

obtained by adding the four terms above, which is implicit in the main text. If employing a more elaborated TFF, the
procedure is analog and would produce additional terms.

APPENDIX D: BREMSSTRAHLUNG INTEGRAL

The solution to Eq. (11) has been given in Ref. [31]. The general result reads

Jðpi; pjÞ ¼
1

ð2πÞ2
1

p2
ijλi;j

�
ln

�
zi;j þ λi;j
zi;j − λi;j

�
ln

�
2Ec

mγ

�

þ 1

4
ln2

�
u0 − u
u0 þ u

�
þ Li2

�
1 −

u0 − u
v

�
þ Li2

�
1 −

u0 þ u
v

�				
u¼αpi

u¼pj

�
; ðD1Þ

27We employ factorized denominators; otherwise, the three-, four-, and five-point loop amplitudes would be hard to evaluate. If
interested in the operator product expansion (OPE) behavior, one should use a model resembling that of LMDþ V [51] with parameters
fixed to the taylor expansion rather than masses.

28We take the average result from the two parametrizations employed in Ref. [52], the Bergström-Massó-Singer and the D’Ambrosio-
Isidori-Portolés models, each of them leading to 0.59(2) GeV and 0.62(2) GeV for MKL

, respectively.
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where α ¼ ð2pi · pj þ p2
ijλijÞ=ð2m2

i Þ and v ¼ ðα2p2
i − p2

jÞ=ð2ðαp0
i − p0

jÞÞ. In order to associate the cutoff energy,
Ec, with the 4l momenta, the parent particle frame should be adopted to evaluate the expression above. Note
that in the soft-photon approximation this coincides with the 4l rest frame. We find that, using the notation in
Appendix A,

p0
i ¼ M

1þ δi;jkl
2

; p0
j ¼ M

1þ δj;ikl
2

; pi ¼ M
λi;jkl
2

; pj ¼ M
λj;ikl
2

; ðD2Þ

α ¼ zij þ λij
1 − zij þ δi;j

≡ σij; v ¼ σijp2
ijλi;j

Mðσijð1þ δi;jklÞ − ð1þ δj;iklÞÞ
≡M

σijxijλi;j
ϒij

; ðD3Þ

Ω�
i ≡ 1

M
ðp0

i � piÞ ¼
1

2
ð1þ δi;jkl � λi;jklÞ; Ω�

j ≡ 1

Mα
ðp0

j � pjÞ ¼
1

2σij
ð1þ δj;ikl � λj;iklÞ; ðD4Þ

in analogy with Ref. [5]. Furthermore, we give below the particular value for the new variables that are required in terms of
phase space ones,

x14ð23Þz14ð23Þ ¼
zð1 − y12y34Þ � λðy12 − y34Þ þ Ξ

4
; x14ð23Þλ14ð23Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
14ð23Þz

2
14ð23Þ −

4m2
am2

b

M4

r
ðD5Þ

x13ð24Þz13ð24Þ ¼
zð1þ y12y34Þ � λðy12 þ y34Þ − Ξ

4
; x13ð24Þλ13ð24Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
13ð24Þz

2
13ð24Þ −

4m2
am2

b

M4

r
; ðD6Þ

δδ1;234
2;134

¼ −
1 − x12 þ x34 ∓ λy12

2
; λδ1;234

2;134
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2ð1þ y212Þ þ 4x12λ212 � 2λy12ð1þ x12 − x34Þ

p
2

; ðD7Þ

with the remaining fδ; λg3;124
4;123

combinations obtained by replacing ð12Þ ↔ ð34Þ. Note, particularly, that xijzij and xijλij can

be employed instead of zij; λij which are more involved.

APPENDIX E: THREE-POINT AMPLITUDES IN χPT

For a constant TFF—which would correspond to the LO in the chiral expansion—the three-point integrals are divergent.
Particularly, for M3P

1D, we find that29

DiviM3P
1D ¼ −e2α2FPγγ

p2
34ðp2

134 −m2
aÞ
ðū1γλðp134 þmaÞPγ5v2Þðū3γλv4Þ

× Div
2i

π2P2

Z
d4k

P2k2ð1 − d−1Þ
k2ðkþ PÞ2ððkþ p2Þ2 −m2

aÞ
; ðE1Þ

with obvious results for the additional amplitudes. The loop-integral divergence must cancel when including the appropriate
counterterm. This is the same as that appearing in P → l̄l decays, introduced in Ref. [32], and which in this process
manifests as

LχPT ⊃ χðμÞα2FLO
Pγγðl̄γμγ5lÞ∂μP; χðμÞ≡ −ðχ1ðμÞ þ χ2ðμÞÞ=4; ðE2Þ

29In particular, using dimensional regularization in d ¼ 4 − ϵ dimensions, the divergence for the given integral reads −ð3=2ÞΔϵðμÞ,
with ΔϵðμÞ ¼ 2ϵ−1 − γE þ lnð4πμ2Þ, with μ the renormalization scale. Note that dimensional regularization entails an additional 1=4
term absent in other regularization schemes.
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with μ the renormalization scale.30 This produces the following amplitudes appearing in Fig. 9:

iMχ
1D ¼ −e2α2FPγγ

p2
34ðp2

134 −m2
aÞ
χðμÞðū1γλðp134 þmaÞPγ5v2Þðū3γλv4Þ; ðE3Þ

iMχ
2D ¼ −e2α2FPγγ

p2
34ðp2

234 −m2
aÞ
χðμÞðū1Pγ5ð−p234 þmaÞγλv2Þðū3γλv4Þ; ðE4Þ

iMχ
3D ¼ −e2α2FPγγ

p2
12ðp2

123 −m2
bÞ
χðμÞðū3γλðp123 þmbÞPγ5v2Þðū1γλv2Þ; ðE5Þ

iMχ
4D ¼ −e2α2FPγγ

p2
12ðp2

124 −m2
bÞ
χðμÞðū3Pγ5ð−p124 þmbÞγλv2Þðū1γλv2Þ; ðE6Þ

and corresponding exchange amplitudes whenever identical leptons are present. In the light of the equations above and
Eq. (E1), it is clear that divergences cancel exactly in the same manner as in P → l̄l decays [33] [see Eq. (2.2) and Eq. (6.1)
therein] as it should be. Concerning the NLO correction, it shifts I1 → I1 − χðμÞ=2 in Eqs. (26) to (28). At this order, the
same counterterm applies to π0, η, η0 and, essentially, to KL as well (see Ref. [53]). This may not be appropriate however—
see discussions in Ref. [33]—as it would produce different counterterms for each pseudoscalar and lepton species.31 In
order to show the accuracy of the chiral expansion, we give DirNLO numerically in terms of χ. For such purpose, it is
convenient to express it as

ΓNLO
3P;D=ΓLO ≡ δUVð0.77Þ þ

X
l

δlχð0.77Þ; ðE7Þ

where summation is meant for eþe−μþμ− cases alone, and coefficients, δUV;l, given in Table III. From the results therein, it
is clear that counterterm effects are irrelevant for the purely electronic channels. For channels including muons, there is
however a delicate cancellation among the loop and counterterms, which makes this contribution quite sensitive to χð0.77Þ,
in contrast to the calculation including the TFF. To find a better agreement with the latter, we find it better to use the χ
associated to the same pseudoscalar and lepton from Ref. [33]. Moreover, we found it better to adopt our results in [33]
corresponding to a factorized TFF. Indeed, we employed a more elaborate result for the TFF concerning three-point
corrections and found it irrelevant to include the OPE or not, in contrast to P → l̄l decays.

�(p3)

�(p4)

�(p1)

�(p2)

�(p1)

�(p2)

�(p4)

�(p3) �(p1)

�(p2)

�(p3)

�(p4)

�(p3)

�(p4)

�(p2)

�(p1)

FIG. 9. Counterterm diagrams from χPT. Again, additional diagrams arise if identical leptons appear.

30It is a common practice to use χð0.77Þ; for an arbitrary scale μ, χðμÞ ¼ χð0.77Þ þ 3 lnðμ=0.77Þ with μ in GeV.
31In Ref. [33] it was shown that different pseudoscalars (P ¼ π0; η), TFFs (Fact vs OPE there), and leptonic channels (l ¼ e, μ) lead

χ ∈ ð2.53 ÷ 6.46Þ. For the KL it would give χ ∈ ð6.68 ÷ 7.25Þ and χ ∈ ð3.74 ÷ 4.28Þ for l ¼ e, μ and (Fact ÷ OPE).
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APPENDIX F: NUMERICAL NLO CORRECTIONS

See Table IV and V.

TABLE IV. Results for different NLO contributions with a constant TFF. Note that F1 and 5P include BS contributions. The units are
chosen analogous to Table I.

π0 → eþe−eþe−
Dþ E 0.0389(2) −0.0032ð2Þ −0.6355ð6Þ −0.0007ð0Þ −0.0016ð1Þ 0 −0.6021ð7Þ
Int −0.0008ð1Þ 0.0000(0) 0.0123(1) −0.0004ð0Þ 0.0005(0) 0.0009(1) 0.0125(2)
Total 0.0381(2) −0.0032ð2Þ −0.6232ð6Þ −0.0011ð0Þ −0.0011ð1Þ 0.0009(1) −0.5896ð7Þ

K0
L → eþe−eþe−

Dþ E 0.0942(1) −0.0043ð0Þ −1.5142ð4Þ −0.0010ð0Þ −0.0022ð2Þ 0 −1.4275ð4Þ
Int −0.0010ð1Þ 0.0000(0) 0.0166(2) −0.0007ð0Þ 0.0007(0) 0.0010(2) 0.0166(3)
Total 0.0932(2) −0.0043ð0Þ −1.4979ð4Þ −0.0017ð0Þ −0.0015ð2Þ 0.0010(2) −1.4109ð5Þ

K0
L → eþe−μþμ−

Dir 0.0621(1) −0.0065ð0Þ −0.2748ð3Þ −0.0025ð1Þ −0.0063ð4Þ 0 −0.2280ð5Þ
K0

L → μþμ−μþμ−

Dþ E 0.0258(0) −0.0043ð0Þ 0.0536(0) −0.0013ð0Þ −0.0024ð0Þ 0 0.0714(1)
Int −0.0014ð0Þ 0.0002(0) −0.0023ð0Þ 0.0005(0) −0.0001ð0Þ −0.0057ð1Þ −0.0087ð1Þ
Total 0.0244(0) −0.0041ð0Þ 0.0513(0) −0.0008ð1Þ −0.025ð0Þ −0.0057ð1Þ 0.0628(1)

η → eþe−eþe−
Dþ E 0.0996(1) −0.0044ð0Þ −1.6000ð5Þ −0.0010ð1Þ −0.0023ð2Þ 0 −1.5081ð5Þ
Int −0.0010ð1Þ 0.0000(0) 0.0169(2) −0.0007ð1Þ 0.0007(0) 0.0024(2) 0.0183(3)
Total 0.0986(1) −0.0044ð0Þ −1.5831ð5Þ −0.0017ð1Þ −0.0016ð1Þ 0.0024(2) −1.4898ð6Þ

η → eþe−μþμ−
D 0.0890(1) −0.0088ð0Þ −0.4141ð4Þ −0.0026ð1Þ −0.0087ð1Þ 0 −0.3452ð4Þ

η → μþμ−μþμ−
Dþ E 0.1790(2) −0.0275ð0Þ 0.2324(2) −0.0065ð2Þ −0.0147ð5Þ 0 0.3627(6)
Int −0.0137ð1Þ 0.0021(1) −0.0124ð1Þ 0.0009(0) 0.0000(0) −0.0347ð3Þ −0.0578ð4Þ
Total 0.1653(2) −0.0254ð1Þ 0.2200(2) −0.0056ð2Þ −0.0147ð5Þ −0.0347ð3Þ 0.3049(7)

VP F2 F1 3P 4P 5P NLO

TABLE V. Analogous results to Table V for the q2-dependent TFFs introduced in Appendix C.

π0 → eþe−eþe−
Dþ E 0.0392(2) −0.0032ð2Þ −0.6391ð6Þ −0.0007ð0Þ −0.0017ð1Þ 0 −0.6055ð7Þ
Int −0.0008ð1Þ 0.0000(0) 0.0126(1) −0.0004ð0Þ 0.0005(0) 0.0009(1) 0.0128(2)
Total 0.0384(2) −0.0032ð2Þ −0.6265ð6Þ −0.0011ð0Þ −0.0012ð1Þ 0.0009(1) −0.5927ð7Þ

K0
L → eþe−eþe−

Dþ E 0.1047(1) −0.0045ð0Þ −1.6890ð5Þ −0.0016ð1Þ −0.0048ð5Þ 0 −1.5952ð7Þ
Int −0.0016ð1Þ 0.0000(0) 0.0265(3) −0.0012ð1Þ 0.0013(1) 0.0017(3) 0.0267(4)
Total 0.1031(1) −0.0045ð0Þ −1.6625ð6Þ −0.0028ð1Þ −0.0035ð5Þ 0.0017(3) −1.5685ð9Þ

K0
L → eþe−μþμ−

D 0.1067(1) −0.0107ð1Þ −0.4763ð5Þ −0.0067ð2Þ −0.0209ð2Þ 0 −0.4079ð8Þ
K0

L → μþμ−μþμ−

Dþ E 0.0481(0) −0.0080ð0Þ 0.0985(1) −0.0027ð1Þ −0.0070ð2Þ 0 0.1289(2)
Int −0.0026ð2Þ 0.0004(0) −0.0044ð0Þ −0.0013ð0Þ −0.0007ð0Þ −0.0142ð1Þ −0.0228ð2Þ
Total 0.0455(2) −0.0076ð0Þ 0.0941(1) −0.0040ð1Þ −0.0077ð2Þ −0.0142ð1Þ 0.1061(3)

η → eþe−eþe−
Dþ E 0.1086(1) −0.0045ð0Þ −1.7490ð5Þ −0.0016ð1Þ −0.0044ð4Þ 0 −1.6509ð6Þ
Int −0.0015ð1Þ 0.0000(0) 0.0251(2) −0.0011ð1Þ 0.0012(1) 0.0015(2) 0.0016(6)
Total 0.1070(1) −0.0045ð0Þ −1.7239ð5Þ −0.0027ð1Þ −0.0032ð4Þ 0.0015(2) −1.6509ð6Þ

η → eþe−μþμ−
D 0.1337(1) −0.0127ð1Þ −0.6267ð6Þ −0.0057ð1Þ −0.0224ð2Þ 0 −0.5338ð7Þ

η → μþμ−μþμ−
Dþ E 0.2914(3) −0.0446ð0Þ 0.3679(4) −0.0111ð3Þ −0.0361ð11Þ 0 0.5675(12)
Int −0.0229ð2Þ 0.0035(1) −0.0207ð2Þ −0.0056ð2Þ −0.0018ð1Þ −0.0718ð6Þ −0.1193ð7Þ
Total 0.2685(4) −0.0411ð1Þ 0.3472(4) −0.0167ð4Þ −0.0379ð11Þ −0.0718ð6Þ 0.4482(15)

VP F2 F1 3P 4P 5P NLO
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