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The radiatively-induced splitting of masses in electroweak multiplets is relevant for both collider
phenomenology and dark matter. Precision two-loop corrections of OðMeVÞ to the triplet mass splitting in
the wino limit of the minimal supersymmetric standard model can affect particle lifetimes by up to 40%.We
improve on previous two-loop self-energy calculations for the wino model by obtaining consistent input
parameters to the calculation via two-loop renormalization-group running, and including the effect of finite
light quark masses. We also present the first two-loop calculation of the mass splitting in an electroweak
fermionic quintuplet, corresponding to the viable form of minimal dark matter (MDM). We place
significant constraints on the lifetimes of the charged and doubly-charged fermions in this model. We find
that the two-loop mass splittings in the MDM quintuplet are not constant in the large-mass limit, as might
naively be expected from the triplet calculation. This is due to the influence of the additional heavy
fermions in loop corrections to the gauge boson propagators.
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I. INTRODUCTION

Dark matter as the lightest component of an electroweak
multiplet remains a viable explanation for the observed relic
abundance. One feature of this type of dark matter model is
the potential for a striking signature in the form of a dis-
appearing charged track in a collider experiment. This is due
to an order 100 MeV radiatively-induced mass difference
between the neutral multiplet component, and the heavier
charged components. The exact length of such a track is
extremely sensitive to the value of this mass difference.
At the lowest order (tree level) in perturbation theory, all

components of an electroweak multiplet have the same
mass. After electroweak symmetry breaking, radiative
corrections from massive gauge bosons push the physical
masses of the charged components slightly above that of
the neutral component [1,2]. In many phenomenological
studies, a one-loop calculation of this mass splitting is
sufficient to give reasonable constraints on physical observ-
ables. However, as we will show, due to the strong
dependence on the mass splitting, two-loop corrections
can result in up to a 40% change in the lifetime of a charged

multiplet component, and should be included when com-
paring theory with experiment.
Here we compute two-loop mass splittings for two

phenomenologically-relevant electroweak multiplets. The
first is the wino in the minimal model of R-parity
conserving supersymmetry, a fermionic electroweak triplet.
We focus specifically on the scenario where the lightest
supersymmetric particle (LSP) is a pure wino (neutralino),
corresponding to the neutral component of the triplet, and
the rest of the supersymmetric spectrum is sufficiently
massive to be decoupled. In this case, the next-to-lightest
supersymmetric particle (NLSP) is also a pure wino
(chargino), corresponding to the charged component of
the triplet. In this limit, a wino of mass ∼3 TeV would give
the correct relic abundance [3,4]. This model and the
radiatively-induced mass splitting have been studied exten-
sively, including calculation of radiative corrections to the
mass splitting at two-loop order [5–7]. We refine the
existing calculations by treating light quarks as massive,
and by using input parameters computed using a full model
spectrum.We compare to existing results based on massless
light quarks and simple threshold corrections.
The second model that we consider is the minimal dark

matter (MDM; [8,9]) fermionic quintuplet. In general,MDM
refers to a class of dark matter models, each consisting of the
SMplus a different electroweakmultipletwith someminimal
set of quantum numbers and charges under the SM gauge
groups. Most models in this class have been ruled out [10],
although the fermionic quintuplet with zero hypercharge is
still viable. This model has a weakly-interacting massive
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particle, which for amass of∼9 TeV gives the expected dark
matter relic abundance [9,11]. This model is also favored
because it stabilizes the electroweak vacuum [12] by increas-
ing the running of the electroweak gauge coupling. Although
this results in the model becoming non-perturbative at a
lower scale than the SM, it at least remains perturbative until
only a few orders of magnitude below the Planck scale [13].
The quintuplet contains neutral, charged and doubly-charged
components. This is the first two-loop calculation of the
splitting between the masses of these components.
The proper lifetime of a charged component, τ, which we

will express in units of (mm/c), is on the order of nano-
seconds to picoseconds for the models considered here.
This corresponds to disappearing track lengths on the
millimetre to centimetre scale, or more precisely about
6 cm [7] for the wino limit of the MSSM. This is the
motivation for many disappearing-track searches [14–19].
Searches with the ATLAS [20] and CMS [21] detectors
have excluded wino dark matter up to masses of 270 GeV
and 260 GeV respectively. It has been estimated that a
future 100 TeV collider could discover pure wino dark
matter up to masses of 3 TeV [22,23].
Similar search strategies can be applied to the MDM

model. In Ref. [24], 8 TeVATLAS and CMS results were
used to exclude masses below 267 GeV and 293 GeV for
the neutral components of Majorana and Dirac fermionic
quintuplets, respectively. The same paper also estimated
that with a 14 TeV high-luminosity LHC run, Majorana
MDM with a mass of up to 524 GeV could be discovered,
as could Dirac MDM with a mass of up to 599 GeV.
The calculation of two-loop radiative corrections is a

computationally challenging task, which has been signifi-
cantly simplified with the introduction of modern tools.
Even at the most rudimentary level, determining all pos-
sible topologies is nontrivial, let alone simplifying and
evaluating the resulting integrals. Fortunately, FeynArts[25],
FeynCalc [26,27], TARCER [28], FIRE [29], FeynHelpers [30] and
TSIL [31] have made each step of this process far more
achievable than in the past.
The computational difficulty of the two-loop mass

calculation is significantly greater for the MDM quintuplet
model than for a triplet, due to the ∼300 additional
amplitudes that must be considered compared to the triplet.
We overcome this by using a new computational frame-
work that is almost completely automated. This framework
eventually makes the generalization from a triplet to
quintuplet trivial, and in future can be extended to make
two-loop calculations achievable with even more diagrams.
Although precision two-loop self-energy corrections are

essential for accurately constraining the lifetimes of charged
multiplet components, the values of the input parameters
used for these calculations are equally important. Due to the
scale dependenceof parameters in perturbative quantum field
theory, all quantities entering into a precision mass calcu-
lation are subject to potentially large uncertainties.

Computing all masses and couplings in a perturbative
quantum field theory such as the MSSM is rather involved.
The physical masses must be correctly matched to corre-
sponding running masses, which depend on the renormal-
ization scale. Similarly, the couplings, which appear in the
Lagrangian of the theory, are scale-dependent quantities.
Because different quantities of the calculation are defined at
different scales, threshold corrections must be applied to
match some low-energy theory, such as QCD, to the high
energy theory of interest, such as the MSSM. In our
example, input parameters such as the running masses of
the light quarks and leptons are defined in the low-energy
effective QCD theory, but we are interested in determining
the values of running parameters at some higher scaleQ, so
that we can use them as inputs to our two-loop self-energy
calculations for the electroweak multiplet components.
To achieve this, it is necessary to numerically solve a set
of ordinary differential renormalization-group equations
(RGEs) with boundary conditions defined across a hier-
archy of scales, and perform the appropriate matching.
Spectrum generators are software packages that are

designed to do all this in a consistent and precise way.
A number exist for the MSSM [32–37]. There are also
packages intended to compute precision masses for specific
states, such as FeynHiggs[38] and SUSYHD [39], which
compute Higgs masses. However, these packages are
hardcoded to a specific model, and a specific parameter-
ization of that model. In this paper, we consider both a
specific limit of the MSSM, and a non-supersymmetric
theory. We therefore use tools that can create a spectrum
generator from a Lagrangian, providing a consistent
approach across both models. A major part of computing
a spectrum is obtaining the analytical forms of the RGE
equations and the radiatively-corrected masses, threshold
and tadpole corrections. It is then the part of the spectrum
generator to use numerical techniques to solve and evaluate
those functions. We use SARAH [40–43] to produce two-
loop RGEs and one-loop masses and threshold corrections,
and then use FlexibleSUSY [44,45] to generate a spectrum
generator for the MDM and MSSM models. We link the
spectrum generator to our self-energy calculations, in order
to provide precision running masses and couplings as
inputs to our two-loop mass-splitting calculations.
In Sec. II of this paper, we define and detail the models

that we investigate. We then describe our calculation
methods in Sec. III, our results in Sec. IV, and summarize
in Sec. V. We give explicit expressions for the one-loop
self-energies and counterterm couplings required for com-
puting two-loop mass splittings in the Appendix.

II. MODELS AND PARAMETERS

A. The wino limit of the MSSM

In the wino limit of the MSSM, all supersymmetric
particles except the lightest neutralino and chargino
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decouple from physics at the weak scale. This corresponds
toM2 ≪ M1;M3; μ. This implies that gv ≪ M1; μ, making
the lightest neutralino and chargino mass eigenstates pure
winos. Together, they constitute an SUð2ÞL triplet χ with
hypercharge Y ¼ 0, coupled to the SM via the electroweak
sector. The MS renormalized Lagrangian is

L ¼ LSM þ 1

2
χ̄ðiD − M̂Þχ ð1Þ

where LSM is the SM Lagrangian, M̂ is the degenerate MS
tree-level mass of the triplet and D is the SUð2ÞL covariant
derivative. Expanding out the covariant derivative gives

L ¼ LSM þ 1

2
χ0ði∂ −MÞχ0 þ 1

2
χþði∂ −MÞχþ

þ gðχþγμχþÞðswAμ þ cwZμÞ þ gðχþγμχ0ÞWþ
μ þ H:c:

ð2Þ

The triplet therefore couples to the SM via the electroweak
gauge bosons only. It is clear that at tree level, the charged
and neutral components have the same mass, M̂. We will
express the physical masses of the neutral and charged
components as M0

pole and Mþ
pole respectively.

When implementing the electroweak triplet in SARAH

model files, we express it in matrix form:

χ ¼
 
χ0=

ffiffiffi
2

p
χþ

χ− −χ0=
ffiffiffi
2

p
!
: ð3Þ

B. The electroweak quintuplet

In the remaining viable version of MDM, a fermionic
SUð2ÞL quintuplet χ with hypercharge Y ¼ 0 is coupled to
the SM via the SUð2ÞL gauge sector. Analogous to the
triplet case, the Lagrangian is

L ¼ LSM þ 1

2
χ̄ðiD − M̂Þχ; ð4Þ

where D is the SUð2ÞL covariant derivative and M̂ is the
MS renormalized tree-level quintuplet mass. Expanding the
SUð2ÞL covariant derivative D, we obtain the interaction
terms

L ¼ LSM þ 1

2
χ0ði∂ −MÞχ0 þ 1

2
χþði∂ −MÞχþ

þ 1

2
χþþði∂ −MÞχþþ

þ gðχþγμχþ þ 2χþþγμχþþÞðswAμ þ cwZμÞ
þ gð

ffiffiffi
3

p
χþγμχ0 þ

ffiffiffi
2

p
χþþγμχþÞWþ

μ þ H:c: ð5Þ

As with the triplet, the quintuplet couples only to the
photon and W and Z bosons at tree level. We will express
the physical masses of the neutral, charged and doubly-
charged components asM0

pole,M
þ
pole andM

þþ
pole respectively.

For implementing the quintuplet χ in a SARAH model file,
we express it in tensor representation as [46]

χ1111 ¼ χþþ; χ1112 ¼
1ffiffiffi
4

p χþ; χ1122 ¼
1ffiffiffi
6

p χ0

χ1222 ¼ −
1ffiffiffi
4

p χ−; χ2222 ¼ χ−− ð6Þ

where the relative signs are chosen such that χ is isospin
self-conjugate [47]. In this representation the mass term is
given by

χCχ ≡ χCijklχi0j0k0l0ϵ
ii0ϵjj

0
ϵkk

0
ϵll

0
: ð7Þ

C. Input parameters

In this paper, we use a fully-computed model spectrum to
obtain the input parameters for our self-energy calculations.
To generate the spectrum, we therefore require a full set
of SM input parameters. These are given in Table I. The
central values and experimental uncertainties are from
the latest Particle Data Group tables [48]. We quantify
the parametric sensitivity of the mass splitting to each of
these uncertainties by varying one parameter at a time, and
holding the rest fixed. We show the results of this exercise
in Table II, at a phenomenologically relevant value of the
degenerate mass for each model.
The renormalization scale Q is an important input

parameter in our calculation. This is the scale to which
all mass parameters and couplings are run, and where the
self-energies, and subsequent pole mass, are evaluated. The
range of this parameter should reflect the scale of missing
logarithmic corrections in the calculation, which are of the
form logðm=QÞ for some mass m. When using a non-
iterative method for computing the multiplet mass splitting,
we find that the dominant missing logarithmic correc-
tions come from masses near the electroweak scale. Con-
tributions from the multiplet itself, with masses around the
TeV scale, are cancelled. See Ref. [49] for a detailed
discussion. Therefore, for this study it is sufficient to vary
the renormalization scale around the mass of the top quark.
We therefore choose the range mt=2 ≤ Q ≤ 2mt.

III. METHOD

To determine the mass splitting we must compute the
physical, or pole, masses of the multiplet components to a
fixed order in perturbation theory. The definition of a pole
mass is the complex pole of the two-point propagator,
which for a fermion has a denominator given by the one-
particle irreducible effective two-point function
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Γ2 ¼ p − M̂ þ ΣKðp2Þpþ ΣMðp2Þ: ð8Þ
Here pμ is the four-momentum of the particle, M̂ is the tree-
level MS mass and p ¼ γμpμ. The self-energy, Σðp2Þ ¼
ΣMðp2Þ þ pΣKðp2Þ, is in general a function of the renorm-
alization scale and any relevant masses or couplings in the
theory. We will expand the self-energy up to second order
in a perturbation parameter α, for a two-loop result.

The pole mass is obtained by demanding Γ2 ¼ 0. This
can be achieved by setting p2 ¼ M2

pole (and p ¼ Mpole),
and solving the resulting implicit expression for the pole
mass

Mpole ¼ Re

�
M̂ − ΣMðM2

poleÞ
1þ ΣKðM2

poleÞ
�
: ð9Þ

TABLE I. Input parameters and uncertainties used for the calculations in this study (unless stated otherwise).
These ranges and central values are taken from the latest Particle Data Group tables [48].

Parameter Values

Electromagnetic coupling 1=αMSðmZÞ 127.940(42)

Top pole mass mt 173.34(2.28) GeV
Higgs pole mass mh 125.5(1.6) GeV
W pole mass mW 80.385(15) GeV
Z pole mass mZ 91.1876(21) GeV
Electron pole mass me 0.510 9989461(31) MeV
Muon pole mass mμ 105.658 3745(24) MeV
Tau pole mass mτ 1776.86(12) MeV
Down quark mass mMS

d ð2 GeVÞ 4.80(96) MeV

Up quark mass mMS
u ð2 GeVÞ 2.30(46) MeV

Strange quark mass mMS
s ð2 GeVÞ 95(15) MeV

Charm quark mass mMS
c ðmcÞ 1.275(75) GeV

Bottom quark mass mMS
b ðmbÞ 4.18(9) GeV

Strong coupling αMS
S ðmZÞ 0.1181(11)

Renormalization scale Q mt=2 − 2mt

TABLE II. The effect of uncertainties in input parameters on the mass splitting and decay lifetime in the wino and MDMmodels. The
effect on the decay lifetime is taken to be the difference between the upper and lower lifetimes normalized by the mean of the upper and
lower values, expressed as a percentage.

Wino model (M̂ ¼ 3 TeV) MDM (M̂ ¼ 9.6 TeV)

Parameter Change in ΔM (MeV) Change in lifetime (%) Change in ΔMþ (ΔMþþ) (MeV) Change in lifetime (%)

1=αMSðmZÞ 0.0919 0.310 0.101 (0.402) 0.348 (0.209)

mt 0.192 0.647 0.175 (0.699) 0.604 (0.364)
mh 0.0124 0.0417 0.017 (0.068) 0.0588 (0.0354)
mW 8.22 × 10−8 2.77 × 10−7 4.6 × 10−9 (1.85 × 10−8) 1.59 × 10−8 (9.65 × 10−9)
mZ 0.009 36 0.0316 0.004 67 (0.0187) 0.0162 (0.009 74)
me 8.23 × 10−6 2.78 × 10−5 2.04 × 10−5 (8.15 × 10−5) 7.05 × 10−5 (4.24 × 10−5)
mμ 3.69 × 10−9 1.25 × 10−8 9.87 × 10−9 (3.95 × 10−8) 3.41 × 10−8 (2.06 × 10−8)
mτ 3.551 × 10−6 1.199 × 10−5 3.37 × 10−6 (1.35 × 10−5) 1.16 × 10−6 (7.01 × 10−6)

mMS
d ð2 GeVÞ 1.85 × 10−4 0.000 623 0.000 845 (0.003 38) 0.002 92 (0.001 76)

mMS
u ð2 GeVÞ 3.0927 × 10−4 0.001 04 0.004 77 (0.0191) 0.0165 (0.009 94)

mMS
s ð2 GeVÞ 8.467 × 10−5 0.000 286 0.001 (0.004 02) 0.003 48 (0.002 09)

mMS
c ðmcÞ 0.001 76 0.005 95 0.0017 (0.006 79) 0.005 87 (0.003 54)

mMS
b ðmbÞ 0.000 7539 0.002 55 0.001 95 (0.0078) 0.006 74 (0.004 06)

αMS
S ðmZÞ 0.002 24 0.007 59 0.004 36 (0.0174) 0.0151 (0.009 08)

Q 0.304 1.03 0.242 (0.969) 0.839 (0.505)
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Solving (9) iteratively results in unwanted scale-depen-
dent logarithms. Alternatively, one can take advantage of
the perturbative nature of this expression to write down an
explicit result for the pole mass that preserves a fortunate
cancellation of the scale-dependent logarithms. Working to
the two-loop order, this expression is

Mpole ¼ ½M̂ − Σð1Þ
M − Σð2Þ

M − M̂Σð1Þ
K − M̂Σð2Þ

K

þ ðΣð1Þ
M þ M̂Σð1Þ

K ÞðΣð1Þ
K þ 2M̂ _Σð1Þ

M þ 2M̂2 _Σð1Þ
K Þ

þOðα3Þ�p2¼M̂2 ; ð10Þ

where ΣðnÞ
X ¼ ΣðnÞ

X ðp2Þ. For a full review of this method and
the implications of the iterative procedure see Ref. [49].
For this study we use the Feynman-’t Hooft (ξ ¼ 1)

gauge for all calculations. One-loop mass splittings com-
puted in the Landau (ξ ¼ 0), Feynman-’t Hooft (ξ ¼ 1) and
Fried-Yennie (ξ ¼ 3) gauges can also be found in Ref. [49].

In the wino limit of the MSSM there are about 200 two-
loop diagrams, and about 500 for the MDM quintuplet
model. The generic two-loop topologies are given in Figs. 1
and 2, and counterterm diagrams of two-loop order in
Fig. 3. We determine the counterterm couplings from the
one-loop self-energies of the electroweak gauge bosons and
electroweak multiplets.

A. Details of self-energy calculation

In this subsection, we describe our automated process for
calculating self-energies at two loops.
A complete self-energy calculation (at any order)

requires the construction of a symbolic amplitude, followed
by its numerical evaluation. In general, interfaces between
tools are sufficient for generating symbolic amplitudes at
both one and two-loop level. For one-loop calculations, the
evaluation step can be performed with various existing
tools: FeynHelpers [27] provides analytic one-loop amplitudes
for this purpose, and other codes do this by making use of

FIG. 1. Two-loop diagrams involving only the gauge bosons and multiplet fermions. Solid lines indicate multiplet fermions (χ0, χ�,
χ��) and wiggly lines electroweak vector bosons (W�, Z, γ).

FIG. 3. Two-loop counterterm diagrams. Small circles with crosses indicate counterterm insertions. Solid lines indicate multiplet
fermions (χ0, χ�, χ��) and wiggly lines electroweak vector bosons (W�, Z, γ).

FIG. 2. Two-loop diagrams formed by reinserting the 1-loop gauge boson self-energy into its own propagator. Solid lines indicate
fermions (χ0, χ�, χ��; q; l; ν), wiggly lines electroweak vector bosons (W�, Z, γ), dashed lines scalars (Higgs and Goldstone bosons)
and dotted lines indicate ghosts.

TWO-LOOP MASS SPLITTINGS IN ELECTROWEAK … PHYS. REV. D 97, 055049 (2018)

055049-5



the LoopToolspackage [50] (e.g. SARAH [43] interfaced to
either SPheno [51] or FlexibleSUSY [44,45]).
The interface between the tools available for generic

two-loop calculations is only complete up to the stage of
the symbolic amplitude. The necessary conversions exist
between FeynArts, FeynCalc and TARCER, but the final step of
numerical evaluation requires significant user intervention.
The TSIL library provides numerical, and in some cases
analytical, solutions for the basis integrals that appear in
two-loop self-energies. However, in order to make use of
these, one must construct a C++ interface to call the TSIL

libraries and then use them to evaluate the amplitudes.
Although the TSIL functions are extremely user-friendly,
making use of them from a symbolic Mathematica expres-
sion provided by one of the other tools is highly nontrivial.
There is therefore no automated method for obtaining
numerical implementations of two-loop amplitudes.
Given that there can be hundreds or even thousands of
such amplitudes, this makes the final step of the calculation
an arduous process. By completely automating the gen-
eration of this C++ interface with a new software frame-
work, we have been able to dramatically simplify the
process of computing two-loop self-energies. This frame-
work has already been used to generate two-loop ampli-
tudes used in Ref. [49].
Our method also makes it possible to split the calcula-

tion of many loop diagrams into manageable pieces.
Simultaneously computing Oð10Þ different amplitudes
(of distinctly different masses and/or topologies) with
symbolic tools like FeynCalc takes an extremely long time,
as FeynCalc attempts to symbolically simplify the ampli-
tudes. On the other hand, keeping track of all terms on a
diagram-by-diagram basis is a serious task by any manual
or even semi-automated method. By completely automat-
ing the whole process, we are instead able to keep track of
all terms, and simply evaluate them independently and
numerically. On a modest computing setup, this is the only
way to obtain a result in a feasible time frame without
additional user intervention.
We calculate the amplitudes either one diagram at a time,

or in selected groups, using FeynArts, FeynCalc and FIRE, run
from C++ via the Wolfram symbolic transfer protocol
(WSTP). We decompose the resultant symbolic amplitudes
into lists of coefficients to be applied to basis integrals, and
keep a master list of all the basis integrals required.
The algorithm begins by evaluating the finite part of the

amplitudeA. It then computes the coefficients fC1; C2;…g
of every possible basis integral fB1;B2;…g. For the non-
zero Ci, it then constructs a trial amplitude of the form

Atrial ¼ C1B1 þ C2B2 þ � � � ð11Þ

and checks the difference A −Atrial for the presence of
basis integrals with non-zero coefficients, in order to
identify any cross-terms that have been double-counted

in the first step. From the set of basis integrals fBi;Bj;…g
with nonzero coefficients at this stage, the algorithm then
creates new “compound basis integrals” Bij ¼ BiBj, and
presents them to Mathematica as unified objects. We can
then instruct Mathematica to extract new coefficients Cij

for the compound basis integrals. The final amplitude is
then

Atrial ¼ C1B1 þ C2B2 þ � � �

−
1

2
C12ðB1B2Þ −

1

2
C21ðB2B1Þ − � � �

þ C11ðB1B1Þ þ C22ðB2B2Þ þ � � �

where Cij is the coefficient of BiBj in the original
amplitude A. We convert these coefficients into C++
format, and generate numerical routines for evaluating
both them and the relevant basis integrals.
This automated framework is fully generic, allowing

numerical routines to be generated for two-loop diagrams
in almost any FeynArts model file. The only limitations are
computational: problems involving over ∼1000 diagrams
require long runtimes to generate the amplitudes, and
produce large amounts of generated code. Other features
include:

(i) automatic determination of one-loop counterterm
couplings for two-point diagrams (using the one-
loop self-energies),

(ii) optimization of the evaluation of the two-loop basis
integrals, by automatically determining which inte-
grals can be evaluated in symmetry groups, and

(iii) flexibility and reusability of precomputed ampli-
tudes (by separating the symbolic calculations from
the final code generation).

We intend to make an open-source release of the full
package in the near future.
In this paper, we use FeynCalc 9.2.0 [26,27] and FeynArts 3.9

[25] to obtain symbolic amplitudes, and reduce them to
basis integrals with FIRE 5 [29] (via FeynHelpers 1.0.0 [30])
and TARCER 2.0 [28]. We evaluate the basis integrals using
TSIL 1.41 [31] and analytical forms from the literature [52].

B. Check for divergence free-result

It is important to confirm that the pole masses are free of
nonphysical divergences. Ultraviolet (UV) divergences can
be regulated using dimensional regularization by comput-
ing in D ¼ 4 − 2ϵ dimensions and using modified minimal
subtraction. Using the generated symbolic amplitudes and
our numerical implementation, we have confirmed that the
individual pole masses are free from any poles in ϵ when
the appropriate counterterms are included.
Infra-red divergences arise from the zero mass of the

photon. To regulate these divergences, we retain an explicit
massmγ for the photon throughout the calculation, and take
the limit mγ → 0 in the evaluation. IR-divergent diagrams
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exist at two-loop order, but their divergences are cancelled
by the derivative of the one-loop self-energies in the two-
loop expansion of the pole mass [Eq. (10)]. The proof of
this cancellation is given in Ref. [7] for the wino model.
The analogous result holds identically for the MDM
quintuplet, so we do not repeat the details here.
We also encounter “fictitious” IR divergences in our

numerical implementation. These can arise from including
a finite photon mass when attempting to evaluate non-IR
divergent diagrams. We nonetheless include this mass for
all diagrams, as in some cases, taking a zero photon mass
before the tensor integral reduction causes the tensor
integrals to reduce to basis integrals that are not available
in current mathematical libraries. Using a regulator mass
enables the reduction to proceed further, giving a result in
terms of known basis integrals. The price to pay for this
convenience is an apparent IR singularity in the result: the
amplitude picks up Oð1=m2

γÞ terms. However, the sum of
the coefficients of these terms is numerically equivalent to
zero for every diagram (i.e. to within a small factor of the
floating-point machine accuracy times the largest individ-
ual coefficient). We therefore always see numerically that
these terms cancel, even if the integral reduction fails to
cancel them symbolically. We take care in our evaluation
step to explicitly check for the numerical cancellation, and
to then remove the terms before taking the limit mγ → 0,
as the latter would otherwise cause numerical cancella-
tion errors between the Oð1=m2

γÞ terms to blow up and
dominate the result.
Also, because the basis integral Tðx; y; zÞ is not

defined for small x, in the limit of mγ → 0 we make the
replacement Tðx;y;zÞ≡ T̄ðx;y;zÞ−Bðy;zÞ logðx=Q2Þ [31],
where B is another basis integral. This will cancel with
other terms in the amplitude of the form AðxÞBðy; zÞ ¼
x½logðx=Q2Þ − 1�Bðy; zÞ, and because T̄ð0; y; zÞ is finite,
will give a total that is IR safe.

C. Spectrum calculation

We use FlexibleSUSY 1.7.4 [53] [44,45] to create a spectrum
generator, based on output from SARAH 4.8.0 [40–43]. This
provides two-loop RGEs, one-loop threshold and tadpole
corrections and one-loop self-energies for all fields.
Because the spectrum generator requires a tree-level
parameter prior to computing the loop-corrected EWSB
conditions, the Higgs pole mass is an output rather than an
input parameter. Thus we also employ a simple iterative
procedure to determine the correct input value for the
Lagrangian Higgs mass parameter μ, such that the observed
Higgs pole mass is produced.
From the computed spectrum we extract the MS masses

for the gauge bosons, Higgs and quarks at a common scale
Q. We also extract the running electroweak gauge cou-
plings at Q and use them to compute the value of αEMðQÞ
from the relation

αEM ¼ g21g
2
2

4πðg21 þ g22Þ
: ð12Þ

From these parameters we compute the Weinberg angle
θW ¼ arccosðmW=mZÞ and the Higgs vacuum expectation
value v ¼ 2 sinðθWÞmW=

ffiffiffiffiffiffi
4π

p
. This preserves the required

tree-level relations that are necessary to retain the proper
cancellations between parts of the self-energies of the
charged and neutral multiplet components.
It is important to consider threshold corrections when

matching the SM to the wino or MDM model at two loops.
These corrections include the determination of MS masses
consistent with a specified physical pole mass (particularly
important for the W and Z bosons), and matching the MS
gauge couplings in the SM to the model containing addi-
tional fermions. The relevant threshold correction for the
electroweak coupling is

αEM;winoðQÞ ¼ αEM;SMðQÞ
�
1 −

XαEMðQÞ
3π

log

�
M̂ðQÞ
Q

��−1
;

ð13Þ

where X ¼ 2 for the wino model and X ¼ 10 for the MDM
quintuplet. FlexibleSUSY applies this correction and does the
mass matching, iteratively, at Q ¼ mZ.
For the one-loop calculation, we do not need to apply

threshold corrections, as they are of the next loop order. If
these corrections are applied, then important cancellations
do not occur between the threshold corrections and the self-
energies, resulting in a spurious logarithmic increase or
decrease in the mass splitting. When calculating one-loop
mass splittings, we therefore use pole masses in place of
the MS masses, and neglect the threshold corrections to
the gauge couplings. This is consistent with the method
of Ref. [7].

IV. RESULTS

A. The wino limit of the MSSM

As electroweak mass splittings have already been studied
at the two-loop level in the wino limit of the MSSM [7,55],
we are able to compare our results to the previous ones, and
in the process demonstrate the impacts of the improvements
that we have made in this paper. This also serves as a
validation of the consistency of our method, in particular
the use of a full spectrum generator, before applying our
method to the MDM quintuplet.
In Fig. 4 we compare our two-loop results for the mass

splitting ΔM≡Mþ
pole −M0

pole to the one given by the
polynomial fit in Eq. (17) of Ref. [7]. For consistency,
we use the same top pole mass mt ¼ 173.2 GeV [56]
and strong coupling αðmZÞ ¼ 0.1184 as in Ref. [7]. We
compare with both one and two-loop RGEs, and with both
finite and zero masses for the light quarks. The authors of
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Ref. [7] state that their polynomial fit gives less than a
0.02% deviation from the true value over the mass range
100–4000 GeV, so we expect to be able to achieve a result
close to this when comparing with our calculation. We see
that our equivalent result (one-loop RGEs, zero light quark
masses) is in good agreement with theirs, with the deviation
clearly the result of ringing from the polynomial fit rather
than an inconsistency between the methods used. This
ringing is worst at large masses, where we expect the mass
splitting to be constant; the polynomial fit fails to properly
represent this behaviour. Over the whole mass range we

have no more than a 0.05% deviation from this previous
calculation. The impact of the light quark masses is to
increase the mass difference by about 0.03–0.04% across
the whole mass range.
The consistency of our result with that of Ref. [7] can

also be seen by making a polynomial fit to the curve
computed with 1-loop RGEs, massless light quarks,
Q ¼ 163.3 GeV, mt ¼ 173.2 GeV and αðmZÞ ¼ 0.1184,
over the range 100 GeV ≤ M0

pole ≤ 4 TeV:

ΔM
1 MeV

¼ −412.2þ 304.7

�
ln

M0
pole

1 GeV

�

− 60.71

�
ln

M0
pole

1 GeV

�2

þ 5.403

�
ln

M0
pole

1 GeV

�3

− 0.181

�
ln

M0
pole

1 GeV

�4

: ð14Þ

This is in very close agreement with Eq. (17) of Ref. [7].
In Fig. 5 we present the two-loop mass splitting in the

wino model using the parameters in Table I, two-loop
RGEs and non-zero light quark masses. The dark green
and red uncertainty bands are given by the maximum and
minimum ΔM possible for values of Q between mt=2 and
2mt. For the two-loop mass splitting, at values of M̂ ≲mt
the minimum splitting occurs at Q ¼ mt=2, whereas for
M̂ ≳ 2mt the minimum occurs at Q ¼ 2mt. For intermedi-
ate values M̂ ∼mt, around the point where the crossover
occurs, we find that the extrema occur at values ofQ inside
the chosen range. As a result, although the uncertainty band
appears by eye to become very narrow, it does in fact
maintain a nonzero width. At even lower multiplet masses
than shown here (M̂ ≲ 100 GeV), the two-loop uncertainty

FIG. 4. The two-loop mass splitting in the wino model for

mt ¼ 173.2 GeV, mh ¼ 125.5 GeV, αMS
S ðmZÞ ¼ 0.1184 and

Q ¼ 163.3 GeV. In both panels the black dashed line is the fit
given by Eq. (17) of Ref. [7], and the grey region in the lower
panel is the stated deviation of this fit from the actual result. The
solid lines indicate our result with one and two-loop RGEs in blue
and red respectively, with all light quark masses taken to be zero.
The red and blue dashed lines in the lower panel correspond again
to one and two-loop RGEs respectively, but with all light quark
masses included.

FIG. 5. The two-loop mass splitting (left) and decay lifetime of the chargino (right) in the wino model as a function of the degenerate
tree-level MS mass. The green and red bands are the respective ranges of the one and two-loop mass splittings when Q is varied
continuously between mt=2 and 2mt. The light green band is the estimated uncertainty on the one-loop result using Eq. (15).
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from scale variation on the mass splitting is comparable to,
and eventually becomes larger than, the equivalent one-
loop uncertainty; this is due to the additional electroweak-
scale logs introduced at the two-loop level, and their
tendency to blow up as M̂ drops significantly below mt.
The light green uncertainty band is the naive estimate [7]

of the missing two-loop contribution expected from loops
involving the top quark:

α2EMmt

16π sin4ðθWÞ
∼ 4 MeV: ð15Þ

As we can see in Fig. 5, this estimate does indeed give a
reasonable rough estimate of the uncertainty on the one-
loop result.
In Table II we present a detailed analysis of the

uncertainties entering into this calculation. As there are
several uncorrelated uncertainties to include, we simply
consider the effect of each individually. The effect of
including light quark masses is a þ0.0532 MeV change
in the mass splitting, resulting in a 0.180% decrease in the
lifetime. The parameter with the largest effect on the mass
splitting is the renormalization scale. Although this uncer-
tainty is greatly reduced at the two-loop level (as seen in
Fig. 5), it is still the dominant contribution. We find that the
uncertainties on the top mass and electromagnetic coupling
also induce an Oð0.1Þ MeV uncertainty in the mass
splitting. All other parameters have negligible impacts
on the mass splitting. Although including the light quarks
does slightly increase ΔM, the uncertainties on these
masses have almost no impact on the result. Finally, we
note that the strong coupling even has some influence,
which is entirely indirect through the calculation of the
spectrum, as this coupling is not directly involved in the
wino mass calculation.
In the right panel of Fig. 5 we present the decay lifetime

of the charged component in units of mm/c, as a function of
the degenerate mass M̂. The charged component decays
as χþ → Xχ0, which is dominated by channels where
X is either a pion, an electronþ neutrino or muonþ
neutrino pair.
The decay width for the pion channel in an electroweak

multiplet with total weak isospin j, with eigenstates χI
where I ∈ f−j;−jþ 1;…; j − 1; jg, is given by [57]

ΓðχIþ1 → χIπ
þÞ ¼ T2þ

G2
FΔM3V2

udf
3
π

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
π

ΔM2

r
; ð16Þ

where Tþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ1Þ− IðIþ1Þp

, fπ ¼ 130.2� 1.7 MeV,
jVudj ¼ 0.974 17� 0.000 21 [48,58] and mπ is the pion
mass. T2þ is equivalent to ðn2 − 1Þ=4 for I ¼ 0, for a
representation of dimension n, as given in Ref. [9], however
for the MDM case we will need this more general
expression. For wino dark matter we have j ¼ 1 and
I ¼ 0 to give Γðχþ → χ0πþÞ.

For ΔM ≈ 170 MeV > mπ the pion decay is the dom-
inant channel, with a 97.7% branching fraction [9]. The
other kinematically-allowed channels are the electron-
neutrino and muon-neutrino ones, which have widths

Γχþ
e ¼ T2þ

G2
FΔM5

15π2
ð17Þ

and Γχþ
μ ¼ 0.12Γχþ

e . The expected lifetime of the charged

component is thus τ ¼ ðΓχþ
e þ Γχþ

μ þ Γχþ
π Þ−1. The large step

in the decay lifetime in Fig. 5 is where ΔM > mπ and the
pion channel opens, and the smaller step is due to the muon
channel opening. These can be seen clearly as branching
fractions in Fig. 6.
The most phenomenologically interesting mass range for

pure winolike neutralino dark matter is M̂ ∼ 3 TeV, as this
would give the correct dark matter relic abundance [3,4].
For this value and assuming Q ¼ mt, the two-loop mass
splitting is 164.5 MeV, compared to the one-loop value of
167.5 MeV. This difference in mass splitting represents a
9.7% increase in the decay lifetime of the chargino when
going from the one-loop to the two-loop calculation. For
other masses, this ratio can be larger, depending on the
dominant decay channel. For example, for a wino of
70 GeV mass, the one and two-loop mass splittings are
142.3 MeVand 145.5 MeV respectively, with a increase in
the lifetime of 40.1%. Thus, although the difference in the
mass splittings is approximately the same (∼3 MeV), as we
can see in Fig. 6, this mass value is exactly where the pion
channel opens up, so the effect on the lifetime in this range
is far more significant.
We now offer an updated fit, using the latest values in

Table I, two-loop RGEs and nonzero light quark masses,

FIG. 6. Branching fractions for χþ → Xχ0 in the wino limit of
the MSSM, where X ∈ feνe; μνμ; πg. Solid lines are the branch-
ing fractions using the two-loop mass splitting, and dotted use the
one-loop result, both evaluated at Q ¼ mt ¼ 173.34 GeV.
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ΔM
1 MeV

¼ −413.7þ 305.7

�
ln

M0
pole

1 GeV

�

− 60.96

�
ln

M0
pole

1 GeV

�2

þ 5.429

�
ln

M0
pole

1 GeV

�3

− 0.182

�
ln

M0
pole

1 GeV

�4

: ð18Þ

This fit is valid over the range 100GeV≤M0
pole ≤ 4 TeV.

The effect of including light quark masses is a small
positive shift in ΔM, and 2-loop RGEs a smaller negative
shift, with a total difference of approximately −0.03%.

B. The MDM quintuplet

The MDM quintuplet has two mass splittings. The first,
ΔMþ ≡Mþ

pole −M0
pole, is analogous to ΔM in the wino

model, with a one-loop value ofOð170Þ MeV. The second,
ΔMþþ ≡Mþþ

pole −M0
pole, between the neutral and doubly-

charged component, has a value of Oð670Þ MeV at one
loop. In this section we present the first analysis of these
mass splittings at the two-loop level and the subsequent
decay lifetimes of the charged components. In Sec. IV C we
discuss the differences between the charged/neutral com-
ponent mass splitting in the MDM and wino models.
In Fig. 7 we present the two-loop mass splittings

between the neutral and charged (left panel) and the neutral
and doubly-charged (right panel) components. The dom-
inant uncertainty, resulting from the choice of renormali-
zation scale, is indicated by the dark shaded regions at one
loop (dark green) and two loops (red), where Q has been
varied continuously betweenmt=2 and 2mt. Once again we
see a significant reduction in the uncertainty at the two-loop
level, at least for moderate and large multiplet masses; at

lower multiplet masses (M̂ ≲ 100 GeV), the two-loop
uncertainty grows due to the additional electroweak-scale
logs introduced at the two-loop level, just as in the triplet
case. The light-green band is the naive estimate of the
missing two-loop contribution, where we use Eq. (15) for
ΔMþ, and multiply this by a factor of four for ΔMþþ,
based on the generic charge-dependent pre-factors for one-
loop electroweak mass splitting in Eq. (4) of Ref. [55].
In Table II, we also give a detailed presentation of the

uncertainties entering into the two-loop calculation in the
MDM model. Again, we consider the effect of each
uncertainty individually. As in the wino case, the parameter
with the largest effect on the mass splitting is the renorm-
alization scale, but its effect is greatly reduced by going to
two loops (Fig. 7). The top mass and electromagnetic
coupling are again responsible for an Oð0.1Þ MeV uncer-
tainty in the mass splittings. All other parameters have
negligible impacts on the splittings. Including the masses of
light quarks results in aþ0.0125 MeV change in ΔMþ and
a 0.0499 MeV change in ΔMþþ, which translate into
0.0432% and 0.0258% reductions in the respective life-
times of the charged and doubly-charged states. As with the
triplet, although finite light quark masses affect ΔM, the
uncertainties on those masses have little impact—and
the strong coupling has some influence via the calculation
of the spectrum (on the order of 0.01%).
In Fig. 8 we plot the decay lifetimes of the charged and

doubly-charged components. The lifetime of the charged
component can be computed using Eqs. (17) and (16) with
j ¼ 2 and I ¼ 0; the calculation is the same for the doubly-
charged component, but with I ¼ 1 instead. The doubly-
charged component has an additional decay channel via the
process χþþ → χþKþ, where Kþ is a kaon. We take the
partial decay width to the kaon channel to be

Minimal dark matter
mt/2 ≤ Q ≤ 2mt

One−loop

Two−loop

Minimal dark matter
mt/2 ≤ Q ≤ 2mt

One−loop

Two−loop

FIG. 7. The two-loop mass splittings between the charged and neutral components (left) and the doubly-charged and neutral
components (right) in the MDMmodel as a function of the degenerate tree-level MS mass. The dark green and red bands are the range of
the one and two-loop mass splittings respectively when Q is varied continuously between mt=2 and 2mt. The light green band is the
estimated uncertainty on the one-loop result using Eq. (15).
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ΓKþ ¼ T2þ
G2

FΔM3V2
usf3Kþ

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
Kþ

ΔM2

s
; ð19Þ

where fKþ ¼ 155.6� 0.4 MeV, jVusj ¼ 0.2248� 0.0006
[48,58] and mKþ is the kaon mass.
The most phenomenologically interesting mass range

for MDM is M̂ ∼ 9.6 TeV, as this would give the correct
dark matter relic abundance [11]. For this value the
two-loop mass splittings are ΔMþ ¼ 163.6 MeV and
ΔMþþ ¼ 654.3 MeV, which can be compared with the
one-loop values of 168.3 MeVand 673.4 MeV respectively,

for a choice of Q ¼ mt. This difference in mass splitting
represents a 15.5% change in the decay lifetime of the
charged component when going from the one-loop to the
two-loop calculation, and a 9.78% change in the decay
lifetime of the doubly-charged component. Like in the wino
model, this ratio will be larger at different mass values,
depending on the dominant decay channel. One important
new feature in this calculation is the opening up of the kaon
channel, which we indicate with the orange line in the right
panel of Fig. 9.
These two-loop mass splitting results can be reproduced

using the following fitting formulas. For ΔMðþÞ, we have

ΔMðþÞ

1 MeV
¼ −328.6þ 250.1

�
ln

M0
pole

1 GeV

�

− 47.7

�
ln

M0
pole

1 GeV

�2

þ 4.049

�
ln

M0
pole

1 GeV

�3

− 0.1292

�
ln

M0
pole

1 GeV

�4

: ð20Þ

and for ΔMðþþÞ, we have

ΔMðþþÞ

1 MeV
¼ −1314þ 1000

�
ln

M0
pole

1 GeV

�

− 190.7

�
ln

M0
pole

1 GeV

�2

þ 16.18

�
ln

M0
pole

1 GeV

�3

− 0.5162
�
ln

M0
pole

1 GeV

�4

: ð21Þ

These formulae are valid for values of M0
pole between

100 GeV and 10 TeV.

FIG. 8. The decay lifetimes of the charged and doubly-charged
components in the MDM model as a function of the degenerate
tree-levelMSmass. The dark green and red bands are the respective
ranges of the one and two-loop mass splittings when Q is varied
continuously between mt=2 and 2mt. The light green band is the
estimated uncertainty on the one-loop result using Eq. (15).

FIG. 9. Branching fractions in the MDM model for the χþ → Xχ0 (left) and χþþ → Xχþ (right) processes, where
X ∈ feþνe; μþνμ; πþ; Kþg. The solid lines are the branching fractions using the two-loop mass splitting and dotted lines are the
results using the one-loop result, both evaluated at Q ¼ mt ¼ 173.34 GeV.
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C. Differences between triplet and quintuplet models

The two-loop loop mass splitting between the charged
and neutral multiplet component is not identical in the
triplet and quintuplet models. At the one-loop level this
mass splitting is the same in both representations, yet when
we go to the next loop order there are subtle differences. In
this section we discuss these differences and determine
which diagrams are responsible.
In the MDMmodel, for multiplet masses≳1 TeV we see

a decrease in the two-loop mass splitting. In the two-loop
wino result, and in the one-loop case for both models, we
see a constant mass splitting in the limit of large M̂. In the
one-loop case, this can be seen directly from the difference
of the one-loop self-energies (given in the Appendix), and
the fact that we do not apply threshold corrections (as they
are technically of higher loop order). If we were to include
threshold corrections to the one-loop result, we would see a
similar decrease in the mass splitting for large M̂, as we
would be introducing extra logarithmic terms with nothing
to cancel them.
In the wino model the constant mass splitting at large M̂

is the result of a cancellation between these threshold
corrections and one specific set of diagrams. These are
specifically the corrections to the gauge boson propagators
coming from the new multiplet fermions. The diagrams that
contribute to the gauge boson propagators are all those
in Fig. 2 and the first counterterm diagram in Fig. 3.
Reference [55] asserts that this cancellation occurs exactly
for all SU(2) multiplets, and therefore goes on to ignore
threshold corrections and the influence of the multiplet
fermions on the gauge boson propagator. Our calculations

show that this cancellation does indeed occur for the triplet,
but that the resulting logs do not perfectly cancel in the
quintuplet case. The fact that the mass splitting is almost
flat in the large M̂ limit indicates that most of the logs have
cancelled (as e.g. neglecting threshold corrections results in
a clear logarithmic increase in the splitting with increasing
M̂)—but some small residual term of the form − logðM̂=QÞ
remains.
To illustrate this point, we can construct a partial two-

loop mass-splitting calculation with the terms responsible
for the residual logs excluded. First, we construct two-loop
amplitudes by neglecting threshold corrections and exclud-
ing all contributions to the gauge boson self-energy, i.e. all
diagrams in Fig. 2 and the first in Fig. 3. In Fig. 10, we plot
the resulting partial two-loop mass splittings in each model
as “partial two-loop no ΠVV ,” along with the one-loop
results. We see that the results are indeed identical at large
M̂. We can also see that this incomplete subset of diagrams
misses some important cancellations of scale-dependent
logarithmic terms, as the uncertainty from scale depend-
ence in the resulting two-loop splitting is much larger in the
partial two-loop amplitude compared to the full two-loop
result.
To investigate further, we next exclude only those

diagrams where the multiplet fermions contribute to the
gauge boson propagator, i.e. the versions of the second
diagram in Fig. 2 with a χ fermion in the upper loop.
Continuing to neglect threshold corrections, we then
recompute the corresponding counterterm (the first in
Fig. 3) with the same contributions removed from the
gauge boson propagator, and recompute the mass splitting.

FIG. 10. The one-loop (green band), partial two-loop (red band) and extended partial two-loop (blue band) mass splittings in the wino
limit of the MSSM (left) and the MDM quintuplet model (right). The partial two-loop mass splitting is computed using self-energies
constructed from diagrams in Fig. 1 and all except the left-most diagram in Fig. 3, that is, all two-loop diagrams except those that include
a correction to a gauge boson propagator. The extended partial two-loop mass splitting is calculated with all two-loop diagrams except
those that include a correction to a gauge boson propagator by χ fermions. The coloured bands are determined by varying Q
continuously between mt=2 and 2mt. For these calculations, we neglect threshold corrections and all running of parameters.
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We refer to this extended partial amplitude as “partial two-
loop no ΠVV;χ” in Fig. 10. The splitting is still flat at large
M̂ in both models, albeit with a larger scale dependence in
the MDMmodel due to the contributions of a large number
of additional diagrams (relative to the wino model) in Fig. 2
with χ�� in the lower internal propagator. The flatness of
the extended partial two-loop result at large M̂ shows that
the uncanceled logarithms in the full quintuplet calculation
specifically arise from the failure of the threshold correc-
tions to fully cancel the logs from the contribution of
the multiplet fermions to the gauge boson self-energies.
Unlike light quark masses, which increase the mass
splitting (Fig. 4), the addition of multiplet fermions reduces
the splitting, as the two types of fermions enter into the
gauge boson self-energies with opposite signs. The fact
that the mass splitting ultimately turns down in the MDM
quintuplet therefore indicates that the impacts of the
multiplet fermions on the gauge boson self-energies domi-
nate over the threshold corrections in this model.
That the logarithms do not fully cancel in the quintuplet

model suggests that they will also not completely cancel for
higher-dimensional representations of SU(2).

V. CONCLUSION

We have presented a two-loop calculation of mass
splitting in electroweak multiplets, in the wino limit of
the MSSM and in the MDM fermionic quintuplet model. In
the wino model, we showed that our calculation is in
agreement with the previous two-loop calculation. We
improved on the previous calculation by using two-loop
RGEs and including finite masses for light quarks.
We also presented the first complete two-loop calcula-

tion of the splitting in the MDM quintuplet model, showing
that it is not constant in the limit of large multiplet masses.
This is contrary to the triplet case, and the naive expectation
from the one-loop result. This result comes from the
influence of the additional heavy fermions on the gauge
boson self-energies, and subsequently the two-loop self-
energies of the multiplet. As the mass of the multiplet
increases, so does its effect on the mass splitting through
these diagrams.
The two-loop corrections that we present here are

phenomenologically relevant, resulting in a ∼10% change
in the lifetime of the charged components in both models.
This is in agreement with previous calculations for wino
dark matter [7]. It is similarly important to include the two-
loop radiative corrections presented here when considering
disappearing track searches for MDM.
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APPENDIX: ONE-LOOP SELF-ENERGIES
AND COUNTERTERM COUPLINGS

Here we present the one-loop self-energies and counter-
term couplings required for the computation of the two-
loop mass splitting. The two-loop multiplet self-energies
are omitted, but a C++ computer code with the self-energies
expressed in the form described in Sec. III A, as coefficients
of basis integrals, is available on request and will be made
public as part of a future code release.
One-loop self-energies for the multiplet components are

presented in Secs. A 1 a and A 1 b for the wino limit of the
MSSM, and Secs. A 2 a, A 2 b and A 2 c for the MDM
model. Counterterm couplings for the new two and three-
point vertices are provided in Secs. A 1 d and A 2 e for the
wino and MDM models, respectively.
To compute the two-loop amplitudes in the left-most

diagram of Fig. 3, we need to determine the counterterm
couplings for the gauge boson propagators. This is
achieved by computing the one-loop gauge boson self-
energies and setting the counterterm couplings such that the
UV divergences cancel. In both the wino limit of the
MSSM and MDM, the self-energies of the electroweak
gauge bosons are given by the SM contribution plus an
additional one or two diagrams from the new multiplet. Let
the self-energy of the gauge bosons be

ΠV1V2
¼ ΠV1V2;SM þΠV1V2;χχ þ δZ;V1V2

ðp2 − m̂2
VÞ− δM;V1V2

ðA1Þ

where Vi ∈ fW;Z; γg, ΠVV;SM is the SM contribution, m̂V
is the boson mass when V1 ¼ V2 or zero otherwise and
δZ;V1V2

; δM;V1V2
are counterterm couplings. The SM part,

ΠVV;SM, which consists of the contributions from other
gauge bosons, fermions, ghosts and Goldstone bosons can
be found in multiple sources (see for example
Refs. [7,52,55]), so we do not reproduce them here. The
contributions to the gauge boson self-energies from the new
multiplet components are presented in Secs. A 1 c and
A 2 d, respectively, for the wino and MDM models. We
also provide the full counterterm couplings, including the
SM contributions, for the gauge bosons in Secs. A 1 d
and A 2 e.
For one-loop self-energies we need only two basis

integrals, or Passarino-Veltman (PV) [59,60] functions.
These integrals are defined as
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AðmÞ ¼ 16π2Q4−d
Z

ddq
ið2πÞd

1

q2 þm2 þ iε
ðA2Þ

Bðp;m1;m2Þ

¼ 16π2Q4−d
Z

ddq
ið2πÞd

1

½q2þm2
1þ iε�½ðq−pÞ2þm2

2þ iε� ;

ðA3Þ

where we use d ¼ 4 − 2ϵ and we will hereafter let
B0ðp;m1; m2Þ ¼ B0ðm1; m2Þ. The complex solutions to
these integrals can be expressed analytically; see
Ref. [52] for more details.
Throughout this Appendix, the separation of fermion

self-energies into the form Σðp2Þ ¼ ΣKðp2Þpþ ΣMðp2Þ is
manifest in the form of the coefficients. All self energies are
in the Feynman-’t Hooft (ξ ¼ 1) gauge and we define
κ ≡ 1=ð16π2Þ.

1. Wino model

a. Neutral component

The self-energy of the neutral component χ0 is

κ−1Σ0ðp2Þ ¼ C0
Aχ
AðM̂Þ þ C0

AW
Aðm̂WÞ

þ C0
BχW

BðM̂; m̂WÞ þ C0
0; ðA4Þ

with coefficients

C0
Aχ

¼ −
2g2

p2
p ðA5Þ

C0
AW

¼ 2g2

p2
p ðA6Þ

C0
BχW

¼ 2g2

m̂2
Wp

2
ðp2 þ M̂2 − m̂2

WÞp − 8g2M̂ ðA7Þ

C0
0 ¼ ð−2g2 þ δχ;ZÞpþ ð4g2 þ δχ;MÞM̂: ðA8Þ

b. Charged component

The self-energy of the charged component χþ is given by

κ−1Σþðp2Þ ¼ Cþ
Aχ
AðM̂Þ þ Cþ

AW
Aðm̂WÞ þ Cþ

AZ
Aðm̂ZÞ

þ Cþ
Bχγ

BðM̂; 0Þ þ Cþ
BχW

BðM̂; m̂WÞ
þ Cþ

BχZ
BðM̂; m̂ZÞ þ Cþ

0 ; ðA9Þ

with coefficients

Cþ
Aχ

¼ −
2g2

p2
p ðA10Þ

Cþ
AW

¼ g2

p2
p ðA11Þ

Cþ
AZ

¼ g2 cos2ðθWÞ
p2

p ðA12Þ

Cþ
Aγ

¼ g2 sin2ðθWÞ
p2

p ðA13Þ

Cþ
BχW

¼ g2

p2
ðp2 þ M̂2 − m̂2

WÞp − 4g2M̂ ðA14Þ

Cþ
Bχγ

¼ sin2ðθWÞg2
p2

ðp2 þ M̂2Þp − 4g2M̂ sin2ðθWÞ ðA15Þ

Cþ
BχZ

¼ cos2ðθWÞg2
p2

ðp2 þ M̂2 − m̂2
ZÞp − 4g2M̂ cos2ðθWÞ

ðA16Þ

Cþ
0 ¼ ð−2g2 þ δχ;ZÞpþ ð4g2 þ δχ;MÞM̂: ðA17Þ

c. Gauge bosons

The multiplet contributions are given by

ΠZZ;χχ ¼
e2 cot2ðθWÞ

36π2
ΠðM̂Þ ðA18Þ

Πγγ;χχ ¼
e2

36π2
ΠðM̂Þ ðA19Þ

ΠWW;χχ ¼
g2

36π2
ΠðM̂Þ ðA20Þ

ΠZγ;χχ ¼
e2 cot2ðθWÞ

36π2
ΠðM̂Þ; ðA21Þ

where

ΠðmÞ≡ 3ðp2 þ 2m2ÞBðp;m;mÞ − p2 − 6AðmÞ þ 6m2:

ðA22Þ

d. Counterterm couplings

The counterterms δZ and δM required to cancel diver-
gences arising from B0 and A0 are

δχ;Z ¼ 4g2Δ; ðA23Þ

δχ;M ¼ −16g2Δ ðA24Þ

where Δ≡ 2=ð4 − dÞ − γE þ logð4πÞ and γE is the Euler-
Mascheroni constant.
Additional one-loop counterterms are required to control

divergences in the two-loop self-energies. These are the
counterterms for the gauge-multiplet three-point vertices,
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δχ0χ0Z ¼ g3

4π2
Δ ðA25Þ

δχ0χþW ¼ δχþχþγ
sinðθWÞ

¼ δχþχþZ
cosðθWÞ

¼ −
g3

2π2
Δ: ðA26Þ

The gauge boson counterterm couplings are

δZ;WW ¼ −
13g2

96π2
Δ ðA27Þ

δM;WW ¼ g
32π2

�
−
X
i

cim2
i þ 13m̂2

W − 6m̂2
Z cosð2θWÞ

�
Δ

ðA28Þ

δZ;ZZ ¼ g2

96π2
½54 sin2ðθWÞ − 41 sec2 θW þ 28�Δ ðA29Þ

δM;ZZ¼−
gsec2ðθWÞ

96π2

×

�
3
X
i

cimiþm̂2
Wð55−47 sec2θW−15cos2θWÞ

�
Δ

ðA30Þ

δZ;γγ ¼ −
9g2 sin2 θW

16π2
Δ ðA31Þ

δM;γγ ¼ 0 ðA32Þ

δZ;Zγ ¼
g2 tan θW
96π2

ð14 − 29 cos 2θWÞΔ ðA33Þ

δM;Zγ ¼ −
g2m̂2

Z

8π2
sin θW cos θWΔ ðA34Þ

where the summation is over all SM quarks and leptons,
with

mi ∈ fm̂u; m̂c; m̂t; m̂d; m̂s; m̂b; m̂e; m̂μ; m̂τg ðA35Þ

and ci ¼ 3 for quarks and 1 for leptons.

2. Minimal dark matter

a. Neutral component

The self-energy of the neutral component, χ0, is

κ−1Σ0ðp2Þ ¼ C0
Aχ
AðM̂Þ þ C0

AW
Aðm̂WÞ

þ C0
BχW

BðM̂; m̂WÞ þ C0
0 ðA36Þ

where the coefficients are given by

C0
Aχ

¼ −
6g2

p2
p ðA37Þ

C0
AW

¼ 6g2

p2
p ðA38Þ

C0
BχW

¼ g2

m̂2
Wp

2
ðp2 þ M̂2 − m̂2

WÞp − 24g2M̂ ðA39Þ

C0
0 ¼ ð−6g2 þ δZÞpþ ð12g2 þ δMÞM̂: ðA40Þ

b. Charged component

The self-energy of the charged component, χþ, is

κ−1Σþðp2Þ ¼ Cþ
Aχ
AðM̂Þ þ Cþ

AW
Aðm̂WÞ þ Cþ

AZ
Aðm̂ZÞ

þ Cþ
Bχγ

BðM̂; 0Þ þ Cþ
BχW

BðM̂; m̂WÞ
þ Cþ

BχZ
BðM̂; m̂ZÞ þ Cþ

0 ; ðA41Þ

where the coefficients are given by

Cþ
Aχ

¼ −
6g2

p2
p ðA42Þ

Cþ
AW

¼ 5g2

p2
p ðA43Þ

Cþ
AZ

¼ g2 cos2ðθWÞ
p2

p ðA44Þ

Cþ
Aγ

¼ g2 sin2ðθWÞ
p2

p ðA45Þ

Cþ
BχW

¼ 5g2

p2
ðp2 þ M̂2 − m̂2

WÞp − 20g2M̂ ðA46Þ

Cþ
Bχγ

¼ sin2ðθWÞg2
p2

ðp2 þ M̂2Þp − 4g2M̂ sin2ðθWÞ ðA47Þ

Cþ
BχZ

¼ cos2ðθWÞg2
p2

ðp2 þ M̂2 − m̂2
ZÞp − 4g2M̂ cos2ðθWÞ

ðA48Þ

Cþ
0 ¼ ð−6g2 þ δχ;ZÞpþ ð12g2 þ δχ;MÞM̂: ðA49Þ

c. Doubly charged component

The self-energy of the doubly charged component,
χþþ, is
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κ−1Σþþðp2Þ ¼ Cþþ
Aχ

AðM̂Þ þ Cþþ
AW

Aðm̂WÞ þ Cþþ
AZ

Aðm̂ZÞ
þ Cþþ

Bχγ
BðM̂; 0Þ þ Cþþ

BχW
BðM̂; m̂WÞ

þ Cþþ
BχZ

BðM̂; m̂ZÞ þ Cþþ
0 ; ðA50Þ

where the coefficients are given by

Cþþ
Aχ

¼ −
6g2

p2
p ðA51Þ

Cþþ
AW

¼ 2g2

p2
p ðA52Þ

Cþþ
AZ

¼ 4g2 cos2ðθWÞ
p2

p ðA53Þ

Cþþ
Aγ

¼ 4g2 sin2ðθWÞ
p2

p ðA54Þ

Cþþ
BχW

¼ 2g2

p2
ðp2 þ M̂2 − m̂2

WÞp − 8g2M̂ ðA55Þ

Cþþ
Bχγ

¼4sin2ðθWÞg2
p2

ðp2þM̂2Þp−16g2M̂sin2ðθWÞ ðA56Þ

Cþþ
BχZ

¼ 4 cos2ðθWÞg2
p2

ðp2 þ M̂2 − m̂2
ZÞp− 16g2M̂ cos2ðθWÞ

ðA57Þ

Cþþ
0 ¼ ð−6g2 þ δχ;ZÞpþ ð12g2 þ δχ;MÞM̂: ðA58Þ

d. Gauge bosons

The contributions from the MDM quintuplet to the gauge
bosons self-energies are

ΠZZ;χχ ¼
5e2 cot2ðθWÞ

36π2
ΠðM̂Þ ðA59Þ

Πγγ;χχ ¼
5e2

36π2
ΠðM̂Þ ðA60Þ

ΠWW;χχ ¼
5g2

36π2
ΠðM̂Þ ðA61Þ

ΠZγ;χχ ¼
5e2 cot2ðθWÞ

36π2
ΠðM̂Þ; ðA62Þ

where Π is as given in Eq. (A22).

e. Counterterm couplings

The counterterms δχ;Z and δχ;M are given by

δχ;Z ¼ 12g2Δ; ðA63Þ

δχ;M ¼ −48g2Δ: ðA64Þ

Additional counterterms for the gauge-multiplet three-
point vertices are required to control divergences in the
two-loop self-energies. They are

δχ0χþWþffiffiffi
3

p ¼ δχþþχþWþffiffiffi
2

p ¼ −
g3

π2
Δ ðA65Þ

δχþþχþþγ

2 sinðθWÞ
¼ δχþþχþþZ

2 cosðθWÞ
¼ δχþχþγ

sinðθWÞ
¼ δχþχþZ

cosðθWÞ
¼ g3

π2
Δ:

ðA66Þ

We determine these terms by demanding that the two-loop
self-energy be free of UV divergences (i.e. free of any poles
in ϵ or ϵ2).
The gauge boson counterterm couplings are

δZ;WW ¼ −
15g2

32π2
Δ ðA67Þ

δM;WW ¼ g
32π2

�
−
X
i

cim2
i þ 15m̂2

W − 2m̂2
Z cosð2θWÞ

�
Δ

ðA68Þ

δZ;ZZ ¼−
g2

96π2
½43cosð2θWÞþ41 sec2 θW −39�Δ ðA69Þ

δM;ZZ¼−
gsec2ðθWÞ

96π2

×

�
3
X
i

cimiþm̂2
Wð70−47 sec2θWþ62cos2θWÞ

�
Δ

ðA70Þ

δZ;γγ ¼ −
43g2 sin2 θW

48π2
Δ ðA71Þ

δM;γγ ¼ 0 ðA72Þ

δZ;Zγ ¼
g2

96π2
ð41 tan θW − 43 sin 2θWÞΔ ðA73Þ

δM;Zγ ¼ −
g2m̂2

Z

8π2
sin θW cos θWΔ; ðA74Þ

where the summation is over all SM quarks and leptons
given in Eq. (A35).
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