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The holographic distribution amplitudes (DAs) for the K pseudoscalar meson are derived. For this aim,
the light-front wave function (LFWF) of the K meson is extracted within the framework of the anti–de
Sitter/quantum chromodynamics (AdS/QCD) correspondence. We consider a momentum-dependent
(dynamical) helicity wave function that contains the dynamical spin effects. We use the LFWF to predict
the radius and the electromagnetic form factor of the kaon and compare them with the experimental values.
Then, the holographic twist-2 DA of K meson ϕKðα; μÞ is investigated and compared with the result of the
light-cone sum rules (LCSR). The transition form factors of the semileptonic B → Klþl− decays are
derived from the holographic DAs of the kaon. With the help of these form factors, the differential
branching ratio of the B → Kμþμ− on q2 is plotted. A comparison is made between our prediction in AdS/
QCD and the results obtained from two models including the LCSR and the lattice QCD as well as the
experimental values.
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I. INTRODUCTION

The flavor changing neutral current (FCNC) transitions
have received remarkable attention, both experimentally
and theoretically. The decay of a b quark into an s quark
and lepton pairs, b → slþl−, is a good tool to study the
FCNC processes; it is also a very good way to probe the
new physics effects beyond the standard model (SM).
The B → Klþl− decay, which occurs by the b →

slþl− process at the quark level, is a suitable candi-
date for experimental researchers who study the FCNC
transition. The differential branching ratio, forward-
backward, and isospin asymmetries for this transition
have been measured at the BABAR, Belle, and CDF
collaborations [1–4]. Researchers in the LHCb Collab-
oration have reported newer results for these observable
quantities [5–7]. Recently, the updated results have
been released for the differential branching fraction
and the angular analysis of the B → Kμþμ− decay [8].
On the other hand, physicists have tried to improve their
results for this decay via the theoretical approaches [9].
Recently, a new analysis has been made to estimate the
transition form factors of the B → Kμþμ− decay by the
lattice QCD [10].

To evaluate the branching ratio and the other observable,
we need to describe the intended transition according to its
form factors, which are defined in terms of the distribution
amplitudes (DAs). We recall that an accurate calculation of
the DAs is very important since they provide a major source
of uncertainty in theoretical predictions. The DAs for the K
pseudoscalar meson have been obtained, for the first time,
from the LCSR [11,12]. In recent years, a relatively new
tool named the anti–de Sitter/quantum chromodynamics
(AdS/QCD) correspondence has been used to obtain the
DAs for the light mesons. In this approach, the wave
function that describes the hadrons in the AdS space is
mapped to the wave function used for the bound states in
the light-front QCD. Both of them satisfy a Schrödinger-
like wave function equation. The light-front DAs are
derived from the holographic light-front wave functions
(LFWFs; for instance, see [13–17]).
So far, the isospin asymmetry of the B → K�μþμ−

transition has been considered in the AdS/QCD corre-
spondence [18]. Dynamical spin effects have been taken
into account of the holographic pion wave function in
order to predict its mean charge radius, decay constant,
spacelike electromagnetic form factor, twist-2 DA, and
photon-to-pion transition form factor [19]. Our goal in
this paper is to extract the twist-2, twist-3, and twist-4
DAs of the K pseudoscalar meson in the AdS/QCD
method and use this holographic DA to compute the
form factors and differential branching ratio for the B →
Kμþμ− transition.
Our paper is organized as follows: In Sec. II, the light-

front DAs and the holographic LFWF for the K pseudo-
scalar meson are calculated. In this section, the connection
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between the holographic LFWF and DAs of the K meson is
presented. Using the holographic DAs, the transition form
factors can be investigated. In Sec. III, we use the holo-
graphic LFWF to consider the radius and electromagnetic
(EM) form factor of the K meson and compare them with
the experimental values. We also analyze the holographic
twist-2 DA ofK meson ϕKðα; μÞ and transition form factors
of the FCNC B → K transitions. Then, the differential
branching ratio of B → Kμþμ− decay on q2 is plotted. Our
prediction is compared with those made by the lattice QCD
and light-cone sum rule (LCSR) approaches, as well as the
experimental values.

II. THE HOLOGRAPHIC DISTRIBUTION
AMPLITUDES FOR THE K MESON

The holographic DAs for the K pseudoscalar meson are
derived in this section. For this aim, we plan to obtain a
connection between the DAs and the holographic LFWF of
the K meson. Using the definition of the DAs for the K
meson introduced by the meson-to-vacuum matrix ele-

ments [11,12,20,21], and choosing pμ ¼ ðpþ; m
2
K

pþ ; 0⊥Þ for
the four-momentum of the K meson, the following matrix
elements can be written in the light-front coordinate,
xμ ¼ ðxþ; x−;x⊥Þ, at equal light-front time, xþ ¼ 0, as

h0jūð0Þγαγ5sðx−ÞjKðpÞi ¼ ifKpα

Z
1

0

due−iup
þx−ϕKðu; μÞ; ð1Þ

h0jūð0Þγ5sðx−ÞjKðpÞi ¼ −i
fKm2

K

mu þms

Z
1

0

due−iup
þx−ϕρðu; μÞ; ð2Þ

h0jūð0Þσαβð1þ γ5Þsðx−ÞjKðpÞi ¼ i
6

fKm2
K

ðmu þmsÞ
p½αxβ�

Z
1

0

due−iup
þx−ϕσðu; μÞ; ð3Þ

h0jūð0Þγαsðx−ÞjKðpÞi ¼ ifKðx−Þ2pα

Z
1

0

due−iup
þx−g1ðu; μÞ − fK

�
xα −

x−

pþ pα

�

×
Z

1

0

due−iup
þx−g2ðu; μÞ; ð4Þ

where μ is the renormalization scale and fK is the decay constant of the K pseudoscalar meson. In these relations, ϕK is
twist-2, ϕρ and ϕσ are twist-3, and g1 and g2 are twist-4 DAs for the K meson. To isolate ϕK and ϕρ, we take α ¼ þ and
apply the Fourier transform of Eqs. (1) and (2) with respect to x−. It yields

ϕKðα; μÞ ¼ −
i
fK

Z
dx−eiαp

þx−h0jūð0Þγαγ5sðx−ÞjKðpÞi; ð5Þ

ϕρðα; μÞ ¼ i
ðmu þmsÞ
fKm2

K
pþ

Z
dx−eiαp

þx−h0jūð0Þγ5sðx−ÞjKðpÞi: ð6Þ

Choosing σþ− in Eq. (3), and using integration by parts with the boundary condition ϕðuÞj10 ¼ 0, as well as performing the
Fourier transform with respect to x−, the derivative of the twist-3 ϕσðα; μÞ is obtained as

∂ϕσðα; μÞ
∂α ¼ 6ðmu þmsÞ

fKm2
K

pþ
Z

dx−eiαp
þx−h0jūð0Þσþ−ð1þ γ5Þsðx−ÞjKðpÞi: ð7Þ

Taking α ¼ þ (and afterwards α ¼ −) in Eq. (4), and then using integration by part, the following relations are derived:

h0jūð0Þγþsðx−ÞjKðpÞi ¼ ifK
pþ

�Z
1

0

due−iup
þx− ∂2g1ðu; μÞ

∂u2 −
Z

1

0

due−iup
þx− ∂g2ðu; μÞ

∂u
�
; ð8Þ

h0jūð0Þγ−sðx−ÞjKðpÞi ¼ ifK
pþ

�
m2

K

ðpþÞ2
Z

1

0

due−iup
þx− ∂2g1ðu; μÞ

∂u2 −
�
1 −

m2
K

ðpþÞ2
�

×
Z

1

0

due−iup
þx− ∂g2ðu; μÞ

∂u
�
: ð9Þ
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Solving Eqs. (8) and (9) in terms of ∂2g1ðu;μÞ
∂u2 and ∂g2ðu;μÞ∂u , as well as performing the Fourier transform with respect to x−, we

obtain

∂g2ðα; μÞ
∂α ¼ i

fK½2m2
K − ðpþÞ2�

Z
dx−eiαp

þx−

×

�
m2

K

ðpþÞ2 h0jūð0Þγ
þsðx−ÞjKðpÞi − h0jūð0Þγ−sðx−ÞjKðpÞi

�
; ð10Þ

∂2g1ðα; μÞ
∂α2 ¼ i

fK½2m2
K − ðpþÞ2�

Z
dx−eiαp

þx−

×

��
m2

K

ðpþÞ2 − 1

�
h0jūð0Þγþsðx−ÞjKðpÞi − h0jūð0Þγ−sðx−ÞjKðpÞi

�
: ð11Þ

In order to evaluate the holographic DAs for the K meson, the hadronic matrix elements should be determined in
Eqs. (5)–(7) and (10) and (11). For this purpose, the Fock expansion of noninteracting two-particle states is used for a
hadronic eigenstate jPi as [22]

jPðpÞi ¼
ffiffiffiffiffiffiffiffiffiffiffi
4πNc

p X
h;h̄

Z
dkþd2k⊥

16π3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþðpþ − kþÞp ΨP

h;h̄

�
kþ

pþ ;k⊥
�
jkþ;k⊥; h;pþ − kþ;−k⊥; h̄i; ð12Þ

in which ΨP
h;h̄
ðα;k⊥Þ is the LFWF of the pseudoscalar meson, and h and h̄ are the helicities of the quark and antiquark,

respectively. By utilizing the expansion of Dirac fields (quark and antiquark) in terms of particle creation and annihilation
operators, and also the equal light-front time anticommination relations for these operators, the matrix element
h0jūð0ÞΓsðx−ÞjPðpÞi is obtained as

h0jūð0ÞΓsðx−ÞjPðpÞi ¼
ffiffiffiffiffiffiffiffiffiffiffi
4πNc

p X
h;h̄

Z
dkþd2k⊥Θðjk⊥j < μÞ
16π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþðpþ − kþÞp ΨP

h;h̄
ðα;k⊥Þ

× v̄h̄ðpþ − kþ;−k⊥ÞΓuhðkþ;k⊥Þe−ikþx− ; ð13Þ

in which uh and vh are light-front helicity spinors for the quark and antiquark, respectively. The renormalization scale μ is
used as the ultraviolet cutoff on transverse momenta [23,24]. In our work, Γ can be σþ−ð1þ γ5Þ, γþ, or γ−. By integrating
with respect to kþ and applying the Fourier transform to the left and right-hand sides of Eq. (13), the following result is
obtained:

Z
dx−eiαp

þx−h0jūð0ÞΓsðx−ÞjPðpÞi ¼
ffiffiffiffiffiffiffiffiffiffiffi
4πNc

p
pþ

X
h;h̄

Z jk⊥j<μ d2k⊥
ð2πÞ3Ψ

P
h;h̄
ðα;k⊥Þ

×
�
v̄h̄ðᾱpþ;−k⊥Þffiffiffī

α
p Γ

uhðαpþ;k⊥Þffiffiffi
α

p
�
; ð14Þ

where α ¼ kþ
pþ, and ᾱ ¼ 1 − α. In the k space, the holographic LFWF is given as [22]

ΨP
h;h̄
ðα;k⊥Þ ¼

1ffiffiffiffiffiffi
4π

p SP
h;h̄
ðα;k⊥Þϕðα;k⊥Þ: ð15Þ

The structure of SP
h;h̄
ðα;k⊥Þ for the pseudoscalar mesons that includes the helicity-dependent wave function is as follows:

SP
h;h̄
ðα;k⊥Þ ¼

ūhðαpþ;−k⊥Þffiffiffi
α

p ½ðA=pþ BmKÞγ5�
vh̄ðᾱpþ;k⊥Þffiffiffī

α
p ; ð16Þ

where A and B are arbitrary constants. If B ≠ 0, the dynamical spin effects are allowed. For considering the dynamical spin
effects, A and B are usually taken in two cases: ðA ¼ 0;B ¼ 1Þ and ðA ¼ 1;B ¼ 1Þ [17,19,25–27].
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Using the light-front spinors presented in Ref. [28], SP
h;h̄

is evaluated for the K meson as

iSK
h;h̄
ðα;k⊥Þ ¼∓ A

αᾱ
f½αᾱm2

K þmums þ k2�δh�;h̄∓ � k½mue−iθkδhþ;h̄þ þmseiθkδh−;h̄−�g

∓ BmK

αᾱ
½αms þ ᾱmu ∓ ke∓iθk �δh�;h̄∓; ð17Þ

where ke�iθk is the complex form of the transverse momentum k⊥; in addition, hþ and h− are used for positive and
negative helicity, respectively.
The light-front spinors are also utilized to obtain the matrix elements in the right-hand side of Eq. (14). The final results

can be written as

v̄h̄ffiffiffī
α

p γþ
uhffiffiffi
α

p ¼ 2pþδh�;h̄∓;

v̄h̄ffiffiffī
α

p γ−
uhffiffiffi
α

p ¼ 2pþδh�;h̄∓;

v̄h̄ffiffiffī
α

p γþγ5
uhffiffiffi
α

p ¼ �2pþδh�;h̄∓;

v̄h̄ffiffiffī
α

p γ5
uhffiffiffi
α

p ¼ 1

αᾱ
fke�iθkδh�;h̄� ∓ ðαms þ ᾱmuÞδh�;h̄∓g;

v̄h̄ffiffiffī
α

p σþ−ð1þ γ5Þ uhffiffiffi
α

p ¼ 4i
αᾱ

f∓ ke�iθkð1 − 2αÞδh�;h̄� þ αmuδhþ;h̄− þ ᾱmsδh−;h̄þg: ð18Þ

Inserting Eqs. (17) and (18) in Eq. (14), the hadronic matrix elements in Eqs. (5)–(7) and (10) and (11) are determined.
Therefore, the holographic DAs can be calculated for theK meson in terms of ϕðα;k⊥Þ in the k space. Applying the Fourier
transform to r space and using relations such as

R
2π
0 e−ikr cos θdθ ¼ 2πJ0ðkrÞ, and

R μ
0 kJ0ðkrÞdðkrÞ ¼ μ=rJ1ðμrÞ, where J0

and J1 are Bessel functions, the following expressions are obtained for the holographic DAs in the r space:

ϕKðα; μÞ ¼
β1
αᾱ

Z
drμJ1ðμrÞf2Aðαᾱm2

K þmums −∇2Þ þ BmKðᾱmu þ αmsÞgϕðα; rÞ;

ϕρðα; μÞ ¼ −
ðms þmuÞβ1

α2ᾱ2m2
K

Z
drμJ1ðμrÞfA½ðαmu þ ᾱmsÞðαᾱm2

K þmums −∇2Þ

− ðmu þmsÞ∇2� − BmK½ðαms þ ᾱmuÞ2 −∇2�gϕðα; rÞ;
∂ϕσðα; μÞ

∂α ¼ −
24ðmu þmsÞβ1

α2ᾱ2m2
K

Z
drμJ1ðμrÞfA½ðαmu − ᾱmsÞðαᾱm2

K þmums −∇2Þ

− ð2α − 1Þðmu −msÞ∇2� þ BmK½α2m2
u − ᾱ2m2

s − ð2α − 1Þ∇2�gϕðα; rÞ;
∂g2ðα; μÞ

∂α ¼ β1β2
β3αᾱmK

Z
drμJ1ðμrÞB½αmū þ ᾱms�ϕðα; rÞ;

∂2g1ðα; μÞ
∂α2 ¼ β1ðβ2 − 1Þ

β3αᾱmK

Z
drμJ1ðμrÞB½αmu þ ᾱmsÞ�ϕðα; rÞ; ð19Þ

where
ffiffiffiffiffiffi
Nc

p
=ðπfKÞ ¼ β1, ½1 −m2

K=ðpþÞ2� ¼ β2 and
½2 − ðpþÞ2=m2

K� ¼ β3.
To specify ϕðα; rÞ, which includes dynamical properties

of K in the LFWF, we are going to use the AdS/QCD.
Based on a first semiclassical approximation to the light-
front QCD, with massless quarks, function ϕ can be
factorized as [29]

ϕðζ; α; θÞ ¼ N
ψðζÞffiffiffiffiffiffiffiffi
2πζ

p fðαÞeiLθ; ð20Þ

where N is a normalization constant. In this relation, L is
the orbital angular momentum quantum number and
variable ζ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αð1 − αÞp
r, where r is the transverse dis-

tance between the quark and antiquark forming the meson.
Function ψðζÞ satisfies the so-called holographic light-front
Schrödinger-like equation as

�
−

d2

dζ2
−
1 − 4L2

4ζ2
þUðζÞ

�
ψðζÞ ¼ M2ψðζÞ; ð21Þ
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where M is the hadron bound-state mass and UðζÞ is the
effective potential. It should be noted that all the interaction
terms and the effects of higher Fock states on the valence
(N ¼ 2 for mesons) state are hidden in the confinement
potential.
According to the AdS/QCD, the holographic light-front

Schrödinger equation is mapped onto the wave equation for
strings propagating in the AdS space if ζ is identified with
the fifth dimension in AdS space. To illustrate this issue, the
invariant action (up to bilinear terms) is written for a scalar
field in the AdS5 space as

S ¼ 1

2

Z
d4xdz

ffiffiffi
g

p
eφðzÞðgMN∂MΦ∂NΦ − μ2Φ2Þ; ð22Þ

where g ¼ ðRzÞ10 is the modulus of the determinant of the
metric tensor gMN. Moreover,Φðxμ; zÞ is a scalar field. Mass
μ in Eq. (22) is not a physical observable. In this action, the
dilaton background φðzÞ is only a function of the holo-
graphic variable z that vanishes if z → ∞. Variation of
Eq. (22) and making the ansatzΦðxμ;zÞ¼ e−iP·xΘðzÞ, which
describe a free hadronic state with four-momentum P in
holographic QCD, the eigenvalue equation is obtained as

�
−

z3

eφðzÞ
∂z

�
eφðzÞ
z3

∂z

�
þ
�
μR
z

�
2
�
ΘðzÞ ¼ M2ΘðzÞ; ð23Þ

where PμPμ ¼ M2 is the invariant mass. Factoring out the

scale ð1=zÞ−3
2 and dilaton factors from the AdS field as

Θ ¼ ðRzÞ−
3
2e−φðzÞ=2ψðzÞ, and using a substitution as z → ζ,

the light-front Schrödinger equation [Eq. (21)] is fined with
the effective potential UðζÞ ¼ 1

2
φ00ðζÞ þ 1

4
φ0ðζÞ2 − 1

ζ φ
0ðζÞ,

and the AdS mass ðμRÞ2 ¼ L2 − 1. In this correspondence,
φðζÞ and ðμRÞ2 are related to the effective potential and the
internal orbital angular momentum L, respectively.
Choosing φðζÞ ¼ κ2ζ2 in the soft-wall model [30] leads

to UðζÞ ¼ κ4ζ2 − 2κ2. It should be noted that the harmonic
form of this potential is unique that is the most remarkable
feature of the light-front holographic QCD [31]. Solving
Eq. (23) with this potential and comparing the equation
with the quantum mechanical oscillator in the polar
coordinates, the results are obtained for eigenfunctions
[ψn;LðζÞ] and eigenvalues [M2ðn; L; SÞ].
Therefore, ϕðr; αÞ for theK meson with massless quarks,

and n ¼ 0, L ¼ 0, is obtained as

ϕðα; ζÞ ¼ N
κffiffiffi
π

p ffiffiffiffiffiffi
αᾱ

p
exp

�
−
κ2ζ2

2

�
; ð24Þ

where κ is the AdS/QCD scale. It should be noted that the

condition
R
1
0 dα

fðαÞ2
αᾱ ¼ 1 is used to determine the function

fðαÞ in Eq. (20) [29]. To include the mass of quarks in
Eq. (24), first, a Fourier transform is applied to k space as
ϕ̃ðα;k⊥Þ ¼

R
d2re−ikr cos θkϕðα; ζÞ; it yields

ϕ̃ðα;k⊥Þ ¼ N
2ffiffiffiffiffiffi
αᾱ

p
ffiffiffi
π

p
κ

exp

�
−

k2

2αᾱκ2

�
; ð25Þ

then, this substitution is used [32],

k2

αᾱ
→

k2

αᾱ
þm2

u

α
þm2

s

ᾱ
: ð26Þ

After substituting this into the wave function and Fourier
transforming back to the transverse position space, the final
form of the AdS/QCD wave function is obtained as

ϕðζ; αÞ ¼ N
κffiffiffi
π

p ffiffiffiffiffiffi
αᾱ

p
exp

�
−
κ2ζ2

2

�

× exp

�
−
�
ᾱm2

u − αm2
sÞ

2αᾱκ2

��
: ð27Þ

In position space, N can be fixed by this normalization
condition [22],

Z
d2rdα

�X
h;h̄

jΨK
h;h̄
ðr; αÞj2

�
¼ 1: ð28Þ

III. NUMERICAL ANALYSIS

In this section, we present our numerical analysis for the
light-front holographic DAs of the K meson, the B →
Klþl− transition form factors, as well as the differential
branching ratio of the B → Kμþμ− transition on q2.
According to the light-front holographic prediction,

the mass squared of mesons composed of light quarks is
given as M2ðn; L; SÞ ¼ 4κ2ðnþ Lþ S

2
Þ, where the quan-

tum numbers L and n describe the orbital angular momen-
tum and excitations of the meson spectrum, respectively.
By fitting this mass relation to the experimentally measured
Regge slopes, the AdS/QCD scale κ is reported to be
590 MeV for pseudoscalar mesons [31]. In this paper, we
choose κ ¼ 590 MeV in our analysis. In addition, we
consider two sets for A and B as set I ðA ¼ 1;B ¼ 1Þ
and set II ðA ¼ 0;B ¼ 1Þ that allow for considering the
dynamical spin effects.
Using the experimental values of the decay constants, fπ

and fK , and choosing the value of κ, we can obtain the mass
of the light quarks related to our analysis; they are in fact
the effective quark masses used in the holographic LFWFs
[31]. The decay constant for a pseudoscalar meson, which
contains q and q0 quarks, can be defined as

h0jq̄ð0Þγαγ5q0ð0ÞjSðpÞi ¼ ifSpα: ð29Þ

After expanding the left-hand side of Eq. (29) in the
procedure described in the previous section, the decay
constant formula for the pion and kaon in the AdS/QCD
correspondence is calculated as
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fS ¼
ffiffiffiffiffiffi
Nc

p
π

Z
1

0

dα½Bðᾱmq̄ þ αmq0 ÞmS

þ 2Aðαᾱm2
S þmq̄mq0 −∇2Þ�ϕðα; rÞ

αᾱ
jr¼0: ð30Þ

The effective masses for two light quarks, u and d, are
equal in the AdS/QCD. So, by inserting mu ¼ md, in
addition to the experimental value fπ ¼ 130� 0.26 MeV,
and ðA ¼ 1;B ¼ 1Þ in Eq. (30), we can plot mu with
respect to κ in the region between 535 < κ < 635 (see
Fig. 1). By having the values of mu according to κ, as well
as the experimental value fK ¼ 156� 0.49 MeV, and
applying them in Eq. (30), we can also display ms based
on κ, numerically. It is obvious that the s quark mass must
be larger than the mass of u and d quark. In addition, we
consider 700 GeV as an upper limit for ms. Our numerical
analysis shows that for each value of κ between
537 ≤ κ ≤ 567, there are three values for ms, one unac-
ceptable (red star) and two acceptable (orange star). For
each value of κ > 567, there is only one acceptable value
that is smaller than the upper limit. According to Fig. 1, for
κ ¼ 590 MeV, the mass of quarks ½mu;d; ms� is obtained in
MeV as [200, 350].
We choose ðA ¼ 0;B ¼ 1Þ, repeat the previous steps,

and obtain that the mass of quarks ½mu;d; ms� is [100, 220]
in MeV.
Using the holographic LFWF, the kaon radius observ-

able is predicted for two sets ðA ¼ 1;B ¼ 1Þ and ðA ¼ 0;
B ¼ 1Þ. This observable is sensitive to long-distance (LD;

nonperturbative) physics. The root-mean-square kaon
radius is given by [33]

rK ¼
�
3

2

Z
d2rdαðrᾱÞ2jΨKðr; αÞj2

�
1=2

; ð31Þ

where

jΨKðr; αÞj2 ¼
X
h;h̄

jΨK
h;h̄
ðr; αÞj2: ð32Þ

Our predictions for rK are presented in Table I. As can be
seen, we get a better agreement with the experimental value
for the spin-improved LFWF using set I. Our prediction for
set II is closer to that via the lattice QCD.
For a better analysis of the holographic LFWF, we

investigate the behavior of the EM form factor for the K
meson in the AdS/QCD approach. The kaon EM form
factor is defined as

hKðpÞjJEMμ ð0ÞjKðp0Þi ¼ 2ðpþ p0ÞμFKðQ2Þ; ð33Þ

where ðp − p0Þ2 ¼ −Q2. The EM current is JEMμ ¼
2
3
ūð0Þγμuð0Þ − 1

3
s̄ð0Þγμsð0Þ. The EM form factor can be

expressed in terms of the LFWF as [36,37]

FKðQ2Þ ¼
Z

d2rdαJ0½ðrᾱÞQ�jΨKðr; αÞj2: ð34Þ

Our predictions and the experimental data [38] for the EM
form factor of the K meson with respect to Q2, in the
interval 0.10 GeV2 ≤ Q2 ≤ 1 GeV2, are shown in Fig. (2).
As can be seen, our predictions for two sets are in a
satisfactory agreement with the experimental data.
Figure 3 shows the holographic twist-2 DA ϕKðα; μÞ

with respect to α, obtained form Eq. (19), on which red and
blue lines show the results for two sets in μ ¼ 1 GeV,
respectively. In this figure, we compare the holographic
twist-2 DAwith the prediction of the LCSR. It can be seen
that ϕKðαÞ for set II is broader than both predictions for
set I and the LCSR.
The moments hξni and inverse moment hα−1i can be

investigated based on the twist-2 DA ϕKðα; μÞ as

hξni ¼
Z

1

0

dαð2α − 1ÞnϕKðα; μÞ;

hα−1i ¼
Z

1

0

dα
ϕKðα; μÞ

α
: ð35Þ

TABLE I. Predictions for K meson radius via the lattice QCD and AdS/QCD correspondence.

Ours ðA ¼ 1;B ¼ 1Þ Ours ðA ¼ 0;B ¼ 1Þ Lattice QCD [34] Exp [35]

Value (fm) 0.52� 0.07 0.63� 0.09 0.62 0.56� 0.03

FIG. 1. The available spaces for the quark masses mu;d;s under
the constraints from the experimental values of the decay
constants fπ and fK .
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By using the holographic DA ϕKðα; μÞ, we calculate hξ2i,
hξ4i, and hα−1i and compare them with the predictions of
some nonperturbative methods such as the light-front quark
model (LFQM), lattice QCD, and LCSR. Our results are

presented in Table II. Our predictions for hξ2i and hξ4i in
set I are nearly equal to those of the LFQM and lattice QCD
for μ ¼ 1 GeV.
To evaluate the differential branching ratio of the

B → Kμþμ− transition on q2, we need to calculate the
transition form factors. The explicit expressions of these
form factors in terms of the light-cone DAs are given in
Ref. [44]. We use these expressions and replace the
holographic DAs in them; then we convert the obtained
form factors based on the following definitions, which are
more conventional [10]:

hKðpÞjs̄γμbjBðpBÞi

¼ Pμfþðq2Þ þ qμ
m2

B −m2
K

q2
½f−ðq2Þ − fþðq2Þ�;

hKðpÞjs̄iσμνqνð1þ γ5ÞbjBðpBÞi

¼ ½Pμq2 − ðm2
B −m2

KÞqμ�
fT

mB þmK
: ð36Þ

In these definitions, p and pB refer to the momentums of
the K and B meson, respectively; q ¼ pB − p is the
momentum carried by leptons and P ¼ pB þ q.
Usually, the numerical results for the form factors

calculated via different methods in QCD have a cutoff.
So, to evaluate the form factors for the whole physical
region m2

l ≤ q2 ≤ ðmB −mKÞ2, we look for a good para-
metrization of the form factors in such a way that, in the
large values of q2, this parametrization can coincide with
the lattice predictions [10]. Our numerical calculations
show that the sufficient parametrization of the form factors
with respect to q2 is as follows:

Fðq2Þ ¼ 1

1 − ð q2m2
B
Þ
X2
r¼0

br

�
zr þ ð−1Þr r

3
z4
�
; ð37Þ

where z ¼
ffiffiffiffiffiffiffiffiffi
tþ−q2

p
−

ffiffiffiffiffiffiffiffi
tþ−t0

pffiffiffiffiffiffiffiffiffi
tþ−q2

p
þ ffiffiffiffiffiffiffiffi

tþ−t0
p , tþ ¼ ðmB þmKÞ2, and t0 ¼

ðmB þmKÞð ffiffiffiffiffiffiffi
mB

p − ffiffiffiffiffiffiffi
mK

p Þ2 [45]. Table III shows the
values of brðr ¼ 0;…; 2Þ for the form factors.

FIG. 3. The results for ϕK at μ ¼ 1 GeV with the AdS/QCD
and LCSR.

TABLE II. Prediction values for hξ2i, hξ4i, and hα−1i via some methods.

DA μ [GeV] hξ2i hξ4i hα−1i
Ours ðA ¼ 1;B ¼ 1Þ 1 0.21� 0.02 0.09� 0.01 3.54� 0.42
Ours ðA ¼ 0;B ¼ 1Þ 1 0.32� 0.04 0.18� 0.02 5.33� 0.74
LFQM [26] 1 0.21 0.09 � � �
LFQM [39] 1 0.20 0.08 � � �
Lattice [40] 1 0.20 0.09 � � �
Lattice [41] 2 0.26 � � � � � �
LCSR [42] 2 0.26� 0.04 � � � � � �
Instanton vacuum [43] 1 0.18 0.07 � � �

FIG. 2. Our predictions and experimental data for the EM form
factor of the K meson.
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Figure 4 shows the results for the fþ; f−, and fT form
factor in two sets. In this figure, circles show the lattice
predictions in the large values of q2.
Now, we can evaluate the differential branching ratio of

the B → Kμþμ− transition on q2. The transition of the B
meson to the final state Kμþμ− receives contributions from
tree level decays and decays mediated through virtual
quantum loop processes. The tree level decays proceed
through the decay of a B meson to a vector cc̄ resonance
and a K meson, followed by the decay of the resonance to a
pair of muons. Decays mediated by FCNC loop processes
give rise to pairs of muons with a nonresonant mass
distribution. A broad peaking structure is observed in
the dimuon spectrum of B → Kμþμ− decay in the kin-
ematic region where the kaon has a low recoil against the
dimuon system [46].
In the SM, the semileptonic decays, such as the B →

Klþl− transitions that occur via b → slþl− transition, are
described by the effective Hamiltonian as

Heff ¼ −
GFffiffiffi
2

p VtbV�
ts

X10
i¼1

CiðμÞOiðμÞ; ð38Þ

where Vtb and Vts are the elements of the CKMmatrix, and
CiðμÞ are the Wilson coefficients. The standard set of the
local operators OiðμÞ is found, for example, in Ref. [47].
The most relevant contributions to b → slþl− transitions
are (a) the tree level operatorsO1;2, (b) the penguin operator

O7, and (c) the box operators O9;10. The current-current
operators O1;2 involve an intermediate charm loop coupled
to the lepton pair via the virtual photon (see Fig. 5). The
electroweak penguin operators O7 and O9;10 are respon-
sible for the short-distance (SD) effects in the FCNC b → s
transition, but the operators O1;2 involve both SD and LD
contributions in this transition. In the naive factorization
approximation, contributions of the O1;2 operators have the
same form factor dependence as C9 and can, therefore, be
absorbed into an effective Wilson coefficient Ceff

9 [48].
Therefore, the effective Wilson coefficient Ceff

9 is given as
Ceff
9 ¼ C9 þ YSDðq2Þ þ YLDðq2Þ, where YSDðq2Þ describes

the SD contributions from four-quark operators far away
from the resonance regions. The LD contributions YLDðq2Þ
from four-quark operators near the cc̄ resonances cannot be
calculated from the first principles of QCD and are usually
parametrized in the form of a phenomenological Breit-
Wigner formula as [47]

YLDðq2Þ ¼
3π

α2
X

Vi¼ψð1sÞ;ψð2sÞ

ΓðVi → lþl−ÞmVi

m2
Vi
− q2 − imVi

ΓVi

: ð39Þ

The expressions of the differential decay width dΓ=dq2
for the B → Klþl− can be found in [45]. This expression
contains the CKM matrix elements, Wilson coefficients,
and form factors related to the definitions in Eq. (36). In
this paper, we take Ceff

7 ¼ −0.313, C10 ¼ −4.669 [49] and
use Ceff

9 according to Ref. [47]. Considering two charm

FIG. 4. The form factor fþ; f− and fT of the B → K decay on q2. Circles show the lattice data in large q2.

TABLE III. Results of z-expansion fits of the B → K form factors.

ðA ¼ 1;B ¼ 1Þ b0 b1 b2 ðA ¼ 0;B ¼ 1Þ b0 b1 b2

fþ 0.43 −1.13 −0.21 fþ 0.38 −1.54 −0.85
f− 0.27 0.08 −0.25 f− 0.24 −0.31 −1.01
fT 0.45 −0.99 0.12 fT 0.40 −1.50 −0.41
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resonances, ψð1sÞ and ψð2sÞ, the dependency of the
differential branching ratio for the B → Kμþμ− decay on
q2 is presented in Fig. 6. In this figure, the results obtained
by the LCSR [44] and lattice QCD [10] approaches are
shown with yellow and green lines, respectively. Also, the

experimental values [8] with their errors are plotted in this
figure. As can be seen in Fig. 6, the predictions of all
models for the differential branching ratio of the B →
Kμþμ− transition on q2 are not in a good agreement with
the experimental value in the low energy region ðq2 <
1 GeV2Þ where the nonperturbative QCD overcomes. For
the momentum transfer squared between ð1 GeV2 < q2 <
10 GeV2Þ, a large number of the experimental values
(central values) are between our predictions via the AdS/
QCD correspondence for two sets. In the high momentum
transfer squared region ðq2 > 10 GeV2Þ, the predictions of
the lattice QCD and AdS/QCD for two sets are well fitted to
experimental values (by considering their errors).
To summarize, based on the dynamical spin effects, we

extracted the twist-2, -3, and -4 DAs of the K pseudoscalar
meson in the AdS/QCD correspondence approach. The
AdS/QCD scale κ ¼ 590 MeV; this value is provide by
fitting it to the Regge slopes, and two sets ðA ¼ 1;B ¼ 1Þ
and ðA ¼ 0;B ¼ 1Þ for the dynamical spin effects were
used in our analysis. For a better analysis, we calculated the
masses of the light quarks with the help of the experimental
values for the decay constants of pion and kaon pseudo-
scalar mesons in two sets. The radius and the EM form
factor of the K meson, quantities related to the holographic
LFWF ΨKðr; αÞ, were investigated and compared with the
lattice QCD and experimental values. By evaluating the
transition form factors with the help of the holographic
DAs, the differential branching ratio for the B → Kμþμ−

decay on q2 was plotted for two sets of A and B. A
comparison with the experimental values showed that our
predictions with the AdS/QCD correspondence were good.
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