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We derive all possible symmetry breaking patterns for all possible Higgs fields that can occur in
intersecting brane models: bifundamentals and rank-2 tensors. This is a field-theoretic problem that was
already partially solved in 1973 by Ling-Fong Li [1]. In that paper the solution was given for rank-2 tensors
of orthogonal and unitary group, and UðNÞ × UðMÞ and OðNÞ ×OðMÞ bifundamentals. We extend this
first of all to symplectic groups. When formulated correctly, this turns out to be straightforward
generalization of the previous results from real and complex numbers to quaternions. The extension to
mixed bifundamentals is more challenging and interesting. The scalar potential has up to six real
parameters. Its minima or saddle points are described by block-diagonal matrices built out of K blocks of
size p × q. Here p ¼ q ¼ 1 for the solutions of Ling-Fong Li, and the number of possibilities for p × q is
equal to the number of real parameters in the potential, minus 1. The maximum block size is p × q ¼ 2 × 4.
Different blocks cannot be combined, and the true minimum occurs for one choice of basic block, and for
either K ¼ 1 or K maximal, depending on the parameter values.
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I. INTRODUCTION

The purpose of this paper is to complete the classic work
of Ling-Fong Li [1] (see also [2] for corrections), in which
symmetry breaking patterns caused by Higgs fields in
various representations of various groups are considered.
Perhaps surprisingly, there does not exist a general formula
or algorithm that deals with this group-theoretical problem
in full generality, quite unlike computing the tensor product
for arbitrary representations, for example. In [1] some
special cases were selected based on what seemed interest-
ing at that time. With remarkable foresight, the author
considered representations that can occur as massless states
in open string models, or more precisely intersection brane
models: rank-2 tensors and bifundamentals. However, the
results of [1] do not cover all possible brane configurations:
symplectic groups were not discussed, and neither were
mixed group types: unitary orthogonal, unitary symplectic,
and orthogonal symplectic. Here we complete these results
by working out the missing ones.
In field theory any study of Higgs symmetry breaking is

inevitably limited to an infinitesimal subset of the allowed
Higgs representations. But in string theory those represen-
tations are limited to the ones that can be massless. In

intersecting brane models, rank-2 tensors and bifundamen-
tals are the only representations that can occur. So one can
actually solve the problem in full generality, if there is only
a single Higgs field.
The concrete reason for embarking on this study orig-

inates from attempts to generalize a previous paper [3]. In
that paper a surprisingly successful attempt was made to
derive the standard model from requirements on the
complexity of the low-energy physics it produces. This
is the opposite of trying to understand the standard model
from some high-energy symmetry principle, as one usually
does. In a limited set of two-stack brane models, the
N-family standard model turned out to stand out clearly
as the case with the richest kind of “atomic physics.” This
may be viewed as a concretely defined proxy for an
anthropic argument. A crucial role was played by the
assumption that a single Higgs field renders the entire
spectrum nonchiral.
When we attempted to extend this analysis to multistack

models, we ran into a rather stubborn problem. The
generalization required considering Higgs fields in any
representation allowed by the brane configurations. Since
branes (or open strings) can have unitary, orthogonal, and
symplectic groups (U, O, and S for short) [4], and since
bifundamentals can arise from any combination of branes,
we needed the aforementioned generalization of [1].
Although in some cases educated guesses can be made
based on group theory arguments, this is not satisfactory.
While studying this problem it became clear that the

general case is substantially more complicated than the
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U-U and O-O cases studied in [1]. Instead of two terms in
the quartic potential for U-U, O-O, and S-S, one gets three
for U-O and U-S, and five for O-S, with up to six real
coupling constants. Although initially this seemed intrac-
table, we found that it can in fact be solved completely and
exactly, and that it even simplifies the original analysis
of Ling-Fong Li. In fact, a rather beautiful solution
emerges.
Although the inspiration for this work came from string

theory, all of it is in fact classical field theory. But there is a
remnant of the stringy origin, namely the fact that we use
the full unitary group and not the simple group SUðNÞ,
because UðNÞ is what comes naturally out of string
theory. One can get SUðNÞ in open string theory in four
dimensions if the Uð1Þ phase symmetry is broken by
axion mixing, but this is an entirely separate and model-
dependent issue that we do not consider here. Furthermore
not only is the full gauge group of the theory a product of
UðNÞ, OðNÞ, and USpðNÞ factors, but we find that the
same is true for the stabilizer of the Higgs vacuum, the
broken subgroup. We find that SUðNÞ groups occur only as
part of a UðNÞ, or as USpðNÞ for the special case N ¼ 2,
becauseUSpð2Þ is isomorphic to SUð2Þ. This suggests that
the broken subgroups may have a simply string theory
interpretation. Indeed, this hints at an interpretation in
terms of a phenomenon known as “brane recombination,”
discussed for example in [5]. This is an intriguing pos-
sibility, but we do not explore this further in the present
work, since this lies beyond the scope of field theory.
This paper has two parts. In the first part we discuss the

most interesting case, namely, bifundamentals between
different branes. The second part is about self-intersections,
or in other words rank-2 tensors. Here the only cases not yet
considered in [1] are (anti)-symmetric tensors of symplectic
groups. The breaking patterns and energy considerations
turn out to be a natural extension of those for unitary and
orthogonal groups. Besides symplectic rank-2 tensors the
other novelty in this part is a greatly simplified derivation,
made possible by some fairly old but not widely known
theorems on matrix (skew) diagonalization.
For readers who just need the results and who are not

interested in the methods and derivations, two summary
sections are provided, namely, IIG for bifundamentals and
IIIC for rank-2 tensors.

II. BIFUNDAMENTALS

We consider a Higgs field in a bifundamental represen-
tation of groups GðNÞ ×HðMÞ, where each group can be
orthogonal, unitary, or symplectic. The global groups are
GðNÞ ¼ OðNÞ, UðNÞ, or USpðNÞ and analogously for
HðMÞ. The precise definition of USpðNÞ is given in the
Appendix. The symplectic groups only exist for even
matrix dimensions, but to keep the notation universal we
use N (or M) in all cases.

A. The potential

1. Invariant contractions

Consider a Higgs field ϕiα in a bifundamental repre-
sentation of groups GðNÞ ×HðMÞ, with i ¼ 1;…;M and
α ¼ 1;…; N. We consider a renormalizable Higgs poten-
tial. This implies that it can only have quadratic and quartic
terms. Cubic terms are not possible with bifundamentals.
Since all groups are embedded in a unitary group, one

always obtains invariance under the left or right algebra if ϕ
is combined with ϕ�, and the left and right indices are
contracted. This can be done in only one way for quadratic
terms, and in two ways for quartic terms.
In addition, depending on the algebra one considers, itmay

be possible to obtain gauge invariant combinations by
contracting indices of two ϕ’s (or two ϕ�’s) with each other,
provided an invariant contraction matrix exists. We denote
the contraction matrix for the first index as Dij, and the one
for the second index asCαβ. In a suitable basis, thesematrices
can be chosen as either a Kronecker δ for orthogonal groups,
or a skew-diagonal matrix with diagonal iσ2 blocks for
symplectic groups. The latter is denotedΩ. One can of course
define other bases, and, in particular, for symplectic groups
USpð2KÞ there are two that are often used. One is the matrix
Ω, which can be written as 1K ⊗ ðiσ2Þ, and the other
canonical choice is ðiσ2Þ ⊗ 1K; this is the matrix hA shown
in Eq. (A2). Of course no results depend on that choice, but
the form Ω is convenient in some computations, and also
makes a formulation in terms of quaternions possible in
certain cases.
We define

CT ¼ ϵCC;

DT ¼ ϵDD;

where ϵC and ϵD are signs; they are þ1 if C or D are
Kronecker δ’s, and −1 if C or D is equal to a matrix Ω
(or hA).

2. Mass terms and reality conditions

If both C and D exist, we can write down two distinct
mass terms,

ϕiαϕ
�
iα ¼ Trϕϕ†;

ϕiαϕjβDijCαβ ¼ TrϕCϕTD:

The second one vanishes unless ϵC ¼ ϵD, so it exists only if
both groups are orthogonal or both groups are symplectic.
The existence of an additional mass term indicates that
there are two separate fields rather than just one. We can
eliminate one of these components by imposing a reality
condition

ϕ� ¼ DTϕC: ð1Þ
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With the canonical choices for C and D given above, these
reality conditions simply imply that ϕ is real or quater-
nionic for orthogonal or symplectic groups respectively
(see the Appendix for more details). In the latter case this
means that ϕ can be written in terms of quaternions, defined
on the 2 × 2 blocks of the matricesΩij andΩαβ. Both kinds
of reality conditions imply a reduction by a factor of 2 in
the number of degrees of freedom. A general complex field
may be written as a real part plus an imaginary field; the
quaternionic analog is that its 2 × 2 block can be written as
a qþ iq0, where q and q0 are quaternions.

3. Quartic terms

If bothC andD exist, the most general invariant potential
has the form

V ¼ −μ2Trϕϕ† þ 1

2
λ1ðTrϕϕ†Þ2 þ 1

2
λ2Trðϕϕ†Þ2

þ 1

2
λ3TrðϕCϕTÞðϕCϕTÞ† þ 1

2
λ4TrðϕTDϕÞðϕTDϕÞ†

þ 1

4
½λ5TrðϕCϕTDÞ2 þ H:c:�: ð2Þ

The normalization of this potential differs from the one
used in [1]. We have chosen a normalization so that for
complex fields all numerical factors in the equation of
motion are equal to 1. For this reason our potential is larger
by an overall factor 2 with respect to [1]. Since we are only
interested in the extrema, this is irrelevant. For future
purposes we write the potential as

V ¼ −μ2ϕiαϕ
�
iα þ

1

2
λ1V1 þ

1

2
λ2V2 þ

1

2
λ3V3 þ

1

2
λ4V4

þ 1

4
λ5V5 þ

1

4
λ�5V

�
5: ð3Þ

Written in terms of components the potential is

V ¼ −μ2ϕiαϕ
�
iα þ

1

2
λ1ϕiαϕ

�
iαϕjβϕ

�
jβ þ

1

2
λ2ϕiαϕ

�
iβϕjβϕ

�
jα

þ 1

2
ϵCλ3ϕiαCαβϕjβϕ

�
jγCγδϕ

�
iδ

þ 1

2
ϵDλ4ϕiαDijϕjβϕ

�
kβDklϕ

�
lα

þ ϵD
1

4
λ5ϕjαCαβϕkβDklϕlγCγδϕiδDij

þ 1

4
λ�5ϕ

�
jαCαβϕ

�
kβDklϕ

�
lγCγδϕ

�
iδDij: ð4Þ

Note that the λ1 term differs from all other four-point
couplings because it has two disjoint index loops rather
than one. The equations of motion break one loop into a
string. Hence the λ1 term contributes a factor with a closed
index loop to the equations of motion. Therefore it

contributes to the equations of motion through a trace over
all nonzero elements of ϕ. This explains why the λ1
dependence is different from all other coupling
dependencies.
In its most general form the potential has four real

parameters, λ1…λ4, and one complex one, λ5. The most
general form applies only to cases with both a C and a D
matrix, namely, OðNÞ ×OðMÞ, USpð2NÞ × USpð2MÞ,
and OðNÞ ×USpð2MÞ. However, in the first two of these
cases we have to impose a reality condition. This implies
that we can express all ϕ� in terms of ϕ. Then there are only
two distinct quartic terms possible, namely, V1, written as
ðϕϕÞ2, and V5. All other terms can be expressed in terms of
products of four fields ϕ, and since they have just one index
loop they must all be related to V5. Note that if a reality
condition is imposed V5 and V�

5 are separately real, and λ5
can be chosen to be real without loss of generality. Since
V2, V3, and V4 are all related to V5, we may select one of
them to our convenience. So we make a choice that is
universally valid, and keep just the μ2, λ1, and λ2 term for
OðNÞ ×OðMÞ and USpð2NÞ ×USpð2MÞ. All terms in
the potential are distinct only if the symmetry group
is OðNÞ × USpð2MÞ.
In Table I we list all potential terms that can occur. For

future purposes we have chosen a certain order of the two
group types in the last three cases.

4. The vacuum energy

Before getting into the details of solving the equations of
motion, we derive here a useful general formula for the
vacuum energy at the extremal points of potentials with
only quadratic and quartic terms. Consider potentials of the
form

V ¼ −μ2ϕxϕ
�
x þ

1

2
λ1ðϕxϕ

�
xÞ2 þ

1

2

X
i

λiTi
xyvwϕxϕyϕ

�
vϕ

�
w

þ 1

4

X
i

ρiPi
xyvwϕxϕyϕvϕw þ 1

4

X
i

ρ�i P
i
xyvwϕ

�
xϕ

�
yϕ

�
vϕ

�
w:

The potential given above is of this form, with x interpreted
as the index pair iα. Here we assume that Pi and Ti are real,
as indeed they are in the case of interest. All indices x, y, v,
w are implicitly summed. Note that Ti is symmetric in x, y
and v, w, and that Pi is symmetric in all four indices xyvw.
Furthermore we assume that Ti satisfies Ti

xyvw ¼ Ti
vwxy, so

that all terms involving Ti are real. The equations of
motion, derived by differentiating with respect to ϕ�

z , are

∂V
∂ϕ�

z
¼ 0 ¼ −μ2ϕz þ λ1ϕzðϕxϕ

�
xÞ þ

X
i

λiTi
xyvzϕxϕyϕ

�
v

þ
X
i

η�i P
i
xyvzϕ

�
xϕ

�
yϕ

�
v:
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If we multiply this with ϕ�
z and sum over z we get

0 ¼ −μ2ϕzϕ
�
z þ λ1ðϕxϕ

�
xÞ2 þ

X
i

λiTi
xyvzϕxϕyϕ

�
vϕ

�
z

þ
X
i

η�i P
i
xyvzϕ

�
xϕ

�
yϕ

�
vϕ

�
z : ð5Þ

The first three terms on the left-hand side are real. Hence
the equations of motion imply that

Im
X
i

η�i P
i
xyvzϕ

�
xϕ

�
yϕ

�
vϕ

�
z ¼ 0: ð6Þ

This implies that we may write

X
i

η�i P
i
xyvzϕ

�
xϕ

�
yϕ

�
vϕ

�
z ¼

1

2

X
i

η�i P
i
xyvzϕ

�
xϕ

�
yϕ

�
vϕ

�
z

þ 1

2

X
i

ηiPi
xyvzϕxϕyϕvϕz:

Substituting this into Eq. (5), we see that we can express all
quartic potential contributions in terms of the mass terms,
and that the value of V at an extremum is always given by

VEOM ¼ −
1

2
μ2ϕxϕ

�
x; ð7Þ

with implicit summation over x, as before. This conclusion
does not hold if there are cubic terms in the potential.

B. Symmetric bifundamentals

In this section we consider the case of a bifundamental
Higgs system with symmetry group UðNÞ × UðMÞ,
OðNÞ ×OðMÞ, and USpðNÞ ×USpðMÞ. We call these
symmetric bifundamentals because the left and right group
are of the same type. However, N and M may be different.
Note that the two groups act independently. We make use of
the fact that the field ϕ is complex, real, and quaternionic in
these three cases, respectively. This allows a simultaneous
derivation of the result in all three cases. As explained
above, we can use the reality or quaternionic constraint to
show that only the λ1 and λ2 terms in the potential
contribute. The equations of motion are

μ2ϕiα ¼ λ1ϕiαðϕjβϕ
�
jβÞ þ λ2ϕiβϕjαϕ

�
jβ:

This is obtained from the ϕ�
iα variation. We treat the field

here as complex in all cases. In the quaternionic cases the
fields belong to 2 × 2 blocks, but there is no need for
indicating that. Strictly speaking the ϕ�

iα variation also acts
on ϕ if there is a reality condition. But this just gives rise to
an extra factor 2 in all contributing terms, and hence one
gets exactly the same equation.
The easiest way to solve the problem is to make use of a

singular value decomposition of ϕ. This means that ϕ can
be written as

ϕ ¼ URV;

where U ∈ OðNÞ; UðNÞ or USpðNÞ and V ∈
OðMÞ; UðMÞ or USpðMÞ in the three cases, respectively.
The matrix R is diagonal, real, and non-negative. Note that
negative diagonal elements can be made positive by a
suitable one-sided UðNÞ or OðNÞ transformation. In the
symplectic case Rmust be diagonal in terms of quaternions,
which means that it consists of 2 × 2 blocks r1, with r real
and positive. Also in this case a negative sign can be flipped
by a one-sided symplectic transformation [namely,
−1 ∈ SUð2Þ ⊂ USpðNÞ]. The singular value decomposi-
tion for quaternions has been derived in [6]. Note that a
singular value decomposition works even if ϕ is not a
square matrix.
Although singular value decomposition is less widely

known than matrix diagonalization, they are used in the
standard model of particle physics, namely, for the diag-
onalization of quark mass matrices. Since the latter are
square matrices, one usually solves this problem by means
of polar decompositions, which can be viewed as a special
case of singular value decompositions. In [1] no use was
made of singular value decompositions. Instead the
Hermitian quantity ϕϕ† was used, which can be diagon-
alized in the traditional way. But an extra step is needed to
relate the diagonal form of ϕϕ† to ϕ itself.
We can now arrive at the final answer in just a few steps.

By a left and right gauge transformation one can remove U
and V, and hence one may replace ϕ by its eigenvalues,
ϕiα ¼ riδiα; ri ∈ R; ri ≥ 0. Substituting this into the equa-
tions of motion we get

μ2riδiα ¼ λ1riδiα
X
j

r2j þ λ2r3i δiα:

For those values of i with ri ≠ 0 this implies

μ2 ¼ λ1
X
j

r2j þ λ2r2i ;

which implies that all nonvanishing ri must be identical:
ri ¼ r. Suppose there are K nonvanishing ones. Then

μ2 ¼ λ1Kr2 þ λ22r
2;

which means that (since r ≥ 0)

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2

Kλ1 þ λ2

s
:

The energy of these solutions is, from (7) or directly from
the potential,

E ¼ −
1

2

μ4K
Kλ1 þ λ2

:
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C. Asymmetric bifundamentals

1. Why a new strategy is needed

All methods used so far for the symmetric case,
diagonalization of ϕ or ϕϕ† or singular value decompo-
sitions, fail in all asymmetric cases, U-O, U-S, and O-S.
Note first of all that ϕ is a general complex matrix in all
these cases. No reality or quaternionic constraints can be
imposed. Therefore ϕ is not diagonalizable by means of the
available gauge symmetries. Quantities like ϕϕ† are diag-
onalizable in some cases, but the potential has additional
terms, and cannot be expressed in terms of just one of the
matrices ϕϕ†, ϕ†ϕ, ϕϕT , or ϕTϕ. If there is more than one,
they would have to be diagonalized simultaneously.
Furthermore for the diagonalization of some of these
quantities unitary transformations are required, while only
orthogonal or symplectic ones are available.
None of the known theorems concerning singular value

decompositions apply to U-O, U-S, or O-S. In other words,
one may of course diagonalize any complex matrix ϕ by
means of unitary matrices, but it is not possible to gauge
these transformation matrices away. One may speculate
about the possibility that there exists some generalization of
singular vector decompositions that allows us to write ϕ in
a simpler form. While some version of that statement may
be correct, some concrete guesses can be ruled out by
counting parameters. For example, compare UðNÞ ×UðNÞ
and OðNÞ ×USpðNÞ (we focus on square matrices here).
In both cases the field ϕ is complex and has 2N2 real
parameters, precisely the same as the number of parameters
of UðNÞ ×UðNÞ. The difference between these numbers
determines the minimal number of parameters that remains
after gauge fixing; the actual number can be larger because
of degeneracies in the action of the gauge symmetries.
Indeed, in this case the minimal number of parameters is 0,
but the actual number is N because common phases in the
left and right unitary groups have the same effect. For
OðNÞ ×OðNÞ the minimal number is N, which is also the
actual number, and for USpðNÞ ×USpðNÞ with a quater-
nionic condition the minimal number is −N, and the actual
number 1

2
N.

But forOðNÞ ×USpðNÞ the minimal number of remain-
ing parameters is

2N2 −
1

2
NðN − 1Þ − 1

2
NðN þ 1Þ ¼ N2:

This immediately ruins any chance for a diagonal form, and
even for some more general block-diagonal form. If the
putative final result is a block-diagonal matrix with (N/p)
complex p × p blocks, the total number of parameters is
2Np. Only for p ¼ N/2 one can just saturate the bound, but
then the matrix just decomposes into two general complex
N/2 × N/2 matrices. Even if this were possible, it does not

look like a useful result. So we need an entirely different
strategy.

2. Equations of motion

We have just seen that the procedure of first bringing the
fields in the simplest form using gauge rotations, and only
then applying the equations of motion, fails. Our strategy is
therefore to intertwine these two tools in several steps:
simplify by gauge rotations, apply the equations of motion,
simplify further by another gauge rotation, and then use the
equations of motion once more.
We consider the potential with all five quartic terms, but

one has to keep in mind that in some cases some of the
parameters may vanish. The equations of motion, obtained
by varying the potential with respect to ϕ�

iα, are

μ2ϕiα ¼ λ1ϕiαðϕjβϕ
�
jβÞ þ λ2ϕiβϕjαϕ

�
jβ

þ ϵCλ3ϕiδCδβϕjβϕ
�
jγCγα

þ ϵDλ4ϕmαDmjϕjβϕ
�
kβDki

þ λ�5Cαβϕ
�
jβDjkϕ

�
kγCγδϕ

�
mδDmi: ð8Þ

We may distinguish two kinds of equations of motion:
those for ϕiα ¼ 0 and those for ϕiα ≠ 0. In equations of the
former kind, both the μ2 term and the λ1 term drop out, and
one is left with the last four terms. We call two kinds of
equations “homogeneous” and “inhomogeneous” respec-
tively because in the first kind all terms are cubic. This is a
slight abuse of the terminology commonly used for linear
equations.
We do not consider solutions that only work for special

values of λi or special relations among the parameters λi.
Such relations are not renormalization group invariant
unless the potential has some additional symmetry. This
requirement rules out cancellations among the four cubic
terms with coefficients λ2…λ5, the four terms of a homo-
geneous equation. Each must vanish separately, and hence
for each homogeneous equation we get up to four equa-
tions, one for each coupling constant.
Most of the information in the inhomogeneous equations

can be dealt with in the same way: one can derive a second
class of homogeneous equations from them. Consider two
nonvanishing elements ϕiα and ϕkγ . From two inhomo-
geneous equations we can obtain a homogeneous one by
multiplying the equations for ϕiα by ϕkγ and vice versa, and
subtracting the two. Then the μ2 and λ1 terms drop out. The
resulting difference equation must be satisfied for generic
values of λp, and hence it splits into four separate equations,
labeled by the index p of the coupling constants λp.
This argument cannot be applied to the inhomogeneous

equations because they have parameters of different dimen-
sions. If all terms in the equation have the same tensor
structure they can be made to cancel by changing the
overall scale of the field. Hence such cancellations do not
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depend on special, fixed relations between μ2 and the
coupling constants.
In order to make the metric C and D explicit we assume

that the symplectic groups act only on the column basis
(labeled by α; β;…), and orthogonal ones only on the row
basis ði; j;…Þ. This allows us to consider the four cases
UðNÞ × UðMÞ, OðNÞ × UðMÞ, UðNÞ × USpðMÞ, and
OðNÞ × USpðMÞ. Although UðNÞ ×UðMÞ has already
been solved, we include it for illustrative purposes. Now
we can replace D by a Kronecker δ and C by an
antisymmetric matrix Ω. Since Ω pairs indices, we absorb
it in most cases in the fields by defining

ϕiα̃ ¼ Ωαβϕiβ

so that the indices α and α̃ form a symplectic pair. The
remaining two types, OðNÞ ×OðMÞ and USpðNÞ×
USpðMÞ, cannot be treated in this way. Nevertheless
these cases can also be solved by the following method,
by applying it to real numbers or quaternions. But
because these cases have already been solved, we do not
discuss this.
For the special case where GðNÞ is either UðNÞ or OðNÞ

and HðMÞ is either UðMÞ or USpðMÞ the equations of
motion for ϕiα read

μ2ϕiα ¼ λ1ϕiαðϕjβϕ
�
jβÞ þ λ2ϕiβϕjαϕ

�
jβ þ λ3ϕiβϕjβ̃ϕ

�
jα̃

þ λ4ϕjαϕjβϕ
�
iβ þ λ�5ϕ

�
jα̃ϕ

�
jβϕ

�
iβ̃
: ð9Þ

The homogeneous equations are simply that the four terms
with coefficients λp, p ¼ 2…5must vanish if ϕiα ¼ 0 (note
that the λ1 term also vanishes in that case). The second class
of homogeneous equations mentioned above, the weighted
difference of two inhomogeneous equations for nonzero
fields ϕiα and ϕkγ , yields

G ×H∶ ϕiβϕjαϕ
�
jβϕkγ ¼ ϕkβϕjγϕ

�
jβϕiα;

G × S∶ ϕiβϕjβ̃ϕ
�
jα̃ϕkγ ¼ ϕkβϕjβ̃ϕ

�
jγ̃ϕiα;

O ×H∶ ϕjαϕjβϕ
�
iβϕkγ ¼ ϕjγϕjβϕ

�
kβϕiα;

O × S∶ ϕ�
jα̃ϕ

�
jβϕ

�
iβ̃
ϕkγ ¼ ϕ�

jγ̃ϕ
�
jβϕ

�
kβ̃
ϕiα:

Not all these equations are available in all cases; this
depends on p as indicated in Table I. We have indicated this
here by G ¼ U or O, H ¼ U or USp, and S is used as
shorthand for USp. These relations are implicitly summed
over β and j.

3. Equations for pivot elements

It turns out to be sufficient to study these equations for
special cases where the row and column of a certain
element ϕij ≠ 0 consists mostly of 0’s. Consider first the
special case where a row i contains only one element,
labeled by column index δðiÞ,

ϕiδðiÞ ≠ 0; ϕiα ¼ 0 for all α ≠ δðiÞ:

We call such an element ϕiδðiÞ a pivot element.
There is always at least one such element, because one

can always bring one row into that form using either unitary
or symplectic column transformations (note that in our
setup orthogonal transformations do not act on the column
indices). This works somewhat differently in the unitary
and symplectic case, and the details are explained in the
Appendix. Obviously one can do this for just one row or
column at a time. We may also use the row and column
symmetries to set i ¼ δðiÞ ¼ 1, but we leave the notation
general for now.
The existence of such a row implies that there are N − 1

homogeneous equations due to ϕiα ¼ 0. Furthermore, since
there is only one nonzero element, the sum over β collapses
to a single term. Each of the four homogeneous equations
can be divided by ϕiδðiÞ ≠ 0. Then we get

G ×H∶ ϕjαϕ
�
jδðiÞ ¼ 0; ð10Þ

G × S∶ ϕjδ̃ðiÞϕ
�
jα̃ ¼ 0 ð11Þ

O ×H∶ ϕjαϕjδðiÞ ¼ 0; ð12Þ

O × S∶ ϕjα̃ϕjδ̃ðiÞ ¼ 0: ð13Þ

This implies that in general, every column must be complex
orthogonal (v⃗ · w⃗� ¼ 0) to the column with the pivot
element. In the symplectic case, every column must in

TABLE I. Potential terms.

Groups D C Reality condition Coupling constants

UðNÞ × UðMÞ None None None λ1, λ2
OðNÞ ×OðMÞ δ δ ϕ ¼ ϕ� λ1, λ2
USpð2NÞ × USpð2MÞ Ω Ω ϕ� ¼ ΩTϕΩ λ1, λ2
OðNÞ ×UðMÞ δ None None λ1, λ2, λ4
UðNÞ × USpð2MÞ None Ω None λ1, λ2, λ3
OðNÞ ×USpð2MÞ δ Ω None λ1, λ2, λ3, λ4, λ5
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addition be complex orthogonal to the column δ̃ paired with
the pivot element column. Furthermore the column δ̃ must
be complex orthogonal to column δ. In the OðNÞ case the
same statements must hold for both complex and real
orthogonality (v⃗ · w⃗ ¼ 0).
Now consider inhomogeneous difference equations for

pivot elements. This requires a second row k with a pivot
element in column δðkÞ. Having two such rows cannot be
arranged purely by gauge rotations, but we need this later in
an intermediate step. Assuming two rows with pivot
elements ϕiδðiÞ and ϕkδðkÞ we get in the four cases
respectively (with implicit sums over j)

G ×H∶ ϕjδðiÞϕ�
jδðiÞ ¼ ϕjδðkÞϕ�

jδðkÞ; ð14Þ

G × S∶ ϕjδ̃ðiÞϕ
�
jδ̃ðiÞ ¼ ϕjδ̃ðkÞϕ

�
jδ̃ðkÞ; ð15Þ

O ×H∶ ϕjδðiÞϕjδðiÞϕ�
iδðiÞϕkδðkÞ ¼ ϕjδðkÞϕjδðkÞϕ�

kδðkÞϕiδðiÞ;

ð16Þ

O ×H∶ ϕ�
jδ̃ðiÞϕ

�
jδ̃ðiÞϕ

�
iδðiÞϕkδðkÞ ¼ ϕ�

jδ̃ðkÞϕ
�
jδ̃ðkÞϕ

�
kδðkÞϕiδðiÞ:

ð17Þ

In the first two equations we have divided by the non-
vanishing element ϕiδðiÞ and ϕkδðkÞ. In the last two this is not
possible, because these factors appear as conjugates on the
left- and right-hand side. The first two equations imply that
any two columns containing at least one pivot element must
have the same norm. Furthermore, in the symplectic case,
their symplectic conjugate columns δ̃ðiÞ and δ̃ðkÞ must
have the same norms as well. Note that this is true even if
the columns δ̃ðiÞ and δ̃ðkÞ do not contain a pivot element
themselves. If one of the symplectic conjugate columns
δ̃ðiÞ or δ̃ðkÞ contains a pivot element, then all four columns
δðiÞ, δ̃ðkÞ, δ̃ðiÞ, and δ̃ðkÞ must have the same norm.
A special case of interest is that of two or more pivot

elements appearing in the same column. Then the first two
equations are trivially satisfied, but now the third and fourth
equations add new information. Suppose we have at least
two row labels i and k with δðiÞ ¼ δðkÞ≡ δ. Since all other
elements on these rows vanish we can make unitary or
orthogonal rotations on these rows, which allow us to bring
the δ-column vector ðϕiδ;ϕkδ;…Þ into a special form. The
dots indicate any additional pivot elements on column δ. If
G ¼ U we can rotate the column so that only ϕiδ ≠ 0. This
case is of no further interest, since now we have only a
single pivot element. If G ¼ O we have orthogonal trans-
formations acting on complex vectors. Then we can rotate
the δ column to the form ϕiδ ¼ x and ϕkδ ¼ r. If x ¼ x� we
can rotate r to 0, so that we have only a single pivot
element, and nothing new can be learned. So assume that
x ≠ x� and r ≠ 0. Then we find from the last two equations,
after dividing by ðx − x�Þr,

X
j

ϕjδϕjδ ¼ 0 forOðNÞ×UðNÞ or OðNÞ×USpðNÞ;
X
j

ϕjδ̃ϕjδ̃ ¼ 0 forOðNÞ×USpðNÞ:

These equations are especially useful if a column contains
exactly two pivot elements, because then it implies that
these elements must differ by a factor i.

4. The inhomogeneous equation

Now we turn to the inhomogeneous equations. They
have the form (9). For a given solution, we may write all
nonvanishing elements as

ϕiα ¼ rμχiα:

The functions χiα are dimensionless, and can be given a
standard normalization by setting one of them to 1. To
define r we have to find some canonical definition of one
special nonzero element ϕiα. This can be done as follows.
First we work out the row norms ni ¼

P
αϕiαϕ

�
iα. These are

invariant under all column basis transformations HðMÞ,
because all column transformations are either UðMÞ or a
subgroup of UðMÞ. We consider arbitrary GðNÞ trans-
formations of the rows ni to maximize the largest norm in
this set. The row with the largest possible norm is then
GðNÞ transformed to row 1. This is possible for any choice
ofGðNÞ. Using anHðMÞ transformation we now rotate row
1 so that only ϕ11 is nonzero, real, and positive, as
explained above. Now we define r in such a way that
χ11 ¼ 1. Then we have obtained a basis so that

χ11 ¼ 1; χ1α ¼ 0 for all α ≥ 2:

This procedure implies that jχiαj ≤ 1 for all i and α. In
terms of this parametrization the inhomogeneous equation
now becomes

1 ¼ r2½λ1Pþ λ2 χj1 χ
�
j1 þ λ3 χj2 χ

�
j2 þ λ4 χj1 χj1 þ λ�5 χ

�
j2 χ

�
j2�;

ð18Þ
where P ¼ P

χiα χ
�
iα. Note that by construction ϕ11 is real,

and by definition χ11 ¼ 1. Furthermore μ is real, so r must
be real as well. But this is not manifest in this equation: the
last two terms are not manifestly real. However, clearly
their sum must be real, and since we do not allow solutions
that require special relations between parameter values, this
must imply that they are separately real. We define

ρ2 ¼ χj1 χ
�
j1;

ρ3 ¼ χj2 χ
�
j2;

ρ4 ¼ χj1 χj1;

ρ5 ¼ χ�j2 χ
�
j2: ð19Þ

SYMMETRY BREAKING BY BIFUNDAMENTALS PHYS. REV. D 97, 056007 (2018)

056007-7



Then we get

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Pλ1 þQ

s
; ð20Þ

where

P ¼
X

χiα χ
�
iα;

Q ¼
X4
i¼2

λiρi þ λ�5ρ5: ð21Þ

In the special basis we have chosen, χ11 ¼ 1, and
χ1β ¼ 0 for β > 1. This implies that we can write out
the sum over β,

ρ2 ¼ χ11
XN
j¼1

χj1 χ
�
j1 ¼ 1þ

XN
j¼2

χj1 χ
�
j1 ≥ 1:

Using row transformations acting on the lastN − 1 rows we
can always bring the first column in a simpler form. If
GðNÞ ¼ UðNÞ, we can rotate all elements except χ21 to
zero values. If GðNÞ ¼ OðNÞ we can bring χ21 to a general
complex value, and χ31 to a positive real value. Since row 1
has norm 1, and since the norms were maximized using
GðNÞ, we have jχ21j ≤ 1 and jχ31j ≤ 1. Hence ρ2 ≤ 3. In
practice the maximum value attained by ρ2 turns out to
be 2.
The values of ρp can be directly related to the potential.

Consider first the inhomogeneous equation for any other
nonvanishing field ϕkγ ,

χkγ ¼ r2½λ1 χkγðχjβ χ�jβÞ þ λ2 χkβ χjγ χ
�
jβ þ λ3 χkβ χjβ̃ χ

�
jγ̃

þ λ4 χjγ χjβ χ
�
kβ þ λ�5 χ

�
jγ̃ χ

�
jβ χ

�
kβ̃
�:

By subtracting (18) times χkγ and using the principle that
cancellations depending on special relations among the λ’s
are not acceptable, we getX

j;β

χkβ χjγ χ
�
jβ ¼ ρ2 χkγ;

X
j;β

χkβ χjβ̃ χ
�
jγ̃ ¼ ρ3 χkγ;

X
j;β

χjγ χjβ χ
�
kβ ¼ ρ4 χkγ;

X
j;β

χ�jγ̃ χ
�
jβ χ

�
kβ̃

¼ ρ5 χkγ:

These equations are obtained here for χkγ ≠ 0, but it also
holds for χkγ ¼ 0, because then they are just the homo-
geneous equations. Now we multiply both sides of these
relations with χ�kγ and sum over k and γ. Then we get, in
terms of the potentials Vp defined in (3),

ρp ¼ Vp

μ4r4P
for p ¼ 2; 3; 4;

ρ5 ¼
V�
5

μ4r4P
:

These expressions show, in particular, that ρp is gauge
invariant, which was not manifest in the construction we
gave above. Note that ρ2 and ρ3 are manifestly real because
of their definition (19). Furthermore, ρ4 is proportional to
V4, which is manifestly real, but this proportionality holds
only for solutions of the equation of motion. The coupling
constants λ2, λ3, and λ4 are real, and since Q must be real
this implies that ρ5λ�5 must be real, although in general
neither ρ5 nor λ5 are real themselves. This implies

λ�5ρ5 ¼ �jλ5jjρ5j:

Hence for solutions to the equations of motion λ5V5 is
real. Therefore

λ�5V
�
5 ¼

1

2
ðλ5V5 þ λ�5V

�
5Þ:

Using this result and (3) we can express the entire quartic
contribution to the potential in terms of the ρ parameters
and P,

V¼−μ2ϕiαϕ
�
iαþ

1

2
μ4r4Pðλ1Pþλ2ρ2þ λ3ρ3þ λ4ρ4þ λ�5ρ5Þ

¼−μ4r2Pþ1

2
μ4r4Pðλ1PþQÞ

¼−
1

2
μ4r2P;

where in the last step we used (20). This result is consistent
with the general formula (7).

5. Disjoint solutions

If one considers Higgs potentials for GðNÞ ×HðMÞ
group combinations, solutions must exist already for the
smallest allowed values of N and M: if μ2 < 0, then ϕ ¼ 0
is not a minimum, and hence if the potential is bounded
there must exist a nontrivial minimum. These solutions
remain valid if one enlarges N and M and chooses all
additional elements of ϕiα to be 0.
Now consider two such solutions to the equations of

motion, ϕA and ϕB. One may attempt to combine two or
more solutions, by choosing disjoint block submatrices of
ϕiα and embedding a known solution in it. Here by disjoint
we mean first of all that no rows or columns exist with
nonzero elements of both ϕA and ϕB. But we need a slightly
more general notion of nonoverlapping, namely, one that
includes the effect of the matrices Dij or Cαβ. In practice
these matrices are either diagonal or block diagonal in
terms of 2 × 2 blocks, as happens for symplectic groups. In
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that case we combine rows or columns into pairs linked by
C orD, and we extend the notion of disjoint to pairs of rows
or columns.
The homogeneous equations are automatically satisfied

for combinations of solutions in disjoint sub-blocks. This is
because nonzero elements of ϕiα only connect indices
belonging to the corresponding solution.
But this is not true for the inhomogeneous equations

because of the λ1 term. This includes a sum over all ϕjβϕ
�
jβ,

which changes if solutions are added.
Consider two distinct solutions χ and ξ, each satisfying

χiα ¼ λ1 χiαr21P1 þ λ2r21 χiβ χjα χ
�
jβ þ � � � ;

ξpμ ¼ λ1ξpμr22P2 þ λ2r22ξpνξqμξ
�
qν þ � � � ; ð22Þ

where the indices ði; αÞ and ðp; μÞ are disjoint in the way
explained above. Here we use the dimensionless unit
introduced above; the two solutions are

ϕ1
iα ¼ r1 χiα; r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P1λ1 þQ1

s
;

ϕ2
iα ¼ r2ξiα; r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P2λ1 þQ2

s
;

with

P1 ¼
X
i;α

χiα χ
�
iα; P2 ¼

X
i;α

χpμ χ
�
pμ:

This combined solution satisfied the homogeneous equa-
tions, but the inhomogeneous ones become

χiα ¼ λ1 χiαðr21P1 þ r22P2Þ þ λ2r21 χiβ χjα χ
�
jβ þ � � � ;

ξpμ ¼ λ1ξpμðr21P1 þ r22P2Þ þ λ2r22ξpνξqμξ
�
qν þ � � � ð23Þ

Since the homogeneous equations are invariant under a
simultaneous rescaling of all fields, one may hope that we
can solve these equations by a rescaling

r1 → S1r1; r2 → S2r2:

Now the inhomogeneous equations are

χiα ¼ λ1 χiαðS21r21P1 þ S22r
2
2P2Þ þ S21r

2
1λ2 χiβ χjα χ

�
jβ þ � � � ;

ξpμ ¼ λ1ξpμðS21r21P1 þ S22r
2
2P2Þ þ S22r

2
2λ2ξpνξqμξ

�
qν þ � � �

ð24Þ

Now we subtract S21 times the single solution equation of
motion (23) from the first, and analogously for the second.
Then the λp terms forp ≥ 2 cancel, andwe can divide by χiα,
respectively ξpμ. Then we solve for S21 and S22 and we get

S21 ¼
1 − λ1r22P2

1 − λ21r
2
1r

2
2P1P2

S22 ¼
1 − λ1r21P1

1 − λ21r
2
1r

2
2P1P2

:

Note that if we combine two identical solutions ðr1 ¼ r2;
P1 ¼ P2Þ we find

S21 ¼ S22 ¼
1

1þ λ1r2P

so that the r parameter rcomb of the combined solution is

S21r2 ¼ S22r
2
2 ¼ r2comb ¼

1

2Pλ1 þQ
:

It is easy to show that this process can be continued, and that
for a combination of K identical solutions the result is

r2 ¼ 1

KPλ1 þQ
:

This can be verified by working out the combination of two
multisolutions, one built out of K1 and one build out of K2

basic solutions. We can do that in general, for one K1-fold
solution with parameters P1 and Q1, and one K2-fold
solution with parameters P2 and Q2.
We find

S21r
2
1 ¼

Q2

λ1ðK2P2Q1 þ K1P1Q2Þ þQ1Q2

ð25Þ

with an analogous formula for S22r
2
2, with “1” and “2”

interchanged. We see that if P1 ¼ P2 and Q1 ¼ Q2, then
indeed we get the expected result for a ðK1 þ K2Þ-fold
solution. Furthermore we see then that S21r

2
1 ¼ S22r

2
2 if and

only if Q1 ¼ Q2. For generic λi we can have equality ofQ1

and Q2 if and only if ρ
ð1Þ
i ¼ ρð2Þi (the upper index labels the

solution).
Note that even for distinct solutions, there is always a

solution for the scale factors S1 and S2. But now we can
consider the rescaled equations (24) for the special normal-
izing fields we have chosen to define ρi. These are the field
χ11 ¼ 1 chosen earlier, and the analogous choice for ξ. We
can divide the equations by these fields and subtract them.
Then we find

S21r
2
1ρ

ð1Þ
i ¼ S22r

2
2ρ

ð2Þ
i :

Using Eq. (25) we can write this as

Q2ρ
ð1Þ
i ¼ Q1ρ

ð2Þ
i : ð26Þ

Note that if we contract this with λi, summing over i ¼ 2…5,
this is automatically satisfied. Without summation, these
equations imply that two solutions can only be combined if
their values of ρp for different p have the same ratios.
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ρð1Þi

ρð2Þi

¼ Q1

Q2

:

Hence, in particular, they must be simultaneously 0.
Furthermore we can divide (26) on both sides by the i ¼
2 equation, which is always nontrivial. This implies that for
two solutions to be combined, one must have

ρð2Þp ¼
�
ρð1Þ2

ρð2Þ2

�
ρð1Þp :

Although this still allows a common scaling, as we will see
there are no two cases where the ρp parameters differ only by
a common scale.

6. The main argument

Now we combine all the foregoing results. As already
discussed in Sec. II C 4, we can always rotate the first row
to the form

ðϕ11; 0;…; 0Þ:

Then the homogeneous equation for G ×H implies that all
columns are orthogonal to column 1. Now row 1 is fixed,

but we have UðN − 1Þ or OðN − 1Þ rotations at our
disposal to clean up the last N − 1 entries of column 1.
Consider first unitary column transformations. Then we

can set ϕj1 ¼ 0 for j ≥ 3, and make ϕ21 real. Since all
remaining columns must be orthogonal to column 1, this
implies that ϕ2α ¼ 0 for α ≥ 2. Now the first two rows of
the matrix have the form

�
ϕ11 0 … 0

ϕ21 0 … 0

�
:

If ϕ21 ¼ 0, we have obtained a matrix where ϕ11 is the only
nonzero element in the first row and column. If ϕ21 ≠ 0, the
fact that the remainder of the first two rows vanishes
implies that we can apply a Uð2Þ rotation to the first
column, and rotate ϕ21 to 0. Hence once again we end up
with an element ϕ11 in an otherwise vanishing row and
column. In either case the result is a disjoint 1 × 1 block
matrix if HðMÞ ¼ UðMÞ. Note that even though the matrix
is the same if HðMÞ ¼ USpðMÞ, it is not necessarily
disjoint, since this would require column 2 to vanish.
In the OðNÞ case the argument is similar. Now we rotate

the last N − 1 rows so that the first column has one of the
following three features:

a∶ ϕj1 ¼ 0 for j ≥ 2;

b∶ ϕj1 ¼ 0 for j ≥ 3; ϕ21 ≠ 0;

c∶ ϕj1 ¼ 0 for j ≥ 4; ϕ21 ≠ 0; ϕ31 ≠ 0; ϕ21ϕ
�
31 − ϕ�

21ϕ31 ≠ 0:

Note that the last condition is thatϕ21 andϕ31 have a different
phase. If that were not the case we could rotate ϕ31 into ϕ21

and then case c turns into case b. In case a we have a disjoint
1 × 1 blockmatrix ifHðMÞ ¼ UðMÞ and the discussion is as
before. In case b the general orthogonality equation (10)
implies that ϕ2α ¼ 0 for α ≥ 2. Then either ϕ21 is real, and it
can be rotated into ϕ11, or it is not real, and the arguments at
the end of Sec. II C 3 show that ϕ21 ¼ iϕ11. In case c we use
both (10) and (12) plus the fact that ϕ21 and ϕ31 have a
different phase to show that ϕ2α ¼ ϕ3α ¼ 0 for α ≥ 2. Now
wehave anOð3Þgauge symmetry in the first three rows at our
disposal to reduce case c to case b. We may now normalize
ϕ11 to 1 by defining the parameter r appropriately. We find
then that we have two possible disjoint solutions. Oneworks
for both UðNÞ and OðNÞ, and is characterized by an upper-
left 1 × 1 block,

A∶ ð 1 Þ:

The other holds only for OðNÞ and is characterized by an
upper-left 2 × 1 block,

B∶
�
1

i

�
:

If the column group HðMÞ is UðMÞ these blocks are
really disjoint, and we can repeat the process for the block
matrix defined by the lastM − 1 column and the last N − 1
orN − 2 rows. This submatrix is treated in exactly the same
way, and yields the same solutions. From the general
argument in Sec. II C 5 we know that these solutions can
only be combined with the upper-left block if they are
identical, or 0. This follows from the fact that their
parameters ρp are not proportional. The parameters are
shown in Table II. We repeat this process until the
remaining lower right block matrix is identically 0.
If the column group isUSpðMÞwe start in the sameway.

However, now the upper-left blocks are not strictly disjoint
from the rest of the matrix, because USpðNÞ links columns
1 and 2. We can deal with the cases GðNÞ ¼ UðNÞ and
GðNÞ ¼ OðNÞ simultaneously. The first step yields a r × 1
upper-left block, where r ¼ 1 or 2. Now we clean up
column 2 using GðN − rÞ rotations in the last N − r rows.
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Note that in those last N − r rows all elements to the left of
column 2 are 0, and all elements to the right of column 2 are
arbitrary complex numbers, so we can freely use GðN − rÞ
transformations acting on column 2.
We get essentially the same three options as above.

Option a is that column 2 vanishes completely. Then the
upper block is disjoint in the USpðNÞ sense. Option b is
that column 2 contains just one nonzero element, ϕrþ1;2.
Then the homogeneous equation (11) tells us that the
remainder of row 2 to the right of ϕrþ1;2 must vanish, and
this makes the entire block disjoint in the USpðNÞ sense.
Option c is that column 2 contains two nonvanishing
elements. This can only happen if GðNÞ ¼ OðNÞ and if
those two elements have different phases. Now we use both
(11) and (13) [which indeed are available for OðNÞ] to
show that rows rþ 1 and rþ 2 are 0 except on column 2.
We conclude that in all cases the r × s upper-left blocks are
completely disjoint from the rest of the matrix. So now we
can continue the argument in the lastN − r rows, andN − s
columns.
We have now reached a situation where both column 1

and 2 consist entirely of pivot elements, and we can apply
the results of Sec. II C 3. This tells us that ϕ42 must be equal
to iϕ32 and that columns with one and two pivot elements
cannot be combined. This leaves us with the following four
possibilities for the upper-left block,

A0∶ ð 1 0 Þ Cx∶
�
1 0

0 x

�

B0∶
�
1 0

i 0

�
D∶

0
BBB@

1 0

i 0

0 x

0 ix

1
CCCA:

Here x is a phase, since we know from (14) that all columns
must have equal norm. All four must be considered for
OðNÞ × USpðNÞ and only A and C for UðNÞ × USpðNÞ.

The value of x requires some additional discussion.
Consider first Cx. If GðNÞ ¼ UðNÞ we can make x real
using a phase rotation, and then the equations of motion
guarantee that x ¼ 1. But this is not true if GðNÞ ¼ OðNÞ.
In that case there is a λ5 term in the potential, and the
quantity ρ5 exists, and is equal to ðx�Þ2 [see (19)]. Then the
condition that λ5ρ�5 be real determines x up to a factor i. The
solutions are

x ¼
ffiffiffiffiffiffiffi
λ�5
jλ5j

s
≡ y; x ¼ i

ffiffiffiffiffiffiffi
λ�5
jλ5j

s
¼ iy: ð27Þ

In each case there are two roots, but using OðNÞ we can
change the sign of row 2, and map them to each other.
In case D we can combine an orthogonal SOð2Þ rotation

on the first two rows with a diagonal phase rotation on
column 1 and 2 in SUð2Þ to obtain

0
BBB@

ðcþ isÞeiθ 0

ð−sþ icÞeiθ 0

0 xe−iθ

0 ixe−iθ

1
CCCA:

Nowwe can choose θ to cancel the phase of x, and choose c
and s to cancel θ in χ11, so that the final result is

D∶

0
BBB@

1 0

i 0

0 1

0 i

1
CCCA:

In Table II we summarize all solutions. The table is
organized in terms of four vertical blocks that respectively
specify the original intersecting brane group, the values of
the parameter P and ρp, the basic block matrix X and its
size, and the unbroken subgroup and its embedding. The
latter is discussed in the next section. Note that, as

TABLE II. All solutions and the resulting subgroup embedding. In column 6, ω5 ¼ λ5/jλ5j.
Group P ρ2 ρ3 ρ4 ρ5 X p q Subgroup Embedding

UðNÞ × UðMÞ 1 1 � � � � � � � � � A 1 1 UðKÞ (0, 0)
OðNÞ ×OðMÞ 1 1 � � � � � � � � � A 1 1 OðKÞ (0, 0)
USpðNÞ ×USpðMÞ 2 2 � � � � � � � � � C1 2 2 USpð2KÞ (0, 0)
OðNÞ × UðMÞ 1 1 � � � 1 � � � A 1 1 OðKÞ (0, 1)
OðNÞ × UðMÞ 2 2 � � � 0 � � � B 2 1 UðKÞ (3, 0)
UðNÞ × USpðMÞ 1 1 0 � � � � � � A0 1 2 UðKÞ (0, 4)
UðNÞ × USpðMÞ 2 1 1 � � � � � � C1 2 2 USpð2KÞ (2, 0)
OðNÞ × USpðMÞ 1 1 0 1 0 A0 1 2 OðKÞ (0, 5)
OðNÞ × USpðMÞ 2 2 0 0 0 B0 2 2 UðKÞ (3, 4)
OðNÞ × USpðMÞ 2 1 1 1 ω5 Cy 2 2 UðKÞ (3, 4)
OðNÞ × USpðMÞ 2 1 1 1 −ω5 Ciy 2 2 UðKÞ (3, 4)
OðNÞ × USpðMÞ 4 2 2 0 0 D 4 2 USpð2KÞ (6, 0)
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announced earlier, for a given combination of G and H,
there are no two cases with vectors ρp that are proportional
to each other. Therefore a general solution is a combination
of K identical basic blocks, and never a combination of
different blocks.
Note that the subscript of thematrix C denotes the value of

x, but the subscripts onAandBhave a different purpose: they
indicate that the second column vanishes. This would be
irrelevant if HðmÞ ¼ UðmÞ, but it is needed in USpðMÞ in
order for the block to be disjoint from the rest of the matrix.

D. Subgroups

Now we determine the subgroups that are left unbroken
by these solutions. Since only identical blocks can be
repeated, the general form of the vacuum is

v1K ⊗ X;

where X denotes the blocks in the last column of the table
and 1K is the K × K unit matrix.
We begin with a list of all subgroup embeddings

that occur. First of all we need the “brane separation”
embeddings

Uðkþ lÞ → UðkÞ ×UðlÞ
Oðkþ lÞ → OðkÞ ×OðlÞ

USpð2kþ 2lÞ → USpð2kÞ ×USpð2lÞ: ð28Þ
In all these cases the vector representation splits as
ðV; 1Þ þ ð1; VÞ. This embedding is used to split off the
group GðN − KpÞ ×HðM − KqÞ that acts trivially on the
vacuum. This part of the breaking requires no further
discussion, so we leave out the GðN − KpÞ ×HðM − KqÞ
factor of the unbroken subgroup henceforth.
Further discussion is needed to determine which parts of

GðKpÞ ×HðKqÞ survive, but roughly speaking it will be
some diagonal subgroup of the two factors, obtained by
means of a suitable left-right combination of one of the
embeddings listed in Table III. By embedding 0 we mean
the trivial one, available for U, O, and USp. Embedding 1
is simply the restriction from complex matrices to real ones.
Embedding 2 is the restriction from complex to quater-
nionic, i.e., unitary matrices are restricted to the subset

U� ¼ hUhT where h is antisymmetric. Embedding 3 is a
well-known one, used in grand unified theory (GUT)
theories for embedding SUð5ÞGUTs in SOð10Þ; for further
details see the Appendix. Embedding 4 is similar, and
follows immediately from the standard basis used for
symplectic groups, as explained in the Appendix.
Embedding 5 is obtained by combining 4 and 1, and
embedding 6 by combining 3 and 4.
Embedding 3 is best understood by extending Oð2KÞ to

Uð2KÞ and then conjugating the entireOð2KÞ group within
Uð2KÞ. The resulting group matrices are not real, but this is
as good a definition of Oð2KÞ as the standard one.
Moreover, we can always transform the result back to
the real form, if we wish. For this transformation we use the
matrix (A3), but with rows and columns rearranged into
pairs, exactly as in the symplectic case (as explained in
Appendix A 3). The matrix Z now takes the form

Z ¼ 1ffiffiffi
2

p 1K ⊗
�
1 1

i −i

�
: ð29Þ

We transform the orthogonal group generators O to
Õ ¼ Z†OZ, and multiply the vacuum matrix on the right
by Z†. The advantage of this basis becomes clear when we
make OðNÞ act on vacua of the form B and D, which have
column vectors ð1; iÞ. In the new basis these take the form
(1, 0). There is a subgroup UðKÞ ⊂ Oð2KÞ that acts on the
odd indices as a unitary matrix Y, and on the even indices as
Y�. There are additional generators inOð2KÞ, but they map
the odd components to the even ones, and this can never be
repaired by a transformation acting on the columns.
The complexified OðNÞ basis reveals some nice anal-

ogies between the symplectic and orthogonal cases, but it is
probably not preferable to work in that basis from the start.
First of all this basis is only useful for evenN, and secondly
the concept of disjoint matrices becomes less convenient in
the complexified basis. Basis elements now come in pairs,
as for USpðNÞ, because the metric is build out of 2 × 2 σ1
blocks. Hence only pairs can be disjoint. Another way of
saying this is that the complexified basis is good for
solutions of type B and D, but inconvenient for type A
(as well as C).
We specify for each case the embedding of the subgroup

in GðKpÞ ×HðKqÞ. This is done by specifying a pair of
labels ðm; nÞ that each refer to a line in Table III. From
ðm; nÞ one can determine the embedding in the vector
representations of the two groups GðKpÞ and HðKqÞ.
From this we derive the decomposition of the Higgs field
itself, which must include a singlet, corresponding to the
vacuum expectation value (v.e.v.).

(i) UðNÞ ×UðMÞ, type A. The vacuum, limited to the
K × K subspace where the v.e.v. is nontrivial, is a
multiple of the K × K unit matrix. This case was
already discussed in [1]. We just use it to illustrate
our notation.

TABLE III. Basic subgroup embeddings.

Number Group Subgroup Vector decomposition

0 GðpÞ GðpÞ V
1 UðpÞ OðpÞ V
2 Uð2pÞ USpð2pÞ V
3 Oð2pÞ UðpÞ Vþ V�
4 USpð2pÞ UðpÞ Vþ V�
5 USpð2pÞ OðpÞ 2V
6 Oð4pÞ USpð2pÞ 2V
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UðKÞ ×UðKÞ → UðKÞ embedding ð0; 0Þ
ðV;VÞ → 1þ AdjK:

Here AdjK is the irreducible UðKÞ representation
of dimension K2 − 1, the adjoint representation of
SUðKÞ subgroup of UðKÞ, with Uð1Þ charge 0. The
first component of the decomposition of the Higgs
field, (V,V), is the singlet that corresponds to the
Higgs v.e.v.

(ii) OðNÞ ×OðMÞ, type A. This was also discussed in
[1]. The result is

OðKÞ ×OðKÞ → OðKÞ embedding ð0; 0Þ
ðV;VÞ → 1þ Aþ S:

In this case the Higgs singlet comes out of the trace
of the symmetric tensor.

(iii) USpð2NÞ ×USpð2MÞ, type C1. In terms of qua-
ternions, the vacuum has the same form as the pre-
vious two examples. It is proportional to a K × K
diagonal matrix of unit quaternions. The reason it
appears here as type C1 rather than A is that we have
written the quaternions in a complex base of twice
the size. In terms of complex fields the vacuum is

v1K ⊗
�
1 0

0 1

�
:

Note that a diagonal with an odd number of non-
vanishing entries does not even respect the quater-
nionic condition, so it cannot occur. The result is

USpð2KÞ ×USpð2KÞ → USpð2KÞ
embedding ð0; 0Þ

ðV;VÞ → 1þ Aþ S:

The only differences with the orthogonal case are
that all dimensions are even, and that the antisym-
metric representation is reducible: a symplectic trace
must be removed. In the orthogonal case the
symmetric representation is the one that must be
made traceless. In both cases, the trace provides the
Higgs representation.

(iv) OðNÞ ×UðMÞ, type A. In this case the vacuum
block matrix X is (1). This is very similar to the
UðNÞ×UðMÞ andUðNÞ ×UðMÞ breakings. Within
the right UðKÞ subgroup only the OðKÞ transforma-
tions, the real subgroup ofOðKÞ, can be compensated
by orthogonal transformations. The remaining UðKÞ
transformations, acting infinitesimally, generate
imaginary parts that cannot be removed by an
orthogonal transformation. Therefore we get

OðKÞ ×UðKÞ → OðKÞ embedding ð0; 1Þ
ðV;VÞ → 1þ Sþ A:

(v) OðNÞ ×UðMÞ, type B. If we use K basic blocks B,
then we get a vacuummatrix that can be brought into
the form

v1K ⊗
�
1

i

�
:

The part of OðNÞ that is affected by the v.e.v. is
Oð2KÞ. The determination of the symmetry of the
vacuum can be done most efficiently by using the
transformation (29). Clearly the left UðKÞ ⊂ Oð2KÞ
can be undone by a right UðKÞ transformation.
Hence the final result is

Oð2KÞ ×UðKÞ → UðKÞ embedding ð3; 0Þ
ðV;VÞ → 1þ AdjK þ Aþ S:

(vi) UðNÞ ×USpðMÞ, type A0. The block matrix X that
defines the vacuum is

X ¼ ð1 0Þ:
WithK diagonal copies of that matrix, the effect is to
break the SUð2Þ factors acting on each column pair,
so that only UðKÞ remains. This combines with a
UðKÞ factor that acts on the row index. The result is

UðKÞ ×USpð2KÞ → UðKÞ embedding ð0; 4Þ
ðV;VÞ → 1þ AdjK þ Aþ S:

Note that this is like the mirror image of case B for
OðNÞ ×UðMÞ discussed above, after using the Z
transformation (29).

(vii) UðNÞ ×USpðMÞ, type C1. The block matrix X is
the 2 × 2 unit matrix. Clearly, if we act on K of these
blocks withUSpð2KÞ from the left and the right, the
diagonal combination is preserved. Hence we get

Uð2KÞ ×USpð2KÞ → USpð2KÞ embedding ð2; 0Þ
ðV;VÞ → 1þ Aþ S:

(viii) OðNÞ ×USpðMÞ, type A0. The vacuum is

X ¼ ð1 0Þ:
The affected part of the group is OðKÞ × USpð2KÞ.
The OðKÞ subgroup of OðNÞ can keep the vacuum
invariant if it is combined with a OðKÞ rotation of
the K 1 × 2 blocks. Hence we need to break
USpð2KÞ acting on those blocks first to UðKÞ
and then to OðKÞ. Hence we get

OðKÞ ×USpð2KÞ → OðKÞ embedding ð0; 5Þ
ðV;VÞ → 2 × ð1þ Aþ SÞ:

This subgroup OðKÞ ⊂ USpð2KÞ is the maximal
subgroup that can survive. The SUð2ÞK subgroups
of USpð2KÞ all change the vector (1,0), and this can
never be undone by a OðKÞ transformation on the
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row indices. Likewise, the complex transformations
in UðKÞ ⊂ USpð2KÞ make the vacuum complex,
and then an orthogonal transformation cannot make
them real again.

(ix) OðNÞ ×USpðMÞ, type B0. In this case the vacuum
has the form

v1 ⊗
�
1 0

i 0

�
:

The discussion is very similar to case B of OðNÞ ×
UðMÞ combined with case A of UðNÞ ×USpðMÞ.
The surviving symmetry group is the diagonal
combination of the UðKÞ subgroup of Oð2KÞ and
the analogous UðKÞ subgroup of USpð2KÞ.
Oð2KÞ ×USpð2KÞ → UðKÞ embedding ð3; 4Þ

ðV; VÞ → 2 × ð1þ AdjKÞ
þ Aþ Sþ A� þ S�:

(x) OðNÞ ×USpðMÞ, type C. The matrix�
1 0

0 x

�

is in general complex, and cannot be made real by
gauge transformations. Writing x ¼ eiξ we have

�
1 0

0 eiξ

�
≃
�
eiξ/2 0

0 eiξ/2

�
¼ eiξ/2

�
1 0

0 1

�
;

where ≃ denotes gauge equivalence. The transforma-
tion used here is a diagonal SUð2Þ transformation in
USpðMÞ. The overall phase eiξ/2 cannot be trans-
formed away. This is the only case among the six
combinations of groups U, O, and S where such a
phase can occur. Bifundamentals of type (O,O) and
(S,S) are real or quaternionic, and such a phase
violates these constraints; in any combination that
involves a unitary group the phase can be gauged
away. So only for (O,S) the phase exists and is not a
pure gauge variable. This is also the reason for the
existence of the V5 terms in the potential. Without
them, overall phase changes of the field ϕiα would
give rise to flat directions in the potential.
We may explore the potential along this phase

direction.We get, keeping everything fixed except the
phase,

VðξÞ ¼ constþ 1

2
λ5Re2iξ þ λ�5Re

−2iξ

¼ jλ5jR cosðη5 þ 2ξÞ;
where R is some real number and λ5 ¼ jλ5jeiη5 . As a
function of 0 ≤ ξ < 2π the cosine has four extrema, at
ξ ¼ − 1

2
η5 þ 1

2
lπ;l ¼ 0, 1, 2, 3. This implies

x ¼ �
ffiffiffiffiffiffiffi
λ�5
jλ5j

s
; x ¼ �i

ffiffiffiffiffiffiffi
λ�5
jλ5j

s

aswehave seen earlier. The signs can begauged away,
so that we end up with two distinct extrema, corre-
sponding to the two options Cx and Cix in Table II.
Clearly, one of these extremahasmorevacuumenergy
than the other and is therefore a saddle point. The
lower of the two can be a saddle point of the full
potential, or a local or global minimum, depending on
the values of the other parameters λi.

In the minimal case, N ¼ M ¼ 2, the matrix C1

breaks the group Oð2Þ × USpð2Þ to a diagonal
SOð2Þ ∼Uð1Þ, with the SOð2Þ within USpð2Þ≡
SUð2Þ generated by σ2 [the group is SOð2Þ rather
than Oð2Þ because SUð2Þ does not contain Oð2Þ]. If
we replace C1 by Cx, the SOð2Þ generator is rotated
within SUð2Þ to cosðξÞσ2 þ sinðξÞσ1. Hence the
SOð2Þ ⊂ SUð2Þ embedding rotates inside SUð2Þ as
a function of the phase of λ5. The final results for this
embedding are, for both values of the complex
parameter x,

Oð2KÞ ×USpð2KÞ → UðKÞ embedding ð3; 4Þ
ðV; VÞ → 2 × ð1þ AdjKÞ

þ Aþ Sþ A� þ S�:

Note that this is group theoretically the same embed-
ding as in case B0. However, the subgroup is em-
bedded in a different way in USpðNÞ. This can most
easily be clarified for theminimal caseN ¼ M ¼ 2. If
we work with the real basis for Oð2Þ instead of the
complexified basis used in the discussion of case B0,
then on the Oð2Þ side the action is identical in both
cases. There is only one generator, so we have no
choice of embedding. However, in case C1 the Oð2Þ
action is undone by anOð2Þ ⊂ USpð2Þ ∼ SUð2Þ that
is simply a real restriction of SUð2Þ, whereas in case
B0 it is undone by an SUð2Þ group element eiθσ3 .

Although isomorphic subgroups are obtained, these
are distinct vacua, with different vacuum energies.

(xi) OðNÞ ×USpðMÞ, type D. Now the vacuum is

v1K ⊗

0
BBB@

1 0

i 0

0 1

0 i

1
CCCA:

We use the matrix (29) on the left, to bring the
vacuum in the form

vffiffiffi
2

p 1K ⊗

0
BBB@

1 0

0 0

0 1

0 0

1
CCCA:
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On the left the canonical Uð2KÞ subgroup ofOð4KÞ
is the only subset that has a chance to be compen-
sated by a transformation from the right. But we do
not have a full Uð2KÞ available on the right; the
maximal set of transformations is USpð2KÞ. Hence
the left group must be broken one additional step
further to USpð2KÞ. The final result is

Oð4KÞ×USpð2KÞ→USpð2KÞ embeddingð6;0Þ
ðV;VÞ→ 2× ð1þAþSÞ:

Note the similarity with case A0. Indeed, in all
results there is a manifest similarity under exchange
of orthogonal and symplectic transformations. This
is also apparent in Table III.

E. Comparison of vacuum energies

Now we compare the vacuum energies of the solutions to
determine the absolute minimum. This also provides insight
about the reason all these solutions exist. The vacuum energy
of a multiple solution built out of K disjoint blocks with
parametersP andQ is− 1

2
KPμ4r2. This follows fromEq. (7)

and the fact that all nonvanishing field values in a solution
have the same absolute value. Their total number is the
number of blocks,K, times the number of nonzero entries per
block, P. This yields

EðK;P;QÞ ¼ −
KPμ4

2ðKPλ1 þQÞ ¼ −
μ4

2ðλ1 þQ/KPÞ : ð30Þ

The numerator must be positive for any allowed value ofQ,
K, andP.We see in thenext sectionwhy thismust be true, but
it is already clear that a solution with negative numerator has
positive vacuum energy, and hence can never be the absolute
minimum. If the numerator is positive, the minimal energy is
obtained for the minimal value of Q/KP.
For fixed Q and P this implies the following: If Q < 0

the vacuum energy increases with K so that the minimal
energy is reached for the smallest nontrivial value of K,
K ¼ 1. If Q > 0 the vacuum energy decreases with K, and
hence the minimum occurs for the largest value of K that is
allowed by M and N, compared to the sizes p and q of the
basic block given in Table II. To be precise

Kmax ¼ minðbM/pc; bN/qcÞ;
where bxc (the “floor function”) is the largest integer
smaller or equal to x. Only the values K ¼ 1 and K ¼
Kmax can occur as absolute minima for suitable parameter
values. This is in agreement with the results of [1]; in that
case Q ¼ λ2.
Now we still have to compare different solutions. The

ordering of solutions depends in a complicated way on the
coupling constants, and it is not worthwhile to work this out
in detail. But it is not difficult to see that—with one

exception, see below—one can always make choices of
λ2…λ5 so that Q is negative for one solution, and positive
for all others. Then one can always make λ1 large enough so
that λ1 þQ/KP > 0. The solution with negative Q is then
the global minimum. This implies that any solution in the
table can be an absolute minimum for K ¼ 1.
The exception is one of the two solutions with block

matrices Cy and Ciy. Their values of Q, defined in (21), are
respectively Qy ¼ λ2 þ λ3 þ λ4 þ jλ5j and Qiy ¼ λ2 þ λ3þ
λ4 − jλ5j. ObviouslyQiy < Qy, and hence onlyQiy can be a
global minimum, as we have seen already in a different way
in the previous section.
The discussion forK ¼ Kmax is similar. For any solution—

except the two just mentioned—there is a choice of coupling
constants so that its value of Q/PKmax value is positive, but
smaller than all others. Hence any of the solutions in the table,
except Cy, can occur as a global minimum for K ¼ Kmax.

F. Boundedness and existence of solutions

Now we discuss two issues that are related: the fact that
for certain parameters the potential becomes unbounded
from below, and the existence of singularities in the set of
solutions as a function of the couplings. The parameter r,
defined by Eq. (20), must be real, and hence the argument of
the square root must be non-negative. This implies that the
quantity λ1 þQ/KP must be non-negative. If the numerator
is negative for just one solution, one might conclude that this
merely implies that the corresponding solution does not
exist, but we will see that in that case the potential is
unbounded, so that the other solutions lose their physical
relevance as well.
Consider first what happens if we vary λ1, while keeping

all other coupling constants fixed. For sufficiently large λ1 the
potential is bounded, and the quantities λ1 þQ/KP are
positive for all solutions. If we decrease λ1 we reach a
singularity at

λ1 ¼ −
Q
KP

:

The first such singularity we encounter is the one with
smallest value of Q

KP, which corresponds to the solution that is
the global minimum. If we pass through the singularity, the
vacuum energy jumps from −∞ to þ∞, and r becomes
imaginary. Just before reaching the singularity the energy of
the global minimum approaches −∞, indicating that the
potential has become unbounded. If we decrease λ1 even
more the potential remains unbounded, so that the set
λ1 þQ/KP ¼ 0, a hyperplane in the space of all couplings,
marks the separation between bounded and unbounded
potentials.
This is illustrated in Fig. 1 for an example with a

maximal K of 8. Here the λ1/λ2-plane is shown, and
Q ¼ ρ2λ2 þ Δ. The parameter Δ is controlled by the
remaining coupling constants, and in the plot we have
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chosen Δ to be positive. The lines intersect the λ2 axis at
λ2 ¼ −Δ/ρ2. The grey zone is the region where the
potential is bounded, for fixed λ2, λ4, and λ5. Moving to
the right along horizontal lines below the common inter-
section point one first encounters unbounded territory for
K ¼ 1; above that point it happens for maximal K. This
nicely illustrates how either the maximal or the minimal K
solution dominates. A classical solution defines a boundary
line between bounded and unbounded regions if just to the
right of that line the solution is a global minimum. Since all
solutions with K ¼ 1 or K ¼ Kmax are the global minimum
for suitable values of the couplings, all such solutions mark
the boundary between bounded and unbounded somewhere
in coupling space (as before, with the exception of Cy).
The converse is also true. If one moves in coupling

space from a bounded region to an unbounded region, there
should be a classical solution corresponding to the boundary
that separates the two regions. To see this more clearly,
consider a situation where one coupling, λi, is just at the edge
of stability for a value λi ¼ c. Then if λi is made slightly
smaller still, λi ¼ c − ϵ, there is a direction in field space that
is unbounded.Wecan consider a line trough field space in that
field direction: a set of fields ϕiα ¼ tξiα, so that the potential
goes to −∞ for t → ∞. The potential along this direction is

VðtÞ ¼ −μ2t2ρμ þ
1

2

X
i

λiρit4;

where ρμ and ρi are some fixed numbers derived by plugging
ξiα in the various terms in the potential (we use the same
notation here as for the parameters ρi characterizing solutions
to the equations of motion, because this is just the generali-
zation to general field values). As a function of t this is a
standard quartic potential, whichwe can analyze as a function
of the coupling λ ¼ P

iλiρi. The minimum is at

t2 ¼ μ2ρμ
λ

; Vmin ¼ −
1

2

μ4ρ2μ
λ

:

Hence if λ approaches 0 from the positive direction, the field
goes to∞ and the minimum to −∞. On the other side of the
stability line, forλi ¼ cþ ϵ, the full potential is bounded from
below, and its absoluteminimum is a solution to the equations
of motion. This absolute minimummay not coincidewith the
minimum along the aforementioned line, but it can only be
lower than that. Hence it follows that there is a classical
solution that becomes singular exactly at the boundary line.
This makes it immediately clear that if the potential has

more terms, there must be more solutions. If we add another
term to the potential, the plot acquires an extra dimension,
and an additional hyperplane is needed to constrain the new
coupling. This is true for all terms that are positive definite:
V1, V2, V3, and V4. The corresponding coupling constants
λ1, λ2, λ3, and λ4 are bounded from below, but not from
above. But this is not true for V5. This term is not positive
definite: the value of λ5V5 þ λ�5V

�
5 can be sign flipped by

replacing ϕ by
ffiffi
i

p
ϕ. Therefore jλ5j must be bounded.

Projected on a real plane in coupling space this implies that
λ5 must be bounded from above and below. This explains
the appearance of two additional solutions as soon as λ5 is
involved.
This is shown in Fig. 2, in the plane of λ1 and the real part

of λ5. We have chosen λ2 þ λ3 þ λ4 < 0, and these param-
eters are kept fixed. FurthermoreKmax ¼ 4. In this situation
the stable region is bounded by four lines: the first solution
with K ¼ 1, the first solution with K ¼ Kmax, the second
solution with K ¼ Kmax, and the second solution with
K ¼ 1. The terms first and second solution refer to the two
straight lines that exist for every allowed value of K in the
real projection. In terms of complex λ5, these lines become
cones, and the two real solutions are connected by rotations
in the complex plane. The solution with block matrix Ciy

corresponds to the cone opening towards positive λ1. This
solution provides the boundary of the stability region. The
other solution opens towards negative λ1 and has the block
matrix Cy. It just provides local minima or saddle points.

G. Bifundamentals: Summary

In this section we considered Higgs symmetry breaking
for gauge groups GðNÞ ×HðMÞ with a bifundamental
Higgs. The previous sections provide answers to the
following questions:

(i) What are the stationary points in the potential, and
to which subgroup does the group break in those
points?

(ii) How do representations decompose under this
breaking?

(iii) What is the global minimum?
Because of the length of this section we summarize here
how one can obtain this information, without having to read
all the arguments.
The answer to the first question is in Table II. To

illustrate how this table is used, we give an example.
Suppose one starts with a group OðNÞ × UðMÞ. There are

-0.2 -0.1 0 0.1 0.2
-0.2
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FIG. 1. Stability lines for K ≤ 4. The grey area is the stable
region.
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two lines in the table with that group in the first column,
which means that there are two classes of minima that can
occur in the potential. Suppose we take the second class,
with X ¼ B. In columns 8 and 9 we find the number of
rows p and columns q ofX. If we takeK diagonal copies of
X, there are N − pK rows and M − qK columns of the
Higgs v.e.v. matrix that are 0. Hence a subgroup OðN −
pKÞ ⊂ OðNÞ and UðM − qKÞ ⊂ UðMÞ remains unbroken.
The remainder of these groups is then broken in such a way
that the action of OðpKÞ on the v.e.v. compensates that
action of UðqKÞ. This combined action is specified in the
column subgroup. The final result, in this particular
example, is

OðNÞ ×UðMÞ → OðN − 2KÞ ×UðM − KÞ ×UðKÞ:
The decomposition of representations ðR1; R2Þ ofOðNÞ ×

UðMÞ is obtained as follows. First one decomposesOðNÞ to

OðN − 2KÞ ×Oð2KÞ and UðMÞ to UðM − KÞ × UðKÞ.
This is just the standard embedding (28), which can easily
be applied to R1 and R2. Next one breaks the remainders of
the left and right group to the common subgroup. In this
example, that is the breaking Oð2KÞ ×UðKÞ to UðKÞ. The
embeddings in the left and right factor are specified in the last
column in Table II, and the numbers in this column refer to
the embeddings listed in Table III. In this example one needs
on the left the nontrivial, but well-known embedding of
UðKÞ ⊂ Oð2KÞ, whereas on the right the embedding is
trivial,UðKÞ ⊂ UðKÞ. These embeddingsmust be applied to
all the components ofR1 andR2, and finally the resulting left
and right representations are tensored in OðN − 2KÞ×
UðM − KÞ × UðKÞ.
What the global minimum is depends in a fairly

complicated way on the relative values of the coupling
constants, and we did not attempt to give exact analytical
rules for that. It is much easier to determine that numeri-
cally using Eqs. (30) and (21). But there are two useful
general statements. Only stationary points with K ¼ 1 or K
maximal can be the global minimum. If there is more than
one class of solutions (i.e., more than one line in Table II),
then each class can occur as the global minimum for
appropriate choices of coupling constants, with the excep-
tion of the class with X ¼ Cy.

III. RANK-2 TENSORS

In this section we deal with self-intersecting branes that
give rise to rank-2 tensors. The allowed tensors are
dependent on the allowed open string end points and on
the symmetrization. Unitary branes allow two kinds of end
points that are each other’s conjugates; real and symplectic
branes have only one. Furthermore one can in some cases
remove traces to get irreducible representations. The
possibilities are listed here.

UðNÞ Hermitian; traceless; complex ϕ ¼ ϕ†; ϕi
i ¼ 0; ϕ0 ¼ UϕU†

UðNÞ Symmetric; complex ϕ ¼ ϕT ; ϕ0 ¼ UϕUT

UðNÞ Antisymm: complex ϕ ¼ −ϕT ; ϕ0 ¼ UϕUT

OðNÞ Symmetric; traceless; real ϕ ¼ ϕT; ϕii ¼ 0; ϕ0 ¼ OϕOT

OðNÞ Antisymm:real ϕ ¼ −ϕT ; ϕ0 ¼ OϕOT

USpðNÞ Symmetric; quaternionic ϕ ¼ ϕT; ϕ0 ¼ SϕST

USpðNÞ Antisymm: quaternionic; traceless ϕ ¼ −ϕT ; ϕijΩij ¼ 0; ϕ0 ¼ SϕST:

The matrices U,O, and S are unitary, orthogonal (unitary and real) and symplectic (unitary and quaternionic), respectively.
The matrix Ω is the symplectic metric, defined in Sec. II A 1.

A. (Skew) diagonalization

The last entry on each line shows the gauge transformation of the Higgs field ϕ. Avery useful fact is that in all these cases
the matrix ϕ can be diagonalized or skew diagonalized by these transformations. This is well known for Hermitian matrices
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FIG. 2. Stability lines for K ≤ 4 in the λ1, λ5 plane. The grey
area is the stable region.
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and unitary transformations, and for real symmetric matri-
ces and orthogonal transformations. In both cases one gets
a real diagonal matrix, with diagonal elements of either
sign. Also well known is the fact that antisymmetric real
matrices can be brought in skew-diagonal form using
orthogonal transformations. This means that they consist
of a diagonal of 2 × 2 blocks of the form

ai

�
0 1

−1 0

�
; ð31Þ

where λi > 0 plus a number of vanishing 1 × 1 blocks. For
quaternionic matrices subject to symplectic transformations
essentially the same results hold as for real matrices and
orthogonal transformations. If they are symmetric they can
be diagonalized in terms of 2 × 2 blocks of the form [6]

ai

�
1 0

0 1

�
; ð32Þ

with ai being real, and if they are antisymmetric they can be
skew diagonalized [7] in precisely the same form as the real
antisymmetric matrices, using blocks (31). Finally, the
result for symmetric complex matrices is somewhat less
well known, and is called Autonne-Takagi factorization
[8,9]. It is used in particle physics to deal with a Majorana
mass matrix. This was not used in [1], even though these
papers date back to the first quarter of last century. Instead,
this was circumvented by considering the Hermitian
combination ϕϕ†, which can be diagonalized in a more
conventional way. The corresponding result for antisym-
metric matrices was proved in [7]. It appears that some of
these results have been rediscovered independently, and
there may exist earlier references than the ones given here.

B. The potential

Much of the discussion here is similar to that for the
U-U, O-O, and S-S bifundamentals. The requirement of
having just a single field, with a single mass term, forces us
to consider real field for OðNÞ and quaternionic fields for
USpðNÞ, as was already assumed above. The quartic terms
in the potential are precisely the same as in Eq. (2), with
only the λ1 and λ2 terms. All remaining ones can be
expressed in terms of the λ2 term using the reality
conditions. The only novelty is that in some cases there
is a cubic term for Hermitian tensors of UðNÞ, symmetric
tensors of OðNÞ, and antisymmetric tensors of USpðNÞ.
This happens for precisely the same fields that can have
nontrivial traces.
A quick way of determining all terms is as follows.

bifundamentals from different branes give rise to scalar
fields ϕiα with two distinct indices. Hence an invariant field
combination, such as those appearing in the potential, has a
matrix form consisting of a string of matrices where ϕ
alternates with its transpose, which may either be ϕT or ϕ†.

Every invariant must have one or more closed index loops.
It follows that for bifundamentals every closed index loop
must consist of an even number of matrices ϕ.
Rank-2 tensors allow novel contractions between the two

indices of ϕ, because they now belong to the same group.
But in addition such tensors always have a definite
symmetry under transposition or Hermitian conjugation.
The new options for index contractions may lead to new
invariants, but every even index loop can always be brought
to a form with alternating fields ϕ and ϕT or ϕ†, and hence
it is necessarily of a form we have already encountered for
bifundamentals.
Therefore the only possible new terms must involve odd

combinations of fields forming closed index loops. Denote
such a combination as (n). At second order terms of the
form (2) and (1)(1) are possible, but since we wish to have
only one massive propagating field we must set the
combination (1), the trace, equal to 0. Then at third order
one can only have (3), and at fourth order there are no new
terms at all [the first new term of even total order is (3)(3)].
A cubic term has the general form

κϕi
jϕj

kϕk
i;

where the index is raised by a Kronecker δ or by Ω for the
orthogonal and symplectic cases, respectively. In the
Hermitian case the raised index distinguishes the action
of U from the action of U�. Cubic terms do not exist for the
(anti)-symmetric tensor of UðNÞ, because the index loop
cannot be closed in an invariant way. They vanish for
antisymmetric tensors of OðNÞ and for symmetric sym-
plectic tensors, because combining the field symmetries
and the metric symmetries, they are found to be equal to
minus themselves.
If there is neither a cubic term nor a tracelessness

condition the discussion is similar to the one for bifunda-
mentals. These two complicating factors are closely related:
a trace may be thought of as a first-order interaction, and
exists precisely when a cubic interaction exists. Indeed, a
nontrivial trace can be dealt with by adding a linear term to
the potential as a Lagrange multiplier, as was done in [1],
and by treating its coupling as a degree of freedom that is
varied.

1. Cases without odd invariants

Without these complications, the entire discussion in
Sec. II C 5 applies, and we can view the solution as built out
of the basic building blocks X ¼ 1 for the symmetric cases
andX ¼ iσ2 for the antisymmetric ones. Here 1 is 1 × 1 for
UðNÞ and 2 × 2 for USpðNÞ. The equations of motion
determining the eigenvalues ai are quadratic and identical
for all i, but they only determine ai up to a sign.
It turns out that these signs can be rotated away in all

cases. For the (anti)-symmetric unitary Higgs fields this is
true because one can choose Ukl ¼ δkluk, with uk ¼ i if ak
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is a negative eigenvalue. This is indeed precisely how one
makes Majorana masses positive in the Lagrangian. It
works only in UðNÞ, not in SUðNÞ. The sign of a
symmetric USpð2NÞ block ai1 can be flipped by means
of the SUð2Þ transformation iσ3. The sign of a matrix X ¼
iσ2 can be flipped by Oð2Þ rotations σ3 or σ1 [note that this
requires Oð2Þ, and that it does not work in SOð2Þ].
Since sign flips can be transformed away, this means that

there is only one possible nonvanishing eigenvalue. Hence
the most general solution consists of K copies of that block.
The energy of this solution is given by Eq. (30) with P ¼ 1
for UðNÞ symmetric tensors, and P ¼ 2 in the other three
cases. The parameter ρ2 is equal to 1 in all cases (if the
block matrix is iσ2 the special form used in Sec. II C 4
cannot be obtained, but one can compute ρ2 explicitly).
Then we get

V ¼ −
Kμ4

2ðKλ1 þ λ2Þ
for UðNÞ ðsymmetricÞ;

V ¼ −
Kμ4

ð2Kλ1 þ λ2Þ
for USpðNÞ ðsym:Þ;

UðNÞ; OðNÞ ðantisym:Þ: ð33Þ

This agrees with [1] when comparable.
As before the unbroken symmetry groups fall into two

classes: K must be maximal if λ2 > 0, and minimal for
λ2 < 0. The value of λ1 is only relevant for stability of the
potential: the denominators in (33) should always be
positive. Although only the extreme cases, K ¼ 1 and K
maximal, can occur as absolute minima, all other values of
K are extrema (which may be local minima or saddle
points). It is simplest to list the unbroken groups for all K,

UðNÞ→ OðKÞ×UðN −KÞ symmetric tensor

UðNÞ→ USpð2KÞ×UðN − 2KÞ antisymmetric tensor

OðNÞ→ UðKÞ×OðN − 2KÞ antisymmetric tensor

USpðNÞ→ UðKÞ×USpðN − 2KÞ symmetric tensor:

ð34Þ

The first two simply follow from the definition of orthogo-
nal and symplectic groups as the invariance groups of a
metric h, UhUT ¼ h, where h is either the unit matrix or
the antisymmetric unit matrix 1 ⊗ iσ2 (see the Appendix).
In the last two cases the subgroups are the simultaneous
unitary invariance group of both a symmetric matrix
1 ⊗ σ1 and the antisymmetric matrix 1 ⊗ iσ2. One of
these matrices defines the original unbroken gauge group,
and the other is the Higgs v.e.v.
Writing the subgroups for all K clarifies some special

features of the special case K ¼ 1, especially regarding the
global group. In particular: the symmetric tensor breaks

UðNÞ to UðN − 1Þ times a Z2 symmetry, the UðNÞ matrix
diagð−1; 1;…; 1Þ. This is OðKÞ for K ¼ 1. The antisym-
metric tensor breaks the first two components of UðNÞ to
USpð2Þ. Without the result for all K one might have called
this SUð2Þ, which is correct, but gives the incorrect
impression that special unitary groups appear after sym-
metry breaking. However, this happens only for the special
unitary group SUð2Þ, which must be interpreted as
USpð2Þ. Apart from this isomorphism, we never get
SUðKÞ factors in the unbroken group. Finally in the third
case the first factor is Uð1Þ and not SOð2Þ. These are
isomorphic as groups, but using the correct notation avoids
some subtle mistakes. First of all we see immediately that
the first factor is SOð2Þ and not Oð2Þ, which is locally
isomorphic to, but globally different from, SOð2Þ.
Secondly, we never get special orthogonal groups,
except SOð2Þ, because of the isomorphism with Uð1Þ.
This may not seem important, but the implication of not
getting special unitary or orthogonal groups is that all
broken subgroups can be realized in terms of membranes.
We however do not explore this point further in this
paper.

2. Cases with odd invariants

In this category we have three kinds of Higgs fields,
Hermitian UðNÞ tensors, real symmetric OðNÞ tensor, and
antisymmetric USpðNÞ tensors. A detailed analysis of the
first two is in Appendix B of [1], and the only novelty here
is the antisymmetric, symplectic case. However, in all three
cases one ends up with the same equations, and hence
the conclusions are also the same. We illustrate this for the
antisymmetric tensor of USpð2NÞ, the only new case. The
potential is

V ¼ −μ2Trϕϕ† þ 1

2
λ1ðTrϕϕ†Þ2 þ 2

3
κTrðϕΩÞ3

þ 1

2
λ2Trðϕϕ†Þ2 − 2gTrϕΩ:

The last term is a Lagrange multiplier; demanding stability
with respect to g variations yields the trace condition. We
have included a factor of 2 for comparison with [1],
because the rest of the potential also differs by a factor
of 2. Substituting the skew-diagonal form (32) we get

V ¼ −2μ2
X
i

a2i þ 2λ1

�X
i
a2i

�
2

þ 4

3
κ
X
i

a3i

þ λ2
X
i

a4i − 4g
X
i

ai:

The equations of motion for the eigenvalues ai are

−μ2ai þ 2λ1ai

�X
j

a2i

�
þ κa2i þ λ2a3i − g ¼ 0: ð35Þ
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This is the same1 equation as (B18) of [1] apart from a
factor of 2 in front of the second term. This factor is just the
coefficient P introduced in Sec. II C 4, which indeed is 2 for
the basicUSpð2NÞ antisymmetric block, and 1 for the other
two cases. Hence all results of [1] go though after a
replacement of λ1 with 2λ1. This implies that two distinct
absolute minima can exist, depending on λ1, λ2, and κ.
One may summarize all three cases at once: the rules and

the dynamics are the same for Hermitian fields in GðNÞ ¼
UðNÞ, symmetric fields inGðNÞ ¼ OðNÞ, and antisymmet-
ric fields in GðNÞ ¼ USpð2NÞ. In general, the group GðNÞ
splits into several components using the brane separation
embedding (28). With some string theory intuition, this
means that the stack of N branes is split into several smaller
stacks. There are stationary points where the group GðNÞ
splits into three parts, but for the global minima there are just
two possible unbroken subgroups,

GðNÞ → GðN − 1Þ ×Gð1Þ ð36Þ
and

GðNÞ → G

�
1

2
N

�
×G

�
1

2
N

�
ðN evenÞ

GðNÞ → G

�
1

2
ðN þ 1Þ

�
×G

�
1

2
ðN − 1Þ

�
ðN oddÞ:

ð37Þ
According to [1], if κ ¼ 0 and λ2 > 0 the secondminimum is
the lowest one, and when κ is increased the first becomes the
lowest one. If λ2 < 0 we get the first minimum, and this
remains true even if κ is varied. Here λ1 is assumed to be
positive.
Note that in contrast to all other cases, the nontrivial part of

the solutionof the equationsmotion is not a combinationofK
identical blockmatrices, but of two (or three, if we also count
solutions that are not absolute minima) distinct 1 × 1 blocks.
The reason why this happens can be understood by consid-
ering the weighted difference of two equations (35), with

variables a1 and a2. Multiplying the first with a2, the second
with a1, and subtracting them we get

κa1a2ða1 − a2Þ þ λ2a1a2ða1 − a2Þða1 þ a2Þ
þ gða1 − a2Þ ¼ 0:

In the absence of a cubic term and the Lagrange multiplier
term, κ ¼ g ¼ 0, this equation implies that the two eigen-
values must be the same or opposite, or one of them must
vanish. Since in all relevant cases signs can be flipped, it
follows that there can exist just one distinct nonvanishing
eigenvalue. It is clear that either the existence of a cubic term
or the tracelessness condition makes that argument invalid.

C. Rank-2 tensors: Summary

The main results of this section are given in Eqs. (34),
(36), and (37). The embeddings used here are the same
ones we already encountered for bifundamentals. In (34)
one first applies the brane separation embedding (28) to
split off the second factor on the right-hand side. Then
the first factor is broken according to embeddings 1–4
of Table III for the four cases listed in Eq. (34), respec-
tively. The embeddings in (36) and (37) are just brane
separation embeddings (28); they are all of the form
GðNÞ → GðN − KÞ ×GðKÞ. All solutions come with an
integer label K, but the global minimum only occurs for
either K ¼ 1 or the maximal value of K (depending on the
coupling constants, as explained above). In the cases
without odd invariants, the maximal value of K is the
one for which the second group factor in (34) is minimal or
trivial. In the three cases with odd invariants, with
GðNÞ → GðN − KÞ ×GðKÞ, what we mean by maximal
is the value whereG is maximally split, namely,K ¼ bN/2c
(note that the cases K ¼ k and K ¼ N − k are identical).
We refer to this as K ¼ “max ” in all cases.
In order to clarify the comparison with the results of [1]

we have combined all the results for rank-2 tensors in
Table IV, analogous to Table III of [1], but with rows and
columns interchanged. The main differences with [1] are
that we start with UðNÞ as the unbroken group instead of

TABLE IV. Rank-2 tensor breaking patterns.

Group K Symmetric tensor Antisym. tensor Adjoint

UðNÞ 1 UðN − 1Þ ×Oð1Þ UðN − 2Þ ×USpð2Þ UðN − 1Þ × Uð1Þ
Uð2lÞ Max Oð2lÞ USpð2lÞ UðlÞ ×UðlÞ
Uð2lþ 1Þ Max Oð2lþ 1Þ USpð2lÞ ×Uð1Þ UðlÞ ×Uðlþ 1Þ
OðNÞ 1 OðN − 1Þ ×Oð1Þ OðN − 2Þ ×Uð1Þ � � �
Oð2lÞ Max OðlÞ ×OðlÞ UðlÞ � � �
Oð2lþ 1Þ Max OðlÞ ×Oðlþ 1Þ UðlÞ ×Oð1Þ � � �
USpð2NÞ 1 USpð2N − 2Þ ×Uð1Þ USpð2N − 2Þ × USpð2Þ � � �
USpð4lÞ Max Uð2lÞ USpð2lÞ ×USpð2lÞ � � �
USpð4lþ 2Þ Max Uð2lþ 1Þ USpð2lÞ × USpð2lþ 2Þ � � �

1With κ ¼ λ3, and after correcting a typo in (B17).
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SUðNÞ, and that we have included the results for sym-
plectic groups. Furthermore we have left Oð1Þ factors that
automatically appear ifK ¼ 1 orK ¼ “max ” is substituted
in the general formula. They give rise to a Z2 discrete
symmetry.
For K ¼ “max ” one sometimes has to distinguish even

and odd N, so we have used two separate lines in the table.
Column 2 specifies K, and columns 3, 4, and 5 display the
results for the various tensor representations of the
Higgs field. Note that the adjoint representations of
OðNÞ and USpðNÞ are antisymmetric and symmetric
tensors, respectively.
There are a few known errors in Table III of [1]. In [2] it

was pointed out that a factor USpð2Þ was overlooked in the
antisymmetric tensor breaking of UðNÞ for K ¼ 1.
Furthermore aUð1Þwas overlooked in the adjoint breaking
of UðNÞ for K ¼ 1. There is one more error not mentioned
in [2]: The antisymmetric tensor breaking of UðNÞ for K ¼
“max ” yields USpð2lÞ and USpð2lÞ ×Uð1Þ for N odd,
and not Oð2lþ 1Þ as stated in Table III of [1]. This is
evidently just a transcription error in Table III, because in
Sec. III C of [1] the correct result was given: Uð2lÞ →
Spð2lÞ for N ¼ 2l and SUð2lþ 1Þ → Spð2lÞ for
N ¼ 2lþ 1, in agreement with our result [note the use
of SUð2lþ 1Þ in [1] instead of Uð2lþ 1Þ in our case].

IV. CONCLUSIONS

The classic work of [1] from 1973 turns out to have an
elegant generalization to all Higgs representations one can
ever encounter in intersecting brane models. In all cases
without trace conditions and cubic terms the solutions to
the equations of motion are characterized by an integer K.
The global minimum of the potential hasK either equal to 1
or the maximal value that can be realized. If the two
intersecting brane groups are of different types, there are
additional terms in the potential, and for each additional
term there is an additional class of solutions. Each class is
characterized by its own integer K. For suitable parameter
values, each class can provide the absolute minimum, for
either maximal or minimal K.
The foregoing holds for bifundamentals as well as self-

intersections. However, in the latter case there are three cases
with nontrivial traces and cubic terms, an orthogonal, a
unitary, and a symplectic one. As already shown in [1] there
are now more possibilities for extrema of the potential. They
are not characterized by a single integer, but by two integers.
In these extrema, the original group is split into various parts
of the same type [i.e., products ofUðniÞ; OðniÞ, orUSpðniÞ
if the original group is UðKÞ, OðKÞ, or USpð2KÞ]. The
maximal number of parts one encounters is 3, but in the
absolute minimum the group is split into two parts only.
Depending on the coupling constant values, it is either split
into two equal (if K is even) or almost equal parts (if K is
odd), or it is split in the smallest possible nontrivial part times
the largest possible part.

It turns out that in all cases the unbroken subgroup can be
written as a product of UðKÞ,OðKÞ, and USpð2KÞ factors.
In particular, there are no special unitary or special
orthogonal groups, except as a result of certain low-rank
isomorphisms. This is likely to have a nice interpretation in
terms of brane dynamics and the phenomenon known as
brane recombination, but we leave further exploration of
this point to future work, since here we only intended to
address purely field-theoretic issues.

ACKNOWLEDGMENTS

It is a pleasure to thank Beatriz Gato-Rivera for dis-
cussions and contributions during an early stage of this
work, and IFF-CSIC Madrid, where part of this work was
done, for hospitality. This work was supported by the
Netherlands Foundation for Fundamental Research of
Matter (FOM) programme 156, “Higgs as Probe and
Portal”.

APPENDIX: ORTHOGONAL AND
SYMPLECTIC GROUPS

Here we collect some facts about symplectic groups,
and some related features of orthogonal groups acting on
spaces of even dimension. Consider the subset of unitary
2K × 2K matrices, Uð2KÞ, that satisfies the following
restriction:

UhUT ¼ h: ðA1Þ
For any h this defines a subgroup of Uð2KÞ. Standard
choices are hS ¼ 1, in which case the subgroup is Oð2KÞ,
and the matrix

hA ¼
�

0 1

−1 0

�
: ðA2Þ

The resulting subgroup is called USpð2KÞ. In the defi-
nition of the orthogonal groups the restriction to even
dimensions is not necessary, but the special features of
interest here only hold in even dimensions.
To put the two groups on similar footing we may choose

a different basis in the orthogonal case. In even dimensions
we may choose instead of the metric hS ¼ 1 the symmetric
matrix

h̃S ¼
�
0 1

1 0

�
:

This defines a different subgroup of Uð2NÞ that is
isomorphic to Oð2NÞ. Their elements Ũ are related by a
unitary matrix Z in the following: Ũ ¼ Z†UZ. If
UhUT ¼ h, then Ũ h̃ UT ¼ h̃, with h̃ ¼ Z†hZ�. A useful
choice is the matrix
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Z ¼ 1ffiffiffi
2

p
�

1 1

i1 −i1

�
; ðA3Þ

then hS is transformed to h̃S.

1. The Lie algebra

We work out the Lie algebra for a metric

h ¼
�

0 1

ϵ1 0

�
: ðA4Þ

A generator T of the Lie algebra is found to have the
following form,

T ¼
�
H S†

S −H�

�
; ðA5Þ

where H is Hermitian and S is complex and satisfies

ST ¼ −ϵS:

The total number of real parameters of this Lie algebra is

K2 þ 2 ×
1

2
KðK − ϵÞ ¼ 1

2
ð2KÞð2K − ϵÞ;

which is indeed the correct answer for Oð2KÞ (ϵ ¼ 1) and
USpð2KÞ (ϵ ¼ −1).
The subset of generators with S ¼ 0 generates a UðKÞ

subalgebra, with corresponding group matrices

U ¼
�
Y 0

0 Y�

�

where Y is unitary.

2. Reality conditions

Consider now any vector ϕ that U acts on. If U ∈ H we
can consistently limit the space on which it acts, in the
following way:

ϕ ¼ hϕ�; ðA6Þ

because

Uϕ ¼ Uhϕ� ¼ hUT−1ϕ� ¼ hU�ϕ� ¼ hðUϕÞ�: ðA7Þ

Hence the action of H preserves the condition ϕ ¼ hϕ�.
But we must also satisfy the consistency condition

ϕ ¼ hϕ� ¼ hðhϕ�Þ� ¼ hh�ϕ: ðA8Þ

Since this must hold for arbitrary vectors, this implies that
hh� ¼ 1. A symplectic (antisymmetric) metric does not

satisfy this. Note that hh� ¼ hðh†ÞT . If h is antisymmetric,
we get −hh†, which is negative definite. Hence we cannot
impose such a condition on vectors. For an orthogonal
group embedded with hS ¼ 1 this restricts ϕ to be real. If
we use the symmetric metric h̃S, the reality condition
implies that ϕ, written as a row vector, has the form ðχ; χ�Þ
where χ is a K-dimensional complex vector.
Although one cannot impose reality conditions on

symplectic vectors, one can impose them on rank-2 tensors.
Suppose a tensor T transforms as T → UTVT , whereU and
V are symplectic matrices, not necessarily elements of the
same group, and not necessarily of equal dimension.
Suppose they satisfy Uh1UT ¼ h1 and Vh2VT ¼ h2.
Now we can impose the condition

T ¼ h1T�hT2 : ðA9Þ

It is easy to check that this condition is preserved by the
transformation. This condition can be imposed consistently
if both matrices h1 and h2 are symmetric, or if both are
antisymmetric. The former is simply the standard reality
condition for orthogonal group tensor representations (if
one uses h1 ¼ 1 h2 ¼ 1). We refer to the latter as a
symplectic reality condition.
In some cases a basis exists where the symplectic reality

condition becomes an ordinary reality condition. For
example rank-2 tensor combinations of symplectic vectors
are real representations, which means that such a basis does
indeed exist. Similarly, the representation ðV; VÞ in
USpð2Þ ×USpð2Þ is real; it is the vector representation
of SOð4Þ. This fact may or may not extend to
USpð2NÞ × USpð2MÞ, but in any case the real basis is
not useful for our purposes, because it combines trans-
formations of the two group factors.

3. Quaternionic basis

For both orthogonal and symplectic groups and algebras,
there is another useful basis. It is obtained by reordering the
original basis as ð1; K þ 1; 2; K þ 2;…; K − 1; 2KÞ. This
splits the Lie-algebra matrices into 2 × 2 blocks. The
matrices hS and hA take the form 1K ⊗ σ1 and
1K ⊗ iσ2, respectively. The block-diagonal symplectic
transformations form a subgroup SUð2ÞK , which is iso-
morphic to USpð2ÞK . The block-diagonal orthogonal
transformations form a subgroup Uð1ÞK or, equiva-
lently, SOð2ÞK .
We focus on the symplectic case. In the new basis the

Lie-algebra generators can be written in terms of 2 × 2
blocks of the form

�
a b�

b −a�

�
:
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Hence they have four parameters each, except on the
diagonal, where a must be real.
The elements of the block matrix can be interpreted as

quaternions. Quaternions are numbers of the form

aþ ibþ jcþ kd;

with a; b; c; d ∈ R and with i2 ¼ j2 ¼ k2 ¼ ijk ¼ −1.
They can be represented by 2 × 2 matrices

�
aþ bi cþ di

−cþ di a − bi

�
:

This means that the multiplication of any two such matrices
yields the answer representing the product of the corre-
sponding quaternions. Note that the Lie-algebra generators
are not precisely quaternions, but “imaginary” quaternions,
quaternions multiplied by i. But the group elements are
quaternions. This is analogous with orthogonal groups in a
real basis: the group elements are real, and the Lie-algebra
matrices are purely imaginary (in the standard physics
convention).
Now consider a rank-2 tensor T satisfying the symplectic

reality condition (A9).We can write both h1 and h2 in block-
diagonal form. They are then equal to h1 ¼ 1M ⊗ ðiσ2Þ and
h2 ¼ 1N ⊗ ðiσ2Þ, where M may be different from N. It is
now easy to see that (A9) implies that the 2 × 2 blocks of T
are quaternions. Instead of (A9) one may define a reality
condition with an opposite sign. If T satisfies that condition,
it is built out of quaternions times i. This is the analog of
splitting a complex field in real and imaginary parts.

4. Special forms of vectors

It is well known that a real vector can be rotated into any
direction using orthogonal rotations. This implies that any
real vector can be orthogonally rotated to the form

ðr; 0;…; 0Þ; ðA10Þ

where r is real and positive. The same result holds forUðNÞ
acting on complex vectors. There is also an analogous
result for symplectic transformations acting on quaternions.
This can be seen as follows. Consider a quaternionic vector
ðq1;…; qKÞ, where qi are quaternions. Up to normaliza-
tion, quaternions are SUð2Þ group elements. Therefore,
using the USpð2KÞ subgroup SUð2ÞK we can rotate all qi
to the form ðd11;…; dK1Þ, with di ∈ R. Now we use the
UðKÞ subgroup of USpð2KÞ, or in fact just its OðKÞ

subgroup. This acts on ðdi;…; dkÞ as a vector, and it can
therefore rotate this vector so that only the first component
is nonzero. Hence we get (A10) with r interpreted as r
times a unit quaternion.

a. Orthogonal and symplectic transformations
of complex vectors

In addition to this we also need such results for
orthogonal and symplectic transformations acting on com-
plex vectors. With orthogonal transformations acting on
complex vectors we can first rotate all imaginary parts into
the first entry, and then usingOðN − 1Þ rotations on the last
N − 1 components rotate the remaining real components
into the second entry. Then the simplified form is

ðx; r; 0;…; 0Þ; ðA11Þ

with x being complex and r real. Note that x must have an
imaginary part; otherwise we can simplify further and
rotate r into x.
For symplectic transformations one can show that any

vector can always be rotated to the form (A10), but this
time with r interpreted as a real number, and not as a
quaternion. This is shown as follows. Using the SUð2ÞK
subgroup we can rotate in each block the two-dimensional
complex vectors to the form ðr; 0Þ. This brings a general
complex vector to the form ðr1; 0; r2; 0;…; rK; 0Þ. Now,
using UðKÞ transformations, we can rotate away r2;…rK.
These UðKÞ transformations also act on the odd compo-
nents, but since they all vanish already this is irrelevant. It
may seem that with USpð2KÞ we can do the same as with
Uð2KÞ, but this is not true. The difference with unitary
rotations only becomes apparent when one tries to bring a
second vector in a simplified form. The generic simplified
form of two vectors in Uð2KÞ is

�
r1 0 0 … 0

x r2 0 … 0

�
;

where x is a complex number. For USpð2KÞ this is
�
r1 0 0 0 … 0

x1 x2 r2 0 … 0

�

since the first vector fixes rotations on the first two
components, whereas in Uð2KÞ it only fixes the first
components.
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