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The one-loop divergences for the scalar field theory with Lorentz and/or CPT breaking terms are
obtained in curved spacetime. We analyze two separate cases: a minimal coupled scalar field with gravity
and a nonminimal one. For the minimal case with a real scalar field, the counterterms are evaluated in a
nonperturbative form in the CPT-even parameter through a redefinition of a space-time metric. In the most
complicated case of a complex scalar field nonminimally interacting with gravity, the solution for the
divergences is obtained in the first order in the weak Lorentz violating parameter. The necessary form of the
vacuum counterterms indicate the most important structures of Lorentz and CPT violations in the pure
gravitational sector of the theory. The conformal theory limit is also analyzed. It turns out that if we allow
the violating fields to transform, the classical conformal invariance of massless scalar fields can be
maintained in the ξ ¼ 1=6 case. At a quantum level, the conformal symmetry is violated by a trace
anomaly. As a result, the conformal anomaly and the anomaly induced effective action are evaluated in the
presence of extra Lorentz- and/or CPT-violating parameters. Such gravitational effective action is
important for cosmological applications and can be used for searching of Lorentz violation in the
primordial Universe in the cosmological perturbations, especially gravitational waves.
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I. INTRODUCTION

In the last years, therewas an intensive investigation of the
theoretical and experimental aspects in theories where the
Lorentz and/or CPT symmetries are violated. Such viola-
tions could emerge in a number of different fashions,most of
them related to a new physics at the Planck scale
MP ≃ 1019 GeV. As examples, we can cite quantum effects
in string theory [1] and loop quantum gravity [2], geomet-
rical effects as noncommutativity [3], torsion [4], and
nonmetricity [5]; and so on [6]. Regardless of wherever
these violations might come from, or if exposed scenarios
may or may not occur, the experimental/observational
searching of the remaining small deviations from Lorentz
and CPT symmetries in nowadays attainable scales are of
crucial importance, representing at the moment a very active
area of physics [7]. Such considerations can indicate the
existence of new physical phenomena or, at least, improve
our understanding of the limits of validity of the current one.
The conventional approach for this type of consideration

starts, of course, with theoretical aspects, considering the

most general consistent form of Lorentz and CPT violating
terms in the action of quantummatter fields. Such a theory is
called the standard model extension (SME) [8]. The action
of the SME contains all the possible new operators that
parametrize the possible Lorentz and/or CPT violations
which can be constructed from scalars, fermions, and
vectors fields using the effective quantum field theory
(QFT) approach. After that, as a next step, one can look
for the possible phenomenological manifestation of these
new terms. For the updated date table of bounds on
Lorentz=CPT breaking terms and some experimental
details, see [9] and further references therein. Likewise,
from the QFT perspective, the presence of additional
background fields means that the modifications may occur
not only at a classical level but also at the quantum one. The
investigation of flat spacetime loop effects in Lorentz and
CPT violated quantum electrodynamics (QED) started in
the pioneer work [10], where the corresponding quantum
effects were derived and new bounds on the violating
parameter were indicated.
From the pure gravitational side, there is also the

possibility for Lorentz violation in the SME [11].
Nonetheless, in the vacuum sector of Lorentz and CPT
violating theories, one can introduce terms with these
symmetry breaking in many distinct ways. Besides the
linear in curvature violating terms, there is additionally the
possibility to introduce a huge amount of higher derivative
structures in the gravitation action. Indeed, the pure
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gravitational sector with the Lorentz violation can be
described by an action containing an infinite series of higher
derivative terms with operators of increasing mass dimen-
sion. As a concrete example, we can cite the theories with
torsion. In this case, the general vacuum action of gravity,
which contains only a small part of CPT and Lorentz
violating terms, includes an incredible 168 independent
terms [12]. Such great arbitrariness makes it very difficult to
choose which of those terms are the most important ones,
and therefore, a natural question is how to define the form of
the possible Lorentz and/orCPT symmetries violation in the
gravitational sector.
One of the possibilities is to introduce only those terms

which can emerge as vacuum divergences in a semiclassical
theory of quantum matter fields. These criteria concern the
minimal necessary set of terms in the classical gravitational
action which are required by renormalizability. One exam-
ple where this approach is widely applied is the QFT in
curved spacetime. In this case, the renormalizability is
achieved by introducing along with the Einstein-Hilbert and
cosmological constant terms, a full set of local covariant
fourth derivative structures (for an introduction on this
subject see, e.g. the textbook [13]). For the theories with
Lorentz- and/or CPT-violating terms, one meets an analo-
gous situation. The introduction of new terms in the matter
fields sector requires, at the quantum level, the extension of a
classical action of vacuumwith a set of structures depending
on the violating parameters. The form of those termsmay be
established on the basis of general covariance and power
counting arguments, but only direct calculation of the
counterterms can indicate which terms are truly necessary.
And since the Lorentz and CPT breaking terms are very
small, the one-loop calculation are the most important ones.
Hence, our strategy to investigate the possible role of the
violating parameters in the gravitational sector is to start by
deriving the one-loop divergences for the SME fields on a
curved background.
The first consideration in this direction was presented in

Ref. [14] (see also [15]). In this work, the one-loop
calculations in the Lorentz and CPT violating QED were
considered in curved spacetime. However, the presented
calculations were not complete, because only the diver-
gences of effective action (EA), which concern to the
minimal part of the corresponding bilinear operator, have
been taken into account. After that, the problem of working
with the complicated nonminimal structures, which appears
typically in the EA of Lorentz and CPT violating theories,
was solved in Ref. [16] by introducing a new calculation
trick involving the inversion of the minimal part of a
bilinear operator. Working at first order in the violating
parameters, the complete photon contribution to vacuum
renormalization was obtained. In this work, the correspond-
ing EA of gravity was also derived by the integration of
conformal anomaly. This anomaly induced EA corresponds
to the leading quantum contribution for present-day low

energy physics applications, since the photon is the lightest
field, and the other massive fields suffer from the
Appelquist and Carazzone decoupling theorem [17], which
takes place, also, for the vacuum gravitational sector [18].
However, for the interesting cosmological applications in
the early Universe, in which the typical energies of physical
phenomena are very large, all other quantum matter fields
provides quantum contributions which are as important as
the photon, since in this high energy situation, matter
behaves approximately as free radiation. Consequently, the
evaluation of loop effects in a curved background coming
from the other SME sectors is also a relevant question.
In the present work, we report the results of the one-loop

counterterms calculations for the Lorentz andCPT violating
massive complex scalar field theory in curved spacetime.
The effects in the vacuum renormalization of the adimen-
sional CPT-even violating field and mass dimension CPT-
odd parameter are analyzed. Furthermore, we also consider
the possibility of nonminimal interaction of scalars with
gravity in the form ξRφ�φ. The inclusion of a nonminimal
term is necessary for the renormalizability of an interacting
theory which includes scalars without Lorentz and/or CPT-
violating terms (see, e.g. [13,19] for the introduction).
Furthermore, the nonminimal parameter ξ plays an impor-
tant role to inflationary models such as Higgs inflation,
where the nonminimal ξRH†H term is added to the Higgs
potential [20,21]. It seems natural to extend these theories to
the quantum level, studying the possible interaction between
the nonminimal parameter and the Lorentz=CPT violating
fields, especially because we know that quantum effects are
essential in the scalar inflaton models.
The introduction of a nonminimal interaction also opens

theway to the study themassless conformal theory limit and
conformal anomaly [22,23]. The integration of the anomaly
yields the anomaly induced effective action of gravity [24],
which is a compact analytic form of quantum corrections.
The anomaly induced EA has many useful applications in
cosmological models such as the full Starobinsky model of
inflation [25] or its modified version [26]. The primordial
Universe could be seen as a subject of very special interest
for the Lorentz and CPT symmetries violating theories,
because it can be considered as a laboratory for the study of
physical phenomena in energy scales not currently available
in particle accelerators on Earth. Moreover, the early
Universe may have been very different from its present-
day situation, because since then some kind of physical
process of spacetime symmetry restoration may have
occurred. We expected that the Lorentz breaking terms
make no effect on the zero-order homogeneous and isotropic
cosmology, since the violating fields define a preferable
direction in the spacetime. However, many of the symmetry-
breaking terms may lead to anisotropy in the cosmic
microwave radiation [27] coming from the cosmic pertur-
bations in the inflationary epoch. Therefore, it would be
interesting to evaluate the possibility of such violations, in
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particular, in the primordial Universe with gravitational
waves calculations.
The organization of the paper is as follows. In Sec. II, the

one-loop divergences for Lorentz- and/or CPT-violating
scalar field theory are derived in curved spacetime. We
consider separately minimal and nonminimal interaction
with gravity. In both cases, we adopt dimensional regulari-
zation, and the curved background calculations are per-
formed by means of the heat kernel techniques related with
the Schwinger-DeWitt method [28,29]. Hence, the minimal
set of pure gravitational terms requested by renormaliz-
ability is also analyzed. In Sec. III, the local conformal
symmetry limit is investigated in the presence of the
symmetry-breaking terms, and from the results obtained
in the previous section, the conformal anomaly is calculated.
Section IV is devoted to integrating conformal anomaly and,
therefore, the gravitational anomaly induced effective action
is derived. On the technical side, most of the considerations
in this section are pretty well known, and the standard
procedure do not change so much in the presence of Lorentz
violating fields, but we present adequate details in order to
make it readable for those not trained within this subject.
Finally, in Sec. V, we draw our conclusions.
Our sign conventions are ημν ¼ diagðþ;−;−;−Þ for the

Minkowski spacetime metric and Rα
: βμν ¼ ∂μΓα

βν − � � � for
the Riemann tensor. The Ricci tensor is Rμν ¼ Rα

: μαν, and
R ¼ gμνRμν denotes the Ricci scalar curvature. We also
assume that the spacetime is torsionless and use spatial
distance and mass definitions such that c ¼ ℏ ¼ 1.

II. DERIVATION OF ONE-LOOP DIVERGENCES

Our model of interest is the massive complex scalar field
theory with extra Lorentz and CPT symmetry-breaking
terms. The extension for the curved background is obtained
by the nonminimal procedure of covariant generalization.
The corresponding action has the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fgμν∂μφ
�∂νφ −m2φ�φþ ξRφ�φ

þ KμνðxÞ∂μφ
�∂νφþ kμðxÞjμg; ð1Þ

where

jμ ¼ iðφ�∂μφ − φ∂μφ
�Þ ð2Þ

is the scalar field current. The ξRφ�φ term is called
nonminimal, and the parameter ξ is known as the non-
minimal parameter. The dimensionless KμνðxÞ term is the
Lorentz CPT-even violating second-rank tensor, and kμðxÞ
is the Lorentz CPT-odd breaking parameter with mass
dimension. Since we are working in a curved background,
we do not consider these parameters constants and, hence,
we will let them being local functions of the spacetime
coordinates. The x dependence also removes the known

arbitrariness in the CPT-odd kμ term.1 [11,30]. No one
assumption about the violating parameters is made.2 The
role of Lorentz and CPT symmetry breaking terms in
the scalar sector of SME was widely studied in the
flat spacetime limit. The first bounds on the symmetry-
breaking terms for the Higgs field were obtained in
[31], and quantum loops effects were considered in
Refs. [32–36]. For further effects in violating scalar field
theories, see also the applications in the Yukawa potential
[30], effective potential [37], Casimir effect [38], defect
structures [39], and Bose-Einstein condensates [40].
In what follows, we consider the calculation of one-loop

divergences in two separate cases. First, we consider the
minimal ξ ¼ 0 theory with a real scalar field. The reason is
because in this case, the current iðφ�∂μφ − φ∂μφ

�Þ drops
out, and the tensor Kμν is necessarily a symmetric tensor.
Therefore, for this simpler situation, it is possible through a
redefinition of themetric tensor to obtain a closed answer for
the counterterms which is valid to all orders in the Lorentz
violation parameter. After that, we are going to consider the
general case described by the full theory (1). For this more
complicated case, we are going to restrict our calculations to
the first order in the symmetry-breaking parameters.

A. One-loop divergences:
Minimal coupling with gravity

As a first example, consider the massive real scalar field
minimally coupled with gravity. In this case, the whole
expression for the action reads

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p fðgμν þ KμνÞ∂μφ∂νφ −m2φ2g: ð3Þ

In order to evaluate the one-loop divergences, let us define a
new metric,

Gμν ¼ gμν þ Kμν: ð4Þ

After that, the action (3) becomes

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi
−G

p
fðxÞðGμνDμφDνφ −m2φ2Þ; ð5Þ

where G ¼ detðGμνÞ is the determinant of the metric Gμν,
defined as the inverse to Gμν, and

1For constant kμ in Minkowski spacetime, the field reparamet-
rization

φðxÞ → φðxÞ · eik̄μxμ ; φ�ðxÞ → e−ik̄
μxμ · φ�ðxÞ;

with k̄μ ¼ ðημν þ KμνÞ−1kν leads to a new theorywithout theCPT-
odd kμjμ term, but with a new mass definition m2 → m2 þ k̄μk̄μ.

2Of course, for the Lagrangian (1) to be real and a scalar
quantity, the parameter Kμν must possess, in general, a real
symmetric part plus an antisymmetric imaginary one.
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fðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgμν þ KμνÞ

detðgμνÞ

s
ð6Þ

is a new background scalar field. Also, here Dμ is the
covariant derivative constructed with the affine connection

ϒτ
αβ ¼

1

2
Gτλð∂αGλβ þ ∂βGαλ − ∂λGαβÞ ð7Þ

written in terms of the new metric. In the following related
calculations, the indexes are lowered and raised with Gμν

and with its inverse. It is also very useful to introduce the
corresponding curvature tensor

½Dμ; Dν�Aα ¼ Kα
: βμνA

β; ð8Þ

and its contractions Kαβ ¼ GμνKμανβ and K ¼ GμνKμν.
These new curvatures differ from the usual Riemann,
Ricci tensors, and scalar curvature R by terms of first
and higher orders in the Lorentz violating param-
eter KμνðxÞ.
The procedure described above is a known calculation

method which is commonly used in the Lorentz violating
real scalar field theory [30,32]. However, since here the
Lorentz violating parameter Kμν is not constant, the answer
will not be given only in terms of Kμν determinants, as it
was in the flat spacetimes cases, but also in terms of the new
curvature tensor Kα

: βμν. The same method was also recently
applied in Ref. [41] for the quantization of the Stueckelberg
scalar sector of the massive vector field theory with
nonminimal coupling with gravity.
Starting from Eq. (5), the divergences derivation

becomes pretty much standard. The divergent part of the
one-loop effective action is given by the expression

Γð1Þ
div ¼

i
2
Tr ln ðD2 þ 2l̂μDμ −m2Þjdiv; ð9Þ

where

l̂μ ¼
1

2
∂μðln fÞ and D2 ¼ GμνDμDν: ð10Þ

The expression in Eq. (9) can be evaluated by means of the
standard Schwinger-DeWitt technique [28]. According to
this method, the algorithm for the calculation of one-loop
divergences, in dimensional regularization, is

Γð1Þ
div ¼ −

μn−4

ϵ

Z
dnx

ffiffiffiffiffiffiffi
−G

p �
1

180
ðK2

μναβ −K2
αβ þD2KÞ

þ 1

2
P̂2
min þ

1

6
D2P̂min

�
; ð11Þ

where ϵ ¼ ð4πÞ2ðn − 4Þ is the dimensional regularization
parameter, μ is the mass dimensional parameter of renorm-
alization, and

P̂min ¼ −m2 þ 1

6
K −Dμl̂

μ − l̂μl̂
μ: ð12Þ

From Eq. (12), we obtain

1

2
P̂2
min¼

1

2
m4−

1

6
m2Kþ 1

72
K2−m2Fþ1

6
KFþ1

2
F2; ð13Þ

where in the last expression, we introduced the useful
new notation

F ¼ −
1ffiffiffi
f

p ðD2
ffiffiffi
f

p
Þ: ð14Þ

Thus, the one-loop divergences can be written in the
form

Γð1Þ
div ¼ −

μn−4

ϵ

Z
dnx

ffiffiffiffiffiffiffi
−G

p �
1

180
K2

αβμν −
1

180
K2

αβ

þ 1

30
D2Kþ 1

72
K2 −

1

6
m2Kþm4

2
þ 1

6
KF

−m2F þ 1

2
F2 þ 1

6
D2F

�
: ð15Þ

The expression (15) is the result of a standard QFT
calculation in the theory with the new background metric
gμν þ Kμν. In terms of this new metric, formula (15) has a
rather standard form. At the same time, in terms of the
original fields, gμν and Kμν, the divergences are given by an
infinite series expression. This is an expected result which
is corroborated by power counting based arguments, since
the Lorentz violating parameter Kμν is dimensionless.
The Eq. (15) enables us to obtain the one-loop diver-

gences in terms of the original metric gμν in each desired
order in the Lorentz violating parameter KμνðxÞ. To obtain
the explicit expression for the leading first order, we can use
the standard expansions

Gμν ¼ gμν − Kμν þ � � � ;ffiffiffiffiffiffiffi
−G

p
¼ ffiffiffiffiffiffi

−g
p �

1 −
1

2
K þ � � �

�
;

Kμναβ ¼ Rμναβ þ
1

2
ð∇μ∇αKβν −∇ν∇αKβμ

þ∇ν∇βKαμ −∇μ∇βKαν þ Rρ
: αμνKρβ

− Rρ
: βμνKραÞ þ � � � ; ð16Þ

where K ¼ gμνKμν. For a more detailed exposition of the
first-order formulas, see [41]. Using those expansions, we
can find the one-loop divergences written down in terms of
the original metric gμν in the first order in the Lorentz
violating parameter
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Γð1Þ
div ¼ Γð1Þ

vac½gμν� −
μn−4

ϵ

Z
dnx

ffiffiffiffiffiffi
−g

p �
1

60
Rμν□Kμν −

1

30
R∇μ∇νKμν þ 1

90
KμνRαβRαμβν

þ 1

90
KμνRμραβR

: ραβ
ν −

1

45
KμνRμαRα

ν þ
1

36
KμνRRμν þ

m2

6
KμνRμν

−
K
2

�
1

180
R2
μναβ −

1

180
R2
μν þ

1

30
□Rþ 1

72
R2 þm2

6
Rþm4

2

��
; ð17Þ

where

Γð1Þ
vac½gμν� ¼ −

μn−4

ϵ

Z
dnx

ffiffiffiffiffiffi
−g

p �
1

180
R2
μναβ −

1

180
R2
μν þ

1

30
□Rþ 1

72
R2 þm2

6
Rþm4

2

�
ð18Þ

is the divergent part of the pure metric dependent vacuum
effective action of a minimally coupled scalar field (see,
e.g. [13,19]). For the sake of brevity, in Eq. (17) (and in the
following formulas), we disregarded the total derivative
terms in the Lorentz- and/or CPT-violating sector.

B. One-loop divergences: Nonminimal
coupling with gravity

Let us consider now the case of a nonminimally coupled
with gravity Lorentz and CPT violating complex massive
scalar field with the general nonminimal coupling param-
eter ξ. The action (1) can be cast in the bilinear form

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðφ φ� ÞĤ
�
φ�

φ

�
; ð19Þ

where due to the presence of the extra adimensional
Lorentz violating parameter KμνðxÞ, the differential bilinear
operator Ĥ has a nonstandard general nonminimal struc-
ture, namely,

Ĥ ¼ Ĥm þ Ĥnm; ð20Þ
where

Ĥm ¼ 1̂□þ 2L̂μ∇μ þ Π̂ ð21Þ
is theminimal part of bilinear operator in quantum fields and

Ĥnm ¼ K̂μν∇μ∇ν ð22Þ

is the nonminimal part. The relevant matrices are defined by

1̂ ¼
�
1 0

0 1

�
;

L̂μ ¼
 

1
2
∇νKμν þ ikμ 0

0 1
2
∇νKμν − ikμ

!
;

Π̂ ¼
�
m2 − ξR 0

0 m2 − ξR

�
;

K̂μν ¼
�
Kμν 0

0 Kμν

�
: ð23Þ

Here and in the following, we use bold notations for the
matrix operators only.
Thus, the one-loop divergent part of the effective action

is then given by

Γð1Þ
div ¼

i
2
lnDetĤjdiv ¼

i
2
Tr ln Ĥjdiv: ð24Þ

Our next purpose is derive the divergent expression (24)
through heat kernel related calculations. However, the
bilinear operator (20) has a nonminimal form because
of the presence of the K∇∇ term, and therefore, the
standard Schwinger-DeWitt algorithm used before cannot
be applied here. The formalism for dealingwith nonminimal
operators is the generalized Schwinger-DeWitt technique of
Barvinsky and Vilkovisky [29]. Nevertheless, this well
elaborated technique of reducing expression (24) to the
universal traces are not convenient here. In this situation, in
order to work with such a complicated operator, we can
follow the method developed in Ref. [16] for analogous
calculations in the Lorentz=CPT violating electrodynamics.
The main idea is to introduce the inverse of the minimal

operator Ĥ−1
m and make the transformation

Tr ln Ĥ ¼ Tr lnðĤm þ ĤnmÞ
¼ Tr ln Ĥm þ Tr lnð1þ Ĥ−1

m · ĤnmÞ
¼ Tr ln Ĥm þ TrĤnm · Ĥ−1

m

−
1

2
Ĥnm · Ĥ−1

m · Ĥnm · Ĥ−1
m þ � � � ; ð25Þ

where we have used the basic properties of the logarithm
and performed its power series expansion. Now, the first
term of last line of Eq. (25) contains only a minimal
operator and can be directly calculated by the standard
Schwinger-DeWitt technique [28], while the rest of the
expression (25) contains nonlocal nonminimal structures,
which can be, in principle, put into the form of the universal
functional traces of Ref. [29].
Since the parameterKμν is dimensionless, it is possible to

show, by power counting based arguments, that every term
in the infinity series (25) gives contributions to the

ONE-LOOP RENORMALIZATION OF LORENTZ AND … PHYS. REV. D 97, 055048 (2018)

055048-5



counterterms. The situation here is an analogue to the
quantum gravity on a flat background, gμν ¼ ημν þ hμν.
Because the metric tensor is also dimensionless, there is in
this theory, an infinite number of one-loop diagrams which
are divergent. But, in the metric case, there is the principle
of general covariance, allowing to transform all such
infinite divergent contributions into a small number of
covariant invariant expressions in terms of the curvature
tensors Rμναβ, Rμν, and R. In the case under consideration of
the Lorentz=CPT violating scalar field, there is no principle
allowing us to transform such an infinite number of
counterterms (25) into specific invariants constructed from
Kμν. Unfortunately, in this case, the series (25) must be
truncated in some desired order. Since the Lorentz andCPT
violating parameters are assumed to be very small, the
calculations for a general ξ will be restricted to the first
order in the symmetry-breaking terms. Then, the first order
result of expression (25) is given by

Tr ln Ĥ ¼ Tr ln Ĥm þ 2TrĤnm · Ĥ−1
0 ; ð26Þ

where

Ĥ0 ¼ □þm2 − ξR ð27Þ
is the standard bilinear operator for a scalar field non-
minimally coupled with gravity and

Ĥnm ¼ Kμν∇μ∇ν: ð28Þ

Let us now consider the evaluation of the divergences
contained in expression (26). The first term in this formula
possesses only minimal differential operators, and it is
possible to obtain the divergences, as before, by using the
known formula of the Schwinger-DeWitt technique,

i
2
Tr lnĤmjdiv

¼−
μn−4

ϵ

Z
dnx

ffiffiffiffiffiffi
−g

p
tr
�

1̂
180

ðR2
μναβ−R2

αβÞþ
1

2
P̂2

�
; ð29Þ

where

P̂ ¼ P̂0 −∇μL̂
μ þ � � � ; with P̂0 ¼ Π̂þ 1̂

6
R: ð30Þ

Then, up to the first order in the new parameters, we have

1

2
trP̂2 ¼ 1

2
trP̂2

0 − trP̂0∇μL̂
μ þ � � � ð31Þ

and also,

trP̂0∇μL̂
μ ¼

�
ξ −

1

6

�
Rð∇μ∇νKμν þ i∇μkμ − i∇μkμÞ

¼
�
ξ −

1

6

�
R∇μ∇νKμν: ð32Þ

Formula (32) is the only source of contribution to diver-
gences of the CPT-odd violating parameter kμðxÞ. As
explicitly shown, this parameter gives no contribution to
vacuum renormalization. A similar situation occurs in the
Lorentz and CPT-violating electrodynamics, where the
CPT-odd ðkAFÞμ parameters also do not contribute to pure
vacuum counterterms [14–16]. Just as in the QED case, we
expect that the odd parameters may contribute to the
interacting theory. In order to understand this, we can
remember that in the scalar electrodynamics, e.g. there is a
mixing between the gauge field AμðxÞ with the scalar field
φðxÞ and the CPT-odd parameter kμðxÞ through the gauge
covariant derivativesDμ ¼ ∇μ þ ieAμ, which are present in
the current term jμ.
Finally, by the use of Eqs. (31) and (32), formula (29)

reduces to

i
2
Tr ln Ĥmjdiv

¼ Γð1Þ
vac½gμν� −

μn−4

ϵ

Z
dnx

ffiffiffiffiffiffi
−g

p �
ξ −

1

6

�
R∇μ∇νKμν þ � � � ;

ð33Þ

where Γð1Þ
vac½gμν� is the divergent part of the metric dependent

vacuum effective action of a nonminimally complex
scalar field

Γð1Þ
vac½gμν� ¼ −

2μn−4

ϵ

Z
dnx

ffiffiffiffiffiffi
−g

p �
1

180
R2
μναβ −

1

180
R2
μν −

1

6

�
ξ −

1

5

�
□Rþ 1

2

�
ξ −

1

6

�
2

R2 −m2

�
ξ −

1

6

�
Rþm4

2

�
: ð34Þ

For calculating the divergent part of the nonminimal piece of Eq. (26), we first need invert the operator Ĥ0 and find its
nonlocal expression. Up to the background dimension of 1=l4 (for introduction in this terminology, see Ref. [29]), the
inverse operator can be expressed as

Ĥ−1
0 ¼ 1

□
þðξR−m2Þ 1

□
2
þðm4−2ξm2Rþ ξ2R2−ξ□RÞ 1

□
3
−2ξð∇μRÞ∇μ

1

□
3
þ4ξð∇μ∇νRÞ∇μ∇ν

1

□
4
þOðl−5Þ: ð35Þ

The higher background dimension, Oðl−5Þ terms, can be safely omitted here because they do not contribute to divergences
[29]. Using Eq. (28), one can obtain the relation
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TrĤnm · Ĥ−1
0 ¼ Kμν∇μ∇ν

1

□
þ ξKμνð∇μ∇νRÞ

1

□
2
þ ðξR −m2ÞKμν∇μ∇ν

1

□
2

− 4ξKμαð∇α∇νRÞ∇μ∇ν
1

□
3
þ ðm4 − 2m2ξRþ ξ2R2 − ξ□RÞKμν∇μ∇ν

1

□
3

þ 4ξð∇μ∇νRÞKαβ∇α∇β∇μ∇ν
1

□
4
þOðl−5Þ: ð36Þ

Once more, in the last formula, we do not write explicitly
the Oðl−5Þ structures and also the functional traces with
dimensionality l−3, because they are irrelevant to the
divergences.

Expression (36) is already in the form that allows us to
apply the tables of universal functional traces ofRef. [29]. The
calculation is straightforward, and the intermediary results are
shown in Appendix A. The final result has the form

i
2
TrĤnm · Ĥ−1

0 jdiv ¼ −
μn−4

ϵ

Z
dnx

ffiffiffiffiffiffi
−g

p �
1

60
Rμν□Kμν þ

�
1

20
−
1

3
ξ

�
R∇μ∇νKμν þ 1

90
KμνRαβRαμβν

þ 1

90
KμνRμραβR

: ραβ
ν −

1

45
KμνRμαRα

ν −
1

6

�
ξ −

1

6

�
KμνRRμν þ

m2

6
KμνRμν

−
K
2

�
1

180
R2
μναβ −

1

180
R2
μν −

1

6

�
ξ −

1

5

�
□Rþ 1

2

�
ξ −

1

6

�
2

R2 −m2

�
ξ −

1

6

�
Rþm4

2

��
: ð37Þ

Finally, from Eqs. (24), (26), (33), and (37), we arrive at the result for the one-loop divergences in the first order in the
Lorentz violating parameter

Γð1Þ
div¼−

2μn−4

ϵ

Z
dnx

ffiffiffiffiffiffi
−g

p �
1

60
Rμν□Kμνþ1

6

�
ξ−

1

5

�
R∇μ∇νKμνþ 1

90
KμνRαβRαμβν

þ 1

90
KμνRμραβR

: ραβ
ν −

1

45
KμνRμαRα

ν −
1

6

�
ξ−

1

6

�
KμνRRμν

−
K
2

�
1

180
R2
μναβ−

1

180
R2
μν−

1

6

�
ξ−

1

5

�
□Rþ1

2

�
ξ−

1

6

�
2

R2−m2

�
ξ−

1

6

�
Rþm4

2
þ1

6
m2KμνRμν

��
þΓð1Þ

vac½gμν�: ð38Þ

Let us start the analysis of our result. First of all, we can
verify that in the ξ ¼ 0 limit, we arrive exactly at the same
result for the first order one-loop divergences in the
minimal case Eq. (17) obtained by the previously calcu-
lation method.3 Second, the vacuum part (34) has the
well-known standard form of the divergences in curved
spacetime for the massive scalar field theory nonminimally
interacting with gravity. This is perfectly consistent with
the general features of renormalization in curved spacetime,
because the semiclassical renormalizable theory always
includes higher derivative terms in the gravitational sector
(see, e.g. [13,19]). In our case, this also means that the
renormalization of the nonviolating sector is performed
independently on the external Lorentz=CPT symmetry-
breaking fields. In the case when some of the violating
fields are present, the consistent form of the vacuum action

becomes much more complicated and involves the depend-
ence on these extra fields. Our one-loop calculations show
which terms can emerge as counterterms in the scalar field
case. Therefore, the minimal set of structures which are
requested by renormalizability in the gravitational action
can be expressed as

Sgrav ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fvðxÞ þ uðxÞRþ sμνðxÞRμνg þ SHD;

ð39Þ
where the last part SHD represents the generalized higher
derivative term

SHD¼
Z

d4x
ffiffiffiffiffiffi
−g

p fΦ1ðxÞR2
μναβþΦ2ðxÞR2

μν

þΦ3ðxÞ□RþΦ4ðxÞR2þζμν1 ðxÞRμραβR
: ραβ
ν

þ ζμν2 ðxÞRαβRμανβþζμν3 ðxÞRμρR
ρ
νþζμν4 ðxÞRRμνg:

ð40Þ
3The extra 2 factor is because the theory of N complex scalar

fields can also be written in terms of a model with 2N real scalar
fields.
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Let us notice that the terms tμναβðxÞRμναβ,

ημναβ1 ðxÞRρωμνR
ρω
::αβ, η

μναβ
2 ðxÞRμρR

ρ
: ναβ, η

μναβ
3 ðxÞRRμναβ, and

ημναβ4 ðxÞRμαRνβ which are necessary for the renormalization
of Lorentz violating electrodynamics do not appear here in
the scalar field case. Indeed this is expected due to the
different tensorial properties of the symmetry-breaking
fields in these two theories. Of course, this is also for the
reason that we work only in first order in the Lorentz=CPT
violating parameters, andwe expect that such structures will
emerge in higher order calculations. In principle, the non-
linear terms can also be derived from the general expansion
(25); however, the derivation of such complicated functional
traces will require significant efforts.
The most remarkable aspect of the result (38) is that the

cosmological constantlike divergencem4 appearsmultiplied
by a coefficientK whichmay be coordinate dependent. This
means that in the theory where the Lorentz-violating
parameter Kμν is not a constant, the cosmological constant
cannot be constant, but should have some coordinate
dependence. It would be certainly interesting to derive
the upper bound for the time dependence of KðxÞ from
laboratory experiments and compare it to the bounds for
variable vacuum energy density in cosmology. Also, many
of the other new structures present in Eqs. (39) and (40) can
be implied in new gravitational physical effects. The
investigation of the possible phenomenological manifesta-
tions of terms linear in curvature was performed in Ref. [42]
on the basis of PPN formalism, and recently, an extensive
systematic analysis of the Lorentz violating higher deriva-
tives terms has been started in [43], also in the weak
gravitational field approximation. According to [43], the
presence of higher derivative violating terms leads to a
modified Poisson equation for the gravitational potential
φgðrÞ in the form

ΔφgðrÞ ¼ −4πGρðrÞ þ ðkijlkeff Þ∂i∂j∂l∂kφgðrÞ; ð41Þ

which implies diverse new phenomenological conse-
quences. In formula (41), the violating parameter kijlkeff is
constructed on the basis of the symmetry-breaking fields
present in the higher derivative sector of gravitational action.
Additionally, in Ref. [44], the role of some Lorentz violating
higher derivative terms was analyzed in the quantum gravity
framework. Since action (39) is requested by the renorm-
alization of the Lorentz=CPT violating SME matter sector,
the detailed analysis of all the contained structures deserve
special attention in both classical and quantum levels.

III. LOCAL CONFORMAL SYMMETRY AND
CONFORMAL ANOMALY

It is pretty well known that the classical action of a free
scalar field theory in curved spacetime is invariant, in the
m¼0 and ξ¼ 1=6 limit, under the following transformations:

gμν → g0μν ¼ gμν · e2σðxÞ and

φ → φ0 ¼ φ · e−σðxÞ: ð42Þ

The formula (42) is called the local conformal transforma-
tion, and the corresponding action invariance is known as
local conformal symmetry. The form of the Noether identity
corresponding to this symmetry, in the on shell limit,4 is

2gμν
δS
δgμν

¼ 0; ð43Þ

which is interpreted as the vanishing trace of the energy-
momentum tensorTμ

μ ¼ 0. It is very important to note that the
classical action of a scalar field with Lorentz and CPT
symmetry breaking terms (1) also possesses local conformal
invariance in the aforementioned limit, if we allow the
Lorentz and/or CPT-violating parameters to transform
according to

Kμν → K0μν ¼ Kμν · e−2σðxÞ;

kμ → k0μ ¼ kμ · e−2σðxÞ: ð44Þ

The breaking of Eq. (43) occurs only at quantum level
because of the renormalization procedure. Such phenome-
non is known as conformal anomaly or, simply, trace
anomaly [22]. At a quantum level, the classical action
of vacuum has to be replaced by the renormalized
effective action

ΓR ¼ Sþ Γð1Þ þ ΔS; ð45Þ

where S is the classical action, Γð1Þ is the bare one-loop
effective action, and ΔS is a local counterterm which is
requested to cancel the divergent part of Γð1Þ. The counter-
term ΔS is the only source of nonconformal invariance of
the effective action, because both the classical action and
direct quantum contribution are conformal invariant [13].
Thus, the expectation value of the trace hTμ

μi differs from
zero and can be expressed by

hTμ
μi ¼ −

2ffiffiffiffiffiffi−gp gμν
δΓR

δgμν

				
n¼4

¼ −
2ffiffiffiffiffiffi−gp gμν

δΔS
δgμν

				
n¼4

: ð46Þ

Let us stress that the anomaly induced EA is nonlocal, as
we will see later on in Eq. (65). However, the anomaly itself
can be derived from the local counterterm, as explained in
[45] and recently, in [23,46].

4For Eq. (43) to be valid in the Lorentz=CPT violating
theories, the symmetry-breaking parameters must obey their
own dynamical equations. As discussed in [11], this can be
achieved if the violating fields originates from some spontaneous
symmetry breaking mechanism.
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The form of the counterterm ΔS ¼ −Γð1Þ
div for the con-

formal version of theory (1) can be obtained from Eq. (38).
The answer is

ΔS ¼ 2μn−4

ϵ

Z
dnx

ffiffiffiffiffiffi
−g

p
Lðgμν; KμνÞ − Γð1Þ

vac½gμν�; ð47Þ

where

Lðgμν; KμνÞ ¼
1

60
Rμν□Kμν −

1

180
R∇μ∇νKμν

þ 1

90
KμνRαβRαμβν þ

1

90
KμνRμραβR

: ραβ
ν

−
1

45
KμνRμαRα

ν −
K
2

�
1

180
R2
μναβ −

1

180
R2
μν

þ 1

180
□R

�
ð48Þ

and

Γð1Þ
vac½gμν�¼−

2μn−4

ϵ

Z
dnx

ffiffiffiffiffiffi
−g

p �
1

120
C2−

1

360
Eþ 1

180
□R

�
:

ð49Þ

In the above formula, C2 ¼ CμναβCμναβ ¼ R2
μναβ − 2R2

μν þ
1
3
R2 is the square of Weyl tensor and E ¼ R2

μναβ − 4R2
μν þ

R2 is the integrand of the Gauss-Bonnet topological term
(Euler density in n ¼ 4).
The calculation of the expression (46) with the counter-

term (47) can be done by many different ways [19,45,47–
50]. Following Ref. [23], the simplest one is by using the
conformal parametrization of the metric,

gμν ¼ g0μν · e2σðxÞ; ð50Þ
and by the direct application of the chain rule

−
2ffiffiffiffiffiffi−gp gμν

δA½gμν�
δgμν

¼ −
1ffiffiffiffiffiffiffi
−g0

p e−4nσ
δA½g0μνe2σ�

δσ

				
g0μν→gμν;σ→0

;

ð51Þ
which is valid for any functional A ¼ A½gμν�. This pro-
cedure can be seen as a purely technical one, and the form
of the metric (50) is discarded after the anomaly derivation.
One of the key parts of this general procedure are the

conformal transformation rules of each quantity present in
Eq. (47). Besides the pure curvature terms, whose trans-
formation rules can be found elsewhere [51], we also need
the transformation rule for the new Lorentz violating term
(48). In fact, in the four dimensional spacetime, this term is
the conformal invariantZ

d4x
ffiffiffiffiffiffiffi
−g0

p
Lðg0μν; K0

μνÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lðgμν; KμνÞ: ð52Þ

For the convenience of the reader, we present the proof of
Eq. (52) in Appendix B. Indeed, the conformal symmetry
(52) of the quantum correction in the four dimensional
spacetime limit is expected to hold for conformal theories
based on general standard arguments (see, e.g. [13]); thus, the
direct algebraic proof of Eq. (52) can also be seen as a test of
the verification of the cumbersome calculations which led to
the answer (38). On the top of that, formula (52) also implies
that in the generic spacetime with n dimensions, the gener-
alized n-dimensional form of Eq. (52) gains a global eðn−4Þσ
multiplicative factor, besides some possible extra terms with
derivatives of σðxÞ. All other expressions of our interest have
the samegeneral structurewith themultiplicative exponential
factor, and the nonexponential terms are irrelevant due to the
limit procedure in Eq. (51). Consequently, the application of
the identity (51) becomes simple. Then, one can find the final
answer for the conformal anomaly,

hTμ
μi ¼ −½wC2 þ bEþ c□Rþ 2Lðgμν; KμνÞ�; ð53Þ

where the parameters w, b, c are, in the complex scalar
field case,

ðw; b; cÞ ¼ 2

ð4πÞ2
�

1

120
;−

1

360
;
1

180

�
: ð54Þ

In the case of local conformal invariance, there is always a
well-known ambiguity in the value of the c parameter
[19,22,49]. In a simplified way, the qualitative net result is
that this ambiguity is always equivalent to the freedom to add
the local R2 term to the classical action, since

−
2ffiffiffiffiffiffi−gp gμν

δ

δgμν

Z
d4x

ffiffiffiffiffiffi
−g

p
R2 ¼ 12□R: ð55Þ

For more details in this subject, the reader is referred to [49],
where this issue was addressed with all technicalities.

IV. ANOMALY INDUCED EFFECTIVE ACTION

One can use the conformal anomaly (53) to construct a
differential equation for the one-loop effective action

2ffiffiffiffiffiffi−gp gμν
δΓind

δgμν
¼ wC2 þ bEþ c□Rþ 2L: ð56Þ

The solution of Eq. (56) is known as anomaly induced
effective action. The integration of a conformal anomaly is
by the technical side not very difficult in the usual theory
without the Lorentz violating term [24], and it remains
identically simple when this term is present [16]. The
reason is because the new violating term (48) possesses the
same conformal properties of the square of Weyl tensor,
which makes its inclusion a very simple exercise.
The anomaly induced effective action can be presented in

the simplest way by a noncovariant form or in a more
complicated one which is covariant and nonlocal.
Additionally, by the introduction of auxiliary fields, it can
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also be cast into a dynamically equivalent local and covariant
form. Let us start from the simplest case and parametrize the
metric tensor as in (50), separating its conformal factor σðxÞ.
After that, we can rewrite Eq. (56) using the relation (51) and
the conformal transformation rules [51]

ffiffiffiffiffiffi
−g

p
C2 ¼

ffiffiffiffiffiffiffi
−g0

p
C02; ð57Þ

ffiffiffiffiffiffi
−g

p �
Eþ2

3
□R

�
¼

ffiffiffiffiffiffiffi
−g0

p �
E0 þ2

3
□

0R0 þ4Δ0
4σ

�
; ð58Þ

ffiffiffiffiffiffi
−g

p
Δ4 ¼

ffiffiffiffiffiffiffi
−g0

p
Δ0

4 ð59Þ
together with the Lorentz violating term transformation,
Eq. (52). Here and below, the quantities with primes are
constructed using only the metric g0μν. In particular, in the
above formula, Δ4 is the Paneitz operator [52]

Δ4 ¼ □
2 þ 2Rμν∇μ∇ν −

2

3
R□þ 1

3
ð∇μRÞ∇μ; ð60Þ

which is a covariant, fourth derivative, self-adjoint, and
conformal invariant operator when acting on dimensionless
scalar fields.
After the described procedure is a completed formula (56)

becomes very simple, and integration in the σ variable is
straightforward. The solution for the effective action is

Γind¼Sc½g0μν;K0
μν�þ

Z
d4x

ffiffiffiffiffiffiffi
−g0

p �
wσC02þbσ

�
E0−

2

3
□

0R0
�

þ2bσΔ0
4σþ2σLðg0μν;K0

μνÞ

−
3cþ2b

36
½R0−6ð∇0σÞ2−6□0σ�2

�
; ð61Þ

where Sc ¼ Sc½gμν; Kμν� is an unknown conformal invariant
functional, which serves as an integration constant for
Eq. (56) and cannot be uniquely defined in the present
scheme. In the theories where the unique background field is
metric, due to the conformal invariance, this term is
irrelevant for the dynamics of the conformal factor of the
metric, e.g. in the cosmological case with the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric. At the same
time, even in some more complicated cases, the conformal
invariant term can be ignored as a good approximation. The
reason is that the Sc may contain only subleading quantum
corrections, while the rest of the action (61) has the leading
logarithm corrections [46] with full information about the
ultraviolet limit of theory. This affirmation is based, in
particular, on the results obtained without this conformal
term which provide a very nice match with the outputs of
other methods, as in the gravitational waves [53–55] and
black hole [56] cases.
In the present case, with the extra nonmetric background

fields, the irrelevance of the conformal term does not hold
even for the cosmological background. In this sense, the
anomaly induced effective action is not unique defined and
this can, in principle, affect some physical applications. It
would be interesting to analyze the relevance of this term
within another approach, such as the curvature expansion
[50], which enables one to obtain information about the
conformal invariant term Sc.
The solution (61) is noncovariant, in the sense that

it is not written in terms of the original metric gμν. In
order to obtain the covariant solution, we can use the
following formula which is true for any conformal
functional A½gμν� ¼ A½g0μν�:

2gμνðyÞ
δ

δgμνðyÞ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
A

�
E −

2

3
□R

�
x
¼ δ

δσðyÞ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0ðxÞ

p
A0
�
E0 −

2

3
□

0R0 þ 4Δ0
4σ

�
x

				
g0μν→gμν;σ→0

¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0ðyÞ

p
Δ0

4A
0 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðyÞ

p
Δ4A: ð62Þ

In the above equation we have used the identity (51) together with the transformation rule (58). Introducing the Green
function for the Paneitz operator,

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
Δ4;xGðx; yÞ ¼ δ4ðx − yÞ ð63Þ

and by means of the relation (62), solving Eq. (56) becomes direct. For example, for the Weyl squared term

2gμν
δ

δgμνðyÞ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p Z
d4y

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðyÞ

p
C2ðxÞGðx; yÞ

�
E −

2

3
□R

�
y

¼ 4

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðyÞ

p
Δ4;yGðx; yÞC2ðxÞ ¼ 4C2ðyÞ: ð64Þ

Using an analogous consideration for the other terms in (56) and by means of the formula (55), we arrive at the solution

Γind ¼ Sc þ Γw þ Γb þ Γc; ð65Þ
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where

Γw ¼ 1

4

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p Z
d4y

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðyÞ

p
ðwC2 þ 2LÞxGðx; yÞ

�
E −

2

3
□R

�
y
; ð66Þ

Γb ¼
b
8

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p Z
d4y

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðyÞ

p �
E −

2

3
□R

�
x
Gðx; yÞ

�
E −

2

3
□R

�
y

ð67Þ

and

Γc ¼ −
3cþ 2b

36

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
R2ðxÞ: ð68Þ

One can note that the Lorentz violating terms show up only
in the first nonlocal term, Eq. (66).
At the next stage, the nonlocal expressions for the

anomaly induced EA can be presented in a local form
through the introduction of two auxiliary scalar fields ϕðxÞ
and ψðxÞ [57] (the simpler one scalar form was known from
much earlier, see [24]). This procedure was discussed in
detail in Ref. [57] and revised in [23,46], so let us give just a
final result for the local form of the anomaly induced
effective action,

Γind ¼ Sc½gμν; Kμν� −
3cþ 2b

36

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
R2ðxÞ

þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p �
1

2
ϕΔ4ϕ

−
1

2
ψΔ4ψ þ ϕ

�
k1

�
C2 þ 2

w
L

�
þ k2

�
E −

2

3
□R

��

þ l1ψ

�
C2 þ 2

w
L

��
; ð69Þ

where

k1 ¼ −l1 ¼ −
w

2
ffiffiffiffiffiffi
−b

p and k2 ¼
ffiffiffiffiffiffi
−b

p

2
: ð70Þ

At the classical level, the local covariant form (69) is
dynamically equivalent to the nonlocal covariant one (65),
which means that after solving the field equations for the
fields ϕðxÞ and ψðxÞ and plugging back these solutions in
to action (69), we come back to the previous formula (65).
The use of the local covariant form with auxiliary scalars is
advantageous because the initial value problem for these
fields are equivalent to the boundary conditions for the two
Green functions present in the nonlocal covariant form
(65). By this reason, Eq. (69) is the most useful one for
dealing with Hawking radiation from black holes [56,58] or
exploring the dynamics of gravitational waves on cosmo-
logical background [54]. Also, the relevance to have two
auxiliary fields instead of a single one field has been
addressed in detail in Refs. [56,57].

The actions (61), (65), (69) represent the final product of
the conformal anomaly integration. They correspond to the
quantum correction to the classical gravitational action. In
comparison with the previous standard case known in the
literature, those formulas have extra Lorentz violating
terms coming from the scalar field contribution. All
information about the symmetry-breaking parameters is
included in the Lðgμν; KμνÞ function. An analogous sit-
uation was found in Ref. [16] in the Lorentz=CPT violating
electrodynamics. In that case, the full vector field contri-
bution was contained in a single function involving the
CPT-even violating parameter kμναβF and curvature tensors.
Additionally, in that work, it has been shown that the new
term does not affect the dynamics for the FLRW metrics
with generic spatial curvature values k ¼ 0;�1. This
negative result concerning the effect of the new term in
the homogeneous and isotropic spacetime is expected,
since the violating fields defines a preferable direction in
that background. Therefore, this fact can also be seen as an
additional test for our huge algebraic calculations. Indeed, in
our case, it is not difficult to show that LðgFLRWμν ; KμνÞ ¼ 0.
Besides that, one can expect that the new terms can cause
some modifications in the equations for cosmic perturba-
tions during the inflationary epoch and especially, for
gravitational waves. The study of gravitational waves in
the anomaly induced effective action formalism has been
done systematically in Ref. [54], and its generalization with
the presence of the extra Lorentz violating term would be
certainly a potentially interesting problem. One can expect
relevant different contributions which can lead to some new
constraints on the symmetry-breaking parameter Kμν.
Regardless of the serious technical difficulties of this
program, it does not look unreliable in practice.

V. CONCLUSIONS

Let us summarize the results obtained.We have calculated
the vacuum one-loop divergences for the Lorentz=CPT
violating scalar field theory in a curved background. The
symmetry-violating parameters were treated as fields, rather
than constants. The practical calculations have been per-
formed for scalars with a minimal and nonminimal inter-
action with gravity by the application of functional methods
and the Schwinger-DeWitt technique [28,29]. For minimal
real scalars, the solution for the one-loop counterterms was
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found in a closed form, while for the nonminimal complex
scalar field, the solution has been obtained in the first order
in the small symmetry-breaking parameters. It turns out that
the CPT-odd violating fields do not contribute for the
vacuum divergences at that order. All contribution to the
renormalization of the vacuum comes from the dimension-
less parameterKμν, an analogous situation towhat happens in
Lorentz violatingQED,where only theCPT-even parameter
kμναβF contributes [14–16]. At same time, we expect that the
odd parameter becomes relevant in the interacting theory
and/or in higher orders in Lorentz=CPT symmetry breaking
fields. Also, the minimal form of the gravitational action
requested by the renormalization of the violating scalar field
theory in curved spacetime was established based on the
previous one-loop calculations. In particular, the effect of
some Lorentz violating gravitational terms, which are
necessary at a semiclassical quantum level, were already
discussed in the short range gravity limit [42,43] and in the
quantum gravity [44]. At the next stage, a similar analysis for
the other missing new terms in Eq. (39) and those coming
from the photon sector [16] would be a very interesting
exercise, and we hope that with such analysis some new
bounds on the gravitational Lorentz violating parameterswill
be established.
The derivation of one-loop divergences for scalar fields

with a nonminimal gravitational coupling also opens theway
to study the conformal anomaly and anomaly induced
effective action of gravity, whose derivations did not bring
up serious obstacles. The anomaly integration proceeds with
minimal changes compared to the known procedure, since the
new Lorentz violating term is conformal. At the one-loop

level, the anomaly is given by an algebraic sum of the
contributions of the massless conformal invariant fields of
spins 0, 1=2, 1. The expression obtained, Eq. (69), represents
the scalar field contribution for gravitational effective action,
and togetherwith thephotonpart [16]must be completedwith
the fermionic contribution, which we are planning to present
elsewhere. After that, the use of the corresponding gravita-
tional effective action in searching for the Lorentz violation in
the anisotropies of cosmicmicrowave radiation, coming from
the cosmic perturbations in the early Universe, would
represent a promising area for application of our results.
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APPENDIX A: INTERMEDIARY UNIVERSAL
FUNCTIONAL TRACES RESULTS

To obtain the divergent part of the nonminimal piece of a
one-loop effective action (36), we shall use the table
universal functional traces which are an important part
of the generalized Schwinger-DeWitt technique. The men-
tioned table correspond to the formulas (4.53) up to (4.61)
of Ref. [29] (note that here we use opposite sign notations).
Using these formulas, the divergences in each term of
Eq. (36) can be directly calculated. After some algebra,
we obtain

TrKμν∇μ∇ν
1

□

				
div

¼ 2iμn−4

ϵ

Z
dnx

ffiffiffiffiffiffi
−g

p �
Kμν

�
1

90
RαβRαμβνþ

1

90
RαβρμR

αβρ
…ν −

1

45
RμαRα

ν þ
1

36
RRμνþ

1

60
□Rμνþ

1

20
∇μ∇νR

�

−
K
2

�
1

180
R2
μναβ−

1

180
R2
αβþ

1

72
R2þ 1

30
□R

��
; ðA1Þ

TrðξR −m2ÞKμν∇μ∇ν
1

□
2

				
div

¼ iμn−4

3ϵ

Z
dnx

ffiffiffiffiffiffi
−g

p �
1

2
KξR2 − ξKμνRRμν þm2KμνRμν −

m2

2
KR

�
; ðA2Þ

Trðm4 − 2m2ξRþ ξ2R2 − ξ□RÞKμν∇μ∇ν
1

□
3

				
div

¼ −
iμn−4

2ϵ

Z
dnx

ffiffiffiffiffiffi
−g

p ðm4 − 2m2ξRþ ξ2R2 − ξ□RÞK; ðA3Þ

4Trξð∇μ∇νRÞKαβ∇α∇β∇μ∇ν
1

□
4

				
div

¼ −
iμn−4

3ϵ

Z
dnx

ffiffiffiffiffiffi
−g

p fξK□Rþ 2ξKμν∇μ∇νRg; ðA4Þ

TrξKμνð∇μ∇νRÞ
1

□
2

				
div

¼ −
2iμn−4

ϵ

Z
dnx

ffiffiffiffiffiffi
−g

p
ξKμν∇μ∇νR; ðA5Þ

−4TrξKμαð∇α∇νRÞ∇μ∇ν
1

□
3

				
div

¼ 2iμn−4

ϵ

Z
dnx

ffiffiffiffiffiffi
−g

p
ξKμν∇μ∇νR: ðA6Þ

By using Eqs. (36) and relations (A1)–(A6), one can obtain the result (37).
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APPENDIX B: PROOF OF CONFORMAL
INVARIANCE OF THE LORENTZ

VIOLATING L TERM

Let us present here the proof of conformal invariance
(52). From the technical side, this is not a trivial task
since the expression (48) is quite complicated; then we
are going to expose some details concerning the needed

conformal transformation rules. Since the conformal
group is a one-parameter Lie group, one can restrict
our considerations to the infinitesimal version of trans-
formation (42). Disregarding the higher orders in σ and
superficial terms, after some tedious algebra, we arrive at
the following transformation rules for each term present
in (48):

ð ffiffiffiffiffiffi
−g

p
KμνRμραβR

: ραβ
ν Þ0 ¼ ffiffiffiffiffiffi

−g
p ½KμνRμραβR

: ραβ
ν − 4KμνRρ

ν∇μ∇ρσ þ 4KμνRμαβν∇α∇βσ þ � � ��; ðB1Þ

ð ffiffiffiffiffiffi
−g

p
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ffiffiffiffiffiffi
−g

p ½KαβRμνRαμβν þ 2KμνRρ
ν∇μ∇ρσ − KμνR∇μ∇νσ

− KRμν∇μ∇νσ − KμνRμν□σ þ 2KμνRμαβν∇α∇βσ þ � � ��; ðB2Þ

ð ffiffiffiffiffiffi
−g

p
KμνRμαRα
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−g
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K□
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Substituting the above formulas into (48), we find the conformal invariance (52).
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