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We have computed the isospin and spin averaged cross sections of the processes πK� → ρK and
ρK� → πK, which are crucial in the determination of the abundances of K� and K in heavy ion collisions.
Improving previous calculations, we have considered several mechanisms which were missing, such as the
exchange of axial and vector resonances (K1ð1270Þ, K�

2ð1430Þ, h1ð1170Þ, etc…) and also other processes
such as πK� → ωK;ϕK and ωK�;ϕK� → πK. We find that some of these mechanisms give important
contributions to the cross section.
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I. INTRODUCTION

The study of nucleus-nucleus collisions at high energies
[1–4], such as Auþ Au at center of mass energies of
200 GeV or Pb-Pb at center of mass energies of 2.76 TeV,
hints towards the existence of a phase transition from
nuclear matter to a locally thermalized state of deconfined
quarks and gluons, the quark-gluon plasma (QGP) [5].
After a hot initial stage, the QGP cools and hadronizes
forming a hadron gas, where the produced mesons and
baryons interact inelastically and the relative abundances
are changed. After further cooling, the system reaches
chemical equilibrium, where only elastic collisions take
place. This is also called “chemical freeze-out” and at this
point the abundances are frozen. Finally, at the “kinetic
freeze-out,” the density becomes small, the interactions no
longer occur and the particles stream freely to the detectors

[6,7]. After hadronization and before the kinetic freeze-out,
the hadrons can interact and different production and
absorption reactions (including the formation and decay
of resonances) will change the hadron abundances. These
changes will be different for different hadron species, and
they depend on the details of hadron dynamics, especially
on possible resonance formation.
Particularly interesting is the case of the K�ð892Þmeson.

The lifetime of this meson is around 4 fm/c, which is
smaller than that of the QGP formed in heavy-ion collisions
(∼10 fm/c [7]). This means that, from hadronization up to
the kinetic freeze-out, a K� meson present in the QGP has
enough time to decay into K and π. It can also be absorbed,
as well as produced, by other mesons present in the
medium. All these reactions can change the abundance
of the K� at the kinetic freeze-out.
In Refs. [1–4], K� production was investigated consid-

ering data from Auþ Au at center of mass energies of
200 GeV, from Cuþ Cu at 62.4 and 200 GeV and from
Pbþ Pb collisions at 2.76 GeV. Considering the K� and K
transverse momentum spectra and the measuredK�/K yield
ratios for all centralities in Auþ Au or Cuþ Cu compared
to the same ratio from pþ p collisions, a significant
reduction in the K�/K ratio was found. The measured
values were 0.23� 0.05 in Auþ Au collisions at 200 GeV
at RHIC [1] and of 0.19� 0.05 in Pbþ Pb collisions at
2.76 TeV at LHC [4], while the statistical model predicts
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0.33� 0.01 in case of Auþ Au collisions at 130 GeV at
RHIC [8]. In all these collisions, mesons are produced at
hadronization, i.e. when quarks and gluons are converted
into hadrons, or later, during hadronic scatterings in the
hadron gas. Any special feature observed in the measured
yields reflects what happens in these two stages.
In Ref. [9], the changes in the K� and K abundances

caused by hadronic scatterings in the hadron gas phase
were studied. The authors calculated the cross sections for
absorption (and production) of K andK� by K, K�, π and ρ.
The following processes were considered to account for K
absorption: KK̄ → ππ, KK̄ → ρρ and Kπ → K�. Similarly
the absorption of K� mesons was attributed to the proc-
esses: K�π → Kρ, K�ρ → Kπ, K�K̄ → ρπ, K�K̄� → ππ
and K�K̄� → ρρ. The corresponding production mecha-
nism for K� and K are simply the inverse reactions of those
mentioned above, whose cross sections can be obtained by
using the detailed balance principle. These production and
absorption cross sections are the most important input
entering in the rate equations through which the time
evolution of the abundance of both K� and K, can be
obtained. As shown in Ref. [9], due to the interactions of K
and K� with the hadrons present in the medium, the yield
associated with the ratio K�/K decreases by 36% during the
expansion of the hadronic matter. The main mechanisms
contributing to this reduction were found to be the pro-
cesses K�π → Kρ, K�ρ → Kπ, K� → Kπ (the correspond-
ing inverse reactions were, of course, also included in the
calculation). Considering these processes, an abundance
ratio comparable to the RHIC and LHC measurements was
found and it was concluded that the measured ratio K�/K
can be explained by the interaction of K� and K with light
mesons in the hadronic medium.
In the determination of the cross sections for the reac-

tions K�π → Kρ and K�ρ → Kπ performed in Ref. [9],
some mechanisms were ignored and they could be relevant
for the calculation of the K�/K ratio such as, for instance,
the exchange of axial resonances. To consider resonance
exchange, though, one needs a reliable information on the
mass and width of the resonance as well as the couplings at
different resonance-meson-meson vertices. Such informa-
tion is available in the literature. For example, it was
shown in Refs. [10,11] that the K�π interaction and
coupled channels (ϕK, ωK, ρK and K�η) generate the
axial vector meson K1ð1270Þ state with a two pole
structure. The presence of this resonances has been found
to be important [11] in describing the invariant mass
distribution of the process K−p → K−πþπ−p at 63 GeV
measured by the WA3 collaboration at CERN [12].
Similarly, the exchange of K1ð1270Þ could also play an
important role when determining the cross section of the
reaction πK� → ρK. Reference [10] also discusses the
interaction of K̄�K and coupled channels in different
isospin I and G-parity combinations, which give rise to
the following axial resonances listed by the Particle Data

Group (PDG) [13]: h1ð1170Þ, h1ð1380Þ for I ¼ 0,G ¼ −1;
f1ð1285Þ for I ¼ 0, G ¼ þ1; a1ð1260Þ for I ¼ 1, G ¼ −1;
b1ð1235Þ for I ¼ 1, G ¼ þ1. The nature of these reso-
nances has been tested in Refs. [14–16] where their decay
widths in several channels were calculated and a good
description of the experimental data was found. The
inclusion of these resonances can contribute to the cross
section of ρK� → πK.
The main purpose of the present work is to include the

exchange of all these resonances in the study of the
processes K�π → Kρ and K�ρ → Kπ. Besides resonance
exchange, some other mechanisms are missing in the
determination of the cross sections of K�π → Kρ and
K�ρ → Kπ performed in Ref. [9]. For example, the
exchange of a vector meson in the t channel and a
pseudoscalar in the s channel were taken into account to
study the reaction K�π → Kρ, but other mechanisms like
u-channel exchange or s-channel exchange of vectors were
not. Some of such missing diagrams involve anomalous
vertices [17,18] (i.e., the natural parity is not conserved in
the vertex, which is described by a Lagrangian containing
the Levi-Civita pseudotensor). In Refs. [19,20], it was
shown that interaction terms with anomalous parity cou-
plings have a strong impact on the corresponding cross
sections, and the relevance of such anomalous terms in the
determination of the abundance of Xð3872Þ in heavy ion
collisions was computed in Ref. [21]. Such processes,
involving the anomalous vertices, were missed in the earlier
work of Ref. [22]. Similar is the case of the reaction
K�ρ → πK: in Ref. [9] Feynman diagrams related to the
exchange of a pseudoscalar meson in the t channel and a
vector meson in the s channel were considered. However,
other contributions, as u-channel exchange diagrams and
exchange of other mesons in the t- and s channels were not
taken into account. In this work, we are going to evaluate
the contribution from all such mechanisms and calculate
the cross sections of the reactions K�π → Kρ; Kω; Kϕ and
K�ρ; K�ω; K�ϕ → Kπ for the absorption of the K� meson
and the corresponding cross section for its production. We
also calculate the corresponding thermal averaged cross
sections, which can be useful in the determination of the
time evolution of the abundances of K and K� from heavy
ion collisions.

II. FORMALISM

In the model of Ref. [9], the effect of absorption and
production of K� and K mesons in a hadron gas appears in
the thermal average cross sections of such processes. These
cross sections affect the time evolution of the abundance of
K� and K. As concluded in Ref. [9], the most important
absorption and production processes of K� and K corre-
spond to πK� → ρK, ρK� → πK, K� → πK and the inverse
reactions.
In the present work, we calculate these cross sections

including the following reactions πK� → ρK;ωK;ϕK and
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ρK�;ωK�;ϕK� → πK. The cross sections associated with
the corresponding inverse reactions can be obtained using
the principle of detailed balance. Note that in Ref. [9], the
cross sections related to processes involving ω and ϕ in the
initial or final states were not evaluated in spite of their
mass similarity with ρ as well as similar dynamics involved
in the corresponding reactions.
We will calculate the cross section of the process

aþ b → cþ d. For a specific reaction mechanism r, we
can write σr in the center of mass frame as [9,20,22]

σrðsÞ ¼
1

16πλðs;m2
a;r; m2

b;rÞ
Z

tmax;r

tmin;r

dt
X̄
S;I

jMrðs; tÞj2; ð1Þ

where s and t are the Mandelstam variables for the reaction
r, ma;r and mb;r represent the masses of the two particles in
the initial state of the reaction r, λða; b; cÞ is the Källén
function and Mr is the reduced matrix element for the
process r.
The symbol ¯P

S;I in Eq. (1) represents the sum over the
spins (S) and isospins (I) projections of the particles in the
initial and final states, weighted by the isospin and spin
degeneracy factors of the two particles forming the initial
state for the reaction r, i.e.,

X̄
S;I

jMrj2 →
1

ð2Ia;r þ 1Þð2Ib;r þ 1Þ
1

ð2sa;r þ 1Þð2sb;r þ 1Þ
×
X
S;I

jMrj2; ð2Þ

where,

X
S;I

jMrj2 ¼
X
i;j

�X
S

jMijj2
�
: ð3Þ

In Eq. (3), i and j represent the initial (aþ b) and final
(cþ d) channels in the reaction r for a particular
charge Qr ¼ Qa þQb ¼ Qc þQd ¼ −1; 0;þ1;þ2.
In Figs. 1 and 2, we show the different diagrams

contributing to the processes πK� → ρK;ωK;ϕK and
ρK�;ωK�;ϕK� → πK (without specifying the charge of
the reaction).

Each of the amplitudes Mij of Eq. (3) can be written as

Mij ¼ Tij þUij þ Sij; ð4Þ

where Tij, Uij and Sij are the contributions related to
the t-, u- and s-channel diagrams shown in Figs. 1 and 2 for
the process i → j for a particular total charge of the
reaction r.
The amplitudes for these t-, u- and s- channel diagrams

are determined by considering Lagrangians for the
Pseudoscalar-Pseudoscalar-Vector (PPV), Vector-Vector-
Pseudoscalar (VVP) and Vector-Vector-Vector (VVV) ver-
tices. These Lagrangians are based on an effective theory in
which the vector mesons are identified as the dynamical
gauge bosons of the hidden Uð3ÞV local symmetry in the
Uð3ÞL × Uð3ÞR/Uð3ÞV nonlinear sigma model [23–26],
obtaining

LPPV ¼ −igPPVhVμ½P; ∂μP�i;
LVVP ¼ gVVPffiffiffi

2
p ϵμναβh∂μVν∂αVβPi

LVVV ¼ igVVVhðVμ∂νVμ − ∂νVμVμÞVνÞi: ð5Þ

The LVVP Lagrangian written above contains the Levi-
Civita pseudotensor since it describes an anomalous vertex,
which involves a violation of the natural parity in the vertex
[17,18]. In Eq. (5), P and Vμ are matrices containing the
octet of pseudoscalars and vectors mesons and the singlet
of SU(3), respectively, which in the physical basis and
considering ideal mixing for η and η0 as well as for ω and ϕ
read as [10,11,27]:

P ¼

0
BBB@

ηffiffi
3

p þ η0ffiffi
6

p þ π0ffiffi
2

p πþ Kþ

π− ηffiffi
3

p þ η0ffiffi
6

p − π0ffiffi
2

p K0

K− K̄0 − ηffiffi
3

p þ
ffiffi
2
3

q
η0

1
CCCA;

ð6ÞFIG. 1. Diagrams contributing to the processes πK� → ρK;
ωK;ϕK in the t channel (a), u channel (b) and s channel (c).

FIG. 2. Diagrams contributing to the processes ρK�;ωK�;
ϕK� → πK in the t channel (a), u channel (b) and s channel
(c). The symbol RA represents the exchange of the axial
resonances h1ð1170Þ, h1ð1380Þ, f1ð1285Þ, a1ð1260Þ and
b1ð1235Þ listed by the PDG and found from the dynamics in
the K̄�K system and coupled channels [10].
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Vμ ¼

0
BB@

ωþρ0ffiffi
2

p ρþ K�þ

ρ− ω−ρ0ffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCA

μ

: ð7Þ

The couplings appearing in Eq. (5) are given by [28–30]

gPPV ¼ mV

2fπ
; gVVP ¼ 3m2

V

16π2f3π
; gVVV ¼ mV

2fπ
; ð8Þ

withmV being the mass of the vector meson, which we take
as the mass of the ρ meson, and fπ ¼ 93 MeV is the pion
decay constant. These couplings can be considered as
phenomenological couplings, in the sense that they can
be directly used to reproduce relevant experimental data

related to branching ratios, partial decay widths of vector
mesons, etc. The symbol hi in Eq. (5) indicates the trace in
the isospin space.
The evaluation of some of the diagrams in Figs. 1 and 2

requires the coupling of several axial resonances to their
hadron components. This couplings are directly taken from
Refs. [10,11], and we list them in Tables I and II of
Appendix A for the convenience of the reader.
After defining all the ingredients needed for the evalu-

ation of the contribution of the diagrams in Figs. 1 and 2,
we can start writing the contributions explicitly. The
t-channel, Tij, u-channel, Uij, and s-channel, Sij, ampli-
tudes for the diagrams shown in Figs. 1(a), 1(b), and 1(c),
respectively, for a reaction r of the type iðaþbÞ→jðcþdÞ
are given by

Tij ¼
X
k

T ij
k g

2
PPVϵ

μðkÞϵνðp0Þk0μpν
1

t −m2
Pk

þ iϵ

þ
X
k

T̄ ij
k g

2
VVPϵ

μναβϵμ
0ν0α0

βp0
μpαkμ0k0α0ϵνðp0Þϵν0 ðkÞ

1

t −m2
Vk

þ iΓVk
mVk

; ð9Þ

Uij ¼
X
k

Uij
k gVVVgPPV

1

u −m2
Vk

þ iΓVk
mVk

ϵμðkÞϵνðp0Þ

×

�
2

�
−1þm2

π −m2
K

m2
Vk

�
ðkνpμ þ p0

μpνÞ − 2

�
1þm2

π −m2
K

m2
Vk

�
ðkνk0μ þ p0

μk0νÞ

− gνμ

�
−2ðk0 þ pÞ · p0 þ ðm2

π −m2
KÞ
�
1þm2

ρ −m2
K�

m2
Vk

���
; ð10Þ

Sij ¼ Sij
Kg

2
PPVϵ

μðkÞϵνðp0Þpμk0ν
1

s −m2
K þ iϵ

þ Sij
K�g2VVPϵ

μναβϵμ
0ν0α0

βϵνðkÞϵν0 ðp0Þkμp0
μ0pαk0α0

1

s −m2
K� þ iΓK�mK�

þ
X2
l¼1

gðiÞK1;l
gðjÞK1;l

s −M2
K1;l

þ iΓK1;lMK1;l

�
−gμν þ

pμk0ν
M2

K1;l

�
ϵμðkÞϵνðp0Þ; ð11Þ

where T ij
k , T

ij
k , U

ij
k , S

ij
K and Sij

K� are coefficients which
depend on the initial i and final j channels, as well as the
exchanged particle k, and they are given in Tables III–VII
of Appendix A. In Eqs. (9), (10) and (11), p, k are,
respectively, the four-momentum of the π and K� in the
initial state, and p0 and k0 correspond, respectively, to the
four-momentum of the vector meson (ρ, ω or ϕ) and the K
in the final state, ϵμναβ is the Levi-Civita tensor and ϵμðqÞ is
the polarization vector associated with the particle ex-
changed, with four momentum q. To arrive to these
expressions we have made use of the Lorenz gauge, in
which ϵðpÞ · p ¼ 0, and the fact that the contraction of an
antisymmetric tensor, like the Levi-Civita tensor, with a

symmetric one gives 0. The mPk
in Eq. (9) corresponds

to the mass of the exchanged pseudoscalar in Fig. 1(a)
and mVk

and ΓVk
are the mass and width, respectively,

of the exchanged vector. We have considered [13]
Γϕ ¼ 4.3, Γω ¼ 8.5, ΓK� ¼ 50.5 and Γρ ¼ 149.4 MeV
and used isospin average masses, mρ ¼ 770, mω ¼ 782,
mK� ¼ 892, mϕ ¼ 1020, mπ ¼ 137 and mK ¼ 496 MeV.
The consideration of the widths in the propagators of the
unstable mesons [in Eqs. (10) and (11)] can be interpreted
as taking self-energy corrections into account by consid-
ering a Breit-Wigner distribution for the unstable particles.
Such corrections can be regarded as compatible with the
phenomenological couplings in Eq. (8).
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In Eqs. (10) and (11), gαβ is the Minkowski metric tensor.

The MK1;l, ΓK1;l and gðiÞK1;l
and gðjÞK1;l

present in Eq. (11) are
the mass, width and coupling of the pole l (to the initial i
and final j channels) associated with the axial state
K1ð1270Þ. These values can be found in Table I of
Appendix A. In the case of the t-channel amplitude of
Eq. (9), we have considered the exchange of pseudoscalars
as well as vector mesons. A note here is in order. When
exchanging a pion in the t channel in the reaction
πK� → ρK, the energy-momentum conservation in the
vertex π → πρ of Fig. 1(a) is such that the exchanged
pion can become on-shell. Because of this, in some regions
of the phase-space, the pion propagator develops a pole
originating a singular cross section [31,32]. This latter
singularity in the cross section can be removed by the so-
called Peierls method [31], where the basic idea is to

introduce a complex four-momentum for the unstable
particle in the vertex by considering its decay width. As a
consequence, the four-momentum of the exchanged particle
gets an imaginary part through the energy-momentum
conservation, which leads to [31,32]

1

t −m2
π þ iϵ

→
1

t −m2
π − imρΓρ

Eρ−Eπ

Eρ

; ð12Þ

whereEπ andEρ are the energies for the externalρ andπ in the
center ofmass frame.Note that theoriginof the imaginarypart
in Eq. (12) lies in the definition of the Mandelstam variable t
when the unstable nature of the particle in the vertex is
incorporated. For instance, at the ρππ vertex in Fig. 1(a), the
Mandelstam t variable is defined as t ¼ ðp − p0Þ2. If we
consider ρ as a stable particle, then

t ¼ ðp − p0Þ2 ¼ m2
π þm2

ρ − 2EρEπ þ 2p⃗ρ · p⃗π ¼ m2
π þm2

ρ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ þ p⃗2
ρ

q
Eπ þ 2p⃗ρ · p⃗π ð13Þ

Substituting m2
ρ → m2

ρ − imρΓρ, we can write

ðp − p0Þ2 ¼ m2
π þm2

ρ − imρΓρ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ − imρΓρ þ p⃗2
ρ

q
Eπ þ 2p⃗ρ · p⃗π

¼ m2
π þm2

ρ − imρΓρ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
ρ − imρΓρ

q
Eπ þ 2p⃗ρ · p⃗π

≃m2
π þm2

ρ − imρΓρ − 2Eρ

�
1 − i

mρΓρ

2E2
ρ

�
Eπ þ 2p⃗ρ · p⃗π

¼ t − imρΓρ

�
1 −

Eπ

Eρ

�
; ð14Þ

where t is the definition of the Mandelstam variable calculated by treating ρ as a stable particle [Eq. (13)].
For the u-channel amplitude we can only have exchange of vector mesons, since the exchange of a pseudoscalar meson

implies a vertex which would violate either parity or angular momentum. For the case of the s-channel amplitude, we have
considered exchange of pseudoscalars, vector mesons and resonances, with the only possibilities compatible with
conservation of quantum numbers being the pseudoscalar K, the vector K� and the state K1ð1270Þ.
In the case of the t-, u- and s-channel diagrams in Figs. 2(a)–2(c), respectively, we find the following contributions,

Tij ¼
X
k

T ij
k g

2
PPVϵ

μðpÞϵνðkÞp0
μk0ν

1

t −m2
Pk

þ iϵ

þ
X
k

T̄ ij
k g

2
VVPϵ

μναβϵμ
0ν0α0

βϵνðpÞϵν0 ðkÞpμp0
αkμ0k0α0

1

t −m2
Vk

þ iΓVk
mVk

−
X
A

gð1ÞA gð2ÞA

t −M2
A þ iΓAMA

�
gμν þ

p0
μk0ν
M2

A

�
ϵμðpÞϵνðkÞ; ð15Þ

Uij ¼ U ij
K̄g

2
PPVϵ

μðpÞϵνðkÞk0μp0
ν

1

u −m2
K̄ þ iϵ

þ U ij
K̄�g2VVPϵ

μναβϵμ
0ν0α0

βϵνðpÞϵν0 ðkÞpμk0αkμ0p0
α0

1

u −m2
K̄� þ iΓK̄�mK̄�

−
X2
l¼1

gð1ÞK1;l
gð2ÞK1;l

u −M2
K1;l

þ iΓK1;lMK1;l

�
gμν þ

k0μp0
ν

M2
K1;l

�
ϵμðpÞϵνðkÞ; ð16Þ
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Sij ¼
X
k

SijgPPVgVVV

��
ðm2

K� −m2
VÞ
�
1 −

m2
K −m2

π

m2
Vk

�
− 2ðk · p0 − p · p0Þ

�
ϵðkÞ · ϵðpÞ

− 2ðkμk0ν þ p0
μpν − kμp0

ν − k0μpνÞϵμðpÞϵνðkÞ
�

1

s −m2
Vk

þ iΓVk
mVk

; ð17Þ

where T ij, T̄ ij, U ij
K̄ , U

ij
K̄� and Sij are coefficients which are

given in Tables VIII–XII of Appendix A. In Eqs. (15), (16),
(17), and all diagrams depicted in Fig. 2, p, k are,
respectively, the four momenta of the external vector meson
without strangeness (ρ, ω, or ϕ) and of the external K�,
while p0 and k0 are the four momenta of the external π and

K, respectively. The symbols MA, ΓA, gð1ÞA and gð2ÞA in
Eq. (15) represent, respectively, the mass, width and
coupling constants to the two vertices shown in Fig. 2(a)
for the pole associated with the exchanged axial resonance
RA (see Table II of Appendix A for the numerical values).

In Eq. (16), MK1;l, ΓK1;l, g
ð1Þ
K1;l

and gð2ÞK1;l
correspond to the

mass, width and coupling constants to the two vertices
shown in Fig. 2(b) for the pole l related to the K1ð1270Þ
state and their numerical values are listed in Table I of
Appendix A. In Eq. (17),mV is the mass of the external ρ, ω
or ϕ vector mesons and, as in case of Eq. (10),mVk

and ΓVk

are the mass and width, respectively, of the exchanged
vector meson in the diagram of Fig. 2(b). Note that, in this
case, we cannot have the exchange of a pseudoscalar meson
in the s channel, since it implies the presence of a three
pseudoscalar vertex.
Before proceeding with the discussion on the results

found in our work, some comments are here in order related
to the present approach:

(i) The couplings of the exchanged resonances to the
different meson-meson channels, listed in Tables I,
II, XIII are complex in nature, which may raise a
question related to the unitarity of such amplitudes.
As shown in Refs. [10,11], these couplings are
obtained from the scattering matrix found by solving
the Bether-Salpeter equation in the complex energy
plane. In the vicinity of the resonance, the scattering
matrix (found from the resolution of the Bethe-
Salpeter equation in coupled channels) for a process
aþ b → cþ d can be written in terms of a Breit-
Wigner propagator for the generated resonance in
the system times the couplings of this resonance to
the channels aþ b and cþ d. Thus, the complex
amplitudes obtained by using the couplings in
Tables I, II, XIII correspond to the complex ampli-
tudes which result from solving the Bethe-Salpeter
equation, and which are manifestly unitary.

(ii) In the present work, two different sources of
interactions are considered, one which corresponds
to the dynamical generation of the resonances in the
system (incorporated by means of the couplings

given in Refs. [10,11]). And the other arising from
those diagrams which are not required to generate
the resonances found in Refs. [10,11]. The former
one is equivalent to unitarizing the interactions
considered in Refs. [10,11] while the latter inter-
actions are not unitarized, since it is not expected
that the unitarization of diagrams different to those
considered in Refs. [10,11] should affect much the
generation of the resonances found in those works.
Ideally, one should unitarize the interactions coming
from all sources, but as a first attempt to show the
possible importance of the missing diagrams and
processes in Ref. [9], we have adopted a simplified,
but practical, approach. More complete calculations
are beyond the scope of the present work.

III. RESULTS

A. Cross sections for the processes πK� → ρK;ωK;ϕK

We start the discussion of the results by showing, in
Fig. 3, the cross sections obtained from Eq. (1) for the reac-
tion πK� → ρK with different mechanisms: (1) t-channel
exchange of a pseudoscalar meson (solid line with
circles); (2) t-channel exchange of a vector meson

FIG. 3. Cross sections obtained with Eq. (1) for the process
πK� → ρK considering different mechanism as a function offfiffiffi
s

p
− ffiffiffiffiffi

s0
p

, where
ffiffiffi
s

p
is the center of mass energy and

ffiffiffiffiffi
s0

p
is the

threshold energy for the reaction. The boldfaced text in the
legends indicate the mechanisms considered in Ref. [9].
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(dashed-dotted-dotted line); (3) u-channel exchange of a
vector (line with rhombus); (4) s-channel exchange of a
pseudoscalar (dashed-dotted line); (5) s-channel exchange
of a vector (solid line with triangles) (6) s-channel
exchange of K1ð1270Þ (dashed line). The dotted and solid
lines in Fig. 3 correspond, respectively, to considering the
mechanisms (1)–(5) and (1)–(6) for the determination of
the cross section.
As can be seen in Fig. 3, the contribution from the

t-channel exchange of a pseudoscalar meson (not consid-
ered in Ref. [9]) gives rise to the largest cross section and
the other mechanisms considered produce small corrections
to it. Note that due to a reordering of the particles in the
vertices, the t-channel (u-channel) exchange in Ref. [9]
corresponds to the u-channel (t-channel) exchange in the
present work to which we refer throughout the text. It is
also interesting to notice that the u-channel exchange of a
vector meson (considered in Ref. [9]) leads to a larger cross
section than that associated with the t-channel exchange of
a vector meson (not evaluated in Ref. [9]) and the s-channel
exchange of a pseudoscalar. The process in which a vector
meson is exchanged in the s channel (not taken into account
in Ref. [9]) gives a larger contribution to the cross section
when compared with the one arising from the exchange of a
pseudoscalar in the s channel (considered in Ref. [9]). It
should be mentioned that the contribution of the K1ð1270Þ
exchange in the s channel to the cross section is negligible
(compare the solid and dotted lines of Fig. 3).
In Fig. 4, we show the results for the reactions πK� →

ωK (left panel) and πK� → ϕK (right panel), reactions
which were not considered in Ref. [9]. As can be seen, the
final cross section for both reactions (solid lines) have

similar magnitude and both are smaller than the one for the
process πK� → ρK (solid line in Fig. 3) by around one
order of magnitude. This finding indicates that the absorp-
tion mechanism of a K� by a pion, producing a K together
with an ω or a ϕ may probably not be relevant in the
determination of the time evolution of the abundances
found in Ref. [9] for K� and K. Note, however, that without
the contribution to the cross section of πK� → ρK from a
diagram involving ρππ and K�πK vertices (not evaluated in
Ref. [9]), shown as line with circles in Fig. 3, the cross
sections for the processes πK� → ρK;ωK;ϕK are compa-
rable. It is also interesting to notice the relevance in the
πK� → ωK cross section of the mechanism in which the
K1ð1270Þ is exchanged in the s channel (dashed line in
Fig. 4, left panel). The inclusion of such K1ð1270Þ
exchange produces a significant change in the cross
section, as can be noticed from Fig. 4 by comparing the
dotted line, which shows the total cross section obtained
without considering the exchange of K1ð1270Þ in the s
channel, and the solid line, which corresponds to the result
with such an exchange included. As in case of the process
πK� → ρK, the u-channel exchange of a vector meson in
the reactions πK� → ωK and πK� → ϕK (line with rhom-
bus in both panels of Fig. 4) gives larger contribution to the
cross section than the exchange of a vector or pseudoscalar
mesons in the s channel or a vector meson in the t channel,
with the latter mechanism being more important in case of
the process πK� → ωK.

B. Cross sections for the processes ρK�;ωK�;ϕK� → πK

In Fig. 5, we show the cross section calculated
with Eq. (1) for the process ρK� → πK considering

FIG. 4. Cross sections obtained with Eq. (1) for the process πK� → ωK (left panel) and πK� → ϕK (right panel) considering different
mechanism as a function of

ffiffiffi
s

p
− ffiffiffiffiffi

s0
p

, where
ffiffiffi
s

p
is the center of mass energy and

ffiffiffiffiffi
s0

p
is the threshold energy for the reaction. None of

these processes were evaluated in Ref. [9].
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contributions from the mechanism shown in Figs. 2(a)–2(c).
Since the process is exothermic, the cross section diverges
at the threshold. As can be seen, the consideration of the
exchange of the resonances listed in Table II in the t channel
and the exchange of K1ð1270Þ in the u channel produces a
small modification in the total cross section. The contri-
bution to the cross section from the exchange of a
pseudoscalar meson in the t channel is larger than that
related to the exchange of a vector meson in the t or u
channel (both missing in Ref. [9]) and that of a pseudoscalar
meson in the u channel (considered in Ref. [9]). Since the s-
channel exchange of a vector meson (taken into account in
Ref. [9]) turns out to give a very small contribution to the
cross section, the other mechanisms considered here
become relevant.
Similar to the case ρK� → πK, the resonance exchange in

the t andu channels for the reactionsωK� → πK andϕK� →
πK produces a weak modification in the cross section (com-
pare the solid and dotted lines in both panels of Fig. 6).
Interestingly, the final cross sections for ρK� → πK, ωK� →
πK and ϕK� → πK have comparable magnitude.

C. Resonance exchange in ρK�;ωK�;ϕK� → πK
through triangular loops

In addition to the mechanisms discussed so far to deter-
mine the cross sections of the reactions ρK�;ωK�;ϕK� →
πK (see Fig. 2), one could also consider the possibility of
exchanging a resonance in the s channel, as in case of the
K1ð1270Þ exchange in πK� collisions (see Fig. 1). Indeed,

FIG. 6. Cross sections obtained with Eq. (1) for the processes ωK� → πK (left panel) and ϕK� → πK (right panel) considering
different mechanism as a function of

ffiffiffi
s

p
− ffiffiffiffiffi

s0
p

, where
ffiffiffi
s

p
is the center of mass energy and

ffiffiffiffiffi
s0

p
is the threshold energy for the reaction.

Since the cross section, independently of the mechanism, diverges at threshold, they have been calculated at an energy starting 0.5 MeV
above the threshold of the reaction, so the x axis is actually

ffiffiffi
s

p
− ffiffiffiffiffi

s0
p þ 0.5 MeV. In the figure, h1 ≡ h1ð1170Þ and h01 ≡ h1ð1380Þ.

None of these processes were computed in Ref. [9].

FIG. 5. Cross sections obtained with Eq. (1) for the process
ρK� → πK considering different mechanism as a function offfiffiffi
s

p
− ffiffiffiffiffi

s0
p

, where
ffiffiffi
s

p
is the center of mass energy and

ffiffiffiffiffi
s0

p
is the

threshold energy for the reaction. Since the cross section,
independently of the mechanism, diverges at the threshold,
they have been calculated at an energy starting 0.5 MeV above
the threshold of the reaction, so the x axis is actuallyffiffiffi
s

p
− ffiffiffiffiffi

s0
p þ 0.5 MeV. In the figure, h1 ≡ h1ð1170Þ and

h01 ≡ h1ð1380Þ. The boldfaced text in the legends indicates the
mechanism evaluated in Ref. [9].
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in Ref. [33] the interaction of K� with ρ, ω and ϕ in s-wave
(orbital angular momentum 0) was investigated and several
K� resonances with I ¼ 1/2 and different spin were found
as a consequence of the dynamics involved: a JP ¼ 0þ
resonance with mass 1643 MeV and width of 48 MeV,
which is a prediction of the theory; a 1þ resonance with
mass 1737 MeVand width of 164 MeV which is associated
with the state K�

1ð1650Þ listed by the PDG [13]; a JP ¼ 2þ

state with mass 1431 MeV and 56 MeV of width which is
identified with the K�

2ð1430Þ listed by the PDG. Thus,
exchange of these K�

S states (with S indicating the spin) in
the s-channel, as shown in Fig. 7, can be important while
calculating the cross section for ρK� → πK. As can be seen
in Fig. 7, one of the vertices involved in the process is the
K�

SπK vertex. From Ref. [33], we have information on the
pole positions of these K�

S states and their couplings to the
channels ρK�, ωK� and ϕK� (which we list in Table XIII of
Appendix B), but the couplings to two pseudoscalars are
not available. However, in the model of Ref. [33] we can
interpret the K�

SπK vertex as an effective one: due to the
vector-vector dynamical nature of these K�

S states, two
pseudoscalar channels were not considered as a part of the
coupled channel space in Ref. [33]. Within the approach of
Ref. [33], the simplest way of considering K�

S exchange in
the s-channel is through an effective vertex, represented
by a filled box in Fig. 7, which involves triangular loops
(see Fig. 8). This is similar to the case of other molecular
type resonances, like Xð3872Þ, Nð1700ÞJP ¼ 3/2−,
f1ð1285Þ, a1ð1420Þ, where the simplest mechanism to
explain their decay modes is through triangular loops (see
Refs. [16,34–37]).
The details related to the determination of the amplitude for

the process depicted in Fig. 7 can be found in Appendix B.
Since the interaction of the initial vector-vector system in the

diagramofFig. 7wouldgenerate theseK�
S states, the quantum

numbers for theexternalvectors systemcanbeJP ¼ 0þ,1þ or
2þ.The final state inFig. 7 consists of twopseudoscalars (total
spin 0), thus, the only way of getting J ¼ 1 is with one unit of
orbital angular momentum which leads the two pseudoscalar
system to have JP ¼ 1− instead of the initial 1þ. This means
that in the diagram of Fig. 7 we can not have a transition
in the s channel through the exchange of the K�

1 resonance
found in Ref. [33]. Similarly, we can not have interference
between the diagrams in Fig. 2(c), which involves the
exchange of a pseudoscalar or vector meson (thus, a initial
state having negative total parity), and the diagram in Fig. 7.
In Fig. 9, we show the cross section for the process

ρK� → πK considering s-channel exchange of the K�
S

resonances. As can be seen by comparing with the results
shown in Fig. 5, the contribution to the cross section of the
mechanism depicted in Fig. 7 is very relevant. These results
suggest that the inclusion of the process shown in Fig. 7
must strongly affect the production of K� and K in heavy
ion collisions.
In Fig. 10, we show the results found for the cross

section related to the s-channel exchange of K�
S in case of

the reactions ωK� → πK (left panel) and ϕK� → πK (right
panel). By comparing with the results found in Fig. 6, this
mechanism also produces changes in the cross section
obtained without the s-channel K�

S exchange, although
milder than in case of the reaction ρK� → πK.

D. Cross sections for the inverse reactions

We can obtain the cross section for the production of K�
from the reactions ρK;ωK;ϕK→ πK� and πK→ ρK�;

FIG. 9. Contribution to the cross section of ρK� → πK from the
triangular loops shown in Fig. 8, in which we consider the
exchange of the states listed in Table XIII.

FIG. 7. Exchange of the K�
S states found in Ref. [33] in the

s channel for the reactions ρK�;ωK�;ϕK� → πK. The filled box
in the figure corresponds to the vertex K�

SπK, which is evaluated
considering the triangular loop shown in Fig. 8.

FIG. 8. The K�
SπK vertex.
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ωK�;ϕK� using the principle of detailed balance: if σab→cd
is the cross section for the process aþ b → cþ d, calcu-
lated via Eq. (1), we can determine the cross section for the
inverse reaction, cþ d → aþ b, as

σcd→ab ¼
ð2sa þ 1Þð2sb þ 1Þð2Ia þ 1Þð2Ib þ 1Þ
ð2sc þ 1Þð2sd þ 1Þð2Ic þ 1Þð2Id þ 1Þ

×
λðs;m2

a;m2
bÞ

λðs;m2
c; m2

dÞ
σab→cd: ð18Þ

In Fig. 11, we show the results obtained for the K�
production cross sections using the principle of detailed
balance. On the left panel, we show the cross sections
found for ρK;ωK;ϕK → πK� (thick lines) determined
from the cross sections shown in Figs. 3, 4 (solid lines)
and Eq. (18). The peak like structure found in the results for
the reaction ρK → πK� corresponds to the manifestation of
K1ð1270Þ. For the sake of comparison, we have also plotted
the results found in Figs. 3, 4 for the cross sections of the
K� absorption in the reactions πK� → ρK;ωK;ϕK. On the
right panel, we show the results found for the cross sections
of the reactions πK → ρK�;ωK�;ϕK�, which have been
determined by using the results obtained in Figs. 5, 6, 9, 10
(solid lines) and Eq. (18).
As can be seen in Fig. 11 (left panel), the absorption

cross sections of K� by π are smaller than the correspond-
ing ones for the production processes through collisions of
K with ρ, ω or ϕ. The trend is the same in case of the
absorption of K� by ρ for excitation energies above
∼90 MeV (right panel), while the absorption cross sections

of K� by ω or ϕ are larger than those related to its
production from collisions of π and K. However, for
excitation energies bigger than ∼90 MeV the cross section
for the πK → ρK� process dominates above all.
Very recently, K and K� formation in relativistic

heavy-ion collisions has been investigated in the context
of the Parton-Hadron-String dynamics (PHSD) transport
approach [38,39], which considers the in-medium effects in
the K and K̄� states through the modification of their
spectral properties during the propagation through the
medium. The authors conclude that final state interactions
(in the hadron gas) contribute to reduce the ratio K�/K,
corroborating the findings of Ref. [9].
In this latter model, the relevance of the absorption and

production mechanisms of K� and K mesons in the QGP to
the abundances of K� and K at the kinetic freeze-out
temperature appears through the thermal average cross
sections for such processes. These thermal averaged cross
sections affect the time evolution of the abundance of K�
and K in the corresponding rate equations, where the
quantity hσvreli enters as input in the equations (here the
symbol <> represents the thermal average and vrel is
the relative velocity between the particles present in the
initial state of the process whose cross section is σ). Due to
the relevance of the quantity hσvreli, we present our results
for the thermal averaged cross sections of Fig. 11 in the
next section.

E. Thermal averaged cross sections

For a process aþ b → cþ d, thermal averaged cross
sections are given by [9,40],

FIG. 10. Contribution to the cross section of ωK� → πK (left panel) and ϕK� → πK (right panel) from the s-channel exchange of the
K�

S states listed in Table XIII.
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hσab→cdvabi ¼
R
d3pad3pbfaðp⃗aÞfbðp⃗bÞvabσab→cdR

d3pad3pbfaðp⃗aÞfbðp⃗bÞ
¼ 1

4α2aK2ðαaÞα2bK2ðαbÞ
Z

∞

z0

dzK1ðzÞσab→cdðzÞ

× ½z2 − ðαa þ αbÞ2�½z2 − ðαa − αbÞ2�; ð19Þ

where z ¼ ffiffiffi
s

p
/T, with T being the temperature of the

medium, vab represents the relative velocity between
particles a and b, fiðp⃗iÞ is the Boltzmann momentum

distribution of particle i with momentum p⃗i, αi ¼ mi/T,
with mi being the mass of particle i, z0 ¼ maxðαa þ αb;
αc þ αdÞ, and K1ðzÞ and K2ðzÞ are the modified Bessel
functions of the second kind, of order 1 and 2, respectively.
In Fig. 12, we show the thermal averaged cross sections

for the results shown in Fig. 11. As can be seen, the thermal
averaged cross sections for K� production from collisions
of ρ, ω and ϕ with kaons are larger than the corresponding
K production cross sections from collisions of π with K�
(see the left panel of Fig. 12). On the contrary, the K
production cross sections from the collision of ρ, ω and ϕ

FIG. 11. Cross sections for πK� ↔ ρK;ωK;ϕK (left panel) and ρK�;ωK�;ϕK� ↔ πK (right panel).

FIG. 12. Thermal averaged cross sections for πK� ↔ ρK;ωK;ϕK (left panel) and ρK�;ωK�;ϕK� ↔ πK (right panel).
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with K� are larger than those related to the K� production
from collisions between π and K (see the right panel of
Fig. 12). The largest of all is the production cross section of
K from the ρ − K� collisions, throughout the range of the
temperature shown in Fig. 12. On the other hand, the largest
cross section for the K� production come from ρ − K
collisions, which when compared with the former is about a
factor two smaller. Whether this is or not an indication of a
possible K� suppression of the K� yield in a pos-QGP
hadronic medium can only be disentangled by solving the
rate equations for the abundances ofK andK�, in which the
number of π, ρ, ω, ϕ, K, K� present in the medium would
also play a crucial role in determining which of the
processes shown in Fig. 12 turns to dominate, if any.
A detailed analysis based on the study of the rate equations
is in progress and will be published soon.

IV. CONCLUSIONS

We have determined the cross sections related to the
processes πK�→ ρK;ωKϕK and ρK�;ωK�ϕK�→ πK con-
sidering the exchange of pseudoscalars, vectors and several
resonances. The reactions πK� → ρK and ρK�→ πK,
together with K� → Kπ, Kπ → K�, were found in
Ref. [9] to be the reactions contributing dominantly to the
abundance ratio of K� and K in heavy ion collisions.
However, several mechanisms which could contribute to
the cross sections of πK� → ρK and ρK� → πK were
missing in Ref. [9]. With the purpose of obtaining informa-
tion on such processes, we consider a more complete
formalism, which takes into account more mechanisms
and calculate cross sections. We find that some of these
new contributions turn out to be especially important, as the
pseudoscalar exchange in the t channel for the processes
πK� → ρK and ρK� → πK, exchange of resonances in the s
channel, like K�

2ð1430Þ, for ρK� → πK, etc. We have also
determined the cross sections for the inverse processes using
the principle of detailed balance. To present a more
summarized picture, we have given the thermal averaged
cross sections. The comparison between the direct and
inverse processes shown in Fig. 12 shows that the production
of K from ρK� collisions gives the largest thermal averaged
cross section in all the range of temperatures. Whether this
dominance translates or not to a suppression of the K� yield
measured in heavy ion collisions can be known by solving
the rate equations for the abundances of K and K� and their
time evolution. Our results should be useful in obtaining a
more accurate time evolution for the abundance ratio of K�
and K in heavy ion collisions.
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APPENDIX A: INFORMATION RELATED TO
THE EXCHANGED RESONANCES IN THE

t, u AND s CHANNELS

In Tables I and II of this appendix, we list, for
completeness, the pole positions and couplings of the
states found in Refs. [10,11]. These couplings are in the
isospin base and to determine their values in the charge

TABLE I. Pole positions and couplings of the K1ð1270Þ state to
the different coupled channels whose dynamics generates the
state [10,11]. A two pole structure is found for K1ð1270Þ in
Refs. [10,11] and the values shown in this table have been taken
from Ref. [11]. The pole positions written in the table corre-
sponds to M − i Γ

2
, with M and Γ the mass and width character-

izing the state. The numerical values for the masses, widths and
couplings of the states are expressed in MeV.

Pole 1195 − i123 1284 − i73

Channel Coupling constant

ϕK 2096 − i1208 1166 − i774
ωK −2046þ i821 −1051þ i620
ρK −1671þ i1599 4804þ i395
K�η 72þ i197 3486 − i536
K�π 4747 − i2874 769 − i1171

TABLE II. Pole positions and couplings of the axial resonances
h1ð1170Þ, h1ð1380Þ (strangeness S¼ 0, isospin I¼ 0, G-parity
G¼−), f1ð1285Þ (S¼ 0, I¼ 0, G¼þ), a1ð1260Þ (S¼ 0, I¼ 1,
G¼−) and b1ð1235Þ (S¼ 0, I¼ 1, G¼þ) to the different
coupled channels whose dynamics generates them [10]. The
values shown in this table have been taken from Ref. [10]. The
pole positions written in the table corresponds to M− iΓ

2
, with M

and Γ the mass and width characterizing the state. The numerical
values for the masses, widths and couplings of the states are
expressed in MeV.

State (G¼−) h1ð1170Þ h1ð1380Þ a1ð1260Þ
Pole 919− i17 1245− i7 1011− i84

Channel (G¼−) Coupling constant
1ffiffi
2

p ½K̄�K−K�K̄� 781− i498 6147þ i183 1872− i1486

ϕη 46− i13 −3311þ i47 0
ωη 23− i28 3020− i22 0
ρπ −3453þ i1681 648− i959 −3795þ i2330

State (G¼þ) f1ð1285Þ b1ð1235Þ
Pole 1288− i0 1245− i28

Channel (G¼þ) Coupling constant
1ffiffi
2

p ½K̄�KþK�K̄� 7230þ i0 6172− i75

ϕπ 0 2087− i385
ωπ 0 −1869þ i300
ρη 0 −3041þ i498
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basis we use the Clebsch-Gordan coefficients and the
following convention to associate particles with states in
the isospin base jI; I3i (with I being the total isospin and I3
its third projection)

jK−i ¼ −
				 12 ;−

1

2



; jK�−i ¼ −

				 12 ;−
1

2



;

jπþi ¼ −j1; 1i; jρþi ¼ −j1; 1i: ðA1Þ

In this way, for example, from Table II, we have that the
coupling of the isospin 0, G-parity positive, state f1ð1285Þ
to 1ffiffi

2
p ½K̄�K þ K�K̄� (which corresponds to a positive

G-parity combination) is g ¼ 7230þ i0. This means that
the state f1ð1285Þ couples to the combination

TABLE IV. Coefficients T̄ ij
k present in Eq. (9) for the reactions

r ¼ πK� → ρK;ωK;ϕK for total charge −1, 0, 1 and 2. The
index i represents the initial state πK� for a particular charge
configuration and the index j corresponds to the final state for the
same total charge. The index k corresponds to the exchanged
vector, which we indicate in brackets next to the coefficient. See
the caption of Table III for the notation used here.

ρ−K0

π−K�0 − 1
2
ðωÞ

ρ−Kþ ρ0K0 ωK0 ϕK0

π−K�þ − 1
2
ðωÞ 0 − 1ffiffi

2
p ðρ−Þ 0

π0K�0 0 − 1
2
ðωÞ 1

2
ðρ0Þ 0

ρþKþ

πþK�þ − 1
2
ðωÞ

ρ0Kþ ρþK0 ωKþ ϕKþ

π0K�þ − 1
2
ðωÞ 0 − 1

2
ðρ0Þ 0

πþK�0 0 − 1
2
ðωÞ − 1ffiffi

2
p ðρþÞ 0

TABLE III. Coefficients T ij
k present in Eq. (9) for the reactions

r ¼ πK� → ρK;ωK;ϕK for total charge −1, 0, 1 and 2. The
index i represents the initial state πK� for a particular charge
configuration and the index j corresponds to the final state for the
same total charge. The index k corresponds to the exchanged
pseudoscalar, which we indicate in brackets next to the coef-
ficient. The absence of the coefficient for some k means that the
coefficient is 0 for that exchanged particle. If no exchanged
particle is indicated next to the coefficient, the coefficient is 0
independently of the exchanged particle.

ρ−K0

π−K�0 4ðπ0Þ

ρ−Kþ ρ0K0 ωK0 ϕK0

π−K�þ −4ðπ0Þ 4
ffiffiffi
2

p ðπ−Þ 0 0
π0K�0 4

ffiffiffi
2

p ðπþÞ 0 0 0

ρþKþ

πþK�þ 4ðπ0Þ

ρ0Kþ ρþK0 ωKþ ϕKþ

π0K�þ 0 −4
ffiffiffi
2

p ðπ−Þ 0 0
πþK�0 −4

ffiffiffi
2

p ðπþÞ −4ðπ0Þ 0 0

TABLE VI. Coefficients Sij
K present in Eq. (11) for the reactions

r ¼ πK� → ρK;ωK;ϕK for total charge −1, 0, 1 and 2. In this
case, a K0 is exchanged for those processes whose total charge is
0 and a Kþ for total charge þ1. For total charge −1 and 2, no
particle can be exchanged in the s channel.

ρ−K0

π−K�0 0

ρ−Kþ ρ0K0 ωK0 ϕK0

π−K�þ −4 2
ffiffiffi
2

p
−2

ffiffiffi
2

p
4

π0K�0 2
ffiffiffi
2

p
−2 2 −2

ffiffiffi
2

p

ρþKþ

πþK�þ 0

ρ0Kþ ρþK0 ωKþ ϕKþ

π0K�þ −2 −2
ffiffiffi
2

p
−2 2

ffiffiffi
2

p
πþK�0 −2

ffiffiffi
2

p
−4 −2

ffiffiffi
2

p
4

TABLE V. Coefficients Uij
k present in Eq. (10) for the reactions

r ¼ πK� → ρK;ωK;ϕK for total charge −1, 0, 1 and 2. See the
caption of Table IV for the notation used here.

ρ−K0

π−K�0 1ðK�−Þ

ρ−Kþ ρ0K0 ωK0 ϕK0

π−K�þ 0 1ffiffi
2

p ðK�−Þ 1ffiffi
2

p ðK�−Þ −1ðK�−Þ
π0K�0 1ffiffi

2
p ðK�−Þ 1

2
ðK̄�0Þ − 1

2
ðK̄�0Þ 1ffiffi

2
p ðK̄�0Þ

ρþKþ

πþK�þ 1ðK̄�0Þ

ρ0Kþ ρþK0 ωKþ ϕKþ

π0K�þ 1
2
ðK�−Þ − 1ffiffi

2
p ðK̄�0Þ 1

2
ðK�−Þ − 1ffiffi

2
p ðK�−Þ

πþK�0 − 1ffiffi
2

p ðK̄�0Þ 0 1ffiffi
2

p ðK̄�0Þ −1ðK̄�0Þ
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1ffiffiffi
2

p ½jK̄�K; I ¼ 0; I3 ¼ 0i þ jK�K̄; I ¼ 0; I3 ¼ 0i�

¼ 1

2
½jK̄�0K0i þ jK�−Kþi−jK�þK−i − jK�0K̄0i�;

from which we get

gf1→K̄�0K0 ¼ gf1→K�−Kþ ¼ −gf1→K�þK− ¼ −gf1→K�0K̄0 ¼ 1

2
g:

ðA2Þ

In Tables III–XII, we give the coefficients entering in the
t-, u- and s- channel amplitudes of Figs. 1 and 2.

TABLE VII. Coefficients Sij
K� present in Eq. (11) for the

reactions r¼ πK� → ρK;ωK;ϕK for total charge −1, 0, 1 and
2. In this case, a K�0 is exchanged for those processes whose total
charge is 0 and a K�þ for total charge þ1. In case of total charge
−1 and 2, no particle can be exchanged in the s channel.

ρ−K0

π−K�0 0

ρ−Kþ ρ0K0 ωK0 ϕK0

π−K�þ − 1
2

1

2
ffiffi
2

p − 1

2
ffiffi
2

p − 1
2

π0K�0 1

2
ffiffi
2

p − 1
4

1
4

1

2
ffiffi
2

p

ρþKþ

πþK�þ 0

ρ0Kþ ρþK0 ωKþ ϕKþ

π0K�þ − 1
4

− 1

2
ffiffi
2

p − 1
4

− 1

2
ffiffi
2

p

πþK�0 − 1

2
ffiffi
2

p − 1
2

− 1

2
ffiffi
2

p − 1
2

TABLE VIII. Coefficients T ij present in Eq. (15) for the
reactions r ¼ ρK�;ωK�;ϕK� → πK for total charge −1, 0, 1
and 2. In this case, a vector meson is exchanged and we write the
exchanged particle next to the coefficient. If the coefficient is 0,
the process cannot proceed via vector meson exchange.

π−K0

ρ−K�0 4ðπ0Þ

π−Kþ π0K0

ρ−K�þ −4ðπ0Þ 4
ffiffiffi
2

p ðπ−Þ
ρ0K�0 4

ffiffiffi
2

p ðπþÞ 0
ωK�0 0 0
ϕK�0 0 0

πþKþ

ρþK�þ 4ðπ0Þ

π0Kþ πþK0

ρ0K�þ 0 −4
ffiffiffi
2

p ðπ−Þ
ρþK�0 −4

ffiffiffi
2

p ðπþÞ −4ðπ0Þ
ωK�þ 0 0
ϕK�þ 0 0

TABLE X. Coefficients U ij
K̄ present in Eq. (16) for the reactions

r ¼ ρK�;ωK�;ϕK� → πK for total charge −1, 0, 1 and 2. In this
case, a K̄ meson is exchanged in all diagrams.

π−K0

ρ−K�0 4

π−Kþ π0K0

ρ−K�þ 0 2
ffiffiffi
2

p
ρ0K�0 2

ffiffiffi
2

p
2

ωK�0 2
ffiffiffi
2

p
−2

ϕK�0 −4 2
ffiffiffi
2

p

πþKþ

ρþK�þ 4

π0Kþ πþK0

ρ0K�þ 2 −2
ffiffiffi
2

p
ρþK�0 −2

ffiffiffi
2

p
0

ωK�þ 2 2
ffiffiffi
2

p
ϕK�þ −2

ffiffiffi
2

p
−4

TABLE IX. Coefficients T̄ ij present in Eq. (15) for the
reactions r ¼ ρK�;ωK�;ϕK� → πK for total charge −1, 0, 1
and 2. See the caption of Table VIII for the notation used here.

π−K0

ρ−K�0 − 1
2
ðωÞ

π−Kþ π0K0

ρ−K�þ − 1
2
ðωÞ 0

ρ0K�0 0 − 1
2
ðωÞ

ωK�0 − 1ffiffi
2

p ðρþÞ 1
2
ðρ0Þ

ϕK�0 0 0

πþKþ

ρþK�þ − 1
2
ðωÞ

π0Kþ πþK0

ρ0K�þ − 1
2
ðωÞ 0

ρþK�0 0 − 1
2
ðωÞ

ωK�þ − 1
2
ðρ0Þ − 1ffiffi

2
p ðρ−Þ

ϕK�þ 0 0
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APPENDIX B: EVALUATION OF THE
s-CHANNEL EXCHANGE OF RESONANCES
IN THE REACTIONS ρK�;ωK�;ϕK� → πK

In this appendix, we determine the amplitude related to
the process depicted in Fig. 7 in which the K�

S states (where
the subscript S indicates spin) found in Ref. [33] are
exchanged in the s channel through triangular loops (see
Fig. 8). We have summarized the properties found in
Ref. [33] for these K�

S in Table XIII.
We have the following expression for the amplitude of

the process depicted in Fig. 7

SijK�
S
¼

X
k1;k2;k3

gðiÞK�
S
gðk1k2ÞK�

S

1

s −M2
K�

S
þ iΓK�

S
MK�

S

× g2PPVS
ðk1k2k3ÞPμν

S p0
μI

ðk1k2k3Þ
ν ; ðB1Þ

where the coefficients Sðk1k2k3Þ are given in Table XIV. The
symbolsMK�

S
and ΓK�

S
in Eq. (B1) are the mass and width of

the poles related to the exchanged K�
S state, while gðiÞK�

S
and

gðk1k2ÞK�
S

are, respectively, the coupling constants of those

poles to the initial state and to the vector mesons present in

TABLE XII. Coefficients Sij present in Eq. (17) for the
reactions r ¼ ρK�;ωK�;ϕK� → πK for total charge −1, 0, 1
and 2. In this case, a K̄� meson is exchanged in all diagrams.

π−K0

ρ−K�0 0

π−Kþ π0K0

ρ−K�þ 1 − 1ffiffi
2

p

ρ0K�0 − 1ffiffi
2

p 1
2

ωK�0 1ffiffi
2

p − 1
2

ϕK�0 −1 1ffiffi
2

p

πþKþ

ρþK�þ 0

π0Kþ πþK0

ρ0K�þ 1
2

1ffiffi
2

p

ρþK�0 1ffiffi
2

p 1

ωK�þ 1
2

1ffiffi
2

p

ϕK�þ − 1ffiffi
2

p −1

TABLE XI. Coefficients U ij
K̄� present in Eq. (16) for the

reactions r ¼ ρK�;ωK�;ϕK� → πK for total charge −1, 0, 1
and 2. In this case, a K̄� meson is exchanged in all diagrams.

π−K0

ρ−K�0 − 1
2

π−Kþ π0K0

ρ−K�þ 0 − 1

2
ffiffi
2

p

ρ0K�0 − 1

2
ffiffi
2

p − 1
4

ωK�0 − 1

2
ffiffi
2

p 1
4

ϕK�0 − 1
2

1

2
ffiffi
2

p

πþKþ

ρþK�þ − 1
2

π0Kþ πþK0

ρ0K�þ − 1
4

1

2
ffiffi
2

p

ρþK�0 1

2
ffiffi
2

p 0

ωK�þ − 1
4

− 1

2
ffiffi
2

p

ϕK�þ − 1

2
ffiffi
2

p − 1
2

TABLE XIII. Pole positions and couplings of the vector
resonances K�

0ð1643Þ (I ¼ 1/2, spin 0) and K�
2ð1430Þ (I ¼ 1/2,

spin 2) found in Ref. [33], with the former being a prediction of
the model. The pole positions written in the table corresponds to
M − i Γ

2
, with M and Γ the mass and width characterizing the

state. The numerical values for the masses, widths and couplings
of the states are expressed in MeV.

State K�
0ð1643Þ K�

2ð1430Þ
Pole 1643 − i24 1431 − i28

Channel Coupling constant

ρK� 8102 − i959 10901 − i71
ωK� 1370 − i146 2267 − i13
ϕK� −1518þ i209 −2898þ i17

TABLE XIV. Coefficients Sðk1k2k3Þ present in Eq. (B1) for the
reactions r ¼ ρK�;ωK�;ϕK� → πK for total charge −1, 0, 1 and
2. We indicate those particles (related to the indices k1, k2 and k3)
which, when involved in the triangular loop, give a nonzero
coefficient.

ðk1k2k3Þ Sðk1k2k3Þ

ρ−K�þπ0 2
ρ0K�0πþ −2

ffiffiffi
2

p
ρ−K�þπ− −2

ffiffiffi
2

p
ρþK�0πþ 2

ffiffiffi
2

p
ρ0K�þπ− 2

ffiffiffi
2

p
ρþK�0π0 2
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the triangular loops shown in Fig. 8. The numerical values
for these quantities can be found in Table XIII.
To get Eq. (B1), we have used the following amplitude

for the coupling of the K�
S states to the vector mesons

tK�
S
¼ gðiÞK�

S
gðk1k2ÞK�

S

1

s −M2
K�

S
þ iΓK�

S
MK�

S

PS; ðB2Þ

where PS is a spin projector, which is given for the case of
spin S ¼ 0, 2 by [41]

P0 ¼
1

3
ϵμðkÞϵμðpÞϵνðqÞϵνðpþ k − qÞ;

P2 ¼
1

2
½ϵμðpÞϵνðkÞϵμðqÞϵνðpþ k − qÞ

þ ϵμðpÞϵνðkÞϵνðqÞϵμðpþ k − qÞ�

−
1

3
ϵαðpÞϵαðkÞϵβðqÞϵβðpþ k − qÞ: ðB3Þ

In Eq. (B3), q and pþ k − q represent, respectively, the
four momenta of the vector meson without strangeness and
the K� meson present in the triangular loop of Fig. 8 and
which are coupled to K�

S.
Since K�

S can be considered as molecular state of ρK�
and coupled channels [33] with its hadron components
being in s-wave, the vector mesons present in the triangular
loops and which couple to K�

S, although being off-shell,
should not be very far from being on-shell (i.e., their
respective modulus of the three-momenta are negligible
as compared to their energies). Within such an interpreta-
tion of K�

S, the temporal part of the polarization vectors
(∼ modulus of momentum divided by mass) of the mesons
at the resonance-meson-meson vertex should be negligible
as compared to the spatial components. This means that for
the external as well as the internal vector mesons coupled to
K�

S we can use the approximation [33,41]

X
polarizations

ϵμϵν ∼
X

polarizations

ϵiϵj ¼ δij; ðB4Þ

with i and j being spatial indices. However, it would be
more appropriate to maintain the covariant formalism
instead of working with mixed indices (some spatial and
other temporal-spatial). This can be achieved by writting

X
polarizations

ϵμϵν ∼ −gμν; ðB5Þ

for the vector mesons coupled to K�
S present in the

triangular loop of Fig. 8. This approximation implies the
inclusion, in the result, of a very small contribution arising
from the temporal part of the polarization vector of these
vector mesons. We have made use of this approximation to
get Eq. (B1). When summing over the polarizations of the
external vector mesons coupled to K�

S we use

X
polarizations

ϵμðkÞϵνðkÞ ¼ −gμν þ kμkν

m2
K�

;

X
polarizations

ϵμðpÞϵνðpÞ ¼ −gμν þ pμpν

m2
V

; ðB6Þ

which will produce negligible values for the temporal
and temporal-spatial components. This is so because, as
mentioned above, the external vectors, when interacting in
s-wave and for energies not far away from the threshold (as
in our case), generate the K�

S (following the interpretation
of Ref. [33]). Thus, the modulus of their momenta is much
smaller than their energies, so

X
polarizations

ϵ0ðkÞϵ0ðkÞ ¼ −g00 þ k0k0

m2
K�

¼ −1

þ k0k0

m2
K�

∼ −1þ 1 ¼ 0;

X
polarizations

ϵiðkÞϵ0ðkÞ ¼ −gi0 þ kik0

m2
K�

¼ kik0

m2
K�

∼ 0;

X
polarizations

ϵiðkÞϵjðkÞ − gij þ kikj

m2
K�

¼ 1þ kikj

m2
K�

∼ 1; ðB7Þ

and the same is the case for ϵðpÞ. Then, the use of
Eqs. (B5) and (B6) is in line with the approximation
in Eq. (B4).
The summation over the polarizations of the vector

mesons in the triangular loop coupled to K�
S gives rise

to the Pμν
S present in Eq. (B1), which is a spin projector for

the external vector mesons coupled to K�
S. Within the

approximation of Eqs. (B5) and (B6), we have for spin
S ¼ 0, 2

Pμν
0 ¼ 1

3
ϵðpÞ · ϵðkÞgμν;

Pμν
2 ¼ 1

2
½ϵμðpÞϵνðkÞ þ ϵνðpÞϵμðkÞ� − 1

3
ϵðpÞ · ϵðkÞgμν:

ðB8Þ

These expressions can be compared with the spin
projectors found in Ref. [41] for the case of spatial
indices and neglecting the temporal part of the polarization
vector,

Pij
0 ¼ 1

3
ϵ⃗ðpÞ · ϵ⃗ðkÞδij;

Pij
2 ¼ 1

2
½ϵiðpÞϵjðkÞ þ ϵjðpÞϵiðkÞ� − 1

3
ϵ⃗ðpÞ · ϵ⃗ðkÞδij: ðB9Þ

In this case, Eq. (B4) is used to sum over the
polarizations.
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In Eq. (B1), Iðk1k2k3Þν corresponds to the following integral

Iðk1k2k3Þν ¼
Z

d4q
ð2πÞ4

1

q2 −m2
Vk1

þ iϵ

×
ðk0 − p0 þ qÞν

ðpþ k − qÞ2 −m2
Vk2

þ iϵ

×
1

ðq − p0Þ2 −m2
Pk3

þ iϵ
; ðB10Þ

with mVk1
, mVk2

¼ mK� being the masses of the two vector
mesons which couple to K�

S in the triangular loop of
Fig. 8 and mPk3

is the mass of the exchanged pseudoscalar.
Using Lorentz covariance, the integral of Eq. (B10) can be
written as

Iðk1k2k3Þν ¼ aðk1k2k3Þkν þ bðk1k2k3Þpν þ cðk1k2k3Þk0ν
þ dðk1k2k3Þp0

ν; ðB11Þ
and we need to determine the coefficients aðk1k2k3Þ;
bðk1k2k3Þ; � � � appearing in this expression. The momentum
and mass assignations for the particles involved in the
triangular loop diagrams is shown in Fig. 13.
The determination of the four coefficients of Eq. (B11)

can be done by making use of the Feynman parametrization
and writing

1

αβγ
¼ 2

Z
1

0

dx
Z

x

0

dy
1

½αþ ðβ − αÞxþ ðγ − βÞy�3 ;

ðB12Þ

where

α≡ q2 −m2
Vk1

; β≡ ðpþ k − qÞ2 −m2
K� ;

γ ¼ ðq − p0Þ2 −m2
Pk3

: ðB13Þ

In this way,

½αþ ðβ − αÞxþ ðγ − βÞy� ¼ q02 þ rðk1k2k3Þ; ðB14Þ

where we have defined

q0 ≡ q − ðpþ kÞðx − yÞ þ p0y; ðB15Þ

and

rðk1k2k3Þ ¼ −ðx − yÞ½ðm2
V þm2

K� þ 2p · kÞðx − y − 1Þ
þ 2p0 · ðpþ kÞyþm2

Vk2
�

þ ½ð1 − yÞm2
π −m2

Pk3
�yþm2

Vk1
ðx − 1Þ ðB16Þ

Using Eqs. (B12), (B14), (B15), (B16), and the
relation

Z
d4q0

ð2πÞ4
1

ðq02 þ rþ iϵÞ3 ¼
i

25π2ðrþ iϵÞ ; ðB17Þ

we can identify the coefficients in Eq. (B11),

aðk1k2k3Þ ¼ bðk1k2k3Þ ¼ 1

24π2

Z
1

0

dx
Z

x

0

dy
ðx − yÞ

rðk1k2k3Þ þ iϵ
;

cðk1k2k3Þ ¼ 1

24π2

Z
1

0

dx
Z

x

0

dy
1

rðk1k2k3Þ þ iϵ
;

dðk1k2k3Þ ¼ 1

24π2

Z
1

0

dx
Z

x

0

dy
ðy − 1Þ

rðk1k2k3Þ þ iϵ
: ðB18Þ
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