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In a classically scale-invariant quantum field theory, tunneling rates are infrared divergent due to the
existence of instantons of any size. While one expects such divergences to be resolved by quantum effects,
it has been unclear how higher-loop corrections can resolve a problem appearing already at one loop. With
a careful power counting, we uncover a series of loop contributions that dominate over the one-loop result
and sum all the necessary terms. We also clarify previously incomplete treatments of related issues
pertaining to global symmetries, gauge fixing, and finite mass effects. In addition, we produce exact closed-
form solutions for the functional determinants over scalars, fermions, and vector bosons around the scale-
invariant bounce, demonstrating manifest gauge invariance in the vector case. With these problems solved,
we produce the first complete calculation of the lifetime of our Universe: 10'*° years. With 95% con-
fidence, we expect our Universe to last more than 10°® years. The uncertainty is part experimental
uncertainty on the top quark mass and on «, and part theory uncertainty from electroweak threshold
corrections. Using our complete result, we provide phase diagrams in the m,/m,, and the m,/a, planes, with
uncertainty bands. To rule out absolute stability to 3¢ confidence, the uncertainty on the top quark pole
mass would have to be pushed below 250 MeV or the uncertainty on a,(m;) pushed below 0.00025.
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I. INTRODUCTION

Tunneling through a barrier is a quintessentially
quantum phenomenon. In quantum mechanics (QM),
tunneling has been studied analytically, numerically, and
experimentally, leading to a consistent and comprehen-
sive picture of when and how fast tunneling occurs. In
quantum field theory (QFT), much less is known. In
QFT, one cannot solve the Schrédinger equation, even
numerically, due to the infinite dimensionality of the
Hilbert space. The only approach to calculating tunnel-
ing rates in QFT seems to be through the saddle-point
approximation of the path integral [1-5]. This approach
involves analytic continuation in an essential way.
Because tunneling in QFT has important implications,
such as for the stability of the Standard Model vacuum
[6-20] and because QFT tunneling rates are nearly
impossible to measure experimentally, it is critical to
make sure the rather abstract formalism is actually
capable of calculating something physical.
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A number of the subtleties in going from QM to QFT
were resolved long ago, some more recently, and some
challenges still exist. For example, while tunneling rates are
physical and therefore should be gauge invariant, it has
been challenging to check directly that this is the case.
Although exact nonperturbative proofs of gauge invariance
exist [21,22] and there have been many investigations into
gauge dependence [18,23-36], it has not been shown that
gauge invariance holds order by order in perturbation
theory, as it does for S-matrix elements. For some context,
recall that for the simpler question of whether a state is
absolutely stable in the quantum theory, it was found that
the corresponding bound was gauge dependent with then-
current perturbative methods [17,37,38]. The problem was
traced to an inconsistent power counting and improper use
of the renormalization group equations. A consistent
method was recently developed in [17,38], with non-
negligible implications for precision top and Higgs-boson
mass bounds in the Standard Model. Recently, progress
was made in understanding the gauge invariance of
tunneling rates by Endo et al. [39,40]; these authors showed
explicitly that the rate is gauge invariant to one loop for
general massive scalar scalar field theory backgrounds and
we build upon their results.

In fact, gauge invariance is the least of our worries. In
order to produce a precision calculation of the tunneling
rate—or even the leading order rate with the correct units—
one must understand a whole slew of subtleties not relevant
for the absolute stability bound. First of all, there are
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suspicious elements in the common derivations [41-46] of
the Callan-Coleman decay rate formula [3,4]. The leading-
order confusion is that the rate is said to be determined,
even in QM, by taking the imaginary part of (ale™"T|a), a
manifestly real expression. The resolution of this paradox
involves not analytic continuation of the potential, as is
often cited, but the specification of complex paths to be
integrated over in the path integral [47,48]. A more physical
derivation of a decay rate in QFT was presented recently in
[49,50]. Some elements are reviewed in Sec. II.

Even if we ignore gauge dependence and trust the
decay rate formulas, we encounter a new roadblock in
trying to evaluate tunneling rates in QFTs like the
Standard Model, due to classical scale invariance.
The basic issue with scale invariance can be seen in
the Gaussian approximation to the path integral around a
reference field configuration ¢:

—~— =Slpp+l oy =S[po]=36S" s )b
v TV/D¢ [ /Dqse l (1.1)
One typically evaluates the right-hand side by expanding
the fluctuations ¢ in a basis of eigenfunctions of the
operator S”[¢,]. If the action has a symmetry sponta-
neously broken by ¢;, then there will be fluctuation
directions ¢, with zero eigenvalue, that is, for which
S"[pppo = 0. Integrating over d&; in the field direction
¢ =&y then leads to an infrared divergence in
Eq. (1.1). Examples include the zero modes associated
with translation invariance where ¢y o< d,¢, or scale
invariance where ¢y « (1 + x#0, )¢, For translations, the
infrared divergence is expected—it generates a factor of
VT so that the rate is extrinsic, a decay rate per unit
volume. For scale invariance, the infrared divergence has
no natural volume cutoff and so the decay rate is
apparently infinite.

Anyone with even minimal familiarity with QFT would
immediately guess that the resolution to the scale-invariance
divergence is related to dimensional transmutation [51] and
that the classical scale invariance is broken by quantum
effects. Unfortunately, connecting the # functions to the
decay rate calculation within a consistent perturbative
framework has remained elusive. In fact, there are two
related technical difficulties.

First of all, to integrate over a zero-mode fluctuation, one
must use a collective coordinate [1,52—-55] rather than an
infinitesimal fluctuation. For example, with translations,
one must integrate over x{ parametrizing fields ¢, (x* + x{))
in the path integral before the Gaussian approximation is
applied [in the middle expression in Eq. (1.1) not the
rightmost one]. The difference between xj, and coefficients
&' of fluctuations in the 0,¢, direction is a Jacobian
factor J = [ d*x(0,¢,)% For translations, this Jacobian
1s finite. For scale transformations, one wants to move from
linearized fluctuations ¢ = £;¢p, proportional to the

dilatation mode ¢, = (1 + x*0,)¢,, to a collective scale
coordinate R. Unfortunately, in this case, the Jacobian
factor J = [ d*x¢7 is infinite. Related Jacobians for the
spontaneously broken SU(2) x U(1) symmetry of the
Standard Model are also infinite [11,19,56].

The second problem is that even if one could regularize
the Jacobian and go to collective coordinates, the resulting
integral [ dR over scales R would still be infinite. While
quantum corrections do break scale invariance at some
order, they do not resolve the infinity in the one-loop
approximation. Indeed, the R dependence of the integrand
can be deduced from renormalization group invariance. As
we review in Sec. III at one loop, the integral is still infinite.
While there is R dependence at higher-loop order, for the
higher-loop effects to cancel the infinity form the one-loop
integrand would require a diversion from the usual loop
power counting. This is certainly possible, as the unusual
power counting of the Coleman-Weinberg model [51] is
often required to extract physical predictions from the
effective potential [17,23,38], but a proper power counting
for the decay rate does not seem to have been explored in
the literature.

A number of unsatisfying approaches to resolve the two
problems with the dilation mode have been used in the
literature. One method is to impose a scale on the bounce
by hand, by demanding a constraint be satisfied [57-60],
such as (¢*) = A® for some fixed A. Then one can try to
split the path integral into integrations around the con-
strained instanton and integrations over A. This approach
seems impractical, as explicit constrained instantons are
hard to find [59] and the Jacobian to go between R and A is
no simpler than between &; and R. While constrained
instantons are helpful in understanding how a scalar mass
can be a small perturbation, as we discuss in Sec. VII, they
are irrelevant to resolving the integral over R.

In practice, for the decay rate in the Standard Model,
people always just invoke dimensional analysis
[11,19,61,62]: cut off the divergence in the Jacobian by
the Higgs mass and assume the integral over R is dominated
by the bubble size R,, with the maximal rate. This seems to
us a bit cavalier. After all, the fate of the Universe is on
the line.

In this paper, we provide definitive resolutions to
both challenges associated with the dilatation mode. To
regularize the Jacobian, a powerful approach has been
known for some time but has not been widely appreciated
[58,63—65]. The approach is a based on a powerful
stereographic projection into five dimensions, where sym-
metries are manifest and the natural inner product is the
conformal metric on the 4-sphere. By undoing this trans-
formation, it becomes clear that the projection is not
actually necessary. The key is simply that a zero mode
satisfying 8" [¢h]p4 = 0 is also a zero mode of any rescaled
operator f(x)S”"[¢)¢s. Since the rescaling factor f(x)
changes the norm on the eigenfunctions, one can choose
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f(x) so that ¢, is normalizable and the Jacobian is finite.
More explicitly, for S"[¢,] = =0 — V”[¢,], a wise choice
is f(x) = V"[¢,]”" which allows the spectrum of eigen-
functions to be found in closed form, and the same basis to
be used for fluctuations around ¢, and around ¢ = 0. We
explain this procedure in Sec. III A.

Once collective coordinates have been invoked, we
address the issue of the proper power counting required
to evaluate the integral over R. Indeed, at one loop, the
integral over R is infinite. At two loops, there is an
exp(—#1n® R) term which makes the integral over R finite.
Despite the 7 suppression of this term, the integral scales as
A~12 compared to the one-loop integral, making it diver-
gent as 7 — 0. In other words, the two-loop result is
parametrically more important than the one-loop result, a
scaling essential to regulating the divergence. At three
loops, the integral scales like 2732, so that three loops is
more important than two loops. Conveniently, for four
loops and higher, the integral stills scales like A~
compared to one loop. We show that the entire series of
leading contributions can be summed in closed form.

With these scale invariance problems solved, we proceed
to compute the functional determinants around the bounce
over real scalar, complex scalar, vector boson, and fer-
mionic fluctuations. We produce for the first time exact
formulas for the path integrals in each case. In the gauge
boson case, we work in a general 1-parameter family of
Fermi gauges and show the result is gauge invariant and
that it agrees with the result in R; gauges as well.

Applying our exact formulas to the Standard Model, we
update the famous stability/metastability phase diagram.
For the first time, we can give an exact next-to-leading
order (NLO) prediction for the instability/metastability
phase boundary. We find that with current data, the
dominant uncertainties are from the top quark mass and
a,, and these are both comparable to the theory uncertainty
from electroweak threshold corrections, currently known to
next-to-next-to-leading order (NNLO).

Although this paper is rather long, we have tried to
compartmentalize it into more or less self-contained sec-
tions. Section II reviews how tunneling rates are computed.
This section is very brief and the interested reader is
referred to [50] for more details. Section III contains
new results about resolving the problems associated with
scale invariance of the classical action. Section IV intro-
duces the methods we will use in later sections to generate
exact expressions for functional determinants. The longest
section is Sec. V which computes one by one the functional
determinants for scalars, vectors, and fermions. For a reader
just interested in the final formulas, these are summarized
in Sec. V E. The application to the Standard Model is in
Sec. VI. We tie up one lose end about the finite Higgs boson
mass in Sec. VII. Our results are digested, including a
summary of the SM bounds and limits in our conclusions,
in Sec. VIIL

II. TUNNELING FORMULAS AND
FUNCTIONAL DETERMINANTS

In this section we review how to compute a decay rate in
quantum field theory. We give some formal expressions for
the rate in Sec. II A and show how to use the saddle-point
approximation and how to evaluate functional determinants
around nontrivial backgrounds in Sec. II B.

A. Defining the decay rate

Suppose our QFT has a metastable extremum
localized around the constant classical field configuration
¢ (x) = ¢py. We would like to compute the lifetime of ¢py
or equivalently the rate to tunnel form ¢gy through the
energy barrier to any other field configuration. The basic
tunneling formula was introduced into high-energy theory
by Coleman and Callan in 1977 [4], although it has roots in
earlier condensed matter treatments (e.g. [1]). The formula
is explained at length in Coleman’s famous Erice lectures
[66], as well as in numerous textbooks [44—46,67]. Most of
these treatments start with the premise that the decay rate
can be computed by evaluating

r 1 _
5" ImTll_r)Ic}o?In<¢Fv|€ AT\ ey

o1 H(T12)=¢pey
~Im lim —ln/
¢

Depe=SI7).
T=eo (=T12)=¢pev

(2.1)

Unfortunately, this formula cannot be correct as written,
since the matrix element, and path integral over real paths,
are purely real.

We would like the T — oo limit to pick out the energy of
a state localized near the false vacuum whose imaginary
part is to give the decay rate. This is certainly the intuition
behind Eq. (2.1). Instead, Eq. (2.1) picks out the true
ground state energy E, which is real. To see this, we note
that there are three relevant paths through field space
satisfying the boundary conditions ¢(—%) = ¢(£) = Pgy:
(1) The constant state ¢p = ¢ry; (2) the bounce, interpolat-
ing from ¢gy at Euclidean time 7 = +7/2 to a bubble of
shape ¢,(X) in a small time window (hence the name
instanton) near 7 = 0; and (3) the shot, ¢, matching ¢ry
at 7 = +T/2 but hovering near the true vacuum ¢, over
most of Euclidean time [49,50]. While the hope is for the
path integral to pick out the bounce configuration at large
T, instead it picks out the shot since the shot has smaller
action, with the result that the path integral is real. In Fig. 1
we show a sketch of the real part of the action along paths z
passing through ¢y, ¢;, and ¢y,

In order for the path integral and energies to be complex
we must introduce a unitary-violating unphysical deforma-
tion of the theory. This deformation should prevent flux
from returning to the false vacuum so that the strict 7 — oo
limit can be taken. For example, we could impose Gamow’s
outgoing-wave-only boundary conditions to solve the
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FIG. 1.

Left: real part of the action along family of field configurations ¢(z) parametrized by a complex parameter z. z is chosen so that

real z passes through ¢y (green dot), ¢, (red dot), and ¢, (blue dot). Right: top-down view. Integrating along real field configurations
only (black dashed contour) makes the path integral real. The decay rate must be calculated by integrating along steepest descent
contours (red and green contours) which involve complex field configurations.

Schrodinger equation [68]. A more formal deformation
commonly used is analytic continuation of the classical
potential. For example, with a potential V(¢) = m*¢* +
A if A is positive then energies are real, but if A is negative
energies are complex. The analog of this potential in
nonrelativistic quantum mechanics has been studied for
decades [69-74]. Unfortunately, the analytic continuation
method only works for (unphysical) situations in which
the potential is unbounded from below. When the potential
is unbounded, no flux can return, but also the path integral
over real field configurations is divergent so one has no
choice but to change the integration domain to over
complex paths. If the path integral is finite, as in the
Standard Model, then it is analytic in a domain around real
paths and analytic continuation simply reproduces the
original (real) result [49,50].

A useful way to define the rate for physical situations,
where the action is bounded from below, is to change the
integration domain from real field configurations to field
configurations associated with steepest descent contours
(i.e. those for which ImS[¢] = 0) [47,48]. To be precise, the
rate per unit volume for the formation of bubbles with the
shape ¢, (X, 0) is given by

=5[]

1011 Im e Dge™? (2.2)
2V T-02TV Re fCFV D¢€_S[¢]

Here S is the Euclidean action, V the volume of space, and
T is a time for which the transition rate has exponential
behavior (see discussion in [49,50]). The contour Cpy
(green contour in Fig. 1) is the steepest descent trajectory
through field space passing through ¢ry. The contour C,
(red contour in Fig. 1) is the steepest descent trajectory
passing through the bounce. Note that if we ignore these
contour prescriptions and just integrate over real field
configurations, along the black dashed line in Fig. 1,
passing through ¢ry, ¢, and ¢, there is no imaginary
part and the rate defined this way is zero, similar
to Eq. (2.1).

For additional perspective, and insight into the factor of

%, we can alternatively write the decay rate as

1T 1 Im [, DepeS!

v i’;r—v% 2

CFV

The contour Cpy passes through real field configurations
until the saddle point ¢p = ¢,, is reached when it veers into
complex field space (even for real ¢) traveling along C, as
in Fig. 1. In contrast, if we reverse the trajectory Cp, as it
passes through ¢, it does not head towards ¢gy, since
Re(—S[¢]) increases in that direction, rather it continues
into the conjugate complex field space. Thus integrating
along C,, gives twice the imaginary part of the integral along
Crv. The doubling of the contour is the origin of the factor
of% in Eq. (2.2).

The explanation of why these arcane contour prescrip-
tions produce the decay rate is given in [49,50]. Briefly, the
idea is to start by relating the tunneling rate to the time
derivative of the probability [, d°x|y(x)|* for a state to be
found in a region R on the other side of the energy barrier.
This leads to the formula

2Im [ Depe™ 51915 (z5[4])

I' = lim f’Dq’)e_S[¢]

T—co

(2.4)

Here, X is codimension-1 surface bounding R comprising
fields with the same energy density as the false vacuum
U|p] = Ulpry] and 75[¢] is the Euclidean time at which the
field configuration ¢(X,7) first passes through X. Unlike
Eq. (2.3), this formula has the advantage that the left-hand
side can be shown to be the decay rate. In the saddle-point
approximation, it reduces to Eq. (2.2).

B. Functional determinants and zero modes

Since the decay rate is defined by path integrals along
steepest descent contours, we can compute these path
integrals in the saddle-point approximation. To quadratic
order, Eq. (2.2) reduces to
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1T 1 Im [DepeSl=45"0sld
2V T 1hw 2TV [ DpeSn 1 1o

(2.5)

To evaluate these path integrals, we must be precise
about the integral measure. We do this by expanding the
fields in some basis ¢;:

b= dp(x) + D &pi(x) (2.6)

The path integral measure can then be defined as
D¢ = [];d¢;.

An orthogonal basis is naturally provided by eigenfunc-
tions of an operator. It is often convenient to take the
operator to be S”[¢,], so that

S"pulep; =

O+ V') = 45 (2.7)

To find the inner product on these basis functions, we note
that

P / i = / dxpy (~0+ V', )

:l,/d4x¢,¢k

where integration by parts has been used in the last step. So
functions with different eigenvalues are orthogonal accord-
ing to the inner product (¢;|¢;) = [d*x¢; ;. It is also
convenient to normalize the fluctuations so that

(2.8)

(pilp;) = 275;;. (2.9)

Then we find

/ Depe=Srl-15" 6510

o © 8w !
—e S[‘ﬁb]l:[\/_oodfje 25T = e S[(pb]l:[\/% (210)

The point of the normalization convention in Eq. (2.9) is to
make removing a normalized fluctuation equivalent to
removing its eigenvalue from the product in Eq. (2.10).

If one of the eigenvalues is negative, then this expression
(after analytic continuation) will have an imaginary part, as
desired. There is at most a single negative eigenvalue [75].
It corresponds to the bounce being a local maximum of the
action on the direction from ¢py (see Fig. 1) but a local
minimum in all other directions.

If there are zero eigenvalues, then Eq. (2.10) is infinite.
Examples are the translation modes, which are proportional
to 0,¢,. To check, using S'[¢h,] = 0 and that S[¢] has no
explicit position dependence, we find

S”[¢b]au¢b = 3;4(5/[4717]) =0

confirming that 0,¢ are zero modes. To set the normali-
zation of these modes according to our convention, we
note that

(2.11)

(D, b0l ) = / 4 x(0,0) (Oshs) = 5,1,

(2.12)

Thus the rescaled modes 8 @), are normalized accord-

ing to Eq. (2.9).
Separating out the translation modes Eq. (2.6) becomes

9 = y(x) +5ﬂ,/ S )+ > &igi(x)

To integrate over translations, we use collective coordinates
[1,52-55], parametrizing fields with

S [¢

(2.13)

¢t = gy (¢ +x0) + DG ). (214)

By expanding Eq. (2.14) for small xj and comparing to

Eq. (2.13) we see that the Jacobian to go from & to xfj is

Slbs]

J= .
2

(2.15)

Then the path integral can be written as

D)\? [ 4 | 1
b) /d X0 TS (2.16)

Depe5I?] :/\[(S
Crv 2

where det’ refers to the functional determinant with the zero
eigenvalues taken out by hand and A some (infinite)
constant. Noting that the integral over d*x, gives the
volume of Euclidean space time, we find

r_ <M> ’ oS8 +Sle [, det[S" [¢rv]]
Vv 2n

w1

III. SCALE INVARIANCE

Any classically scale invariant action will admit an
infinite family of bounces related by scale transformations.
To be explicit, we take the potential V(¢) =11¢* and
assume throughout this paper that 4 < 0. Then there is a
5-parameter family of bounces given by

Rt |8 R
50 =\ S

(3.1)
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These Fubini-Lipatov instantons [76,77] all satisfy
Loy, — i¢,3, = 0 and all have the same Euclidean action

872

Sgy] = / &' B (D)2 +L—1tz¢;4,} —-T 50 (32)

There are four normalizable fluctuations around the bounce

corresponding to translations ¢, = %8#,(15,,. These are

handled using collective coordinates as discussed above.
We therefore take xy = 0 without loss of generality. We

also use r = /x,x* as our radial coordinate so that the
bounce is
8 R
=4 ——. 33
¢p(x) \/ “AR2 12 (3.3)
The (unnormalized) dilatation mode is
1 8 r2—R2
$a(x) =O0rep, = —ﬁ(l +x0,)p), = \/ __,1(r2+—R2)2
(3.4)

Like the translation modes, it is an eigenfunction of the
second variation of the action around the bounce with zero
eigenvalue:

S"pplpa = [0+ V" (dp)lpas = (-0 + 34¢3)pa = 0.
(3.5)

We would like to proceed, as with translations, by going
from linearized fluctuations ¢ = &;(Ny¢p,), with N, a
normalization factor, to the collective coordinate R so that
we can write

2
L _ (SIB]\? —sigutsiomipm / dRJ,
\% 27

det[S"[pev]]
det'[S"[¢s]

with det’ now having the ¢, dilatation mode removed and
J 4 the Jacobian.

There are two problems with this. First, the Jacobian is
infinite:

1
7= <¢‘;|jd> =5 / d*xp = oo. (3.7)
Second, the integral over R is divergent. Even including the
one-loop R dependence from dimensional transmutation, as
required at this order, is not enough to remove this infrared
divergence.

In the literature, for the first problem J, is often assumed
to be made finite by natural infrared cutoff of the scalar

mass [11,19]. Unfortunately, the scalar mass adds more
problems than it solves—adding a m?¢? term to the
Lagrangian removes all bounces from the solution to the
equations of motion. Moreover, adding an infrared cutoff
seems to miss the point. Why is the Jacobian infinite in the
first place? Going from small linear fluctuations around a
bounce to fluctuations corresponding to exact scale trans-
formations seems perfectly reasonable and therefore should
be nonsingular. In fact, the mass term is irrelevant to the
problem (see Sec. VII).

For the second problem, of the IR divergent integral over
R, it is common to pick the scale R, for which the leading

order result ' = exp(%
running coupling, and evaluate the R integral by dimen-
sional analysis [11,19,61,62]. Although this ad hoc solution
does produce an answer, we cannot assess its accuracy, since
dimensional analysis has ignored rather than solved the
problem. To get a dimensionally correct answer, one could
try choosing y = R;! or u = R™! before calculating the R
integral, or calculating the R integral before choosing R at
all. None of these attempts are consistent with perturbation
theory, and in any case they all give a divergent answer.

An alternative approach that is discussed in the literature
invokes constrained instantons [57—-60]. The idea of con-
strained instantons is to fix R by demanding that some
operator have a given expectation value, such as (¢*) = A3
for some A. Fixing the scale in this way merely swaps the R
integral for an integral over A~!, and the problem is
still there.

One might hope these infinities from J, and the R
integral would cancel, but they do not (and should not).
From a physical point of view, unless something makes the
rate to produce different size bubbles different, the net
decay rate should be infinite. It is quantum corrections
which break the scale invariance, but the Jacobian is
determined by the bounce from the classical theory. We
will explain how to deal with the IR divergent integral over
R and what scale the couplings are evaluated at in Sec. III B
after we have solved the Jacobian problem in the next
section.

) is maximal, with A(u) the

A. Solving the Jacobian problem

The Jacobian is infinite because the dilatation fluctuation
¢, 1s not normalizable. Of course, the path integral is basis
independent; changing the normalization of a fluctuation
N ¢, — ¢4 in the expansion in Eq. (2.13) can be compen-
sated for by rescaling &; — Ni[ in the path integral measure.

The problem with having a non-normalizable zero mode is
that one cannot see clearly what happens when it is removed
in computing det’. In fact, the infinite Jacobian is secretly
compensated by an infinity in det’ (see Appendix A). Here,
we cleanly resolve the Jacobian problem by choosing a
judicious basis in which the numerator and denominator
path integrals can be computed exactly.

056006-6



SCALE-INVARIANT INSTANTONS AND THE COMPLETE ...

PHYS. REV. D 97, 056006 (2018)

What basis would allow us to diagonalize fluctuations
around the bounce and around the false vacuum simulta-
neously? Taking eigenfunctions of S”[¢,] = -0 + V" [¢,]
will not work, since these are not also eigenfunctions of
S"[¢ry] = —01. Instead, we use eigenfunctions of

Sy =—-0-1  (38)

0y = 343

V(] [¢ ]

for the scalar fluctuations around the bounce and eigen-
functions of

-1 1

O =i, 1 =50

(3.9)

for fluctuations around the false vacuum. Note that even for
an arbitrary potential these operators will differ only by a
constant and therefore have the same eigenfunctions.

An important feature of eigenfunctions of these oper-
ators is the inner product by which they are orthogonal.
Similarly to Eq. (2.8) we find that if Oy¢; = 4;¢; then

i [ @Vl = [ O
iy [ EVilege G0
so that eigenfunctions are orthogonal according to

<¢j|¢k>v = _/d4xvﬂ[¢b]¢j¢k = <¢j|¢j>v5jk- (3'11)

Since we are using the same basis for both path integrals,
we can normalize the eigenfunctions however we like. For
example, we could choose (¢;|¢;), = 27, and indeed even
the dilatation mode will be normalizable according to this
metric. Furthermore, this basis still lets us evaluate the path
integral, since

/ xS s)bi = — / 4V ()0 b

= ’1j<¢j|¢j>V5jk- (3.12)
Thus the path integrals are still Gaussian in the fluctuations.
The integral over a fluctuation normalized with (¢;[¢;)y =

2z then gives the usual factor of \/} Note that these
7

observations apply to any theory, not just a scale invariant
one: one can always simultaneously diagonalize fluctua-
tions around the bounce and fluctuations around the false
vacuum.

Now we restrict to the scale-invariant case, with
V(¢) = 12¢*. Explicitly, our eigenfunctions should satisfy

1
Oppn = Mepy, Op =501

3.13
o (3.13)

and be orthogonal with respect to the inner product

)\be)y = - / dV [l

_/ d4xm¢j(x)¢k(x)' (3.14)

Remarkably, we can find the solutions in closed form. For
xo =0 in Eq. (3.1), they are

I R?—

with PJ"(x) the associated Legendre polynomial and
Y*'"(q, 0, p) are the 3D spherical harmonics:

¢nslm(r7a’97¢) >YSlm(a 9 ¢) (315)

Y (a,0,¢) = Jg%ap i *(cosa) P! (cosO)e™ ™. (3.16)
These spherical harmonics satisfy
LPysim = — — 12 [8(l(sin2a6a') + éag(sin 00y")
sin“a sin 6@
sm298¢] Ysim(a, 0, ) (3.17)
=s(s +2)Y*"(a, 0, ) (3.18)

and are normalized as

I Jlaa! ’r . ” . 27: TJl !
<Y”’"|Y”’">Q:A dastaA dﬁsmHA dgysimystm

(3.19)
Az (s=D! (I4+m)!
= 5“/5 1O - 3.20
QI+ 1) (s+ 1) (s+ I+ 1)1 (I=m) " (3.20)
The full eigenfunctions in Eq. (3.15) satisfy
Eq. (3.13), i.e.

1 L
O¢¢nslm |:3/1¢17 (82 +-0 __) - 1:| ¢nslm = lﬁqﬁnslm

(3.21)

with Z2¢nslm = S(S + 2)¢nslm'
depend on n:

The eigenvalues only

-1 4 2
ﬂf:/lnslm :w:__’o’l’z

. : 3 (322)
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The eigenvalues of (5¢ are

1 2 1 10
(et Dn+2) 1,10

9211 =
A =2+ z 3 3

(3.23)
The indices in ¢, are
0<|m<l<s<n=0,1,2,--
eigenvalue is therefore

integers constrained by
-. The degeneracy of each

1
d, = E(n +1)(n+2)2n+3)=1,5,14,30,.... (3.24)
The eigenfunctions are normalized as
12 (n-s)! o
N 1T ! = 6 le Y‘ I'm
<¢mlm|¢nslm>\/ 2n+3(n+s+2)' < | >
(3.25)

with (Ys|ys?™) o in Eq. (3.20).
The modes with s =1 =m =0 are spherically sym-
metric functions of only . The mode with n = 0 that has

/1¢ —2 is

2 R 2
= — 50 . 9 /1(/):__7
L S

This mode is directly proportional to the bounce itself:

dy=1.  (3.26)

booo0 = %d)b. The negative eigenvalue arises because the

action has a local maximum at the bounce in the direction
going from ¢py to ¢, (see Fig. 1).

There are 5 modes with n =1, with /1‘/’ = 0. The
spherically symmetric one is

2 RZ_ 2
=1\/R————, =0, d,=5 (327
(blO()O \/; (R2+r2)2 1 1 ( )
This is proportional to the dilatation mode:
b1000 = —\/Z:;qud. The other n =1 modes, which

also have A; = 0, are the zero modes for translations.
The modes with n > 1 are not particularly interesting:

P _\/5R(r4+R4—3r2R2) 2
2000 — pu (r2—|—R2)3 ) 2 — 1,

d,=14
(3.28)

and so on.
Since the dilation and translation modes are both normal-
izable, computing the Jacobian is straightforward:

_ N[dlga)y 1 [6S(¢s]
Jd_\/ d27td _R\/ SJTb'

The Jacobian for the translation modes with this metric
differs from Eq. (2.15):

(3.29)

JT _ /<a/4¢b2|f:¢b>\/ :% /655[:?b] (330)

Note the important factors of R in both Jacobians—these
are expected by dimensional analysis but obscure without
the rescaling (cf. Appendix A). So we find

(3.31)

\%4 57'[ det’ O(p

Note that all the eigenvalues of (’A)(,) and O, are dimension-
less, so this expression has the correct units.

We have shown that by rescaling the operators for
fluctuations around the bounce and the false vacuum, the
natural basis for field fluctuations changes, and the Jacobian
for going between this basis and the basis containing a
collective coordinate for dilatations is finite. Since the final
result in Eq. (3.31) should be independent of this rescaling,
there must be something that compensates for the infinite
Jacobian if we do not rescale. In Appendix A we show that in
fact without rescaling det’ is infinite as well.

B. Solving the scale invariance problem

The next problem is that the integral over R in Eq. (3.31)
is infinite. Even without evaluating the functional deter-
minants, we can determine the R dependence of the
integrand in Eq. (3.31) completely by exploiting renorm-
alization group invariance of I". To see this, and to resolve
the infrared divergence issue, it is critical to be consistent in
power counting the loop expansion, or equivalently, orders
of 7. A similar consistency was essential to resolve the
gauge invariance problem of the ground state energy
density in [17,38]. In the following, we insert appropriate
factors of 7. Powers of 7 will always correspond to powers
of couplings such as A in this scalar field theory or ¢* in a
gauge theory.

To leading order (LO) in #, the rate is determined

entirely by the exponential factor in Eq. (3.31).
Expanding this factor out explicitly we have

r 132 [ dR

v eh 3 = (3.32)
where A(u) is the MS coupling at the scale y and - - - refer to

the rest of Eq. (3.31). Everything after the exponential
comes from a one-loop calculation and is subleading in 7. It
is commonly said that the leading-order prediction for the

2
rate is I'/V = eﬁ%). However, such a claim does not really
make sense—not only is this equation dimensionally
inconsistent, there is no indication at what scale u to
choose—so it is really no prediction at all. Indeed, the
leading prediction must start at one loop. And, as we will
see the leading prediction actually involves terms at two
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loops and higher. We will refer to the leading finite
prediction with correct units as the NLO rate.
Now, I' is physical, so u% i 4T = (. This implies that

the implicit u dependence of A(x) must be compensated
by explicit 4 dependence in the NLO contribution. In turn,
the u dependence of A(u) is fixed by its renormalization
group equation (RGE). Thus we know the exact ¢ depend-
ence of the integrand to one-loop-higher order than we
know the u-independent part. By dimensional analysis, the
only scale around to compensate u is R, and therefore we
also know the full R dependence of Eq. (3.32) to one loop:

72 8r2 P
E — dR efll 51(;{) 83 A )2 1
v )y R

MERY LY (3.33)

At one loop, the terms in (- - -) have no explicit dependence
on u, by RG invariance, and therefore no dependence on R
either, by dimensional analysis. Here f#(u) is the -function
coefficient in the RGE for 4, ,ud%i = B(u). Now we see

clearly the IR divergence problem. All of the R dependence
in the one-loop rate is explicit and the integral over R is
infinite.

The only hope is for two-loop and higher-order con-
tributions to come in and resolve the infinity. At first pass,
this seems impossible, simply by counting factors of #:
terms in (---) at two loops and higher are necessarily #
suppressed compared to the terms we have written. The
resolution is that after the integral, superleading # depend-
ence is generated, as we will now see.

First of all, let us assume the MS coupling A(x) has a
minimum at some scale u = u*, so f(u*) = 0. If this is not
true, then the running coupling A(y) is unbounded from
below and rate is actually infinite. In fact, in this quartic
scalar field theory, A(x) is monotonic, so we are going to
have to assume there are other fields in the theory to
continue. For a more general theory, we can perform the
path integral over all other fields around the bounce,
leading to a decay rate formula of exactly the same form
as Eq. (3.33), but with the f function for 4 depending all
other couplings in the theory. In this case, () can vanish,
as for example it does in the Standard Model for the Higgs
quartic at the scale u* ~ 10'7 GeV.'

Since I' is independent of i we are free to choose y = u*.
Let us do so. Then the exponential in Eq. (3.33) has no R
dependence [since f(u*) = 0] at all and the integral is
surely infinite. With y = u*, the leading R dependence in
the exponential factor comes in at two loops, and has the
form

'Note that the vanishing of the /8 function can be achieved by
balancing couplings ¢> ~A at the same loop order. This is
different from the requirement that the effective potential have
a minimum, which requires two-loop terms to cancel one-loop
terms [38]. The scale y* where the f(u*) = 0 can be parametri-
cally different from the scale uy where V.. (ux) = 0.

1S3 Sl e o ) (-4 (3.34)

r /wdR -
i e
Vv 0o R

where 2, = A(u*), Sgy] = =35 ' = . p(u), and f, =
fB'(u,) using the one-loop ﬁ functlon coefficients only
[cf. Eq. (6.13) for its SM expression]. At two loops, there
is an additional single log term in the exponent scaling like
hln(u,R). This will contribute subleading in 7 after the
integral so we have dropped it.

Now we observe that since f,, > 0 and A* < 0 at the
minimum, the integral over R is finite:

/ Ax
r, = / ©dR ehs[qs,;]/j?—;lnz Rt b | _ mA o PO,
R’ hS[¢}16o.

(3.35)

Note that this contribution is parametrically more important
as 7 — 0 than the one-loop correction which scales like 7.
Indeed, I'; blows up as 72 — 0, as it must to reproduce the
divergence of the one-loop integral. Thus, even though the
two-loop result is formally higher order in %, we cannot
justify expanding the exponential to provide only 7
corrections to (---) in Eq. (3.33).

Also note that the divergence returns if #, = 0. Thus the
scale invariance is not regulated by just dimensional
transmutation (i.e. by f # 0) but requires in addition that
the § function have a minimum.

A natural concern is that since the two-loop result
parametrically dominates over the one-loop result as
h — 0, the three-loop result might dominate over two
loops, and so on. To see if this happens, we examine
possible terms in the exponent, as allowed by RG invari-
ance. At each logarithmic order, the coefficient of In” Ru* is
of order #2"~! plus terms suppressed by additional factors of
h. That is, we have In Ru*, 2ln> Ru*, A2 In® Ru* and so on.
Using the two-loop term to set up a Gaussian around which
we perform a saddle-point approximation in 7, we find a
generic term becomes

/ dR Sl 0* In? Ry +h"Le, In" Ru*

/dR hS[(/’]O*lanﬂ (1 —l—h”‘lcnln”R/t* +)

Fc< 24 )n—l— .
2\ S[g; 1By,

The - - - are all terms subleading in 7. So we see that in fact
three-loop and higher-order contributions are more impor-
tant than the one- and two-loop terms, but all terms at three
loops and beyond are the same order in 7.

One might worry that since the n =3 term is more
important than the n = 2 term, the saddle-point approxi-
mation cannot be justified. Note, however, that expanding

(3.36)
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the exponential of the n = 3 term to next order gives a
term scaling like 2% In® Ru*. This term is subleading by a
factor of 7 to the terms we keep from the expansion of
the n = 6 term. The same justification explains why we
can ignore R dependence coming from the RG invariance
of the nonlogarithmic one-loop terms; these are also
subleading in 7.

Since an infinite number of terms are relevant,
we have to sum the series. Fortunately, this is possible
since all of these terms depend on only the leading order
p-function coefficients. In a pure scalar field theory, the
one-loop RGE is easy to solve in closed form. In a
general theory, this will not be true. In any theory, we
can write

hA(u) = hA* + Z(fl”“xn +-) ln”/%.

n>2

(3.37)

Note that we now sum over n > 2 since A'(u*) =0 by
definition of x* and, matching our previous notation,
ks = Py, The k, coefficients are all determined by the f
functions in the theory evaluated at one loop. The terms
denoted - - - all depend on f-function coefficients beyond
one loop and contribute to subleading order in 7 to the final
answer, so we drop them.

Equation (3.37) represents a perturbative solution of the
coupled RGEs which is always possible to work out order-
by-order in the couplings. It implies

1 1 Ky u\"
. - A" S pn
hiu) i Z( 22 a“w) i

* m>0

(3.38)

Here the - - - have terms of the same logarithmic order but
subdominant in / compared to the terms we keep. For the
integrand to be RGE invariant, we know the rate can be
written as

I
i 1—‘no-R X IﬂR

v (3.39)

where I ,r
Eq. (3.31),

det O
[hor = |e519% (RJT)4(RJd)Im\ / ﬁ
1

R=p~'=(u*)""

(3.40)

is R independent. For example, from

To repeat, there are corrections to this exponent that are
subleading in 7 both from the higher-order terms in
Eq. (3.37) and from those fixed by the RG invariance of
one-loop (or higher) nonlogarithmic terms in the integrand.
All of these terms necessarily make subleading contribu-
tions to the rate.

Now, every term in the exponent in Eq. (3.41) is
proportional to 4%~ In?(u*R) for some a. There is only
one term with a =2, corresponding to n =2, m = 1.
This term generates a factor of I, after integration,
as in Eq. (3.35). All the other terms, including the cross
terms, have a > 3 and contribute to the same order in £
after integration by Eq. (3.36). We can perform the
Gaussian integrals over all » and m by adding and
subtracting the n=2, m=1 term. Then, as in
Eq. (3.36), we get

1 * n Kn 2/1* 1"
'y = Fz{l - %S{d’b]z [_anzh ,1_* (m) }

m>1

Lk (24 2}
7S, <S[¢;]ﬁs,,> *

The 1 is subleading in %, so we can drop it. The
geometric series is easily resummed, giving

(3.42)

7,
n+1 22, "
My + s G

—1- —4/1* + ...
NN '

I'r = :IS[QbZ]Fz{
(3.43)

Finally, we can express the answer in terms of the
running coupling. The result is

Ay
Al—loop (ﬁ)

— 4% + ...
S[; )y '
(3.44)

1
[k —gS[(;S;]FZ{ -1

In this expression Ay ,.,(f2) means solve the coupled
RGEs using the one-loop f-function coefficients only
and evaluate at the scale

N 22,

R
For example, in a complex scalar theory, i = u, exp(— ’6’—/21)
Note that for small coupling, the scales jz and 1, can be very
far apart. Keep in mind, however, that all the couplings
in Aijeop(ft) are evaluated at u*, so this resummation
does not indicate sensitivity to high scales; it is merely

shorthand for a series of terms all of the same order and
the couplings.
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Putting everything together and resetting 7 = 1, we find

det @) [detO
¢ A
HfleldsA det'® N

—= |e S (RI)*(RT,)Im

4 ”’1 S[¢h]
ﬂ()*

. W[ b o

ll—loop (la) S[¢Z]2ﬂ6* ‘

R=p~' = ()™

Here the extra determinants come from integrating over
fluctuations of fields other that ¢ in the theory around the
bounce and false vacuum backgrounds. As long as y* exists
[meaning A(x) has a minimum], this is a finite expression
derived with consistent power counting. All of the singu-
larities associated with scale invariance have been com-
pletely resolved.

Finally, we point out that one does not have to choose
u = p*. For u # u* there are terms linear in In(uR) in the
exponent proportional to B(u), which generate a slew of
additional terms in Eq. (3.46). For example, Eq. (3.35)
becomes

A2
P00 = #* \/‘ ST (Po'd— L)
. {_ 4 (415160
S Poi-f

(3.47)

with f, the one-loop f-function coefficient for A. The
general expression including terms like this can be used to
calculate the scale uncertainty on the final prediction.

IV. FUNCTIONAL DETERMINANTS:
GENERAL RESULTS

With the divergences associated with scale invariance
understood, we now proceed to evaluating the functional
determinants. We will be evaluating determinants for a
number of cases: real scalar fluctuations, Goldstone boson
fluctuations, gauge boson fluctuations (in general gauges),
and Dirac fermion fluctuations. These are similar enough
that it is helpful to work out some results first that we can
then apply to the different examples of interest.

In this section we consider the general operator

M(x) = -0 = 3x4¢; (4.1)

and will evaluate

det M(x)

D(x) =———= 4.2
() = et (0) (42)
Comparing to Eq. (3.8), we see that the functional
determinant for the bounce corresponds to x = —1. Later
we will see that Goldstone fluctuations have x = —% and

(3.46)

|
transverse gauge boson fluctuations in Fermi gauge

2
have x = —‘3—/1

A. Regularized sum

The key to calculating D(x) in Eq. (4.2) is that we know
the spectrum exactly. Although we know it exactly in d
dimensions [63,64], regularizing the eigenvalues does not
necessarily correspond to a well-understood subtraction
scheme. Instead, we will work in four dimensions and
remove the divergences using Feynman diagrams.

Defining

O) =~ M(x) =

O+x (4.3)
397

b
397

we know the spectrum of O(x) exactly, as in Sec. Il A;

O<x>¢nslm = ’1n (x)¢nslmv
o 1 2
ho() = 3 4 x = T D T2) )6("+ Jir @
Then the determinant is
[LisolAa ()] (x)
InD(x) = In=" d, l (4.5)
Hn>0[ ; O

where the degeneracies d,, are in Eq. (3.24).

This sum is UV divergent at large n. We regularize the
sum by subtracting the terms of order x and x> and then we
will add those terms back in through dimensionally regu-
larized Feynman diagrams. Expanding at small x, we find

Seun(X) = {dnlnj:g;]”z—@n—l-%x—

9+6n
e
n2+3n+2
(4.6)

Then we can perform the sum. That is, we compute
- (x)
Sfm Z |: n —0 - Sgub )

(4.7)

finding

056006-11



ANDREASSEN, FROST, and SCHWARTZ

PHYS. REV. D 97, 056006 (2018)

11
(=3 + 6yg)x? +36+1n27r+4 5¢(3) —4¢'(-1)

e i)
Hlomg) o (57) v (5)
el (557) e (57)
—2[11/“4) (3‘; Kx) oyl (3 2")‘)] (4.8)

where ") (x) = 4

for complex n) with y(z) the digamma function,

=1 -—24x

~ —0.165 is the derivative of the { function at —1.

Sfin( )

w(z) (defined by analytic continuation

(4.9)
and¢’(—1)

B. Divergent parts

To the subtracted part, we must add in dimensionally
regularized MS-subtracted divergent contributions. The
subtractions were determined by removing the terms to
second order in x. These terms can be reproduced by
computing contributions to second order in x to the effective
action using Feynman diagrams. The Euclidean action
whose second variation gives M(x) in Eq. (4.1) is

S, =

1 diq ~
7= 30 [ G0 [ Gy =0

s— / & B (aﬂ(p)z—%(mﬁ)(pz (4.10)

We want to treat the mass term, proportional to x, as an
interaction to compute the divergent contribution to the
effective action.

To compute Feynman diagrams in Euclidean space,
we expand e~5. The — sign in front of S affects all the
Feynman rules, and Feynman diagrams produce contribu-
tions to —Sg; that is, in Euclidean space —1 serves the role
that the i prefactor does in Minkowski space. Thus, the
interaction Feynman rule is

s (4.11)

= 3222 (q)

In our notation solid lines are propagating ¢ fields and
dashed lines are background field insertions. The injected
momentum is distributed according to the Fourier trans-
form of the bounce squared [11]:

16f1R2 K, (\/;R>

B(@)= [ dxer 07 =
(4.12)
At order x, there is only one graph, a tadpole

d
1 (4.13)

Here, the % in front is a symmetry factor. This graph is scaleless and vanishes in dimensional regularization. Note that in 4D,
the graph is quadratically divergent, in agreement with the O(n) term in Eq. (4.6) which is quadratically divergent when

summed over n.
There is one graph with two x insertions:

— G 5= -—=-- ——_—— —

Here the

— e [ 21

% is the symmetry factor. The k integral can be done first giving

d%k 1 1
B = d—4 o
0K / 22) K (k + q)

Then we use

1671'

diq ~,  ~ k11
F ve +1n(4n) +2 — an—z} (4.15)
[
4 5 2 o
[ Shh@nont =2 i o -n’,
(4.17)
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to find that

(4.18)

3 5 3 3
—sz = <28+2+2]/E +2IH7IR2/12>X2

and therefore, rescaling u> — to go to MS, we have

47re 7E

3 5 R
_Sloops<x) = _Sx - sz - <2_€ + 5 + 37/E + 3 11’17”) x2,

(4.19)

Note that the integrals in Eqs. (4.16) and (4.17) are
proportional to S[¢,]. This is not a coincidence, as the
divergences must be canceled by renormalizing A in the
tree-level action.”

The full result in MS for a bosonic functional determi-
nant is combined with Eq. (4.7)

det M(0)
det M(x)

o[-

1
= eXp |:_§Sﬁn(x) - Sloops(x):| (4'20)
with S, (x) in Eq. (4.8).

C. Angular momentum decomposition

We will also find it helpful to do the above sum in a
different order, summing over n first exactly and then
regularizing the sum over angular momentum modes s. The
operators whose determinants we are trying to calculate are
spherically symmetric. Thus their eigenfunctions are sepa-
rable and can be written as

¢(r.a.0.¢) = f(r)Y""(a.0.4). (4.21)

The 4D Laplacian then reduces to a 1D operator,
Llp = A ¢, where

: (4.22)

and there is a (1 + s)?>-fold degeneracy for each s.
In terms of the angular momentum decomposition, the
ratio of functional determinants in Eq. (4.2) becomes

Technically, one should calculate the integrals in Eqs. (4.16)
and (4.17) in d dimensions, using a d-dimensional bounce,
generating O(e) terms which contribute additional finite parts
to Eq. (4.19). However, these finite parts must exactly cancel the
finite contributions from the d-dimensional action renormalizing
A, since both multiply the same % terms. Thus we can ignore both
and use the 4D integrals as written.

= Gervio) = IR @29
where
det [ﬁ Ay + x|
Ry(x) = al Al (4.24)

The exact radial eigenfunctions of these operators are
given in Eq. (3.15):

I R? — 12
¢ns(r) = ;PrH—ll (m) . (4'25)

These satisfy

A, +x) bos = (b (426)

1
(3/14);,

with 4,,(x) in Eq. (4.4). There are only eigenfunctions with
n > s. Thus,

det [;7 A, + x]
R, (x) :L

det [WZ Al
_ }*n(x) . F( )1"(2 4 )

with «, =1 —24x as in Eq. (4.9). In computing the
product in Eq. (4.23), the divergent contributions all appear
at order x and x> so we compute subtraction terms

sub( ) = KS + 1)2 lnRS(x>]x,x2
=6(s+ 1)x + 18[3 +2s — 2(s + 1)%y/(1 + s5)]x*
(4.28)

The appearance of the digamma function y(z) makes
this subtraction more complicated than the subtraction in
Eq. (4.6). Note that y/(s + 1) ~1 at large s so there is a
logarithmic divergence encoded in this expression.
Performing the sum, we find

i )2 InRy(x) — 8%, (x)] = Sga(x)

s=0

(4.29)

in exact agreement with Eq. (4.8).

D. The Gelfand-Yaglom method

There is a very powerful way of computing functional
determinants, that does not require knowing the exact
spectrum of the operators, called the Gelfand- Yaglom method
[78]. Reviews and derivations of the method can be found in
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[40,45,79-81]; here we just summarize its application to the
scale-invariant potential of interest in this paper.

The Gelfand-Yaglom method says that functional deter-
minants can be calculated by finding zero modes of the
operators and evaluating their asymptotic behavior. For
example, for one-dimensional operators, like the ratio R, in
Eq. (4.27), the method says that

det[W)ZA + x]
R, =
det[w),A]
T B[ BT _ 45(0) i)
[Loqsx( J le ¢o<r>] 50 o) 0

where ¢(o0) and ¢(0) are shorthand for the limits in this
equation and the functions ¢? satisfy

A, +x}¢x—0 (4.31)

1
{3/1452

The boundary conditions are that the functions be regular
at r =0.

Note how powerful the method is: instead of finding an
infinite number of eigenvalues and taking their product,
we simply solve the differential equations in Eq. (4.31),
which can be done numerically, and evaluate the solutions
as r —» oo and r — 0.

To see how the Gelfand-Yaglom method works, consider
the real scalar case (x = —1) first. First of all, we already
know the answer from Eq. (4.27):

R _det[3g¢2A H6n+1 n—|—2)—1
' det [m¢2 Al s st 1(n+2)
s(s = 1)

= GE6+3)" (4.32)

To use the Gelfand-Yaglom method, we find the exact
solution to Eq. (4.31) regular at r = 0. It is

o5 =r. (4.33)

The regular solution to Eq. (4.31) that reduces to ¢ at small
ris

. r 2R*(s—1)
=g (' 2

s+2

s(s=1) r4>
(s+2)(s+3) )’
(4.34)

Thus Gelfand-Yaglom predicts that

s(s—1)
(s +2)(s+3)

e )
K ’1—’°° ¢0()

in exact agreement with Eq. (4.32).

Note that for n = 1, Eq. (4.32) gives R, = 0. This is
because for n = 1 there are zero modes. Indeed, the n = 1,
s = 0 zero mode is the dilatation mode and the n =1,
s = 1 modes are the translations. For the s = 1 case, the
determinant ratio with eigenvalues removed is

(4.35)

1 —
; :det[7A1 U Mg+ D)1 1
P det! [3,145 Ay [Tz (n+ 1)(n+2) 10

(4.36)

Similarly, Ry = —1 by multiplying the eigenvalues.

To use Gelfand-Yaglom to calculate the zero eigenval-
ues, we shift the operator by order e. That is, we replace
Eq. (4.31) by

1 le __

Shifting the free-theory operator by e is not necessary
since all of its eigenvalues are nonzero. Note that the

zero mode ¢ is an eigenfunction of the shifted operator
with eigenvalue e. The function with eigenvalue O is

PLi(r) = ¢, (r) with ¢,,(r) in Eq. (4.25) and
ne=—3+3/1—3%e. Then, using ¢§(r) =r,
1 Le 1

R, =lim— | lim 91 (1) lim — S (4.38)
e=0€ [rooc0 r r—0 ¢_1(r) 10

in agreement with Eq. (4.36).

The s = 0 functional determinant can be computed in
exactly the same way without any additional complication,
finding R, = — %, in agreement with the direct calculation.

V. FUNCTIONAL DETERMINANTS

In this section we compute the functional determinants
for the fluctuation of scalars, Goldstone bosons, vector
bosons, and Dirac fermions around the scale-invariant
bounce configuration. We produce analytic formulas for
all the cases. In the vector boson case, we check explicitly
that the result is gauge invariant by using a generic value of
£ in Fermi gauges, and also show agreement between Fermi
and R; gauges.

A. Real scalars

The case of a single scalar field was introduced in
Sec. III. The Euclidean Lagrangian is
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A
=500+ 50" (5.1)

1
2
The Euclidean equations of motion —[l¢p + A¢p> = 0 are
solved by ¢ = ¢,. The operator for quadratic fluctuations
around ¢, is
M, = -0+ 3145, (5.2)

Thus real scalar fluctuations correspond to the case studied
in Sec. IV with x = —1.

For x = —1, the finite contribution from the sum over
n >0 is singular [Sg,(x) in Eq. (4.8) is singular as
x — —1]. This is due to the zero modes at n = 1 corre-
sponding dilatations and translations around the bounce. To
compute the determinant with zero modes removed, we
must first rescale the operator. We therefore define

1 1

- My =——0O-1.
5 T g

Recall from Sec. IIT A that this rescaling allows the change
to collective coordinates to have a finite Jacobian. The
Jacobians for dilatation and translations are given in
Egs. (3.29) and (3.30).

To compute det’ O, we must remove these modes from
the sum in Eq. (4.7) and add in only the n = 1 contributions
to the false vacuum fluctuations. We note that the n =1
terms in Eq. (4.7) give

A (x)

d;1 =51 1). 5.4
gy = S+ ) (54)
This is also singular at x = —1. Removing the n = 1 terms

from the sum, we find a smooth limit as x — —1:

Sfta = 1im [Sgn (x) = SIn(x + 1))
15 7776
=— —in—12¢(-1) +In——. .

2+6yE in '(-1) + nos (5.5)

Note that we should leave the x> terms in the subtraction at
n = 1 to avoid overcounting, since these are included in the
loops. For det’ we should only remove the n = 1 modes for
the bounce, not the false-vacuum; however, 4,(0) =1 so
removing the false-vacuum n = 1 mode has no effect.

Combining with the divergent part from Eq. (4.19), we
then have

det O, 25\f 305 Ry
Im, / =2 Pexp | =2 6(=1) 4+ 3.
™ dero, ~ 36 V6P {28 g TN+ 3

(5.6)

Here, @¢ means the operator with ¢, = 0, corresponding
to fluctuations around the false vacuum. Note how the
factors of yr have dropped out.

The remaining task is to renormalize. In MS the Z factor
for A at one loop is

9 1
ZA:1+—R_

7 (5.7)

The renormalized action on the bounce then becomes

872 81’ 8> 3
S = = =——+—+---. (58
[¢1] 3  3ZJx 3 ot (58)
Combining with Eq. (5.6), we get
det O
—S[‘f’b]l ¢
¢ m det’(’)¢
8225 /5 5 Ru
= e¥r — - - (- —_— | - .
e 2e 6exp{ 4+6C( 1)+3ln2 (5.9)

B. Complex scalars and global symmetries

Next, we discuss the case when the false vacuum
admits a continuous global symmetry that is spontaneously
broken by the bounce. For concreteness, we take the
simplest example, a field theory of a complex scalar field
® with a global U(1) symmetry. The Euclidean Lagrangian
density is

L=10,®P+V(®) (5.10)
where V(¢) = A|®@|*. We expand the field as
1
®=— (¢, + ¢+ iG). (5.11)

V2

With this normalization for a complex field, the bounce is
the same as Eq. (3.3) and still satisfies —Clgp, + A¢h; = 0.

Expanding around the bounce background to quadratic
order, the scalar and Goldstone modes satisfy

(-0 +31¢2)¢ = 0, (5.12)

(-0 + 4¢3)G = 0. (5.13)
Both of these equations are special cases of to Eq. (4.1), with
x=—1for¢pandx = — % for G. The scalar fluctuations ¢ we
have already discussed: there are five zero modes withn = 1
[since 4, (—1) = O with 4,(x) in Eq. (4.4)], corresponding to
translations and dilatations. The Jacobians for removing
these zero modes in conformal coordinates are given in
Eq. (3.29) and (3.30) and the functional determinant with
zero modes removed is in Eq. (5.9).

For G with x = —% there is a single zero mode
[40(—3) = 0] corresponding to phase rotations ® — e“®.
The n = 0 mode has no degeneracy and the eigenfunction is
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Go = Poooo < Py (5-14)

as in Eq. (3.26). Infinitesimally along this direction, ® =
Hﬁ(j)b which has the same action as ® up to order a?.

As with ¢, we have to remove the fluctuations
along the zero-mode direction exactly using collective
coordinates With the measure determined by the operator
Og = 3/1¢ > (0 — A¢7) we have

¢b’¢b \/ /d4 V//
B /167;_ 6S[¢s]

To calculate the determinant with zero mode removed we
follow the procedure in Sec. VA. The n =0 mode in
Eq. (4.7) contributes

(5.15)

o(x)
20(0)

dyIn =In(3x+1). (5.16)

Note the singularity as x — —1. Removing this from the

sum, we find a smooth limit as x — —%:

Sgn = lim [Sfm( )

x— —3

13 2 , 3

In(3x + 1)]

(5.17)

Adding in the divergent piece, in Eq. (4.19) with x = —
we get

1
3

det O G
det' O,

1. R
1)+ S el

+C’( )

(5.18)

The full contribution from the Goldstone fluctuations is
therefore

det®

/ 6Jc \/ det/ OG
654;,,\[ 1 ) 1 Ry
211/ [8 +zg( 1)+ 31n2

(5.19)

where [df = 2x gives the volume of U(1).

For other gauge groups, the procedure is identical up to
the group volume factor. Indeed, at quadratic order, all of
the Goldstone boson directions decouple and the path
integral over each direction gives a factor of Eq. (5.18)
and a Jacobian. All that needs to be changed is the group
volume factor. For SU(2), this is 1672,

Putting the results for the Goldstone fluctuations
together with the scalar fluctuations, we get for the complex
scalar theory

V=TT =Sl / d*x / dR / doJ JiJ g

- det (’)[/, det Og
det' Oy | det’ Og

(5.20)
6S dR 5 4 10, R
=5[] Efz]/Rsexp[3 —I—SC/( 1)+ ?17#
(5.21)

The R integral would be cutoff by higher-order effects if
A(u) were bounded from below (which it is not in this
theory). The UV divergence is canceled by the rernorm-
alization of A, as in the real scalar theory. In this case, the
action on the bounce in renormalized perturbation theory is
[cf. Eq. (5.8)]

872 5
=" 22
S(¢s] 31R+3 + O(g). (5.22)
So that,
r o 68, [dR 4 10, Ru
poe R e |-grscn + 30
(5.23)

which is UV finite.

We note for future reference that at each s the contri-
bution to the functional determinant for the Goldstone
modes follows from Eq. (4.27)

1 s
RE=R(-—=) = .
s S( 3) s+2

We also note that for s = 0 there is a zero mode. Removing
the zero mode we find R§' = 1.

(5.24)

C. Vector fields and local symmetries

Next, we discuss the contribution of gauge bosons to the
decay rate. We continue the U(1) case, but now with
Euclidean Lagrangian

1 . . :
L= ZFﬁy (0,9* + igA,®*)(0,® — igA, D)

+ V( ) + 'C'GF + 'Cghost (525)
where V = 1|®[* as before and we expand ® = \/% (¢ +

¢ + iG) as in Eq. (5.11). For the gauge-fixing term, we can
consider the R; gauges, as in [11,19], where
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. 1
Le = 2 (04 = 98,6 (5.26)
So that at quadratic order,
1 5o E—1
‘CR: = EAM (_D +g ¢b)5;w + Tauav Av
lG - g_z 13| G
+ > + : +4 )by
1 1
+ (E + 1) 9A,(0,¢1,)G + <E - l)gAﬂ(,{)b(aﬂG)
+ &[0+ g*¢2)c. (5.27)

While these gauges have some convenient features, par-
ticularly for £ = 1, they have a very serious drawback: they
break the global U(1) symmetry. As a consequence there is
no zero mode for the Goldstone fluctuations. Thus we
cannot pull out a collective coordinate and calculate det’,
and the limit g — 0 may not be smooth. In fact, because of
the missing zero mode, we are unable to reproduce the
results of [11,19]. Although it is probably possible to get
gauge-invariant answers consistent with the g =0 limit
using R; gauges, we choose instead to use Fermi gauges, as
in [40].
In Fermi gauges, the gauge-fixing term is

Lgr = ;g(aﬂAﬂ)Z. (5.28)
So that at quadratic order
1 E—1
Lermi = EAﬂ (-0+ ¢*¢3)5,, + Taﬂay A,
+ %G[—D + 243G
+ 9A,(0,¢1,)G — g¢»A,0,G — ¢lc. (5.29)

Fermi gauges leave the global U(1) symmetry of the
Lagrangian intact (the action is invariant under ® — ¢/“®,
A, — A,). Note that since the ghost Lagrangian is indepen-
dent of the bounce, the functional determinant over ghosts
normalized to the false vacuum is just 1.

In Fermi gauges, the equations of motion for A, and G
are coupled. At quadratic order

(-O+g*dp)A, + (1 - é) 90,4,

+ 9(0,¢5)G — 9¢,0,G = 0, (5.30)

(-0 + 2¢7)G +29(0,5)A,, + 90,4, = 0. (5.31)

Following [11,19,40], we then exploit the spherical sym-
metry, expanding A, as

+ (aTl (V) Vl(/l) + aTZ(r)VI(/z))euvpﬂxpao' Yslm (a9 6’ ¢)

(5.32)

with V,<,1> and V,(,Q) two independent generic vectors and

Ym(a, 0, @) the 3D spherical harmonics in Eq. (3.16). In
this basis, and writing G(x) = G(r)Y,,(a, 6, ¢) the fluc-
tuation operators decouple for each s, /, m and the resulting
operators depend only on s. After some algebra (see [11]
for some details), we find for £ = 1 that the ag and q;,
modes couple to G, through the operator

—A,+ 34 49 _ /s 9P, — 910,
MSLG = _ W) A - @@ VD g |+ M (5.33)
208, + 900, + 200~ gp, A g
where the gauge-dependent piece is
R +39, -3 M(arJ) 0
r r ,
(5.34)

1
M = <1 - —) 5(s+2) 3 s(s+2)
A (8, + ;) -—— 0

0 0
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and A, is in Eq. (4.22). The corresponding false-vacuum
operator is M3LC with ¢, = 0:

3 2¢/s(s+2
T SLG
M7 =1 2 /5(s+2) 1 + M.
-V A-> 0
r r
0 0 —A,
(5.35)

Note that in Fermi gauges the gauge-dependent part MS
does not depend on ¢, so contributes in the same way to

MSLG and M3EC. This is very useful for establishing
gauge invariance of the result, as we will see.

In Fermi gauges, the transverse modes fluctuate inde-
pendently, through

M =-A + 73 (5.36)

or more simply, they satisfy the Lorentz-invariant equation
with operator

MT = -0+ g*¢?. (5.37)
1. Transverse fluctuations

For the transverse fluctuations in Fermi gauge, we can
calculate the determinant exactly. In fact we already have,
in Sec. IV. The transverse fluctuation operator M7 is the

same as in Eq. (4.1) with x = —%. There are no zero
modes, and so including both transverse polarizations

s (LE S (52 2 R
i\ 737 T2\ T3, 9 37ET3

(5.38)

detMT
detM

where the finite part is in Eq. (4.8) and for this case

84°
122
+ A
the divergent part of Eq. (5.38) came from Eq. (4.19).
To compare to other results, it is also helpful to have the
determinant at each s value. That result is in Eq. (4.27):

- 7\ T +sT2+s)
RZ_RS( 3x>_r‘( S+ s +s+%)

Ky > K

(5.39)

(5.40)

2. Fluctuations with s =0

For s =0, Y is constant and so the transverse and
longitudinal modes decouple. In this case, only the scalar
vector boson polarization and the Goldstone mode remain.
The fluctuation operator is

! (—AO + %) + 5, 9, — 9660,
MSE = ¢ r X
200}, + 9040, + 9y —Ao + 4
(5.41)
The corresponding operator with ¢, = 0 is
O G B B

0 —A,

Note that M¢ has two zero modes regular at r = 0:

p - (° aw=( ! 5.43
‘_(m) o ”‘Q#%)'(')

The first zero mode corresponds to the global U(1)
invariance we saw already in the g = 0 case. The two zero

s
modes for M,

. 0 . r
‘I’1:< > and ‘1’2:< >
1 0

We need to remove the zero modes by going to collective
coordinates, just as in Sec. V B. Since we do not know the
eigenfunctinos of M3¢ exactly we will use the Gelfand-
Yaglom method. After rescaling our operator we add to it a
shift of order e. Then we need to compute

regular at r = 0 are

(5.44)

SG SG
RSGr — det (3’”’2 J/\il—SG) = mldet (SM)ZM e ]])
det (3/147- My7)  e0€ det (3/1¢2 MyY)
(5.45)
We can compute the zero modes of 3 {/)2 MSG +e-1

perturbatively. Since only ¥, goes to zero at r — oo,
we only need the corrections to it. So we expand,
following [40]:

=¥, + ¥ + O(2). (5.46)
If the function W satisfies
MSGT =-Y 5.47
v (5.47)
then we will have (3/1¢2 MEC 46 1PV = O(e2) as desired.

We can find the solution to this differential equation
exactly by integration, following [40]:
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) &\ 2w
Y= 2 2 2
r 292
|:F<1+T€> (2 2= f)ln(l—i— >:|¢b
(5.48)
The result is
RSG! = [Iim det(‘{fl%)} {lim det(?l?z)} — 1. (549)
r—0 det(‘yqu) r—o0o det(\Pl\Pz)

Note that the result is gauge invariant, and its (trivial) g — 0
limit agrees with RS” = 1 computed at the end of Sec. V B.

3. Fluctuations with s > 0
Now let us consider the s > 0 fluctuations. We need to
find three independent solutions to MO =0 and
MO = 0 with MSLG and M3 given in Egs. (5.33)
and (5.35). The solutions need to be regular at the origin, but
can have arbitrary normalization. The determinant is then

RELG

SLG VI
det M"¢  det'P(0) det‘P(ooi (5.50)

det M32C det'¥(0) det ¥(oo

where det ¥ = det(¥/) where ¥, are the 3 solutions and ¥}
are the components of those solutions. Here and in the
following, when we write ¥(0) or ¥(co) we mean the
leading behavior as r — 0 or r — oo respectively.

The functions of ¥ are easy to find. They are

s—1

Sr
¥, = s(s +2)rs7t |,
0
Vs(s +2)(s — s&=2&)rH!
Py = | (2445 -2s6— 528t |,
0
0
¥, =0 (5.51)
rS
So
detW(r) = 2s(s + s& + 2&)r° (5.52)

Note that the & dependence of detW is only in the
normalization, so it will drop out in the ratio of the
determinant at » = 0 and r = oo

To find the solutions ¥, as discussed in [40], an
immensely useful observation is that they can be expressed
in terms of three auxiliary functions 7, y, and { as

1 /
Oy + 24)2’7_ (fqﬁ%
y_ s(s+2) 1 ) 553
r AT s(s+2)r292¢iar(r’1) 5%
1
g¢b)(+%é’

where the auxiliary functions satisfy

2 2
Ay — Zizb —;a ( 4)*’ g) +E =0, (5.54)
20, 2 )¢,
(A —gz¢i)n—r2¢’; d,(r*n) +%g_o, (5.55)

We define ¥, as the solution with { =7 =0, ¥, is the
solution with { = 0 and # # 0 and W5 as the solution with
¢ # 0. Note that only W5 can be gauge dependent.

The exact form of ¥, is easy to find. With { = n = 0 we
find y = r* and so

sr!

s(s+2)r!
gpr*

For ¥, which has { =0 but ##0, we can solve
Eq. (5.55) exactly. We find that the nonzero solution
regular at » =0 is

¥, (r) = (5.57)

) —l 1+« 3+k r?
()= (P B3, (S s+ T 2 1)
(5.58)

with x in Eq. (5.39). At small and large r

r2 7 +4s + k2
0)~ PR (1 -T2 TR )
12(0) ~ 1 < R 4(s+2) )
1y (00) ~ C,r2R*! (5.59)
where
(2
C(1+s)C2+s) (5.60)

T D(s+3-HT0(s+3+5°

Note the reappearance of the ratio in Eq. (5.40).
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Now given 7,, we can solve for y using Eq. (5.54).
Conveniently, we do not need the full solution for all r, only
its small r and large r behavior. Equation (5.54) simplifies
in these limits and we find

y RK—I
8g%s +2
) RK'—l
NC—
’7892S+2

S+2

’

)(2(0)

x2(00) 2, (5.61)

To these we could add a homogeneous solution of the form
x = r°. However, this is exactly the ¥; solution which is
orthogonal, so adding a ¥; component to ¥, will not affect
the functional determinant. Dropping the homogeneous
solutions is extremely important—it is the essential sim-
plification allowed by using these auxiliary functions.
Using the limiting forms of 7, and y,, following the
procedure outlined in [40], we find

s(s+2)%

[ _ rzgzs—(s+2)£j—2§gﬂ—2}
(s+2)5+2

(s +2)°

g2
R?As+2
%(O)N_gimerS_l s—|—2|: _r_zg_22(s—|—4)] ;
s R* 2 (s+2)?
0
1
4(s+2)
s+2 s+4
¥, (00) ~ C,R* 1! 5 45427 (5.62)
—Ar 1
=

Here we have written only the terms that contribute at
leading nonvanishing order to the determinant.

For W3, defined to have { # 0, we can solve Eq. (5.56)
exactly for { = r*. Proceeding as for ¥,, we find

R s(s+2)

(5.63)

A
qj3(0)"/—8—gzrs_1R2 S

and
s—(s+2)¢
4(s+2)
v ~ st 4 - 2 5.64
()| s = (g | (564
4(s +2)
0
Putting these solutions together we find
- 2
det(0) = || Lo S H2E
8y 2y/s(s+2)
—A o 35 VSIS 1+ (s +2)¢]
det¥ = Cp [ =R o2 5.65
€ (00) n 892 r 2(S +2)5/2 ( )
and so
psza _ det /\AxlfLG _ det ¥(0) det?(oo) o8
' det MPEC det'P(0) detP(c0) s +2
(5.66)

which is manifestly gauge invariant.

2
S+2(s+2)+2%

{1_2r_zfs+4—(s+2)§—2§§]
R? 2 (s +2)?

N
—AR

Comparing to Egs. (5.24) and (5.40) we see that

R3LC = RTRY. (5.67)
Thus the scalar and longitudinal vector modes together
contribute the same as a transverse mode to the determi-
nant. As a check, at g = 0, the vector bosons become free
Ry =1, and R3'® = RY as expected. Combining with the
transverse modes the full determinant for s > O is

R3LOT — (RT)3RG (5.68)
We have shown this result to be manifestly gauge invariant.
We also checked through a numerical implementation of
the Gelfand-Yaglom method that the same formula emer-
gences in R gauges for each s.

The full functional determinant requires summing over s.
We note that at large s,

3q° 3¢
e e )

2 34"
—§<1 +/1—2> (5.69)
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thus there are quadratic, linear, and logarithmic divergences
in the sum.

4. Renormalization

To regulate the sum over s, we will subtract the divergent
terms and add in dimensionally regulated Feynman dia-
grams, as explained in Sec. IV. An important cross-check
on the result is that the UV divergences should cancel those
from —S[¢;] using the renormalized coupling. In scalar
QED, the one-loop Z factor for 4 is

11 gh
Z,=1+——(101z —6g% + 3£ ). 5.70
A +1677,'2€< R — 0gr + /113) (5.70)
The action on the bounce then becomes
8 15 g b
S =t [+ == 5.71
i 31R+s (3 1R+21§ + (5:71)

e

Thus we need the UV divergences in Eq. (5.71) to be
matched by the functional determinant over scalar, gauge,
and Goldstone modes.

To proceed, we want to compute the divergent contribu-
tions with Feynman diagrams in d dimensions and subtract
the corresponding contribution from the 4D result to sum
over s. Unfortunately, performing the subtractions in Fermi
gauge is difficult. In Fermi gauge, due to the g¢,A,,0,G term
in Eq. (5.29) there is a Feynman rule picking up the
momentum of virtual Goldstones. This extra-loop momen-
tum generates new UV divergences and makes the diagrams
difficult. This is explained in more detail in Appendix B
where we compute all the divergent parts (but not the finite
parts). These divergences exactly correspond to those in
Eq. (5.71) as expected.

Fortunately, we can compute the regularized contribution
in any gauge. Indeed we have checked numerically that our
result for the finite s functional determinant is identical in
R: gauge and Fermi gauges. In R; gauge, with £ = 1 with
Lagrangin in Eq. (5.27), the Feynman rules are

In addition, in R gauge the ghosts do not decouple and have an interaction

Then we find

4
Re o % g
—Pee — TS s T 2

o°°°°°°o )\

- N P -
= _92¢E(Q>5uua >?_——q— = 27:9Q”¢b(¢]) (5.72)

RAC) (5.73)
Tt 5 1 1

) {& + R + E’YE + 6 In WRQMQ] (5.74)
2 7 2 2

[g + 9 + gVE + 3 In WRQM2] (5.75)
4 26 4

[g +5 t3rEtgh WRQMQ] (5.76)

—3—18 — g — =g — = lnﬂR2ﬂ21 (5.77)
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The sum, after taking y — ——%— for MS is

\Vare TE
2 4 2
AG 9\ R R R Rf_llgzg 5 1 1. Ru g (7 Ru
—Sloops<_§> = =866 = Sax — Sag — S _E(€_7+2—,12) + (1—8+§7’E+§IH7 = \zt2re+2n—-
4
g (1 Ry
+/12 (2+7E+1n > ) (5.78)

Note that the divergent terms agree with those in Fermi gauge, Eq. (B16), and when the scalar contribution is
added (with divergence %), the poles exactly cancel those in Eq. (5.71).

To perform the subtraction, we need to compute the contribution to the functional determinants in 4D from terms to
second order in the couplings. Note thatin R; gauge the transverse modes have the same quadratic fluctuations as the ghosts
and they cancel exactly in 4D. For the other photon polarizations and Goldstones, the fluctuation matrix with £ =1 is

3 2¢/s(s+2
R 290,
SLG.R
M = 2¢/s(s +2) 1 (5.79)
-2 —Ay - ) + 7P 0
29¢), 0 —A, + (8 + )¢
Changing basis, following [11] we find a convenient almost diagonal form
A1 + O 0 9——¢
s b s+17°
-1 S.‘LG,Ri = N + 2
UTIMTY 0 N (5:80)
s+ 1
29, =29¢,  —A+ (G + D
where
1 -1 0
U= |, /# \/% 0. (5.81)
0 0 1

In this form, we see that if we turn off the off-diagonal couplings, each diagonal term is a 1D operator and the exact result
can then be read off, using Eq. (4.27):

2 2
SLG.R; g g g+
R, giag = Roni (— 32) R,y <— 31) R, <— 3 ) (5.82)

The required subtractions to second order in the diagonal interactions then come from the expansions of these function to
second order in their arguments:

[InR

SLG Ry 2(s% + 452 +45 +2) /(s) 2(s* + 95% 4 2052 + 185 + 8)
. f— — s
sl b sH(s+1)? S(s+ 1)2(s +2)
2(2s +5)(3s* + 1253 + 1852 + 125 + 4 u
(2s + )(S2+ s2+ s2—|— s+ )—121//’(s) 9_2
s*(s+1)*(s +2) A

- 81//(S)} %

(5.83)

with y(z) = % the digamma function. The remaining required subtractions involve the off diagonal couplings in

Eq. (5.80). Since these couplings are linear in g there are no contributions to first order in g (corresponding to no
diagrams with one ¢ insertion). The contributions to second order in g can then be computed turning all the diagonal
interactions (mass term) to zero. We do this with the Gelfand-Yaglom method perturbative in g, following a similar
procedure to the one used in Sec. V C. The result is
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SLG,R;
s,off—diag] sub

8(2s* + 753 +10s2 + 6 2 2
e LA TR
s*(s+1) A

[InR

(5.84)

As a check, we note that adding Eqgs. (5.83) and (5.84),
multiplying by (1 + s)? and expanding at large s, all of the
divergent terms of the all-orders result (1 + 5) In R$CT  as
shown in Eq. (5.69), are reproduced exactly.

Then, using Eq. (4.28) we compute

st (-2) = {2 o]

s=1

3sgub< §z> — 8, <—%>} (5.85)

121\ ¢ 54
4> —— | -2,
3 /1 22
Adding Eq. (5.78), Eq. (5.86), and the finite parts Eq. (4.8),
we finally have

3 g 7
o[ -3 (-5) -5t (-5
1 i 1
) Sa% (‘ 3/1> ) Sgn:|

with Sgn the finite contribution for the Goldstone fluctua-
tions with the zero modes removed, Eq. (5.17).

(5.86)

det ©AG N
dEtIOAG N

(5.87)

D. Fermions

Next, let us consider the addition of Dirac fermions. The
Euclidean Lagrangian for a real scalar interacting with a
Dirac fermion is
|

(0, + %Mf‘ + iy +\%¢v‘/v/-

Around the bounce configuration, ¢ = ¢,,, the fermion
fluctuation operator is

(5.88)

l\JIP—‘

y

To calculate the determinant of this operator, we expand in
a basis of half-integer spin spherical harmonics.

Including angular momentum, Dirac spinors transform in
the direct sum of (k + 1, k) and (k, k + 1) representations of
the Lorentz algebra su(2) ® su(2) 2 o(4). In a particular
representation of the Euclidean Dirac algebra, the half-
integer spherical harmonics take the form of hypergeometric
functions (see Appendix A of [82]). Expanding in this basis,
M,, reduces to a form which depends only on the radial
coordinate r and only on two components of the Dirac spinor

(5.89)

it ar_%( %qﬁb
My = hi o+ 2kt3 |”
ﬁ(ﬁb ==
o +M L¢
_ r r V2t
/\/lf,‘, =< N 5 2_k> (5.90)
\/§¢h r— r

To match the literature, the first matrix here corresponds to
Eq. (3.17) of [82] with K — k and the second to (3.18) with
L = K —§ — k. The multiplicity of the (a, b) representation
is (2a 4+ 1)(2b + 1), so we have

detM, = [ (detl M),
k:(),%,l,m

(5.91)

Next, we reduce the product of these operators to a
quadratic form by conjugating with the unitary matrices
U = diag(-z . z) and V = diag(Hz . — n):

82_(4k—|—3)(4k—|—1)_y_2¢2 —Lff)b/
r 4 2 2 b
U ME UV METY = ! va . (5.92)
_L(ﬁb, 82_(4k+3)(4k+5)_y_¢2
V2 ’ 4r? 27
This simpliﬁes slightly by writing k = 1 % Then 92 _dlizh) _ ¥ 42 y
2k+3=337,..., the multiplicity b 2 -1 j AL ~
j= 2 323 plicity ecomes J ML = (5.94)
d A NpY] 9% — JG+1)
an _7545[7 r— 2 -5 ¢b
In det Mu/ = Z ( Jjo - Z) In det Mﬁ/w (5.93) in agreement with [1 !]. The matrix for fluctuations around
j=331 the false vacuum, /\/lﬁ—,y, is the same as this one with ¢, = 0.
Following similar techniques to those described in
where previous sections, we find
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RIV = et Mow LU/l +32
J A4 . 2 . B
Miy [T+ 3+ DTl +5- /5
(5.95)

For the subtractions, it is helpful to have the result for the
determinant when the off-diagonal terms in MW are set to
zero. When the matrix is diagonal, the fermion case is a

special case of the general formula in Sec. I'V. The result is

2 2
- Vi Vi
RS:/’—% (‘ a) Rs:j_E (_ a) (5-96)

with R (x) given in Eq. (4.27).
The subtractions required to sum over j are given
by the expansions of le’-’”’ to second order in the diagonal

vy
R; j.diag —

7 1 7 PO |
78 = (74 Jmrf) (P ) IR, (597

_ <J'2_%> {_zf <|J|+ ) iy2(4<r41])2(—iji;2rl)

(5.98)

Using this, we find

. , 1 oy oy y
> i =5 )R =S =SR] (599)
5.

couplings and second order in the off-diagonal couplings: where
|
8 47 z*
S (@) = 16w(2) = Sy Q)+ 5 (1 = 1) -5 (1 = 27)
4 4
- ?z (1= 2 +2) -y 2= +3(1 =322 +2) + (2 -2)]
+ 822 +2) —y P2 -2)] -8y M2+ 2) +yH(2-2)). (5.100)

This function is real for imaginary z and contains only even
powers of z when expanded around z = 0.

The UV-divergent part is added back in through a
dimensionally regulated calculation quadratic in the inter-
actions. We do this by evaluating the functional determi-
nant as in [11]:

_Sloops <y2> :1 |: dEtM;/l//:|
RN 2 det M,

% [ det(—-O+ W)} ;

W det(—0)
(5.101)
1 1
= —ETr[D‘lw] —ZTr[D‘1WD‘1W] (5.102)

where W = y (;}9(15;,) are the interactions from
Eq. (5.94), and the subscnpt W? indicates that we are
truncating the expansion in W to second order. The traces
can be rewritten in momentum space

dr _
T W] = / (d—"dk—zl / AT W), (5.103)

27)
Tr[O-'wO~'w]
dy g
:/ (Czlnc)ld(;in])(dk%kiq) TrW(q)W(—q)].  (5.104)

[

The single W trace is zero in dimensional regularization, and
- e

we can evaluate the other one using W(q) = % ¢%(q)+

i%?f‘ﬁb(@

Tr[O-'wO-'w]

d d _ i
- / ((2175()]" (;iﬂ])(d 12 (k :_ 7) 2 (q) + 2y*¢*dp(q)?]

(5.105)

N / 5;4 [ d3(q) +2°¢*dy(q)?)Bo(q)  (5.106)

with B((g) defined in Eq. (4.15). In MS the result is

2 2 4
_ loops (Y~ Ly y 13 2 21 Ry
S <,1> (3& 6/12>+ <18+3”+3n2

475 1 R
(Bl

2 \18 3 3 2 (5.107)

The final result for a single fermion is then

det M, 1 ’ (Y
e _ep st (1) st ()] 50
detMl/?l// - 4 4
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As a check, we note that the action on the bounce in this
Yukawa theory in terms of the renormalized couplings is

2
Sl =37 +1(3+y—R—y—R>+ :

1
T3 2" 30, 642 (5.109)

The UV divergences in this action exactly cancel those in
Eq. (5.108) and Eq. (5.6).

E. Summary of results

To provide a convenient reference, we summarize here
the main results of this section: the functional determinants
for scalars, vectors, and fermions.

For a real scalar, there are zero modes corresponding to
dilatations and translations, with Jacobian factors given in

Egs. (3.29) and (3.30):
1 [650p,) /
"R 5z

The fluctuation determinant with zero modes removed is in
Eq. (5.6):

(5.110)

detO; 25 5 [3 5 Ru
="y /Zexp | = =S4 6¢(=1)+3In=-|.
et 0, * [28 e nz]

(5.111)

In collective coordinates, we must integrate over d*xdR.
For a complex scalar field, there is a global U(1)
invariance spontaneously broken by the bounce. There is
a zero mode corresponding to phase rotations. The Jacobian
for changing to collective coordinates is given in Eq. (5.15)

6S[cs]

T

Jo = (5.112)

and the fluctuation operator for the Goldstone bosons is in
Eq. (5.18)

|/ —-— 20 “IntH
det O Ge + (=143l 2}

(5.113)

In collective coordinates this must be integrated over the
volume V = 2z of U(1).

For a U(1) gauge theory with a complex scalar, namely
the Coleman-Weinberg model, the dilatation, translation,
and phase rotation modes are still present. The functional
determinant over gauge and Goldstone fluctutations with
zero modes removed is in Eq. (5.87)

det OAG 3 92 1 92
S -L) —osme (L
delO,; P { 27t ( 37) 274\ T3y
AG 7\ _ 1w
Sloops <_ ﬁ) - E Sﬁn:| ’

with Sg,(x) in Eq 4.8), 8¢, in Eq. (5.17), SiF in
Eq. (5.86), and $AG

loops 1N Eq. (5.78). The determinant over
the real scalar fluctuations in this theory is the same as in
Eq. (5.111).

For a Dirac fermion, the fluctuation determinant is in

(5.114)

Eq. (5.108):
det M 1 2 . 2
S ox [ S‘g;”< y—) - s (y—ﬂ (5.115)
det M, 2 A A

with Sf(z) in Eq. (5.100) and S}, in Eq. (5.107). If the
fermion is colored, then we get N, copies of Eq. (5.115).

VI. VACUUM STABILITY IN THE
STANDARD MODEL

Now we have all the ingredients necessary to compute
the next-to-leading order decay rate in the Standard Model.
The relevant part of the Standard Model Lagrangian is

1 1
Lot = (D, HY(D,H) + A(HTHP = (w2 = L B2,
+ lQl)Q + itgPtr + il;RDbR - thHtR

~Yi1gH'Q = y,Q Hbg — y;bpH'Q 4+ (6.1)
where H is the Higgs doublet, H = io,H, W, are the
SU(2) gauge bosons, B,, is the hypercharge gauge boson, Q
is the third generation left-handed quark doublet, and 7,
and bp are the right-handed top and bottom quarks.
Contributions from other fermions are negligible and
gluons have no effect at next-to-leading order. We have
set the Higgs mass parameter m?> to zero; m”> # 0 correc-
tions will be discussed in Sec. VIL

From this Lagrangian we see that there are only five
parameters relevant to the NLO decay rate: 4, y,, y;, and the
SU(2) x U(1) couplings g and ¢'. All of these parameters
depend on scale. As explained in Sec. III B, for a consistent
power counting the tunneling calculation has to be done
near the scale y* where f;(u*) = 0. In the SM this scale is
u* ~10'7 GeV. The five parameters are determined at
much lower scales, u ~ 100 GeV (or u ~ m, for y,). In
determining the parameters matching conversions (also
known as threshold corrections) are made from a physical
scheme (like the pole-mass scheme where the W and Z
masses are measured). The ingredients for this matching step
are known at NNLO and depend on additional SM param-
eters, such as a,. After matching, one must run the couplings
up to i ~ 10'7 GeV. The RG equations for this running are
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known at three or four loops and involve additional
parameters like a; as well. To be clear, the goal of the
matching and running is to get A(u*), y,(u*), v, (1*), g(u*),
and ¢ (u*) in MS. Thus, it is perfectly consistent to match at
NNLO, run at three or four loops and compute the decay rate
at NLO—each step is a separate well-defined calculation.

A. NLO tunneling rate formula

To compute the NLO tunneling rate in the SM we need to
combine the formulas from Sec. V.

The bounce spontaneously breaks translation and scale
invariance as well as SU(2) x U(1), = U(1)gy. The zero
modes for translations and dilatations must be integrated
over with collective coordinates with appropriate Jacobian
factors. The three broken internal generators produce three
zero modes which must be integrated over the volume of

|

the broken gauge group. As we work to NLO only, we only
need the action quadratic in the fluctuations around the
bounce. For gauge bosons, this means the non-Abelian
interactions are irrelevant and each gauge boson can be
treated independently. Thus, each gauge group collective
coordinate produces a factor of J; in Eq. (5.15) as for a
U(1). In addition, since the U(1) representing electromag-
netism is unbroken, fluctutations of the photon are the same
around the false vacuum and the bounce and therefore
do not contribute to the rate. We can therefore compute
the gauge-boson fluctuations by integrating over W=+
and Z boson fluctuations and their associated Goldstone
bosons.

Resolving the integral over instanton size R through the
technique described in Sec. III B and using Eq. (3.46), the
NLO rate formula in the SM is therefore

r
7 e SMmV g0 JE(RI7)* (R ) \/

, [_xslaila, ;1;,,{ i
ﬂO*

This formula is valid for R™! = u = p*, with u, the scale
where f3;(u,) = 0. For other values of u, there are addi-
tional factors of f8; not shown, as in Eq. (3.47). The scale ji
is in Eq. (3.45).

The Jacobian factors for dilatations and translations are

in Egs. (3.29) and (3.30):
1 (6S[p]) "
R\ 5z '

With SU(2) generators normalized as 7; = § ¢, w1th o; the

Pauli matrices, the group theory volume factor is’

) Ur)* =

(6.3)

VSU 2)xU(1
O = V) = / dQgy () = 1672,
v

32
/dQSU(z)J3G = 1672 (—6S[¢b]> .
T

For the real Higgs scalar, the determinant with zero

(6.4)
Thus

(6.5)

modes removed is in Eq. (5.111). Setting R = ,14 gives
*SU(2) are matrices (¢, %) with |a|> + [p|> = 1. Thus the
volume is related to that of the 4- sphere, 2z%. With the

normalization 7; = ;61 one has to go twice as far around
in each direction [exp(4zxir;) = 1] as expected, so the volume
is 167°.

Al—loop (ﬁ) -

det®, |detO,; det Oy [detO;, [det Oz
det’(’)h det/ OZG det’ OWG det @;[ det @l_ab
d . 6.2
S ©2)

det®, 25 /5 35
L = Pexp | =26l (=1)]. (6.6
deto, 288 V6P {25 R )] (6.6)

For gauge bosons, we note that the W and Z bosons couple
to ¢, with strengths gy =2"% =g and g, =274 =
¢ + (¢')?, respectively. Including the conventional
factor of % normalizing Abelian versus non-Abelian gen-
erators, the gauge bosons and Goldstone fluctuations give
the result summarized in Eq. (5.114)
detOy; o 3 g g> 1 4G g5
det Oy P70\ Tpy ) T oY\ Ty

AG 9% 1
- Sloops <_ m) - ESﬁn:| ’ (67)
det ©WG N g%v AG gW
detOpg eXp[ 3Sﬁ“( 122) ~ S\ Ty
I
2506 (- m) - sgn] | (638)

The top quark contributes as in Eq. (5.115) with a factor of
N =3 for color

detM; N
e//\/\l”:exp[ CSQ”(V”) Ncslo(,m(y’)]. (6.9)
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The bottom quark contribution is identical with y, — y, and we omit y,, for simplicity in the next set of formulas.
The UV divergences from the product of these functional determinants in 4 — 2e dimensions is

itz =} (2- 2 2 NN s o)
— exp E (2 - 39241' g7 3 23922/192/2 9t Ngf - A;ff) + (9(80)] . (6.10)
These are exactly canceled by the renormalized tree-level action on the bounce
_S[gy] = 8z° F <2 3¢ +g% 3¢+ 29292/2 +g* Ney? Nc)zz‘,‘ﬂ (6.11)
32 € 4 322 34 64
In the SM, the one-loop f function for 1 is
B = dfjﬂ = # (24,12 + % g+ % gt + 3 79% —99°A — 3g%2 + 4N -y? ) — 2Ncy;*> ) (6.12)

This one-loop f function is of course linearly related to the % poles in Eq. (6.11). The derivative of f,, required for

Eq. (6.2) is
ap° 1 195 119 37
0/ — A — 1115243 — 648742 — 216¢212 + 19264 + 906221 — 14¢* ) — — ¢ — — ¢*¢* + — > ¢*
F R (167[2)2{ g g A7 + 19264 + 90g°¢ g g g 99ty
73/6 2 4 6 942 2.72.,2 2.4 22342 52/24
+g9 + Ne(164yf = 8y7) + N¢ 29V +3¢°g*y7 + 36¢%y; — 90g° Ay; +§g/ i+ 9%
106 12 11,2 2.2 2.4 6 4 2.2
— 5 g=Ay; — 64gsyid + 64g5y; — 36y — 604y; + 28817 y7 | |. (6.13)

Note that although /) is formally two-loop order, it depends
only on one-loop f-function coefficients. Thus in the
consistent NLO calculation all that is needed is one-loop
results.

B. Absolute stability

Absolute stability means that I' = 0 and our electroweak
vacuum will never decay. A naive criterion for I' # 0 is that
A* < 0. That is
Pi(u*) = Ap*) =0

(naive absolute stability).

(6.14)

This criterion has been used in many treatments to establish
the stability boundaries of phase space. For example, in
[18,83], this boundary is fixed by A(u) = B, (u") =0
(their 4 is our u*). We call this criterion “naive” because it
is not systematically improvable: it only depends on the
running 4. For example, if A* is positive but very small, the

rate can still be nonzero due to loop corrections but the
naive criterion would miss this possibility.4

To compute the absolute-stability phase space
boundary, a gauge-invariant systematically improvable
procedure was developed in [17,38]. The starting point
is that absolute stability is equivalent to the electroweak
vacuum being the absolute minimum of the effective
potential. Although the exact value of the potential at a
minimum is known to be gauge invariant [21,22], some
care has to be exercised in extracting this minimum value in
perturbation theory. Because the effective potential having
a minimum requires tree-level and one-loop effects to be
comparable, the standard loop power counting cannot be
used to establish stability (it violates gauge invariance). A
self-consistent gauge-invariant procedure for establishing

“The way we compute I"in this paper is to expand around the
bounce solution which requires A* < 0. If A* >0 and the
electroweak vacuum is still unstable, one would have to modify
the procedure to compute the rate (see [84]).
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absolute stability was developed in [38]. Briefly, one starts
with the leading-order effective potential

1
VLO(h) = —an* + n*
(h) 4 * 204872

n(g* + ¢°)
42

g

442

% _59/4+6<g/2 +92)2ln

—10g%¢> — 15¢* + 12¢* In

yih?

2% |

+ 144y} — 96y} In (6.15)
The first term of this potential is tree level and the rest
comprises all of the one-loop corrections consistent with the
power counting established in [17,38]. The point of the
power counting is that since the one-loop contribution must
overwhelm the tree-level contribution to turn the potential
over, A must be the size of the one-loop corrections.
Remarkably, one must impose this power counting consis-
tently for gauge invariance to hold order-by-order in
perturbation theory. The minimum of VO is where the
couplings satisfy

4
4 14 2.2 2 12\2
gt +39* +29°9* +3(¢° +9°) In5—
[ 7>+

(6.16)

ﬂ pu—
2567°
4 2
+ 6g*In— — 16Ny} <1n—2 + 1” )
g Vi

We denote by py the MS renormalization-group scale
where this equation holds. The NLO effective potential
with this consistent power counting is then computed by
combining one-loop, two-loop, and an infinite set of higher-
loop daisy diagrams. Since the stability bound with this
procedure is gauge invariant (as checked explicitly in scalar
QED in [38]), we can choose any gauge. Landau gauge
(¢ = 0) is particularly convenient as all the daisy diagrams
vanish. The NLO effective potential in Landau gauge is
extracted from [14,15]. We present it in Appendix C for
completeness.

One cannot be certain that our Universe is absolutely
stable, as quantum gravity or new physics coming in at an
arbitrary high scale can open up new tunneling directions
that can destabilize the Universe [16,19,50,62,85-87]. So
there is no sensible way of estimating a lower bound on the
lifetime of our vacuum including new physics. The best one
can do is to put an upper bound on the lifetime, and the only
question we can reasonably ask about new physics is at
what scale, Ayp, it could come in to stabalize our vacuum?
That is, how strong would it have to be to raise the upper
bound on the lifetime to make it absolutely stable? To
determine this scale, we add to the effective potential a
gauge-invariant operator

1

AVeff — 5 I’lé.

(6.17)
Akp

This operator contributes to V© and modifies the equation

for uy, Eq. (6.16). Then we ask for given SM couplings,
what value of Ayp will lift the minimum of V4 to zero. The
curves for this condition in the SM are shown in Fig. 3.

C. Numerical results

. . . 1
For numerical calculations, we take as inputs G, m%(,) °,

pole b mP®, mP®, and a,(m;). These inputs are
converted to MS at a scale yy = m’™ using threshold
corrections known to two loops in all SM couplings
[14,15,83], including mixed strong/electroweak contribu-
tions, and partially to three and four loops in a,. The
couplings are then run to high energy using the three-loop
renormalization group equations with four-loop running
included for a; [88-90]. All of these threshold and running
calculations are conveniently performed using the MR
package of Kniehl, Pikelner, and Veretin [91].

The numerical values are taken from the 2017 Particle
Data Group [92]. We take as inputs

mhY = 80.385 GeV,
(6.18)

Gr=1.115x107 GeV~2;
m'* =91.1876 GeV,  mP*° = 4.93 GeV.

The uncertainty on these have a negligible effect on the rate
so we set their uncertainties to zero. We also take current
world averages [92]5

mP = 173.1 £ 0.6 GeV,
mP* =125.09 + 0.24 GeV

a,(myz) = 0.1181 4 0.0011. (6.19)

These uncertainties will be propagated through to the final
results.
With these values, we find that A has a minimum at

i, =3.11 x 107 GeV. (6.20)

At this scale, there is an instability (4 < 0) and

Au,) = —0.0138,
g(p,) = 0.515,

yi(u,) = 0.402,

g () =0460,  gz(u.)=0.691.

(6.21)

>The most precise top quark mass measurements are
currently done by matching experimental measurements to
Monte Carlo (MC) simulators, and hence it is mMC that is being

measured, not m’™®. The uncertainty in translating from mMC to a
well-defined short-distance mass scheme has been studied, and
early estimates were of order 1 GeV [93], although it may be
much smaller, perhaps below 100 MeV [94,95]. For this analysis

we will only use the standard PDG values for our central value

and uncertainty, and do not include the mM® vs m!" uncertainty.

See also [96-98].
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Note that the gauge couplings are quite large at this scale.
And, as needed for Eq. (6.2),

The action on the bounce is

872

By, =550%x 1075,  j=0.76p,. Sl = - 35, 100 (6:23)
’11-1001)(/2) = 0.999934,. (6.22) The terms in Eq. (6.2) evaluate to
|
det O, [detO,q det® detO; [detO;,
S0 V) Jb (RI7)(Ry) S |26 TEWG [T (S b (6.24)
“‘g;’ det’(’)h det OZG det’ OWG det Oy \/ det Oy,
107 10% 10 107 - 17 1019 —— ——
10 10 102 0.995
and
4 7, Wf‘ T [ A 42,
H* " b 0x [¢ ] _— = 1 —_ *7 . (625)
~~~ S[¢b]ﬂ0* b )“1 -loop (/’l) S[(ﬁb]zﬁ&*
1070 Gev*
1.09 0.653
Multiplying everything together, we find the decay rate per unit volume is
r 10727 1073 10186 10761 1072
—:10_683GeV4x< ) x( ) ><< ) x( ) x< )
\% 10162 . 1035 - 10127 o 10102 e 102 NNLO
= 10708350 GeV4. (6.26)

The first three uncertainties are from variation of m,, m;,, and
ay, respectively, according to Eq. (6.19). The fourth un-
certainty is theory uncertainty from varying the threshold
EmP* with 3 < &< 2 used in con-
verting observables to MS and as the starting point for RGE
evolution. The final uncertainty marked NNLO represents
the unknown two-loop contributions to the functional
determinant around the bounce. We estimate this error by
scale variation around p* by a factor of % or 2. Noting that the
NLO ¢ functional determinant contributes in the exponent at
around 3% of the tree-level bounce action, our NNLO
estimate of 7% compared to NLO seems reasonable.

The variations in the first line of Eq. (6.26) are not
independent and the dependence of I" on the masses and
scales is highly nonlinear. Nevertheless, since we can
compute the effect on I' for any combination of their
variations, we can determine their total correlated effect on
the rate. To do this, we maximize or minimize the rate over
the x> =1 hypersurface We find that at 68% confidence
1071290 < i < 107481, ® The range of decay rates

allowed at 95% confidence is e 2320 < ﬁ < 10739,

matching scale pg, =

®For reference, this lower bound at 1078! is for

m = 1735 GeV, mP®® =125.06 GeV, a,(my) = 0.1175
and e = 1.3mP. As evidence of the correlations and non-
linearities, we also note that combining the 1o errors in quad-
rature gives 1071026 < < 10749,

VGe v4

Thus, the lifetime of the Standard Model universe is

I\ -4
TsM = (—) = 10" years.

- (6.27)

sm 291
< 101 To

to 68% confidence, 10%¢ <

TsM. 10549
years

That is,
95% confidence 1078 <

To be more clear about what the lifetime means, we can
ask a related question: what is the probability that we
would have seen a bubble of a decaying universe by
now? Using the space-time volume of our past lightcone
(151, (VT )jightcone = 0,;45 =3.4x10'% GeV™ and the

Hubble constant H, = 67.4 glg,l“r‘m =1.44 x 107* GeV,

the probability that we should have seen a bubble by now is

r §
=7 (VT) 1075150, (6.28)

light-cone —

Since the bubbles expand at the speed of light, chances are if
we saw such a bubble we would have been destroyed by it;
thus it is reassuring to find the probability of this happening
to be exponentially small.

The phase diagrams in the m,/m;, and m,/a, planes are
shown in Fig. 2. In these diagrams, the boundary between
metastability and instability is fixed by P = 1, where P is
the probability that a bubble of true vacuum should
have formed without our past lightcone, as in Eq. (6.28).
The boundary between metastability and instability is
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. . 1
diagram in the m?>°

la(mz) plane, with uncertainty on the boundaries given by combinations of uncertainty on m),

Pole and theory. The

dotted line on the right plots is the naive absolute stability prediction using Eq. (6.14).

determined by the gauge-invariant consistent procedure
detailed in Sec. VIB (and in [17,38]). Although the
absolute stability boundary is close to the condition 1* =
0 in Eq. (6.14), it is systematically higher and a better fit to
the curve for 1* = —0.0013.

Varying one parameter holding the others fixed, we find
that the ranges of m?, m?"®, or a, for the SM to be in the

metastability window are

pole

my
171.18 177.68,
= GeV =

pole

m
129.01 h
- GeV

> 111.66,  0.1230 > a,(my) > 0.1077.

(6.29)

Numbers on the left in these ranges are for absolute stability
and on the right for metastability.
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To be absolutely stable, the bounds on the parameters are

pole Pole/GeV — 125.09
L 17118 +0.12( :
Gev © + 0.24

ay(mz) —0.1181 +0.17
0.0011 + (th) g5,

pole pole
m’ m¢/GeV — 173.1
129.01 + 1.2
GeV * ( 0.6

as(mZ) —0.1181 +0.34
+0.89 ( 0.0011 + (th)-onz’

+0.43 (

Pole/Gev — 173.1
a,(my) > 0.1230 + 0.0016 <m’ © >

0.6
pole
mh*¢/GeV — 125.09
+0.0003< h 034 >+(th)tg_~gg?g.
(6.30)

Absolute stability is currently excluded at 2.48¢, which
translates to a one-sided confidence of 99.3%. To exclude
absolute stability to the one-sided confidence for 3o, the
top quark mass uncertainty must be reduced below
250 MeV. Similarly for a, for a 3¢ uncertainty must be
less than Aa, < 0.00025.

The dashed lines Fig. 3 indicate the scale at which new
physics operators at the scale Ayp can stabilize the SM,
added as in Eq. (6.17). Recall that because tunneling is a
nonperturbative phenomenon, higher-dimension operators
do not decouple: new physics at an arbitrarily high scale

can destabilize the SM my opening up new tunneling
directions [19,50,62,85-87]. To stabalize the SM, they
have to be strong enough to lift the potential from negative
to positive. In Fig. 3 we see that the density of Ayxp curves
increases near the absolute stability line. This happens
because the absolute stability region is necessarily insen-
sitive to the addition of a positive operator.

VII. MASS CORRECTIONS

One remaining technical detail is how to handle the fact
that the Higgs potential in the Standard Model is not exactly
scale invariant, since there is a finite mass term for the Higgs
field. We saw in Sec. III that with a scale-invariant classical
potential, quantum corrections naturally pick out the scale
u* where A(u) is minimal so that the action is dominated
by bounces of a size R* = ”L One hopes that because the

Higgs mass parameter m ~ 10> GeV is much smaller than
u* ~ 10! GeV, the corrections to the decay rate from the
mass term will be completely negligible. Although normally
classical effects, like the Higgs mass term, dominate over
quantum effects, in this case the quantum scale violation can
be dominant since it scales as an inverse power of 7 [see
Eq. (3.35)]. Despite this convincing logic, producing a
quantitative estimate of the effect on the decay rate of a
finite mass term is surprisingly challenging.

A. A bound on the m? correction

Consider the potential V(¢) =1m?¢? +11¢* with 1 < 0
and m > 0. Trying to solve the Euclidean equations of
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motion for this potential, ¢ + 3¢’ — m*¢ — 1¢* = 0, one
quickly discovers that the only solution is ¢ = 0. There are
many ways to see this [57,59,60,62] such as with Derrick’s
theorem [99]. An intuitive way is to use Coleman’s trick of
thinking of the solution the Euclidean equations of motion
as a ball rolling with friction down a hill shaped like —V(¢)
starting at ¢(0) and ending at ¢) = 0 at “time” r = oo. For
m = 0, the potential is scale invariant, so no matter where
the ball starts it will get to ¢ = 0 only asymptotically at
infinite time; different starting points correspond to differ-
ent R for the bounce solutions in Eq. (3.1). Now, when we
add § m?¢? to the potential, it creates a depression in —V (¢)
near ¢ = 0. Since for any R the bounces just barely got to
¢ = 0 at infinite time, adding even an infinitesimal depres-
sion prevents solutions to the equations of motion from ever
reaching ¢ = 0. Thus there are no bounces when m? > 0.

Assuming m is small compared to x*, one might think
we can write ¢ = ¢, + m*A¢ +--- and evaluate the
corrections to the action perturbatively. Trying this, one
immediately finds

AS = /d4x%m2¢b(x)2 = oo. (7.1)

This behavior is due to the non-normalizabilty of ¢;. Thus
['~e™S =0 confirming that even an infinitesimal m?
seems to prevent vacuum decay.

To understand this unintuitive result, let us consider the
alternative, more physical, treatment of tunneling described
in [49,50]. There, a formula for the tunneling rate was
derived inspired by the understanding of tunneling in
nonrelativistic quantum mechanics. In quantum field
theory, the exponential factor determining the decay rate
along a path parametrized by ¢ (X, 7) is the integral

T, =4 /_ " deUlp(c)] = / ds\/206(5)]  (7.2)

(o]

where the energy functional is [75,100,101]

vpe) = [ ey oar v 03)
In Eq. (7.2) 7 is the Euclidean time and s is the proper time,
determined by (%)? =2U|¢$]. Using s gives a formula
exactly like the Wentzel-Kramers-Brillouin (WKB) expo-
nent formula [ dx,/2V(x) in quantum mechanics, but now
with a contribution from gradient energy.

With this formulation let us now revisit the perturbative
solution. If we try to calculate Iy, along the m = 0 bounce

path ¢, (r = VX*> + %), we find

272 R%2 5 472 R?

Vo) =~ a7 e U4

)

The integral over the first term gives S[¢,] = —% as for
m = 0. The second term, however, shifts U(z) along this
path up by a finite positive amount at each 7z, and the
resulting integral over 7 is infinite.

One fault of using the path through the ¢, bounces in a
non-scale-invariant potential is that conservation of energy
is violated. Since bubbles are produced at rest, we can see
this through U[¢(z = 0)] # U[¢p(r = o0)]. If the Euclidean
equations of motion are satisfied, energy is conserved and
this cannot happen.

Let us consider instead a path through field space of the
form

2+ ¥
b = doexp [— I—;] . (7.5)
These Gaussian bubbles were previously introduced and
discussed in [50]. Their energy is

32732 R

2
Ulgo(a)] = =g Re W + iR "w

732 2

—|——\/_g m*R3e 21@4)3. (7.6)
Setting Ulgps(r = 0)] = Ulppg(r = )] gives
1 3+ m’R?
— o5y 2T .
ho =2 [P (1.9

With this value for ¢, the partial width for decaying to
Gaussian bubbles is

Inly = —/_oo dtU[pg(7)] = M@ + m2R?)2.

© 22
(7.8)

This is finite. Moreover, it has a nonzero maximum at
R = 0. We conclude that the exponent is bounded from
above. In other words,

872 87227(V2 -1 812
87 _r < STWV2-1) o 82

3, =31 16 3 (7.9)

The lower bound comes from m = 0 and the upper bound
comes from the Gaussian bubbles as R — 0. We conclude
that the rate is finite.

B. Constrained instantons

Now that we know the rate is finite, what is it? The
Gaussian bubbles are in fact far from producing the optimal
path through field space, as we will see. What we would
like to do is directly minimize [drU[¢(z)] over field
configurations with ¢(0) = 0. Luckily, we do not have to
find the absolute minimum; if we find any path which gives
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a finite rate close enough to the m = 0 case that we can
neglect it for the Standard Model, we can conclude that
ignoring m when m << p* is justified.

One way to find a finite-action path through field space is
through the constrained instanton approach [57,60]. In
brief, the idea is that instead of minimizing the action
absolutely, we find the minimum along some surface. For
example, we can look along the surface where | d*x¢" =k
for some k and some n. This constraint can be imposed
through a Lagrange multiplier by writing the action as

Saz/d4x B(ﬁﬂqﬁ)z—l—%m%ﬁz—i—%ﬁd)“—i—aqﬁ" -k
(7.10)

Taking n = 2 or n = 4 does not produce anything helpful
since the new term is just like one of the old ones. Taking
n > 5 is also unhelpful, since for a normalizable solution
we need ¢ — 0 at large distance, but then the ¢" term is
subdominant to the A¢* term which produced the non-
normalizable mode in the first place. Thus n = 3 is our only
hope. (See [59] for a thorough discussion of constraints on
the constraints.)

For n = 3, the procedure for producing a normalizable
well-behaved constrained solution that reduces to ¢, at
m = 0 is discussed in [59,58]. The solution and Langrange

multiplier can be expanded perturbatively in m?:

¢:¢b+¢2+-..7 6:0'24—“-, (711)
It is helpful to write ¢, = ¢, + ¢, With
_ mPR[9R?2 =314+ (R2—10R* 2+ *) In(1 4 47)
¢2,u B \/—_2/1r2 R2 + 72
RE—r* r?
+6R2r2WL12 <_F):| (7.12)

satisfying ¢ , + 3¢ , — m*¢% — 31¢3¢p>, = 0 and

1
¢2,b = —10'2 = const. (713)

So that Clp — m?¢p — Agp> — 36¢p> = O(m*).

To determine the constant in Eq. (7.13) and the O(m?)
value of the Lagrange multiplier, we note that the pertur-
bative solution is not normalizable. This non-normaliz-
ability is easy to understand: a solution perturbative in m
can never describe the asymptotic behavior for r > %, no
matter how small m is. Indeed, a normalizable solution
should have ¢ — 0 as r — oo and therefore match on to
¢ (r) = Ko-= Ky (mr) which solves (00 + m?)¢p = 0. At
large r, gy (r) ~ KO\/%?W e™™ which is exponentially
suppressed and gets contribution from all orders in m. We

8 m?
—1R

to ¢, (r) atlarge r. This fixes the value for ¢, ;, in Eq. (7.13)

to be
2 R
hoy =\ R <lnm7+ Ve + 1). (7.14)

This is the unique solution allowing ¢, at large r to match
the m? terms of ¢g(r). The Lagrange multiplier in
Eq. (7.13) is then 6 = —A¢h,;, + O(m*) so that ¢ satisfies
the (constrained) equations of motion to order m?. Higher
order terms can be systematically computed guaranteeing
exponential suppression at large r [58,59].

Given these results, we now need to check that the
decay rate along the constrained-instanton path is finite. If
we work strictly to order m> we find the action gets
corrected by

choose K = so that to order m°, ¢ (r) matches on

2
AS=" / d'xp} + / d'x[(0,40) (D 2) + Adpigpa] = o0
(7.15)

This is not surprising as ¢, + ¢, is not normalizble. The
key to getting a finite action is to be careful with the
boundary term. Without integrating by parts we can write

sigl = [ 4|5 0,07

- / [ L (0,0) — ¢(D¢ m*¢ — A’ = 3o¢?)

Voo 1,
= - A
tom ) +4/1¢ (7.16)

4 3
The equations of motion on the constraint surface imply
O¢p — m*¢p — Ap® — 36¢*> = 0 so we drop this term. We
also drop the total derivative term using that the exact ¢
vanishes exponentially at infinity (although not at any fixed
order in m?). The remainder can then be evaluated
perturbatively:

)= [ {—%w;} + [ s [—Aqﬁgqﬁz—%aqﬁz} (7.18)

8 3
= [1_

2R2
2R2 (1" 2e+1)]. (7.19
3 2" (n g et (7.19)

Form = mpole in Eq. (6.19) and R = R* ~ - in Eq. (6.20),

872

1.02 x 10728
3A[—i—OxO]

Slg] = (7.20)
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This justifies neglecting the mass for the Standard Model
lifetime, as we have done through the rest of this paper.

C. Comments on constrained instantons

Before concluding, we add some comments on the
constrained instanton approach.

First, we made no claim that the constrained instanton
produces the exact decay rate, as there may be lower-action
configurations satisfying different constraints. For situa-
tions where m /<<% it may be important to look for other
solutions and Eq. (7.19) cannot be used in such contexts.

Second, we never try to integrate over the value for the
constraint k. Normally one sets k at the outset and solves for
the Lagrange multiplier ¢ as a function of k. Here we have
found o by requiring the solution have finite action; k is
then fixed by o. Although at order m?, k = o0, k should be
finite when the full solution is used, since in the full
solution ¢ dies off exponentially at large distance. In any
case, we do not need k to compute the tunneling rate, as we
have seen.

Third, although the constrained instanton approach is
useful to understand m > 0, it does not help resolve the
divergent integral over instanton size R for m = 0. Since
the true minimum of the action is known when m = 0, the
divergence must be resolved from higher-order perturbative
effects, as we explained in Sec. III B. There has been some
confusion about this point in the literature [11].

Fourth, we note that there is an apparent contradiction
that the Euler-Lagrange equations have no solution with
m? > 0, but we have proven there is a finite, nonzero
minimum to the action. The resolution is that Euler-
Lagrange equations are derived dropping a boundary term,
but the behavior of the solutions at infinity are critical to
finding a correct minimum. As we have seen, to any finite
order in m?, the boundary terms cannot be dropped, so one
would never come upon a perturbative solution like ours
using the Euler-Lagrange equations alone. The importance
of the boundary behavior is emphasized and discussed at
length in [57-59] as a motivation for the constrained
instanton approach.

Finally, we have done the whole analysis here, following
[58,59] for the case m? > 0. The case with m? < 0 is also
interesting. For m? < 0, the energy function U[¢,(7)] gets
shifted down and, for mR > 1, the tunneling rate is in fact
infinite: there is no barrier to tunneling (as in quantum
mechanics with a potential like V = —x?). This result is
also wrong. The argument is flawed, since U[¢p,(0)] # O
just like for the m?> > 0 case, so the proposed tunneling
path violates energy conservation and is not allowed.
Tunneling should speed up, for m? < 0, but only by an
amount suppressed by factors of m?R?. By analytic
continuation we can still use Eq. (7.19); for m?> < 0 S[¢]
now has a small imaginary part, but this produces a tiny
effect on the final result, since I' ~ Im(ie~51%)).

VIII. CONCLUSIONS

In this paper we have produced the first complete
calculation of the lifetime of the Standard Model.
Previous treatments were incomplete in a number of ways.
First, there was a long-standing problem of how to perform
instanton calculations when scale-invariance is spontane-
ously broken. The problem is that in a classically scale
invariant theory, the integral over instanton size R is
divergent at next-to-leading order. We showed that in fact
there are contributions which seem higher order in 7 but
which in fact dominate over the NLO contribution after the
integral over R is performed. Including all the relevant
terms, to all-loop order, we are able to integrate over
instanton size exactly giving a finite result.

The second problem we resolved is also related to
instanton size. Since fluctuations associated with changing
the size R are unsuppressed, one has to allow for large
deviations in field space. Changing to collective coordi-
nates allows the integral over all R to be done; however, it
generates an infinite Jacobian. We showed that this infinite
Jacobian is in fact compensated by an infinity in the
functional determinant previously missed. To handle the
infinity and the zero, we employ a judicious operator
rescaling inspired by a conformal mapping to the 4-sphere.
We find the spectrum of the rescaled operators exactly and
give an analytic formula for the Jacobian (now finite) as
well as the functional determinant with zero modes
removed (also finite now).

The third problem we resolved has to do with fluctua-
tions of vector bosons around the instanton background.
When a global internal symmetry is spontaneously broken
there are additional zero modes. In previous treatments the
Jacobian for going to collective coordinates for these
symmetries was found to be infinite. We show that this
infinity was an artifact of working in R; gauge where the
symmetry is actually explicitly broken by the gauge fixing.
Instead we work in Fermi gauges, and using the same
technique as for the dilatation zero mode, show that the
Jacobian for internal symmetries is finite.

The next new result in our paper is a complete analytic
computation of the functional determinant around the
instanton background for real and complex scalar fields,
vector bosons, and fermions. Moreover, we showed that the
final result is gauge invariant (of the parameter £ in Fermi
gauges and between Fermi and R, gauges). For the scalars,
the insight which allowed for these exact results was to use
the exact spectrum known from the operator rescaling and
mapping to the 4-sphere [63—-65]. For the vector bosons, we
exploited a remarkable simplification of the fluctuation
equations discovered in [39,40]. These authors found that
the equations that couple the scalar and longitudinally
polarized gauge bosons with the Goldstone bosons can be
written in terms of a set of simplified equations using
auxiliary fields. Although the treatment in [39,40] assumed
a mass term for the scalar, so that their results do not exactly

056006-34



SCALE-INVARIANT INSTANTONS AND THE COMPLETE ...

PHYS. REV. D 97, 056006 (2018)

apply to the case of the Standard Model, our treatment very
closely parallels theirs.

Combining all our results together we produced a
complete prediction for the lifetime of our metastable
vacuum in the Standard Model. We find the lifetime to be

+102
Tom = 1013%%51 years.

(8.1)
The enormous uncertainty in this number is roughly equal
parts uncertainty on the top quark mass, uncertainty on the
value of the strong-coupling constant «,, and theory
uncertainty from threshold corrections, that is, from match-
ing between observable pole masses and MS parameters at
the electroweak scale. The uncertainty to the decay rate
from error on the Higgs boson mass is small, and,
thankfully, so is the uncertainty associated with the
unknown NNLO corrections.

Phase diagrams in the m,/m;, plane and the m,/a, plane
are shown in Fig. 2. This figure indicates that the SM seems
to sit in a peculiarly narrow swath of metastability in the
phase space of top quark mass, Higgs boson mass, and
strong-coupling constant. An important fact to keep in
mind when interpreting this tuning is that the phase
diagram assumes no gravity and no physics beyond the
SM. In fact, any arbitrarily high-scale physics can desta-
bilize the SM by opening up new tunneling directions
[19,50,62,85-87]. Moreover, near the absolute stability
boundary, operators at an arbitrarily high scale can also
stabilize the SM, as can be seen from Fig. 3. For the SM,
which appears not to be on the stability boundary, the
relevant scale of new physics is around 103 GeV.

Because of the importance of the top quark mass, the
Higgs boson mass and « in determining stability, it is
interesting to look at their allowed ranges. We find that,
varying each parameter separately, the bounds for the SM
to lie in the metastability window are

pole pole

my mj,
171.1 177. 129.01
8<GeV< 68, 9.0 > Gev

0.1230 > a,(my) > 0.1077.

>111.66,
(8.2)

If we hope to rule out absolute stability to 3o confidence,

. . I
assuming nothing else changes, we would need Am}°° <

250 MeV or Aa,(my) < 0.00025.

Finally, we note that the predicted lifetime of
10" years, while enormously long, has an exponent of
roughly the same order of magnitude as the current lifetime
of the Universe, 10° years. Indeed, the long lifetime of the
SM is due to the fact that the Higgs quartic coupling has a
minimum value of A, = —0.0138. If the minimum of the
coupling were smaller, say 4, = —0.1, then the SM lifetime
which scales like exp(®2) would be only 1072 sec.
Furthermore, since the lifetime is finite and the Universe
infinite, there is likely a bubble of true vacuum already out

there, far away. It is sobering to envision this bubble, with
its wall of negative energy, barreling towards us at the speed
of light. It seems the long-term future of our Universe is not
going to be slow freezing due to cosmic acceleration but an
abrupt collision with one of these bubble walls.
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APPENDIX A: REMOVING ZERO MODES
WITHOUT RESCALING

In this appendix, we explore what goes wrong when we
try to calculate the determinant for fluctuations around the
bounce without rescaling the operators as in Sec. III. Recall
from the discussion in that section that without the operator
rescaling the Jacobian for going to collective coordinates
for scale transformations is infinite [Eq. (3.7)]. Since the
full functional determinant should be independent of the
operator rescaling, this infinity must be compensated by
something else. However previous investigations found a
finite value for det’. So something seems inconsistent.

To connect to previous work, let us perform the angular-
momentum decomposition as in Sec. IV C. This lets us
write the functional determinant as

det[O] T e = (52|12
\/det’[—D+V”[¢b]]_ [RO(RI) HsZZ[Rs}( ) ] (Al)
where

- det[A; — 34¢97]
S det[A] (A2)
with A in Eq. (4.22). For s = 0 there is one mode, the
dilatation mode, which has zero eigenvalue, so R, = 0.
For s =1 there are four zero modes corresponding to
translations. For s > 2 all the eigenvalues are positive.
Removing the zero modes from the numerator, Ref. [11]
found Ry ~ —1 and R} ~0.041.

First, we look at s > 2. Here there are no zero modes, so
there are no issues with rescaling the operators for these
values of s. That is,

} det [3A¢p3] - det [7 /11052 Ay —1]
— b
Ror =—4g [31¢2] - det[-L; A]
b 37

with R, in Eq. (4.32).
For s =0 and s = 1 there are zero modes. Since zero
modes are still zero modes if the operator is rescaled, we
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know the explicit form of these modes. They are in
Eq. 4.25) withn=1and s=0o0rs =1

RZ— 2 R%r
Sy — T (A4
¢10 (R2 + r2)2 ¢11 2<R2 I }’2)2 ( )
It is easy to check that (Ag—31¢7)p0=0 and

(A =34¢)3)¢p1; =0. Because of the zero modes, we need
to compute

B/ det' [A,—3A¢7] . 1det [A; -3¢} + €]

S det]p] es0e det[A]

(AS)

Note that the zero modes become modes with eigenvalue ¢
of the shifted operators, so the shifted determinant will be
proportional to € as desired.

For s =1, the zero modes are translations and the
Jacobian is finite [Eq. (2.15)]. Thus we expect I~€’1 to be
finite too. To compute R} we can first try the Gelfand-
Yaglom method as in Sec. IV D. The Gelfand-Yaglom
method requires us to find a solution to

(A, = 347 + €. =0 (A6)
that scales like the free solution, (}51 =r near r =0 and
r = oo. Unfortunately, this does not work. At finite €, ¢, is
oscillatory at large r while the free-theory solution 4?51 =ris
not. Thus the two cannot approach each other and the
Gelfand- Yaglom method does not seem to give a sensible
answer.

To understand the failure of the Gelfand-Yaglom method
we note that adding the € term as in Eq. (A5) is equivalent
to adding a mass term e¢? to the potential. One would
think that a small mass would be a small change in the
theory, but it actually has a dramatic effect: it removes all
bounce solutions to the equations of motion. Thus the limit
€ — 0 is not smooth. One can deal with small masses using
the constrained instanton approach described in Sec. VII;
however, there is a simpler way to compute R’l.

Since R) is supposed to be finite, we can rescale the
operator as for s > 2:

1det 34g7] - det [gi Ay = 1 +

det [3A¢7] - det [> A]

i)
R} = lim ! S
e=0 €

(A7)
3297

‘We can now evaluate these determinants in the basisof s = 1
modes, ¢,; given in Eq. (4.25). These functions satisfy

(n+1)(n+2)

ﬂ/ pu—
1¢n1 n¢n17 n 6

as in Eq. (3.23) and are normalized as

/drFS[(_3/1>¢%;¢nl¢ml] :anénma
B 12(n—1)!
N =Gy A
Then
1 €
det |:3ﬂ¢2 1= 1+ m}
n>1/drr 3/1452)45;11 L’/W’Z 11— 3/1¢J P
(A10)
€R?
—E{an(zn—lw—wn“)} (A11)

In this derivation we have used a property of Legendre
polynomials, that

RZ

m 5nm (A12)

[ arr bt =

As ¢ — 0 the first term in Eq. (Al1) always dominants
unless 4, = 1. Thus the n =1 mode contributes % to

the product and we can set € = O for the other modes. We
then find

R =R, /drr3 = ﬂR’ (A13)

This factor of ﬁ = 0.041 matches the result from numerical
calculations in [11].

Now we try the same approach for the s = 0 modes. In
this case, the relevant mode is ¢;( in Eq. (A8), correspond-
ing to dilatations. Attempting the same calculation as for
s =1 we find

Ry = Rg)/drr%b%o = o0 Rj. (A14)

Thus we conclude that the ratio of determinants in Eq. (A1)
is zero, even after the zero mode is removed. This result,
while in disagreement with finite numerical extractions in
[11,19], is expected from our treatment using rescaled
operators in Sec. IIL.

In conclusion, we find the infinite Jacobian for dilatations
found in previous work to be compensated by an infinity of
the determinant after zero modes are removed. We therefore
find no inconsistency in the functional determinant calcu-
lated with or without rescaling the operators.
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APPENDIX B: DIVERGENT GRAPHS IN FERMI GAUGE

In Fermi gauge, the Lagrangian is given in Eq. (5.29). We treat all the mass terms as interactions. The Feynman rules are

- ~ NP -
>;—q— = =3 (q), >;—q— S A ACILI >‘;;‘ = igou(q)(¢" —p")  (BI)

Here, the dashed lines are background fields, sold lines are Goldstones, and wavy lines are photons. The Fourier transform
of the bounce-squared is given in Eq. (4.12). The Fourier transform of the bounce is

7[2 2
i) = 5 ke gm) (82

At second order in the interactions, there are thee divergent loops. One with just Goldstones

L 1, dq ~ ~ dk 1 1
o= (= apodon [ Gpgag @

15 11
2 naRY2 B4
e 118 T 6/E T MK (B4)

one with just photons
d dlq ~ ~ k11
S = oo ___:__22/ 2 2(_ / il B5
M QH 109 e 0909 [ oy ™

4
A2 7 2 2
S e R O 7. B6
,12{3g+9+375+3n” a (B6)

and one with Goldstone-photon mixing:
_ I P e d'k (" — k") (=q" + ")
— Sag = q—= Qq% - 5(19) /W¢b(Q>¢b(_Q)/ (27T)d L2 (k+q)2 (B7)

This graph is quadratically divergent. We can write it as the sum of scaleless integrals and a logarithmically divergent
integral by noting that the numerator is —(q — k)?> = (g + k) — 2k*> — 2¢>. Then we evaluate the logarithmically divergent
integral using Eq. (4.15) and

J* - - 327
/ ﬁquﬁh(éﬁd)b(_@ = ——37; ’ (B8)
& L 2 167? R
/(27;)]4 bp(0)py (=) 1n/% B Tj b+ 1are+ 121n7ﬂ ’ (59)

to find
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2
22 13 2 2
_SAG = ——/1 |:_38+_9 +§VE+§11'17TR2/12 . (BIO)

In Fermi gauge there are additional divergent integrals. At cubic order in couplings, there are two divergent graphs:

\
\
\

q1
dk d4 d4 d* q
— Sace = ki T / 127r 212 22m) 6 (g1 + ¢z + ¢3) (B11)
@ Sy T
/ (1) B8 42)olgs) L FIG = B~ 03)

k2(k + q2)*(k — q1)?

This is a difficult graph to evaluate completely. However, the UV divergent part can be extracted relatively simply by taking
the leading behavior at large k. We get

g1 :
_SAGG = —7§+ ﬁnlte. (B12)
And the other 3-point graph gives
\\
a1 \\
1 d% d*qid*qed?
_ —k R TP VI 14°G20°qg3 444
Saaa = k4 i 5l 0) [ R e gt ) @13
e,/ ooz s (R (g — B
2 1 2
y X & (q1)Po(q2) 95 (q3) ST Ty —
4
= ZZ 31€—|—f1n1te (B14)

Finally, there is a divergent box diagram

\ /

A1 q3 7
\
N 7/
\ /
—Sacac = ki Q
7 N
/ \
/ \
s 42 s ~
7/ \

1 Ak d*q d*god*gad*
= (29)4/( NE2C BED 97y 54 gy + g0 + g5 + @)

4 omr)d (27)16
— k' — g — @) (@) + E)[(gs — BV (¢f + K + ¢5 + ¢})]
k2 (k — qu)?(k + ¢2)*(k + g2 + q1)?

¢ Go(01)6(42)(05) () B

(B15)
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The sum of all the divergent graphs in Fermi gauges
1/1 gZ g4
=866 = Saa = Sace = Saac — Sacac = -

These are identical to the UV divergences in R: gauges, in Eq. (5.78).

APPENDIX C: NLO EFFECTIVE POTENTIAL

(B16)

In this appendix we list the effective potential at NLO according to the consistent power counting developed in [17,38].
The LO effective potential is in Eq. (6.15). In the consistent power counting of [17,38], there are contributions from the one-
loop effective potential to the NLO effective potential. However, in Landau gauge these vanish. The full two-loop effective
potential was first computed in [102], and simplified in [14]. With the consistent power counting, in Landau gauge, we only
need the terms of order A° in the two-loop potential; these can be found in [15]. In the consistent power counting, one cannot
resum the Higgs field strength with the factor I" as in [15]; instead, one must include the single and double logarithmic terms

only. The complete NLO effective potential in Landau gauge is therefore

h* 1
VNLO () = — : 892y#(3r? — 8r, +9) + =8 (=6r,ry — 317 + 487, — 61,y — 69 — %)
4 (4r) 2
3y;g* > 2
+ 16 (8ry +4r; —3r; —6r,r; — 12r; + 12r, + 15 + 22%)
y2g* VP2
+ ;8 (27r% — 54r,r; — 68r, — 287, + 189) + = S (972 = 18r,r, + 4r, + 44r, — 57)
6
+ % (367,r, + 5417 — 414ryr, + 6913, + 1264ry + 156r% + 632r, — 144r,y, — 2067 + 907%)
g4g/2
+ 3 (12r,r; — 6r7 = 6ryw(53r; + 50) + 21373, + 4r;(57r; —91) + 817 + 4622%)
24
+ S5 (1320, = 6617 + 306117 — 15317, — 361y + 92413 = 4080r + 4359 +2187%)
/6
+ 576 (6r4(34r, + 3ry — 470) — 102r? — 973, + 708r% + 2883 + 2067?)

4 3 2
+ 20 (42 (312 = 8r, +9) = 962 (r, — ryp + 1))+ (6° — 36*Y? + 4y9)Liy

6 4 27
2 2 /2 64q*
+i—’85<9 9 >(9g4—6g2g’2+ 174 +2? <7g’2—73gz+ J ))

2y; 9*+q
2 /2 4 6 1
+g2—4«§<g 19 ) <1ngg’2 Lt o512 ) + Vi

h h
In— -+ V{2 In? —]
Iz Iz

(C2)

’ o) g ViV
with
Vl((iéh = —1294 In g(—9g’2 + llgz + 36yt2) + 2g/6<_235 —911n 8) + 192(4912 + 489? _ 9)7%)));1 In y,
+3(g% + 97)[91g" = 36y7 (g% + ¢*) + 369g% — 11g*]In(¢”* + ¢*) — 29*[¢7(343 + 127 In 8) 4 12y7 (8 — 3In 8)]
—24?%[g*(166 + 43In8) — 72¢°y?(4 + In8) + 64y} (4 + 1n )]
+2¢°%(474 +331n8) + 216g*y? In 8 + 96y7#(3y?(8 + In8) — 16g2(4 + In 8)]
and

2
Vie
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and where

and

2 2 2
y i 9
= ln?t, ray = (r,— ry)In [3’ - 5] (C4)
—\/72 -4 2
— In%z — 4Li, <Z 2‘7’ Z) %] (C5)
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