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We present a Pisarski-Wilczek stability analysis of SU(4) gauge theory coupled simultaneously to
fermions charged under the fundamental and two-index antisymmetric representations of the gauge group.
We carry out the calculation to one loop in the ϵ expansion, assuming that the two species of fermion
undergo a simultaneous chiral transition. The results indicate that the chiral transition is first order.
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I. INTRODUCTION

Gauge theories coupled to fermions charged under
multiple different irreducible representations (irreps) of
the gauge group (“multirep theories”) are an old idea in
beyond Standard Model phenomenology. In particular,
multirep theories were long ago speculated to exhibit
interesting phase structure via the mechanism of “tumbling”
or “condensation in the most attractive channel” [1].
Phenomenologically, if observed, such a mechanism would
provide a natural means of dynamically generating separated
scales. More recently, multirep theories have enjoyed a
revival of interest in the context of UV completions of
partially composite Higgsmodels [2] andmodels of dynami-
cal electroweak symmetry breaking [3]. In particular, Ferretti
recently proposed such a model which contains vectorlike
fermion content and thus is amenable to investigation with
lattice gauge theory [4]. Our collaboration is carrying out an
investigation of a lattice deformation of this theory, examin-
ing both the zero-temperature behavior of the theory relevant
to the phenomenology of partial compositeness [5–7] as well
as the thermodynamics of the theory [8–10].
With multiple irreps present in the theory, there are

multiple different channels in which chiral condensation
may occur. Arguments based on tree-level gluon exchange
(Casimir scaling) predict that channels involving conden-
sation of higher irreps are more attractive, and thus con-
densation in these channels requires a lesser critical
coupling. Thus, in the tumbling or “scale separation”
scenario, different channels will chirally condense at differ-
ent scales as the temperature runs down from infinity,

leading to interesting “partially condensed” phases. This
argument can be made more precise using solutions of the
Dyson-Schwinger equation in the “ladder approximation”
[11]. Original lattice tests of this phenomenon using
quenched fermions suggested it would occur [12–15], but
recent lattice investigations indicate that phase separation
is at least not a universal feature of vectorlike multirep
theories [8–10].
Lattice studies have determined that the lattice deforma-

tion of Ferretti’s model exhibits a single phase transition
between a low-temperature phase where all fermions are
confined and chiral symmetry is broken and a high-temper-
ature phase where all fermions are deconfined and chiral
symmetry is restored [8–10]. The same investigation finds
evidence that this transition is strongly first order. If Ferretti’s
model (or something similar) lies somewhere in the UV
completion of the Standard Model, then the Universe will
have undergone this phase transition at some point early in
time. First-order transitions in the early Universe produce
signature gravitational waves, which may be detectable by
near-future detectors [16,17]. If the phase transition is indeed
first order, then the presence (or lack thereof) of these
signature gravitational waves can be used as a probe of
physics beyond the Standard Model. Thus, it is important to
provide an independent confirmation of the first-order-ness
of the transition in the theory, preferably with analytics.
The rest of this paper presents a Pisarski-Wilczek

stability analysis applicable to the chiral transition in both
Ferretti’s model and our collaboration’s lattice deformation
of this theory. In Sec. II, we provide a sketch of the
calculation to follow in the rest of the paper and comment
on the inputs to the calculation and how broadly its results
may be applied. In Sec. III, we discuss symmetries in
multirep theories and derive the EFT Lagrangian for our
calculation. In Sec. IV, we review the results of the
calculation for the single-irrep subsectors of the theory,
which have been examined previously [18–21] and whose
fixed points span a subset of the fixed points of the full

*daniel.hackett@colorado.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 055050 (2018)

2470-0010=2018=97(5)=055050(10) 055050-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.055050&domain=pdf&date_stamp=2018-03-30
https://doi.org/10.1103/PhysRevD.97.055050
https://doi.org/10.1103/PhysRevD.97.055050
https://doi.org/10.1103/PhysRevD.97.055050
https://doi.org/10.1103/PhysRevD.97.055050
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


theory (see Sec. V for a discussion). In Sec. V, we present
the results of the calculation for the full theory. In the
Conclusion, we discuss the robustness of the predictions of
the calculation against higher-order corrections (which are
known to find fixed points in the single-irrep sectors that
our treatment misses) and comment on future applications
of the methods used here.

II. OVERVIEW AND APPLICABILITY

We are interested in the general class of theories with a
single SU(N) gauge field coupled to fermions in one
complex irrep of the gauge group and fermions in one
real irrep of the gauge group. Wewill explicitly consider the
irrep content of Ferretti’s model: NF Dirac flavors of
fundamental irrep (F) fermions and Nw

A2
Weyl flavors of

two-index antisymmetric irrep (A2) fermions in SU(4),
where A2 is a real irrep. However, much of the discussion
below applies to the more general case; we will state (in
Sec. III) when our results or methods are no longer
applicable to this broader class of theories. When it is
not possible to state results for general NF and Nw

A2
, we will

consider two examples: Ferretti’s model, or SU(4) gauge
theory coupled to NF ¼ 3 Dirac flavors of F fermions and
Nw

A2
¼ 5 Weyl flavors of A2 fermions [4], and the “lattice-

deformed Ferretti model,” or SU(4) gauge theory coupled
to NF ¼ 2 Dirac flavors of F fermions and NA2

¼ 2 Dirac
(or Nw

A2
¼ 4 Weyl) flavors of A2 fermions.

A Pisarski-Wilczek stability analysis amounts to analyz-
ing the critical behavior of a three-dimensional effective
field theory (EFT) of the two chiral condensates of our
theory of interest. Some immediate specialization is in
order to steer the calculation. We will examine only the
dual-chiral limit where the fermion masses mF ¼ mA2

¼ 0,
so that chiral symmetry is exact. The EFT Lagrangian
derived in Sec. III is of a different form if either NF ¼ 1 or
Nw

A2
¼ 1, so we assume NF > 1 and Nw

A2
> 1 in what

follows.
We also immediately specialize our analysis to the case

where chiral condensation occurs simultaneously in both
the F and A2 sectors, as is found by lattice investigations.
To probe whether simultaneous critical behavior is pos-
sible, we will simultaneously tune the condensate mass
parameters for both sectors to zero. We comment in the
conclusion on how to adapt the calculation to treat the case
of separated phase transitions.
We further specialize to the spontaneous chiral-

symmetry-breaking (χSB) pattern

SUðNFÞL × SUðNFÞR × SUðNw
A2
Þ × Uð1ÞA

→ SUðNFÞV × SOðNw
A2
Þ;

which we will motivate in Sec. III. Although the theory
might have exhibited some other χSB pattern, this pattern is

strongly supported by the consistency of lattice investiga-
tions of the zero-temperature spectroscopy of the lattice-
deformed Ferretti model [7] with chiral perturbation theory
assuming this pattern [5]. The potential is thus subject to
constraints required to induce the assumed χSB pattern, as
discussed in Appendix A.
The procedure introduced by Pisarski and Wilczek [18]

is as follows. First, following the usual EFT prescription,
identify the symmetries of the theory and its spontaneous
symmetry-breaking pattern. Then, construct the most gen-
eral Landau-Ginzburg-Wilson (LGW) Lagrangian consis-
tent with those symmetries. Because we are interested in
critical behavior, this Lagrangian includes only relevant and
marginal operators. Additionally, consider this theory in
three dimensions: the finite-temperature system is compact
in the (Euclidean) temporal dimension, which will trivialize
as the correlation length diverges at criticality. Compute the
β functions of the theory, and identify their fixed points.
Finally, determine whether any of these fixed points are
infrared stable by examining the eigenvalues of the stability
matrix ∂βgi=∂gj (where gi are the couplings of the theory).
If any of the eigenvalues of ∂βgi=∂gj at a fixed point are
negative, that fixed point is infrared unstable. If no infrared-
stable fixed points exist, the calculation predicts that the
chiral transition must be first order. However, if any
infrared-stable fixed points exist, then the calculation
predicts that the chiral transition may be second order,
provided that the transition occurs in the basin of attraction
of one of the stable fixed points (but may be first order
otherwise).
We will carry out the calculation of the β functions to

one-loop order. We are interested in the behavior of the
dimensionally reduced three-dimensional (3D) EFT, so we
employ the ϵ expansion: we expand as usual in small
ϵ ¼ 4 − d, then set ϵ to 1. While more sophisticated
methods exist [19,20] to treat three-dimensionality, results
are scheme independent at one loop, so the ϵ expansion
provides the same results as more careful treatments. This
lowest-nontrivial-order approach is known to miss stable
fixed points in cases relevant to our analysis (the NF ¼ 2
single-irrep theory with suppressed anomaly) [20,21]. We
discuss the implications for our calculation in the
Conclusion.

III. SYMMETRIES AND LAGRANGIAN

A. Chiral symmetry and χSB pattern

In order to derive the LGW Lagrangian, we must first
identify the symmetries of our system. For each irrep of
fermion in a multirep theory, there is a completely
independent chiral symmetry. The fundamental irrep F
of SU(Nc) is complex forNc > 2, and so the F sector in our
theories of interest has the usual chiral symmetry

SUðNFÞL × SUðNFÞR × Uð1ÞV; ð1Þ
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where NF is the number of Dirac flavors of F fermions.
When fermions are charged under real irreps like the A2 of
SU(4), chiral symmetry is enhanced by an additional Z2

relating color and anticolor [22,23]. This expands the chiral
symmetry in the A2 sector to

SUðNw
A2
Þ; ð2Þ

where Nw
A2

is the number of Weyl flavors of A2 fermions,
and the Uð1ÞV analogous to the one in Eq. (1) is absorbed
into this larger symmetry.
Both the F and A2 sectors have their own independent

axial U(1) would-be symmetries, but each of the associated
axial currents is anomalous. However, for a theory with
fermions charged under n different irreps, it is possible to
construct n − 1 linear combinations of the axial currents
that are not anomalous (see for example Refs. [5,24]).
Thus, for a theory with two representations of fermion,
there is one nonanomalous Uð1ÞA. Taking the product
of the chiral symmetry groups of each sector and the
nonanomalous Uð1ÞA, we find the full chiral-symmetry-
breaking pattern of the theory is

SUðNFÞL × SUðNFÞR × Uð1ÞV × SUðNw
A2
Þ × Uð1ÞA

→ SUðNFÞV × Uð1ÞV × SOðNw
A2
Þ: ð3Þ

Wemake explicit in Eq. (3) that the Uð1ÞV of the F sector is
unbroken for consistency: the equivalent symmetry for the
A2 sector is embedded within the unbroken SOðNw

A2
Þ [23].

B. Field content and single-irrep Lagrangians

The field content of the EFT is dictated by the chiral
symmetries (1) and (2). For the fundamental sector (and
complex irreps in general), define the order parameter field
ϕ ∼ q̄Riq

j
L, where i and j are flavor indices. The field ϕ is

an NF × NF complex matrix field which transforms under
chiral rotations like

ϕ → ULϕU
†
Re

2iαF ; ð4Þ
where UL ∈ SUðNFÞL, UR ∈ SUðNFÞR, and αF is the
angle of the axial rotation in the F sector. For the
antisymmetric sector (and real irreps in general), define
the order parameter field θ ∼QIQJ, where Q is a left-
handed Weyl field and I and J are Weyl flavor indices. The
θ field is an Nw

A2
× Nw

A2
symmetric complex matrix field,

which transforms under chiral rotations like

θ → e2iαA2VθVT; ð5Þ
where V ∈ SUðNw

A2
Þ and αA2

is the axial rotation angle in
the A2 sector.
In the calculation’s original application, Pisarski and

Wilczek analyzed “QCD” [i.e., SU(Nc) gauge theory for
Nc > 2 with NF Dirac flavors of F-irrep fermions] [18].
Without accounting for symmetry breaking by the axial

anomaly, the most general Lagrangian invariant under
Eq. (4) and including only relevant and marginal terms is

LSingle Irrep ¼ 1

2
Tr½∂μϕ

†∂μϕ� þ rFTr½ϕ†ϕ�

þ 1

4
uFðTr½ϕ†ϕ�Þ2 þ 1

4
vFTr½ðϕ†ϕÞ2�; ð6Þ

where the traces are over flavor. This sub-Lagrangian
governs the F subsector of the full multirep theory. For
the A2 sector (and for real irreps in general), the most
general LGW Lagrangian consistent with Eq. (5), and
without accounting for symmetry breaking by the axial
anomaly, takes the same form [20].1 Thus, the sub-
Lagrangian that governs the A2 subsector of the full
multirep theory is Eq. (6) with ϕ → θ, F → A2.

C. Constraints from anomaly and multirep Lagrangian

As written, each sub-Lagrangian separately respects the
independent axial symmetries Uð1ÞF and Uð1ÞA2

of each
subsector. To account for symmetry breaking by the axial
anomaly, we add terms constructed from determinants,
which vary as

detϕ → detϕe2iNFαF

det θ → det θe2iN
w
A2
αA2 ð7Þ

under arbitrary chiral transformations like Eqs. (4) and (5).
Whatever terms we add to the Lagrangian must respect the
good Uð1ÞA of the theory. The ratio of axial charges
associated with the nonanomalous Uð1ÞA symmetry is [5]

αF
αA2

¼ −
Nw

A2
TðA2Þ

2NFTðFÞ
; ð8Þ

where TðrÞ is the group trace of representation r.
Determinant terms invariant under simultaneous axial
rotations satisfying Eq. (8) will be of the general form2

ðdetϕÞdFðdet θÞdA2 þ ðc:c:Þ; ð9Þ
where dF and dA2

are positive integers. Under a general
axial rotation in both sectors, these terms vary like

ðdetϕÞdFðdet θÞdA2
→ exp ½2iðdFαFNF þ dA2

αA2
Nw

A2
Þ�ðdetϕÞdFðdet θÞdA2 ;

ð10Þ

1Reference [20] considered fermions charged under the adjoint
irrep G. The adjoint irrep is always real and thus always has the
chiral symmetry SUðNw

GÞ. The chiral symmetry group is the only
input to the Lagrangian, and so their results apply to all real-irrep
fermions.

2Without the minus sign in Eq. (8), these terms would have the
general form ðdetϕ†ÞdFðdet θÞdA2 þ ðc:c:Þ.
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which, demanding invariance under axial rotations satisfy-
ing Eq. (8), yields the constraint

TðA2ÞdF − 2TðFÞdA2
¼ 0; ð11Þ

independent of the number of flavors of either species
present. Note that the traces in Eq. (11) are the only point
in the calculation where any information enters about the
specific irreps under consideration beyondwhether the irrep
is real or complex. This result applies generally to the case of
one complex irrep “F” and one real irrep “A2.” Specializing
to the case of F and A2 in SU(4) where TðA2Þ ¼ 2TðFÞ, we
find that the good axial charge ratio is αF=αA2

¼ −Nw
A2
=NF

and thatdF ¼ dA2
. Thus, the lowest-order termwe can add to

our Lagrangian has dF ¼ dA2
¼ 1.

The dimension of the operator (9) is

½ðdetϕÞdFðdetθÞdA2 �¼NFdFþNw
A2
dA2

¼NFþNw
A2
; ð12Þ

where the last equality is a specialization to the lowest-
order dF ¼ dA2

¼ 1 term. The lowest-order term is only
nonirrelevant if the condition NF þ Nw

A2
≤ 4 is satisfied,

which applies to neither of the two specific theories we are
interested in with ðNF;Nw

A2
Þ ¼ ð2; 4Þ or ðNF;Nw

A2
Þ ¼

ð3; 5Þ. At this point, we specialize to considering the case
where NF þ Nw

A2
> 4, as in both of our theories of interest.

In this case, there are no nonirrelevant anomaly-implement-
ing terms that we can add to the Lagrangian. Therefore,
both Uð1ÞF and Uð1ÞA2

are separately good symmetries of
the effective field theory. Physically, this says that the axial
anomaly is not pertinent to the physics of the chiral
transition.
Finally, there is one nonirrelevant irrep-coupling term

that is consistent with the symmetries,

δLIrrep Coupling ¼ 1

2
wTr½ϕ†ϕ�Tr½θ†θ�: ð13Þ

Compiling terms, we find that the full Lagrangian for our
theory of interest is

LMultirep ¼ Tr½∂μϕ
†∂μϕ� þ rFTr½ϕ†ϕ�

þ 1

4
uFðTr½ϕ†ϕ�Þ2 þ 1

4
vFTr½ðϕ†ϕÞ2�

þ Tr½∂μθ
†∂μθ� þ rA2

Tr½θ†θ�

þ 1

4
uA2

ðTr½θ†θ�Þ2 þ 1

4
vA2

Tr½ðθ†θÞ2�

þ 1

2
wTr½ϕ†ϕ�Tr½θ†θ�: ð14Þ

For a convenient method to calculate with this Lagrangian
and field content, see Appendix B.

IV. SINGLE-IRREP PISARSKI-WILCZEK

The Lagrangian (14) can be decomposed as a sum of the
sub-Lagrangians of the single-irrep subsectors plus an irrep
coupling term. It follows that the β functions of the theory
reduce to the single-irrep β functions plus corrections due to
irrep coupling. Thus, to set up the full multirep calculation,
wewill first review the results of its previous applications to
the two single-irrep sectors of our theory. The relevant
results are for the single-irrep theories with suppressed
anomalies (i.e., no determinant terms in the Lagrangian).
At one loop in the ϵ expansion, the β functions for a

theory with NF Dirac flavors of fundamental (or complex-
irrep, in general) fermions are [18]

βuF ¼ −uF þ ðN2
F þ 4Þu2F þ 4NFuFvF þ 3v2F ð15Þ

βvF ¼ −vF þ 6uFvF þ 2NFv2F; ð16Þ
and for a theory withNw

A2
Weyl flavors of antisymmetric (or

real-irrep, in general) fermions are [20]

βuA2 ¼ −uA2
þ 1

2
ðNw

A2

2 þ Nw
A2

þ 8Þu2A2

þ 2ðNw
A2

þ 1ÞuA2
vA2

þ 3

2
v2A2

ð17Þ

βvA2 ¼ −vA2
þ 6uA2

vA2
þ
�
Nw

A2
þ 5

2

�
v2A2

; ð18Þ

where we have redefined all couplings by the same overall
constant to absorb uninteresting geometric factors. Note
that the coefficient of the linear term in each β function is
the classical dimension ϵ ¼ 4 − d ¼ 1 of each coupling
constant. The F-sector β functions (15) and (16) have the
fixed points

ðuF; vFÞ ¼ ð0; 0Þ
ðuF; vFÞ ¼ ð1=½4þ N2

F�; 0Þ: ð19Þ
The A2-sector β functions (17) and (18) have the fixed
points

ðuA2
; vA2

Þ ¼ ð0; 0Þ
ðuA2

; vA2
Þ ¼ ð2=½8þ Nw

A2
þ Nw

A2

2�; 0Þ: ð20Þ
The trivial fixed points are always unstable, and the
calculation finds that the nontrivial fixed points are unstable
for NF ≥ 2 and Nw

A2
≥ 2, respectively. A higher-order

calculation finds that there are stable fixed points in the
NF ¼ 2 and Nw

A2
¼ 2 cases that are missed at one loop

[20,21]. We will discuss the implications of these missed
fixed points for our calculation in the Conclusion.

V. MULTIREP PISARSKI-WILCZEK

For the full Lagrangian (14), we find that the β
functions are
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βuF ¼ −uF þ ðN2
F þ 4Þu2F þ 4NFuFvF þ 3v2F þ 1

2
Nw

A2
ðNw

A2
þ 1Þw2

βvF ¼ −vF þ 6uFvF þ 2NFv2F

βuA2 ¼ −uA2
þ 1

2
ðNw

A2

2 þ Nw
A2

þ 8Þu2A2
þ 2ðNw

A2
þ 1ÞuA2

vA2
þ 3

2
v2A2

þ N2
Fw

2

βvA2 ¼ −vA2
þ 6uA2

vA2
þ
�
Nw

A2
þ 5

2

�
v2A2

βw ¼ −wþ w

�
ðN2

F þ 1ÞuF þ 2NFvF þ 1

2
ðNw

A2

2 þ Nw
A2

þ 4ÞuA2
þ ðNw

A2
þ 1ÞvA2

þ w

�
;

where we have redefined all couplings by the same overall
constant to absorb uninteresting geometric factors. Com-
paring with the single-irrep β functions in Sec. IV, we see
that βvF and βvA2 are unchanged. The irrep-coupling term
associated with the coupling w has induced corrections to
βuF and βuA2 . Finally, there is a completely novel βw
associated with the irrep-coupling term.
To perform a stability analysis, we must first identify the

fixed points of the β functions. We find six in total, which
are enumerated in Tables I and II. Because βw has an overall
factor of w, and because the term associated with the
coupling w is the only coupling between the F and A2

sectors, we may divide the fixed points in to two classes:
“decoupled product fixed points” where w ¼ 0 and “multi-
rep fixed points” where w ≠ 0.
When w ¼ 0, the F and A2 sectors decouple, and so the

fixed points of the full theory are simply direct products of

the fixed points of each single-irrep sector discussed in
Sec. IV. They are listed in the first four rows of Table I and
include the trivial fixed point.
When w ≠ 0, the F and A2 sectors are coupled. The two

fixed points we find in this case are novel to the full
multirep theory. One of these has w > 0, while the other
has w < 0. The w > 0 fixed point, listed in the last row of
Table I, can be written concisely in closed form for general
NF and Nw

A2
. The closed form of the w < 0 fixed point,

while computable by computer algebra systems, is too long
to be worth recording here. In Table II, we provide
numerical values for the couplings at this fixed point for
our two theories of interest.
We used numerical root finding to confirm that no fixed

points were missed by our analysis. In the region of bare
parameters defined by −10 < gi < 10 where gi ∈ fuF; vF;
uA2

; vA2
; wg, we find no additional fixed points for all

asymptotically free NF > 1 and NA2
> 1.

We derive a set of constraints on the couplings in
Appendix A, which we will summarize here. For each
irrep r,3 vacuum stability requires that Nrur þ vr > 0 and
ur þ vr > 0, and for the correct chiral-symmetry-breaking
pattern to be realized, vr > 0 must hold. Requiring vacuum
stability and that both irreps are chirally condensed at zero
temperature yields the constraint

TABLE I. The five (of six total) fixed points which are amenable to concise analytic expression. All fixed points
found have vF ¼ vA2

¼ 0. The first four fixed points are decoupled product fixed points, while the fifth is a fixed
point novel to the multirep system. Couplings are in the convention of the β functions.

uF uA2
w

0 0 0

1=ð4þ N2
FÞ 0 0

0 2=ð8þ Nw
A2

þ Nw
A2

2Þ 0

1=ð4þ N2
FÞ 2=ð8þ Nw

A2
þ Nw

A2

2Þ 0

2=ð8þ Nw
A2

þ Nw
A2

2 þ 2N2
FÞ 2=ð8þ Nw

A2
þ Nw

A2

2 þ 2N2
FÞ 2=ð8þ Nw

A2
þ Nw

A2

2 þ 2N2
FÞ

TABLE II. Values of couplings at the second multirep fixed
point, which is not amenable to concise analytic expression, for
our theories of interest. Again, vF ¼ vA2

¼ 0. The numerical
values are computed from closed-form expressions and truncated
at five significant digits. Couplings are in the convention of the β
functions.

Theory NF NA2
uF uA2

w

Ferretti 3 5 0.042519 0.035907 −0.035606
Lattice 2 4 0.075832 0.056288 −0.054615 3When r ¼ F, then Nr ¼ NF; when r ¼ A2, then Nr ¼ Nw

A2
.
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0 < w <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuF þ vF=NFÞðuA2

þ vA2
=Nw

A2
Þ

q
: ð21Þ

These conditions are strict inequalities and so define a
volume which does not include its boundary surface. For a
fixed point to be pertinent to our physics of interest, it must
be accessible to the physically interesting volume: starting
with a theory inside the volume, renormalization group
flow must be able to take the theory asymptotically close to
that fixed point without ever moving outside of the volume.
This is only possible for fixed points either in the interior or
on the boundary of the physically interesting volume. The
w < 0 multirep fixed point violates the constraint (21) and
so is not accessible to parameter space relevant to our
physics of interest and thus is unphysical. The remaining
five fixed points sit on the boundary of the physically
interesting volume and thus are physical.
The stability matrix ∂βgi=∂gj (where gi ∈ fuF; vF; uA2

;
vA2

; wg) is straightforwardly computed from the β func-
tions and not worth reproducing here. At each of the six
fixed points, we compute the eigenvalues of the stability
matrix. We find that none of the fixed points is stable for
any asymptotically free NF ≥ 2 and Nw

A2
≥ 2. Because this

is true for all six fixed points, this conclusion holds even if
we ignore the constraints from Appendix A. Thus, our
calculation indicates that the transition should be first order
for any asymptotically free theory with NF ≥ 2 and Nw

A2
≥

2 and with no anomaly-implementing terms.

VI. CONCLUSIONS

The analysis detailed above suggests that the simulta-
neous chiral transition in SU(4) gauge theory with NF ≥ 2
fundamental fermions and NA2

≥ 2 two-index antisymmet-
ric fermions with NF þ Nw

A2
> 4 must be first order. The

results of this calculation apply more broadly, to any
SUðNÞ gauge theory with fermions charged under one
complex irrep and one real irrep, with a simultaneous chiral
transition in both sectors, and with no nonirrelevant
anomaly-implementing terms that respect the good axial
symmetry.
The validity of these results depend on whether one-loop

order in the ϵ expansion (i.e., lowest nontrivial order) is
sufficient to exclude the existence of stable fixed points.
However, as stated in Sec. IV, a more sophisticated
Pisarski-Wilczek analysis of theNF ¼ 2 single-irrep theory
finds a stable fixed point that is missed by this one-loop ϵ
expansion treatment [20,21]. This is of significant concern
because NF ¼ 2 is the fundamental flavor content of the
lattice-deformed Ferretti model with ðNF;Nw

A2
Þ ¼ ð2; 4Þ,

and so this fixed point will appear in the lattice-deformed
Ferreti model in higher-order versions of decoupled prod-
uct fixed points with w ¼ 0. However, we argue that fixed
points like this one will not be stable in the multirep theory.
These same higher-order calculations find that the A2

subsector is unstable for Nw
A2

> 2 and, because w ¼ 0

for these fixed points, higher-order irrep-coupling correc-
tions cannot stabilize the A2 sector. The instability of the A2

sector is sufficient to render the transition first order. In
favor of the validity of our argument, lattice investigations
of the ðNF;Nw

A2
Þ ¼ ð2; 4Þ theory are consistent with a first-

order transition [8]. We cannot argue against the possibility
that a stable multirep fixed point with w ≠ 0 will appear at
higher orders. Investigating this possibility would require a
more sophisticated calculation, and in light of lattice
results, it does not seem that any such fixed points that
may exist are relevant to the transition in the ðNF;Nw

A2
Þ ¼

ð2; 4Þ theory.
There exist several directions for future work on this

generalization of Pisarski-Wilczek.
The calculation can be adapted to treat the case of

separated phases, where one chiral condensate forms before
another (e.g., rF crosses through zero while rA2

is still
positive). In this case, there will be two transitions. The
physics of the first transition can be treated with a
Lagrangian like Eq. (14), but with only one of the
condensate masses r tuned to zero. To investigate the
second transition, the Lagrangian (14) must be expanded
around the new ground state of the condensed species and
reanalyzed.
Pisarski-Wilczek analyses take very little information

about the specific irreps of the fermions. The field content
and form of the (anomaly-naive) Lagrangian is determined
purely by whether the irrep is complex, real, or pseudoreal.
The only point at which any further information about the
irrep enters is in determining the form of any anomaly-
implementing determinant terms as per the procedure used
in Sec. III. Because there is a finite number of irreps that
can be present in asymptotically free gauge theories, and
because the trace of the representation only enters in
determining whether any determinant terms are present,
there is a finite number of multirep LGW Lagrangians.
Thus, it is tractable (if not by hand) to perform a calculation
analogous to the one presented in this paper for all
interesting multirep theories.
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APPENDIX A: CONSTRAINTS DUE TO VACUUM
STABILITY AND χSB PATTERN

The relative values of the bare couplings in Eq. (14) must
be constrained to ensure that the vacuum is stable, to give
the desired chiral-symmetry-breaking pattern, and to ensure
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that both irreps of the theory are chirally condensed at zero
temperature. When rF < 0, the solution for the ϕ field
corresponding to the desired spontaneous symmetry-
breaking (SSB) pattern

UðNFÞL × UðNFÞR=Uð1ÞV → UðNÞV=Uð1ÞV
is

ϕ ¼ ϕ0I; ðA1Þ
where I is the NF × NF identity matrix. The Lagrangian is
invariant under transformations like

ϕ → ULϕU
†
R;

while the ground state Eq. (A1) is invariant under such
transformations only when UL ¼ UR ¼ UV where
UV ∈ UðNFÞV , and so we have the correct residual sym-
metry for our desired SSB pattern. Similarly, when rA2

< 0,
the solution for the θ field corresponding to the desired SSB
pattern

UðNw
A2
Þ → OðNw

A2
Þ

is

θ ¼ θ0I; ðA2Þ
just as for ϕ. The Lagrangian is invariant under trans-
formations like

θ → VθVT

where V ∈ UðNw
A2
Þ. The ground state (A2) is invariant

under such chiral transformations only when VVT ¼ I,
which implies V ∈ OðNw

A2
Þ as desired.

In cases where Nw
A2

is even, it is possible to arrange the
Weyl fermions into Dirac fermions and demand that the
theory respects a UðNw

A2
=2ÞV vector symmetry. The Vafa-

Witten theorem states that this symmetry will not be broken
by a QCD-like theory [25]. Accommodating this condition
requires us to make θ ∝ J, where J is an Nw

A2
× Nw

A2
matrix

where the diagonal Nw
A2
=2 × Nw

A2
=2 blocks are zero and the

off-diagonal blocks are the Nw
A2
=2 × Nw

A2
=2 identity matrix

[20]. It is not possible to construct this matrix when Nw
A2

is
odd, which reflects that it is not possible to define
SUðNw

A2
=2ÞV with an odd number of Weyl degrees of

freedom [5]. Because J2 ¼ I and all results below are in
terms of jθj2 ∝ I, using J in cases where Nw

A2
is even would

not change anything.
There is another solution for each of the ϕ and θ fields

that corresponds to a different physically irrelevant SSB
pattern,

ϕ ¼ ϕ0I1 ðA3Þ

θ ¼ θ0I1; ðA4Þ
where

ðI1Þij ¼ δiαδjα; ðA5Þ
where α ∈ ½1; Nw

A2
� is some integer and not summed over

(i.e., I1 is a matrix which is all zeroes except for a single 1
on the diagonal) [20]. These undesired solutions provide
additional channels through which the vacuum may desta-
bilize, so they must also be taken into account. Even when
the vacuum is stable, further constraints are required to
guarantee they are not the minimum of the potential, which
would give the wrong chiral-symmetry-breaking pattern.
Taking the product of the two possible ground states in

each sector, there are four possible ground states for the
overall potential. In what follows, the couplings always
appear in characteristic combinations when expressions are
evaluated for a given ground state. For notational clarity
and to avoid repeatedly enumerating lengthy expressions
for each of the four ground states, we will write expressions
below in terms of general couplings whose definition
depends on the ground state of interest. The couplings
from the single-irrep sectors are unaware of the other
sector, so we define

RF ≡ NFrF; UF ≡ NFðNFuF þ vFÞ when ϕ ∝ I

RF ≡ rF; UF ≡ uF þ vF when ϕ ∝ I1 ðA6Þ
and

RA2
≡Nw

A2
rA2

; UA2
≡Nw

A2
ðNw

A2
uA2

þvA2
Þ when θ∝ I

RA2
≡rA2

; UA2
≡uA2

þvA2
when θ∝ I1: ðA7Þ

The irrep-coupling sector is aware of the ground state of
both single-irrep sectors, so we define

W ¼ NFNw
A2
w; when ðϕ; θÞ ∝ ðI; IÞ

W ¼ NFw; when ðϕ; θÞ ∝ ðI; I1Þ
W ¼ Nw

A2
w; when ðϕ; θÞ ∝ ðI1; IÞ

W ¼ w; when ðϕ; θÞ ∝ ðI1; I1Þ: ðA8Þ
In the discussion that follows, one needs only to plug in the
appropriate definitions to recover the expressions for each
ground state.
Plugging in the nontrivial ground states, we find that the

potential for our theory is

Vðϕ0; θ0Þ ¼ RFjϕ0j2 þ
1

4
UFjϕ0j4 þ RA2

jθ0j2

þ 1

4
UA2

jθ0j4 þ
1

2
Wjϕ0j2jθ0j2: ðA9Þ

At large values of the field, only the quartic part of the
potential
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V4ðjϕ0j2; jθ0j2Þ ¼
1

4
UFjϕ0j4 þ

1

4
UA2

jθ0j4 þ
1

2
Wjϕ0j2jθ0j2

ðA10Þ

is pertinent to vacuum stability. For each of the four ground
states, we require that

lim
jϕ0j2→∞

lim
jθ0j2→∞

V4ðjϕ0j2; jθ0j2Þ > 0; ðA11Þ

where the inequality is strict or the full potential (A9) will
be unbounded from below when either of RF < 0 or
RA2

< 0. The condition (A11) must be satisfied regardless
of how the two limits are taken. To explore this condition,
we demand

lim
jxj2→∞

V4ðajxj2; bjxj2Þ > 0

⇔
1

4
UFa2 þ

1

4
UA2

b2 þ 1

2
Wab > 0 ðA12Þ

for all a ≥ 0, b ≥ 0, and aþ b > 0, and simultaneously for
all four ground states.
Taking a ¼ 0, we find UF > 0, and taking b ¼ 0, we

find UA2
> 0; the single-irrep subsectors must be inde-

pendently stable. Plugging back in for UF and UA2
, we

recover the stability conditions familiar from analyses of
the single-rep subsectors of the multirep theory [18–20],

NFuF þ vF > 0; Nw
A2
uA2

þ vA2
> 0;

uF þ vF > 0; uA2
þ vA2

> 0: ðA13Þ

Note that the Nuþ v conditions do not subsume the uþ v
conditions, as u may be positive or negative. When these
conditions are satisfied, it is obvious from the form of
Eq. (A12) that a positiveW cannot destabilize the potential.
To bound negative Ws, consider a continuation of the
condition (A12) where we allow a and b to range over all
real numbers including negatives. When both a < 0 and
b < 0, the signs of all terms in Eq. (A12) are unchanged.
However, if only one of a or b is negative, the sign of theW
term is flipped. Thus, allowing negative a and b and
demanding stability amounts to simultaneously requiring

1

4
UFa2 þ

1

4
UA2

b2 þ 1

2
jWjab > 0

1

4
UFa2 þ

1

4
UA2

b2 −
1

2
jWjab > 0 ðA14Þ

for all a ≥ 0, b ≥ 0, and aþ b > 0. Assuming the single-
irrep subsectors are independently stable (U > 0), the
þjWj subcondition will always be satisfied, and the
condition thus bounds only W < 0. With a and b allowed
to range over all reals, condition (A12) is equivalent to the
requirement for a positive-definite quadratic form in ða; bÞ.

A positive-definite quadratic form has positive eigenvalues;
demanding that this is true for the lhs of Eq. (A12) yields
the condition that UFUA2

> W2. Because this is only
required when W < 0, we obtain

W > −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UFUA2

p
: ðA15Þ

To ensure that the correct χSB pattern is realized, we
must constrain the couplings such that the ϕ ∝ I and θ ∝ I
solutions minimize the potential. When ϕ and θ are extrema
of the potential, the value of the potential can be expressed
as [20]

Vsoln¼
1

2
rFjϕj2þ

1

2
rA2

jθj2¼1

2
RFjϕ0j2þ

1

2
RAjθ0j2: ðA16Þ

There is obviously a disordered phase where ðϕ; θÞ ¼
ð0; 0Þ and thus V ¼ 0. When RF < 0, there exists a phase
where only ϕ is ordered. In this phase, jϕ0j2 ¼ −2RF=UF,
and so V ¼ −R2

F=UF. Similarly, jθ0j2 ¼ −2RA2
=UA2

and
V ¼ −R2

A2
=UA2

when RA < 0 and only θ is ordered. The
solution when both ϕ and θ are ordered is

jϕ0j2 ¼ 2
WRA2

− RFUA2

UFUA2
−W2

; jθ0j2 ¼ 2
WRF − RA2

UF

UFUA2
−W2

ðA17Þ

for which the value of the potential is

V ¼ 2WRFRA2
− R2

FUA2
− R2

A2
UF

UFUA2
−W2

: ðA18Þ

Because UFUA2
−W2 > 0 for stability, the solution (A17)

only exists when both numerators are positive, yielding the
existence condition

W
UF

RF > RA2
>

UA2

W
RF: ðA19Þ

To obtain conditions on the couplings, we demand that
no ground state with ϕ ∝ I1 and/or θ ∝ I1 is the minimum
of the potential anywhere. For brevity, we henceforth refer
to the ground state where ðϕ; θÞ ∝ ðI; IÞ as the ðI; IÞ ground
state, the potential for this ground state as VðI; IÞ, etc. For
the case where only a single sector is ordered, demanding
that VðI; 0Þ < VðI1; 0Þ yields the condition vF > 0, and
similarly demanding that Vð0; IÞ < Vð0; I1Þ yields the
condition vA2

> 0. For the case where both ϕ and θ are
ordered, we similarly find that vF > 0 ensures that both
VðI; IÞ < VðI1; IÞ and VðI; I1Þ < VðI1; I1Þ hold and that
vA2

> 0 ensures that both VðI; IÞ < VðI; I1Þ and VðI1; IÞ <
VðI1; I1Þ hold. Applying transitivity, if vF > 0 and vA2

> 0,
then the ðI; IÞ ground state minimizes the potential when
both ϕ and θ are ordered. In summary, we find that we must
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have vF > 0 and vA2
> 0 to obtain the correct chiral-

symmetry-breaking pattern in all phases. These conditions
are the same as what is found in analyses of the single-irrep
subsectors of the potential [18–20], and so irrep coupling
does not seem to affect which χSB pattern is realized.
Comparing the existence condition (A19) between dif-

ferent ground states, we find that when vF > 0 there is a
part of parameter space where the ðI; IÞ ground state does
not exist but one or both of ðI1; IÞ and ðI1; I1Þ does exist.
However, we find that VðI; 0Þ < VðI1; IÞ and VðI; 0Þ <
VðI1; I1Þ for any stable potential in these regions, so the
ðI; 0Þ phase continues to be the minimum until the ðI; IÞ
phase exists. Analogous statements apply for the A2 sector.
We may impose one final physical condition: at zero

temperature, we expect (and lattice data indicate [8–10])
that both irreps will be chirally broken. This corresponds to
the requirement that the ðI; IÞ phase must exist.
Equation (A19) indicates that the both-sectors-ordered
phases only exist when

W
UF

RF >
UA2

W
RF

is satisfied. Combining this constraint with the constraints
that Ur > 0 for both irreps for vacuum stability, and that
Rr < 0 to be in the phase where both ϕ and θ are ordered,
we obtain different conditions depending on the sign ofW:

W2 < UFUA2
when W > 0; ðA20Þ

W2 > UFUA2
when W < 0: ðA21Þ

The condition (A21) for W < 0 is incompatible with the
stability condition (A15), and so we find that W > 0 ⇒
w > 0 for the ðI; IÞ phase to exist. Combining with the
bound (A20) on positive W and plugging in for the ðI; IÞ
ground state, we find the condition

0 < w <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuF þ vF=NFÞðuA2

þ vA2
=Nw

A2
Þ

q
ðA22Þ

which subsumes the stability condition W > −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UFUA2

p
.

APPENDIX B: CALCULATIONAL DETAILS

The chiral symmetries of the disordered phase of the
multirep system determine the field content of the multirep
Pisarski-Wilczek Lagrangian: an arbitrary complex NF ×
NF matrix field ϕ and a symmetric complex Nw

A2
× Nw

A2

matrix field θ. We may instead obtain the forms of these
fields through a more physical argument: a Pisarski-
Wilczek calculation may be thought of as an analysis of
the scalar and pseudoscalar modes of the theory of interest.
To see this, note that the ϕ and θ scalar order parameter
(chiral condensate) fields may be expressed in terms of the
coset of broken generators τi and Ti associated with the

χSB patterns of the F and A2 sectors, respectively. The
axial anomaly is accounted for by symmetry-breaking
terms in the Lagrangian, so the τi and Ti each include a
generator proportional to the identity. We may decompose
ϕ like ϕ ¼ SP where S≡ sjτj, with sj real, is a Hermitian
matrix describing the scalar modes and P≡ exp½ipjτj�,
with pj real, is a unitary matrix describing the pseudoscalar
modes. The product SP is an arbitrary complex matrix,
with 2NF

2 real degrees of freedom parametrized by the sj

and pj. In this form, it is straightforward to recover the first
(only nonirrelevant) term in the chiral Lagrangian by tuning
couplings to decouple the scalar modes and anomalous
axial pseudoscalar mode. Similarly, for the A2 sector, we
may write θ ¼ PSP, where now S and P are also
symmetric.
We may obtain a convenient basis for calculation by

manipulating these physically motivated decompositions.
By expanding the exponential in P, reducing products of
multiple τs to sums of single τs, and gathering coefficients,
we find that ϕ (and similarly θ) may instead be para-
metrized as a sum over the broken generators with complex
coefficient fields. Specifically, the field ϕmay be expanded
in a basis of the generators of the coset

UðNFÞ × UðNFÞ=UðNFÞ ≈ UðNFÞ ðB1Þ

like

ϕa
b ¼ φiðτiÞab; ðB2Þ

where τ span the fundamental irrep of uðNFÞ and the ϕi are
complex scalar fields. If φ is real, φiτi spans all Hermitian
matrices, so with φ complex, φiτi spans all arbitrary
complex matrices. Similarly, the field θ may be expanded
in a basis of the generators of the coset

UðNw
A2
Þ=OðNw

A2
Þ ðB3Þ

like

θAB ¼ ϑIðTIÞAB; ðB4Þ

where T span the fundamental representation of
uðNw

A2
Þ=oðNw

A2
Þ and the ϑI are complex scalar fields. The

generators T are Hermitian and symmetric and thus real. If ϑ
is real, ϑITI spans all symmetric real matrices, so with ϑ
complex, ϑITI spans all symmetric complex matrices.
In these bases, the Feynman rules are simply those for two

coupled complex jϕj4 theories with additional flavor group
structure multiplying each vertex. Computing the group-
theoreticweights associatedwith each diagram reduces to an
exercise in generator algebra. For the coset UðNFÞ, the usual
uðNÞ algebra identities are available. Meanwhile, the set of
generators T of the coset UðNw

A2
Þ=OðNw

A2
Þ is not closed
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under commutation, so they do not form a Lie algebra, and
only a reduced set of generator identities is available. Taking
into account that the generators are symmetric TI

AB ¼ TI
BA,

we find a sufficient set of identities to perform the compu-
tation is

Tr½TITJ� ¼ TFδ
IJ ¼ δIJ

ðTIÞABðTIÞCD ¼ 1

2
ðδACδBD þ δADδBCÞ

δII ¼ dUðNÞ
G − dOðNÞ

G ¼ 1

2
Nw

A2
ðNw

A2
þ 1Þ

ðTIÞABðTIÞBC ¼ ðCUðNÞ
F − COðNÞ

F ÞδAC ¼ 1

2
ðNw

A2
þ 1ÞδAC;

ðB5Þ

whereTF ¼ 1 is the trace of the fundamental representations
ofUðNÞ andOðNÞ, set to be consistentwith the conventional
normalization of the kinetic term for complex scalar fields,

and CUðNÞ
F and COðNÞ

F are the quadratic Casimirs of the
fundamental representations of UðNÞ and OðNÞ. Summing
all one-loop diagrams contributing to a process and using
coset generator identities to reduce the flavor group struc-
ture, the contribution to each countertermcan be found as the
coefficient of the flavor group structure associated with the
corresponding coupling.
The field content of Pisarski-Wilczek Lagrangians is

unchanged for theories with anomaly-implementing deter-
minant terms, even though the symmetries are different.
Thus, we may still calculate in such theories using the coset
expansion bases described above. In such bases, anomaly-
implementing terms expand like detϕ ∝ ϵij…φiφj…where
ϵij… is the NF-index antisymmetric tensor (and similarly
for det θ, ϑ, and Nw

A2
). The number of fields φ, ϑ in such

terms depends on the number of flavors in each sector, and
so when such terms are present in the EFT Lagrangian, the
calculation cannot be performed for general NF or Nw

A2
.
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