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We develop a SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX model where the number of fermion generations is fixed by
cancellation of gauge anomalies, being a type of 3-3-1 model with new charged leptons. Similarly to the
economical 3-3-1 models, symmetry breaking is achieved effectively with two scalar triplets so that the
spectrum of scalar particles at the TeV scale contains just two CP even scalars, one of which is the recently
discovered Higgs boson, plus a charged scalar. Such a scalar sector is simpler than the one in the Two Higgs
Doublet Model, hence more attractive for phenomenological studies, and has no flavor changing neutral
currents (FCNC) mediated by scalars except for the ones induced by the mixing of Standard Model (SM)
fermions with heavy fermions. We identify a global residual symmetry of the model which guarantees mass
degeneracies and some massless fermions whose masses need to be generated by the introduction of
effective operators. The fermion masses so generated require less fine-tuning for most of the SM fermions
and FCNC are naturally suppressed by the small mixing between the third family of quarks and the rest.
The effective setting is justified by an ultraviolet completion of the model from which the effective
operators emerge naturally. A detailed particle mass spectrum is presented, and an analysis of the Z0

production at the LHC run II is performed to show that it could be easily detected by considering the
invariant mass and transverse momentum distributions in the dimuon channel.
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I. INTRODUCTION

The measurements of the Higgs boson properties and
their actual agreement with the Standard Model predictions
[1–4] have corroborated the simplest implementation of the
Higgs mechanism as the source of electroweak symmetry
breaking. Although the CERN Large Hadron Collider
(LHC) has not yet provided clear evidence for new physics,
the Standard Model (SM) consolidation has helped us to
put in a firmer footing a series of its theoretical problems
such as the severe hierarchy of the Yukawa couplings (the
flavor problem), including the neutrino masses and mixing
problem; the number of fermion generations; the chiral

nature of the electroweak interaction; matter-antimatter
asymmetry of the Universe; the strong CP problem; the
dark matter content of the Universe; and the vacuum
stability. The seeking of solutions for one or more of these
problems has often guided the development of new models
by extending the field content of the SM or, sometimes
simultaneously, enlarging its symmetries.
Concerning the empirical observation of just three

generations of fermions, 3-3-1 models offer a plausible
explanation [5–11]. In these theoretical constructions the
SUð2ÞL ⊗ Uð1ÞY symmetry group of the electroweak inter-
actions is extended to SUð3ÞL ⊗ Uð1ÞX, in such a way that
cancellation of all gauge anomalies involves necessarily all
the three fermion generations. As it happens, there are
different types of 3-3-1 models depending on the matter
content fixed by a parameter β in the electric charge operator

Q ¼ T3 þ βT8 þ XI; ð1Þ

where T3 and T8 are the diagonal generators of SUð3ÞL
built as Ta ¼ λa

2
from the Gell-Mann matrices λa, with

a ¼ 1;…; 8; and X refers to the Uð1ÞX charge. Standard
Model left-handed lepton fields take part in SUð3ÞL triplets,
ψ iL ¼ ðνie−i EqE

i ÞTL, having Xψ ¼ − 1
2
ð1þ βffiffi

3
p Þ. The third
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components, EqE
i , are new lepton fields with electric charge

qE ¼ − 1
2
ð1þ ffiffiffi

3
p

βÞ. The particular choice β ¼ − 1ffiffi
3

p leads

to models where the new leptons EiL do not carry an electric
charge [5,9,11,12]. Other well developed constructions have
β ¼ −

ffiffiffi
3

p
and, in this case, EiL carry one unit of electric

charge so that it could be identified with the charged
antileptons, i.e., EiL ≡ ðl−iRÞc [6,7], or even represent new
charged leptons [10]. For other possibilities, see [13].
For all models, the cancellation of gauge anomalies

requires two antitriplets (triplets) and one triplet (antitriplet)
of left-handed quarks when taking into account triplets
(antitriplets) of leptons. This feature leads to flavor chang-
ing neutral currents (FCNC) mainly through a vector boson
Z0 whose mass is related to the energy scale in which the
SUð3ÞL ⊗ Uð1ÞX symmetry is broken down spontaneously
to SUð2ÞL ⊗ Uð1ÞY . Bounds on the Z0 boson mass have
been obtained from the LHC data for the versions with
β ¼ �1=

ffiffiffi
3

p
, −

ffiffiffi
3

p
in Ref. [14], and recent analyses on

FCNC have been performed in Refs. [15–17].
Many works have been published exploring the theo-

retical and phenomenological benefits of these models,
showing that they are good candidates for describing new
physics. For example, it is possible to include supersym-
metry in such a context [18–21], as well as to construct left-
right extensions [22], which have recently been subject of
some studies [23–26].
To implement spontaneous symmetry breaking, three or

more scalar multiplets getting vacuum expectation value
(vev) at the GeV-TeV scale have been considered in 3-3-1
models. As a consequence, the scalar potential has many
free parameters, being more complex than, e.g., the Two
Higgs Doublet Model (see Ref. [27] for a review).
However, it has been shown that it is possible to break
the symmetries down in some 3-3-1 models by taking into
account two scalar triplets only [17,28–31]. These con-
structions are phenomenologically attractive once they
have a simpler scalar potential, predicting only three
Higgs bosons. With the introduction of effective operators,
masses for all fermions can be generated [17,28].
Our aim in this work is to develop a version of the 3-3-1

model with β ¼ 1ffiffi
3

p distinct from its first proposals [32,33]

and from other similar models focused on neutrino masses
and mixing [34,35]. We focus on this model because the
versions with β ¼ � ffiffiffi

3
p

[6,7,10] become strongly interact-
ing at an energy of few TeV [7,36–39]. We comment on the
case β ¼ −1=

ffiffiffi
3

p
when relevant. We show that a consistent

symmetry breaking pattern is obtained for this model with
only two scalar triplets getting vev. Also, we present a
simple mechanism where the low energy effective oper-
ators required to generate mass for some fermions arise
after the integration of a supposedly heavy scalar triplet.
These effective operators share similarities with those in
the Froggatt-Nielsen mechanism in the sense that they
generate more natural, less fine-tuned, masses for most of

the fermions of the model, when compared to the mass
generation in the Standard Model. The scalar particle
spectrum of the model is composed of just two neutral
CP even scalars, with one of them directly identified with
the discovered 125 GeV Higgs boson, plus a charged one
and its antiparticle. Also, five new vector bosons, Vþ, V−,
V0, V0†, and Z0, are predicted by the model. A study of the
production signals at the LHC of the Z0 boson is performed.
The paper is organized as follows: in Sec. II, the essential

aspects of the model are presented, including symmetry
breakdown, residual symmetries, and the particle spectra of
scalar and vector bosons; Fermion masses are treated in
Sec. III; flavor changing interactions are analyzed in
Sec. IV; in Sec. V, a simple UV-completion able to generate
the needed effective operators for fermion masses is
discussed; the Z0 boson phenomenology is presented in
Sec. VI; and our conclusions are given in Sec. VII.

II. THE MODEL

We focus on the model with β ¼ 1=
ffiffiffi
3

p
in Eq. (1).

Therefore, the left-handed lepton fields form SUð3ÞL
triplets, with the right-handed lepton fields in SUð3ÞL
singlets, as follows:

ψ iL ¼ ðνi; e−i ; E−
i ÞTL ∼ ð1; 3;−2=3Þ;

νiR ∼ ð1; 1; 0Þ; e0−sR ∼ ð1; 1;−1Þ; ð2Þ

where i ¼ 1, 2, 3, is the generation index, and s ¼ 1;…; 6,
with e0−sR ≡ ðe−iR; E−

iRÞ. The numbers in parentheses refer to
the field transformation properties under SUð3ÞC, SUð3ÞL,
and Uð1ÞX, respectively. We consider the right-handed
neutrino fields, νiR, in order to generate small masses to
the left-handed neutrinos through the usual seesaw mecha-
nism. The fields E−

iL, required to complete the SUð3ÞL
representation, along with the right-handed components,
give rise to three heavy leptons.
Given the above lepton multiplets, as first observed long

ago, gauge anomalies are canceled when the three families
of quarks are included nonuniversally into two antitriplets
and one triplet of SUð3ÞL for the left-handed parts, and the
corresponding right-handed fields assigned to singlets:

QaL ¼ ðda;−ua;UaÞTL ∼ ð3; 3�; 1=3Þ;
Q3L ¼ ðu3; d3; DÞTL ∼ ð3; 3; 0Þ;
u0mR ∼ ð3; 1; 2=3Þ; d0nR ∼ ð3; 1;−1=3Þ; ð3Þ

where a ¼ 1, 2, m ¼ 1;…; 5, n ¼ 1;…; 4, with u0mR ≡
ðuiR;UaRÞ and d0nR ≡ ðdiR;DRÞ. Besides the quark fields
of the SM, this model has two extra up-type quark fields,
Ua, and one down-type field, D. Such fields, as well
as Ei, get their masses at the energy scale w, in which
the SUð3ÞL ⊗ Uð1ÞX is supposedly broken down to
SUð2ÞL ⊗ Uð1ÞY . Once that energy scale must be higher

E. R. BARRETO et al. PHYS. REV. D 97, 055047 (2018)

055047-2



than the electroweak scale, i.e., w > v ¼ 246 GeV, it is
natural for the new elementary fermions associated with
those fields to be heavier than the standard ones.
As we have already mentioned, the set of fields in

Eqs. (2) and (3) is such that the cancellation of gauge
anomalies involves the three fermion generations. This
contrasts with the SM where the cancellation of anomalies
occurs in each family, independently.
In principle, the choice of which generation of left-

handed quark is assigned to a triplet is arbitrary. But, the
fact that not all left-handed quark multiplets have the same
transformation properties leads to new sources of FCNC.
This has been explored in various works considering
different versions of 3-3-1 models. Constructions with
the third generation transforming differently from the first
two are less restricted by bounds of processes involving
FCNC. We show in Sec. IV that FCNC interactions are
naturally suppressed in our model due to its peculiar mass
generation mechanism for the fermions.
The following two scalar triplets realize the spontaneous

breaking of the SUð3ÞL ⊗ Uð1ÞX symmetry down to Uð1ÞQ
of the electromagnetic interactions:

ρ≡ ðρ01ρ−2 ρ−3 ÞT ∼ ð1; 3;−2=3Þ;
χ ≡ ðχþ1 χ02χ03ÞT ∼ ð1; 3; 1=3Þ: ð4Þ

This is the minimal set of scalar fields that can perform the
required symmetry breakdown.
From the fermionic and the scalar multiplets in

Eqs. (2), (3), and (4), we write down the following
Yukawa Lagrangian:

−LY ¼ hEisψ iLχe0sR þ hνijψ iLρνjR þ 1

2
mijðνiRÞcνjR

þ hUamQaLχ
�u0mR þ hdanQaLρ

�d0nR þ fumQ3Lρu0mR

þ fDn Q3Lχd0nR þ H:c:; ð5Þ

where the complex coupling constants are such that: hEis is a
3 × 6 matrix; hνij, is a 3 × 3 matrix; mij ¼ miδij is a 3 × 3

diagonal matrix; hUam and hdan are 2 × 5 and 2 × 4 matrices,
respectively; fum and fDn are 1 × 5 and 1 × 4 matrices,
respectively.
With only the two scalar triplets in Eq. (4), the most

general renormalizable scalar potential is simply given by

Vðχ; ρÞ ¼ μ21ρ
†ρþ μ22χ

†χ þ λ1ðρ†ρÞ2 þ λ2ðχ†χÞ2
þ λ3ðχ†χÞðρ†ρÞ þ λ4ðχ†ρÞðρ†χÞ: ð6Þ

We assume that the quadratic mass parameters, μ21;2 < 0,
and the self-interaction coupling constants, λi, i ¼ 1;…4,
are such that the scalar fields will develop nonvanishing
vevs, hχi, hρi ≠ 0.

A. Symmetry breaking and residual symmetries

Besides being invariant under the gauge symmetries
SUð3ÞC⊗SUð3ÞL⊗Uð1ÞX, our model presents invariance
under certain global symmetries that we will now describe.
When only renormalizable operators are taken into account,
and right-handed neutrinos are not introduced, one can
check that the Lagrangian is invariant under three extra
global U(1) symmetries. Two of which can be taken as the
Baryon and the Lepton number symmetries (Uð1ÞB and
Uð1ÞLep), while the other one, being associated with a
½SUð3ÞC�2 × Uð1Þ anomaly, is a Peccei-Quinn-like sym-
metry (Uð1ÞPQ).1 The latter symmetry is the continuous
version of the center of SUð3ÞL in which every triplet, 3,
carries unit charge while every antitriplet, 3�, carries the
opposite charge. This is possible in our case due to the
absence of any trilinear couplings of the form 3 × 3 × 3.
Therefore, when the scalar fields get vev, the Uð1ÞPQ
symmetry will be broken, but its charges will be part of
another remaining global symmetry as we show below. In
Table I the quantum numbers associated with the U(1)
symmetries are presented for all the matter fields.
Thus, our model is actually invariant under a larger

symmetry group: SUð3ÞC⊗SUð3ÞL⊗Uð1ÞX⊗Uð1ÞPQ⊗
Uð1ÞBð⊗Uð1ÞLepÞ with the additional Abelian symmetries
being global ones. We put Uð1ÞLep in parentheses to call the
reader’s attention to the fact that such a symmetry is only
present when the bare Majorana mass term for the νiR
singlets in Eq. (5) is absent.
Since scalar fields transform trivially under the

SUð3ÞC ⊗ Uð1ÞBð⊗ Uð1ÞLepÞ subgroup, there is no way
in which nonvanishing vevs of the scalar fields will trigger
spontaneous symmetry breaking of such a structure.
Consequently, we neglect this subgroup for now on and
focus only on the groups affected by spontaneous sym-
metry breaking, i.e. SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞPQ, contain-
ing ten independent generators.
We begin our analysis by noting that the electric charge

operator in Eq. (1) with β ¼ 1=
ffiffiffi
3

p
implies that the second

TABLE I. Charges of the Abelian symmetries of the model.

# χ ρ ψ iL (eiR,EiR) νiR QaL Q3L ðdiR; D3RÞ ðuiR; UaRÞ
X 1=3 −2=3 −2=3 −1 0 1=3 0 −1=3 2=3
PQ 1 1 1 0 0 −1 1 0 0
B 0 0 0 0 0 1=3 1=3 1=3 1=3
Lep 0 0 1 1 1 0 0 0 0

1We mean here that such a global symmetry is chiral and
anomalous, but it will be broken explicitly, as discussed in
Sec. III, implying that the Peccei-Quinn mechanism does not take
place in our model. Implementations of the Peccei-Quinn
symmetry for the strong CP problem in the 3-3-1 models can
be found, for example, in Refs. [40,41].
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and third component fields of any SUð3ÞL triplet or
antitriplet always have the same electric charge. This
means that the charge operator is invariant by

U†QU ¼ Q; ð7Þ
where U can be an arbitrary SU(2) transformation in the 2-3
sub-block or any diagonal transformation.2 It is the former
group which is special to this case, and we denote this group
as SUð2Þrep where rep stands for reparametrization. The
situation is different frommanygauge extensionsof theSM in
which there are no equal charge fields in the same multiplet,
and the only transformations that leave Q invariant are the
diagonal oneswhich includeQ itself,moduloAbelian factors.
This is also different from horizontal spaces that are present
even before symmetry breaking, such as in the Two Higgs
Doublet extension of the SM or the extension (UV com-
pletion) of the current model with one more scalar triplet; see
Sec.V.Reparametrization symmetrymeans thatwe can rotate
all the fields of the theory by an SUð2Þrep transformation,
including the vev in Eq. (8), without affecting the physical
content. The physical invariance is ensured because SUð2Þrep
is a subgroup of the original SUð3ÞL global gauge group.
Therefore, without loss of generality we can consider

that the minimum of the potential in Eq. (6) is attained at
the vevs

hχi ¼ 1ffiffiffi
2

p ð0; 0; wÞT; ð8Þ

hρi ¼ 1ffiffiffi
2

p ðv; 0; 0ÞT: ð9Þ

If we had considered the more general vev hχi ¼
ð0; v0; w0ÞT= ffiffiffi

2
p

, the reparametrization symmetry in (7)
would allow us to rotate hχi to the original form in
Eq. (8) without affecting hρi in Eq. (9). Consequently,
the fields are also transformed so that Eqs. (8) and (9) can
be taken from the start. A direct consequence is that the
vector bosons V� and W� do not mix at tree level. It has
to be pointed out that the reparametrization symmetry
applies to other models, like the 3-3-1 model defined by
β ¼ −1=

ffiffiffi
3

p
, having a scalar triplet with two neutral

components that could acquire vevs, so that we can make
a rotation in order to have just one component with vev.
Given that we are considering w > v, the spontaneous

symmetry breaking induced by the vevs in Eqs. (8)
and (9) happens in two stages: first with hχi realizing
the breakdown

SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞPQ
→ SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞPQ0 ; ð10Þ

with the hypercharge given by Y ¼ T8=
ffiffiffi
3

p þ X, and the
charges of the global symmetry PQ0 ¼ 3X − PQ; and
second with hρi realizing the breakdown

SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞPQ0 → Uð1ÞQ ⊗ Uð1ÞG; ð11Þ

withQ the electric charge operator of Eq. (1) and charges of
a global symmetry given by3

G ¼ 2T3 þ X −
1

3
PQ: ð12Þ

It is easy to see that this operator is unbroken by the vevs of
Eqs. (8) and (9) when we write it explicitly for χ and ρ:
GðχÞ ¼ diagð1;−1; 0Þ and GðρÞ ¼ diagð0;−2;−1Þ.4 Thus,
two independent generators out of the ten initial remain
unbroken after spontaneous symmetry breaking. The eight
would-be Goldstone bosons associated with the broken
generators are all absorbed to form the longitudinal degrees
of freedom of the massive vector bosons: Z, W�, Z0, V�,
and the neutral non-Hermitian V0 and V0†, with G charges
0, �2, 0, �1, −1 and þ1, respectively; see Eq. (30).
Consequently, from the twelve degrees of freedom con-
tained in the two scalar triplets, four are left as physical
scalar boson fields: two neutral CP even, h and H, plus the
charged ones φ�. The mass spectra for the scalar bosons
and vector bosons are shown in the next section. We
anticipate some mass degeneracy from the conservation of
G. For example, since V0 and V0† are the only neutral gauge
bosons with G charges ∓ 1, we expect that they remain
mass degenerate and do not split into two neutral gauge
bosons with different masses. This expectation is confirmed
by the explicit calculation of the mass matrices; see
Sec. II C.
The Uð1ÞG symmetry also has the property of being

chiral for the second components of fermion triplets
(antitriplets) and their right-handed counterparts in singlets
of SUð3ÞL. As a result the standard charged leptons, two
up-type quarks and one down-type quark, are left massless
even at the perturbative level, as pointed out in [42]. In
order to overcome this problem we introduce in Sec. III
dimension-5 operators which explicitly break the Uð1ÞPQ
and, consequently, the Uð1ÞG symmetry. As we will see,
such operators can be generated at low energies in an UV-
completed model with a heavy scalar triplet which is
integrated out. In such a setting the G charge is only

2Obviously, we can perform a more general reparametrization
in SUð3ÞL without physical consequence but the charge operator
Q would change.

3If both neutral components of χ acquire a vev, i.e.
ffiffiffi
2

p hχi ¼
ð0; u; wÞ, there still remains a conserved symmetry generated by
Gθ¼2ð1−2sin2θÞT3þsinð2θÞT6þð1−3sin2θÞX− 1

3
PQ, with

tan θ ¼ u=w for the case that u, w are real and positive. If they
were complex a more general expression can be written repar-
ametrized by SUð2Þrep.

4It is also clear that Uð1ÞG would be generally broken if there is
an additional scalar triplet that can acquire a vev in its second
component.
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broken by the soft breaking of PQ, and thus it remains
approximately conserved.

B. Scalar bosons

In order to find the scalar field masses and corresponding
physical states, let us first write the scalar triplets as

χ ¼

0
BB@

χþ1
χ02

1ffiffi
2

p ðwþ S3 þ iA3Þ

1
CCA and

ρ ¼

0
B@

1ffiffi
2

p ðvþ S1 þ iA1Þ
ρ−2
ρ−3

1
CA; ð13Þ

where we have decomposed the neutral fields which
acquire a nonvanishing vev into scalar and pseudoscalar
contributions, Si and Ai, respectively. In the approximation
that the global charge G is exactly conserved, we can expect
from its conservation that both χ02 and ρ−2 already have
definite masses (they are would-be Goldstone bosons) and
the possible pairs that can mix are ðχþ1 ; ρþ3 Þ, ðS1; S3Þ and
ðA1; A3Þ, assuming CP conservation.
The minimum condition for the potential leads to the

constraint equations

μ21 þ λ1v2 þ
1

2
λ3w2 ¼ 0

μ22 þ λ2w2 þ 1

2
λ3v2 ¼ 0; ð14Þ

from which the quadratic mass parameters μ21;2 can be
eliminated.
The mass matrix, derived from the scalar potential, for

the CP even scalars in the basis ðS1; S3Þ is

M2
0 ¼

�
2λ1v2 λ3vw

λ3vw 2λ2w2

�
: ð15Þ

This leads to the quadratic mass eigenvalues

m2
h ¼ λ1v2 þ λ2w2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ23v

2w2 þ ðλ2w2 − λ1v2Þ2
q

; ð16Þ

m2
H ¼ λ1v2 þ λ2w2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ23v

2w2 þ ðλ2w2 − λ1v2Þ2
q

; ð17Þ

corresponding, respectively, to the mass eigenstates

h ¼ cos θS1 þ sin θS3 ð18Þ

H ¼ − sin θS1 þ cos θS3; ð19Þ

where tan 2θ ¼ λ3vw=ðλ2w2 − λ1v2Þ. We identify h as the
state corresponding to the observed Higgs boson with mass
of 125 GeV. In the limit θ → 0, the tree level couplings of h
to the electroweak vector bosons W and Z are the same as
the Standard Model Higgs boson.
The particle spectrum of the model does not contain CP

odd neutral scalar fields. The pseudoscalar fields A1 and A3

are absorbed in the massive vector bosons Z and Z0. In
particular, the complex field χ02 ¼ ðS2 þ iA2Þ=

ffiffiffi
2

p
in the

triplet χ does not get a mass term and plays the role of the
Goldstone boson absorbed in the non-Hermitian neutral
vector boson V0 (both have G charge −1). This contrasts
with the Two Higgs Doublet Models, which necessarily
contain a neutral pseudoscalar in the particle spectrum.
For the charged scalar fields, it can be seen that only ρþ3

and χþ1 mix with each other so that their mass matrix, in the
basis ðρ�3 ; χ�1 Þ, is

M2
� ¼ λ4

2

�
w2 vw

vw v2

�
; ð20Þ

whose the nonzero eigenvalue

m2
φ� ¼ λ4

2
ðv2 þ w2Þ; ð21Þ

corresponds to the squared mass of a charged scalar state
given by

φ� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ w2

p ðwρ�3 þ vχ�1 Þ: ð22Þ

The orthogonal eigenstatesG�
31 ¼ ðvρ�3 − wχ�1 Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ w2

p
and G�

2 ¼ ρ�2 are Goldstone bosons which are absorbed
to form the longitudinal components of the vector bosons
V� and W�.
Thus, we see that four, from the initial twelve, degrees

of freedom contained in the two scalar triplets remain as
the physical scalars h, H, φ�. The other eight degrees of
freedom become the Goldstone modes needed to give mass
to the vector bosons W�, Z, V�, V0, V0†, and Z0. So ρ
contains predominantly the SM Higgs h within the SUð2ÞL
doublet and the heavy charged Higgs φ− in its third
component while χ contains predominantly the heavy
Higgs H in the third component and a small admixture
of the φþ within the SUð2ÞL.

C. Vector bosons

As usual, to determine the physical gauge bosons and
their masses, we look at the covariant derivative terms for
the scalar fields:

L ⊃ ðDμρÞ†ðDμρÞ þ ðDμχÞ†ðDμχÞ; ð23Þ
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in which the covariant derivative is defined as

Dμ ¼ ∂μ − igWa
μTa − igXXBμ ¼ ∂μ − iPμ; ð24Þ

where Ta, with a ¼ 1;…; 8, are the SUð3ÞL generators as
defined in Eq. (1), and X denotes the Uð1ÞX charge of the
field on which Dμ acts; g, gX are the gauge coupling
constants related to SUð3ÞL and Uð1ÞX, respectively. The
gauge coupling constant g is the same as in the Standard
Model, since in 3-3-1 models the gauge group SUð2ÞL

is totally embedded in SUð3ÞL. Additionally, the gauge
coupling constants are related to the Standard Model
electroweak mixing angle θW according to

t2 ¼ g2X
g2

¼ sin2 θW
1 − 4

3
sin2 θW

: ð25Þ

Then, the Pμ matrix for 3 can be written as

Pμ ¼
g
2

0
BBB@

W3μ þ W8μffiffi
3

p þ 2tBμX
ffiffiffi
2

p
Wþ

μ

ffiffiffi
2

p
Vþ
μffiffiffi

2
p

W−
μ −W3μ þ W8μffiffi

3
p þ 2tBμX

ffiffiffi
2

p
V0
μffiffiffi

2
p

V−
μ

ffiffiffi
2

p
V0†
μ − 2W8μffiffi

3
p þ 2tBμX

1
CCCA; ð26Þ

where we have defined the following fields

Wþ
μ ¼ W1μ − iW2μffiffiffi

2
p ; ð27Þ

Vþ
μ ¼ W4μ − iW5μffiffiffi

2
p ; ð28Þ

V0
μ ¼

W6μ − iW7μffiffiffi
2

p : ð29Þ

The G charge carried by these gauge fields is given by 2T3

and yields

GðPμÞ ¼

0
B@

0 2 1

0 −1
0

1
CA: ð30Þ

The vector boson masses arise when the scalar fields
in Eq. (23) acquire vevs as in Eqs. (8) and (9). The
vector boson fields W�, V�, V0, and V0† get the following
squared masses

M2
W� ¼ g2v2

4
; ð31Þ

M2
V� ¼ g2

4
ðv2 þ w2Þ; ð32Þ

M2
V0 ¼ M2

V0† ¼ g2

4
w2: ð33Þ

A direct consequence of breaking down the symmetries
with just two scalar triplets is the tree level mass splitting

prediction M2
V� −M2

V0 ¼ M2
W . Another peculiarity of the

model is that a novel sort of neutral current might occur
involving V0, V0†, since these vector bosons intermediate
transitions between standard and new leptons with the same
electric charge.
The gauge boson fields W3, W8, and B of the symmetry

basis mix with each other leading to the mass matrix, in the
basis ðW3;W8; BÞ,

M2
0 ¼

g2

2

0
BBB@

v2
2

v2

2
ffiffi
3

p − 2v2
3
t

v2

2
ffiffi
3

p ðv2þ4w2Þ
6

−2ðv2þw2Þ
3
ffiffi
3

p t

− 2v2
3
t −2ðv2þw2Þ

3
ffiffi
3

p t 2ð4v2þw2Þ
9

t2

1
CCCA: ð34Þ

The mass eigenstates from this matrix give the photon field,
Aμ, and two massive fields, Z1μ and Z2μ,

Aμ ¼
ffiffiffi
3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4t2

p
�
tW3

μ þ
tffiffiffi
3

p W8
μ þ Bμ

�
; ð35Þ

Z1μ¼NZ2
ð−3M2

Z2
W3

μþ
ffiffiffi
3

p
ð3M2

Z2
−g2w2ÞW8

μþg2w2tBμÞ;
ð36Þ

Z2μ¼NZ1
ð−3M2

Z1
W3

μþ
ffiffiffi
3

p
ð3M2

Z1
−g2w2ÞW8

μþg2w2tBμÞ;
ð37Þ

where the normalization constants are

NZ2;Z1
¼½ðg2w2tÞ2þð3M2

Z2;Z1
Þ2þ3ð3M2

Z2;Z1
−g2w2Þ2�−1=2:

The masses of the neutral vector bosons, Z1μ and Z2μ, can
be written as
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M2
Z2;Z1

¼ g2

18

�
ð3þ4t2Þv2þð3þt2Þw2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−9ð3þ4t2Þv2w2þðð3þ4t2Þv2þð3þt2Þw2Þ2

q �
;

ð38Þ

in such a way that the dominant contributions are

M2
Z1

¼ g2v2

4 cos2 θW
þO

�
v2

w2

�
;

M2
Z2

¼ g2 cos2 θWw2

3 − 4 sin2 θW
þO

�
v2

w2

�
: ð39Þ

And there is also the prediction, at tree level, that

M2
Z2
=M2

V0 ≈ 4 cos2 θW=ð3 − 4 sin2 θWÞ ≈ 1.48; ð40Þ

where we have used sin2 θW ≈ 0.231.
It is convenient for the discussion on the FCNC in the

model to express the mass eigenstates Z2μ and Z1μ as linear
combinations of the fields Z0

μ and Zμ, which result from
the sequential symmetry breakdown SUð3ÞL ⊗ Uð1ÞX and
SUð2ÞL ⊗ Uð1ÞY , respectively,

�
Z1

Z2

�
¼
�
cos θ − sin θ

sin θ cos θ

��
Z

Z0

�
: ð41Þ

The unitary matrix in Eq. (41) diagonalizes the Zμ–Z0
μ mass

matrix

�
M2

Z M2
ZZ0

M2
ZZ0 M2

Z0

�
; ð42Þ

where

M2
Z ¼ g2v2

4cos2θW
; M2

ZZ0 ¼ −
M2

Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4sin2θW

p ;

M2
Z0 ¼ M2

Z þ g2w2cos2θW
3 − 4sin2θW

: ð43Þ

In terms of these elements, the angle θ is

tanð2θÞ ¼ 2M2
ZZ0

M2
Z0 −M2

Z
: ð44Þ

For example, taking MZ0 ≈ 4 TeV, the angle is then
θ ≈M2

ZZ0=M2
Z0 ≈ −4 × 10−4 so that Z2μ ≈ Z0

μ.
Due to the fact that M2

Z1
also depends on the energy

scale w related to the breakdown of SUð3ÞL ⊗ Uð1ÞX to

SUð2ÞL ⊗ Uð1ÞY , the model presents a deviation from
the Standard Model ρ0 parameter prediction ρ0¼M2

W=
cos2θWM2

Z0 ¼1, withMZ0 standing for the Standard Model
Z0 boson mass at tree level. Such a deviation, up to order
ðv=wÞ2 ≪ 1 in M2

Z1
, is given by

Δρ0 ≡ M2
W

cos2 θWM2
Z1

− 1 ≈
ðv=wÞ2
4 cos4 θW

; ð45Þ

where M2
Z1

¼ M2
Z0 þ δM2

Z. The actual experimental data
furnishes Δρ0 ≡ ρ0 − 1≲ 0.0006 [43]. Thus, if the tree
level contribution is dominant over the radiative corrections
we obtain the lower-bound w ≥ 6.5 TeV, taking into
account the value v ¼ 246 GeV. For definiteness, we
take w¼10TeV which furnishesMZ2

≈ 4 TeV, andMV�≈
MV0 ≈ 3.2 TeV, although in our phenomenological analy-
sis in Sec. VI a lower value for the Z0 boson mass is also
considered.

III. FERMION MASSES

With the vevs hχi and hρi the Yukawa Lagrangian in
Eq. (5) leads to the mass matrix for neutrinos, in the basis
ðνiL; νiRcÞ,

Mν ¼ 1

2

 
0 vffiffi

2
p hν

vffiffi
2

p hνT m

!
; ð46Þ

where hν ¼ ðhνijÞ. We analogously denote by boldface the
various Yukawa matrices appearing in Eq. (5), such as hE,
hU, hd, fu, fD. The mass matrix (46) has the usual seesaw
texture which generates masses at the sub-eV scale for the
left-handed neutrinos assuming, for example, hνij of order
one and m ∼ 1014 GeV.
As we have already pointed out in Sec. II A, due to

the residual Uð1ÞG symmetry, the Yukawa Lagrangian in
Eq. (5) is not sufficient for giving mass to all charged
fermion fields. In order to overcome this problem, we
consider the following dimension-5 effective operators,5

which can emerge from a simple ultraviolet completion
shown in Sec. V,

−L ⊃
yeis
Λ

ψ iLχ
�ρ�e0sR þ yuam

Λ
QaLχρu0mR

þ ydn
Λ
Q3Lχ

�ρ�d0nR þ H:c: ð47Þ

The large mass scale is Λ ≫ w and the matrices of
coefficients yeis, y

u
am and ydn have sizes 3 × 6, 2 × 5 and

1 × 4 respectively; they are denoted by ye, yu and yd when

5Effective operators like these have also been considered
recently in a similar model in Ref. [17].
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the indices are suppressed. A contraction of the SU(3)
antisymmetric tensor εijk with the triplet fields in Eq. (47)
is implicit. These effective operators break explicitly the
Uð1ÞG symmetry allowing mass generation for the remain-
ing charged fermion fields that are left massless when only
Eq. (5) is considered.
The 6 × 6 charged lepton mass matrix, in the basis

ðei; EiÞL;R, has the form

Ml ¼ 1ffiffiffi
2

p
�

ϵye

whE

�
¼
�

Me MeE

03×3 ME

�
; ð48Þ

where Me, MeE, ME are all 3 × 3 matrices and the first
two matrices are hierarchically suppressed by ϵ ¼
vw=

ffiffiffi
2

p
Λ ≪ v. We can choose the lower left block to

vanish without loss of generality—and without disrupting
the natural hierarchy between the first three rows (∼ϵ) and
the last three (∼w)—by rotating appropriately in e0sR whose
rotation matrix is unphysical as all fields are singlets of
the gauge group. In this form, Me already approximately
represents the mass matrix for the charged leptons lα,
α ¼ e, μ, τ, of the SM and ME represents the mass matrix
for the heavy charged leptons Ei, i ¼ 1, 2, 3. By further
exploring the freedom to rotate ψ iL we could make either
Me or ME diagonal. There is a mixing among the lαL and
EiL controlled by the entry meE and has magnitude sup-
pressed by MeE=ME ∼ ϵ=w. In the limit ϵ → 0 (Λ → ∞)
the eigenstates li become massless as a result of the Uð1ÞG
symmetry restoration. Therefore, it is natural that the
leptons lα are lighter than Ei.
The above scenario associates the mass of the known

charged leptons to the energy scale ϵ which is derived from
the electroweak scale v times a suppression factor w=Λ. For
example, for w ¼ 10 TeV and ϵ ∼mτ ∼ 1 GeV, we have
Λ ∼ 103 TeV. Although there is still an unexplained fine
tuning of order 10−3 for the electron mass relative to the
scale ϵ, this situation contrasts with the Standard Model
where a tuning of order 10−5 relative to the electroweak
scale is required.
For the up-type quark mass matrix, in the basis

ðu1; u2; u3; U1; U2ÞTL;R, we obtain similarly

Mu ¼ 1ffiffiffi
2

p

0
B@

−ϵyu

vfu

whU

1
CA ¼

�
Mu MuU

02×3 MU

�
; ð49Þ

after an appropriate redefinition of u0mR, m ¼ 1;…; 5; Mu,
MuU, MU are matrices of sizes 3 × 3, 3 × 2, and 2 × 2,
respectively. By also rotating QaL we can choose MU ¼
diagðmU1

; mU2
Þ as diagonal, whose values of order w

correspond to the heavy quarks U1, U2 of charge 2=3.
Analogously,Mu corresponds to the mass matrix of the up-
type quarks of the SM, ðu; c; tÞ. The large separation in
energy among the sets of rows in (49) naturally suppresses

the mixing between states with hierarchically different
masses [44]. The mixing between the heavy quarks UaL
and the SM quarks (left-handed) are controlled by the entry
MuU and is at most MuU=MU ∼ v=w ∼ 10−2 for tL and at
most of order ϵ=w ∼ 10−4 for ðuL; cLÞ. The entries of Mu

themselves have a natural hierarchy of ϵ=v ∼ 10−2 between
the first two rows and the third. By conveniently rotating
the right-handed components, we can write the mass matrix
for the SM up-type quarks,

Mu ¼
1ffiffiffi
2

p
�
ϵyui
vfui

�
¼
�

M̃u M̃ut

01×2 mt

�
; ð50Þ

where mt is the top mass of order v and M̃u, M̃ut are of
order ϵ or smaller. The mass matrix M̃u is naturally of order
ϵ ∼ 1 GeV and gives masses for ðu; cÞ. We could have
chosen M̃u to be diagonal instead of MU from the rotation
on QaL. The mixing between tL and ðuL; cLÞ is naturally
suppressed by M̃ut=mt ∼ ϵ=v ∼ 10−2.
For the down-type quarks, in the basis ðd1; d2; d3; DÞTL;R,

we have the mass matrix

Md ¼ 1ffiffiffi
2

p

0
B@

vhd

ϵyd

wfD

1
CA ¼

�
Md MdD

01×3 MD

�
; ð51Þ

after appropriate rotation in d0nR, n ¼ 1;…; 4. The mass
MD of order w corresponds to a new heavy quark D
while SM quarks ðd; s; bÞ have a mass matrix given
approximately by Md. The mixing between DL and the
ðdL; sL; bLÞ are naturally suppressed by at least
MdD=MD ∼ v=w ∼ 10−2. In fact, for the down-type quarks,
we do not obtain a natural hierarchy between the first two
families and the third family. We obtain a natural hierarchy
if hdan is not of order one but suppressed by

vhdan ¼ ϵ0h̄dan ∼ 6 × 10−4vh̄dan; ð52Þ

with h̄dan of order one and ϵ0 ∼ms ∼ 0.1 GeV. This sup-
pression further decreases the mixing between DL and bL
to ϵ=w ∼ 10−4 and one order of magnitude smaller for the
mixing with ðdL; sLÞ. We show in the following a possible
mechanism responsible for this further suppression.
Assuming this hierarchy for the moment, we obtain the
mass matrix for ðd; s; bÞ:

Md ¼
1ffiffiffi
2

p
�
ϵ0h̄dai
ϵydi

�
¼
�

M̃d M̃db

02×1 mb

�
; ð53Þ

where we have used appropriate rotations on d0iR, i ¼ 1, 2,
3. We can see that mb is naturally of order ϵ ∼ 1 GeV and
M̃d—which yields the masses for ðd; sÞ—is naturally of
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order ϵ0 ∼ms. The mixing between bL and ðdL; sLÞ is
naturally suppressed by M̃db=mb ∼ms=mb ∼ 0.02.
The necessary suppression in hd could arise if the

operator hdanQaLρ
�d0nR in Eq. (5) is in fact absent at tree-

level but results from an effective higher order operator
involving a new singlet scalar φ at a very high energy as

h̄dan
φ

Λ0QaLρ
�d0nRþH:c:→ h̄dan

hφi
Λ0 QaLρ

�d0nRþH:c: ð54Þ

Thus, we would have effectively that hdan ¼ h̄danhφi=Λ0,
where hφi=Λ0 ∼ ϵ0=v ∼ 6 × 10−4 ≪ 1. The absence of the
tree-level term QaLρ

�d0nR can be arranged by introducing a
Z2 symmetry under which only φ, QaL, uaR, UaR are odd.
One of the up-type quarks, u3R, is kept even so that the top
mass is still generated correctly by Eq. (5). The direct
interaction terms involving the bilinear forms QaLu3R,
Q3LuaR and Q3LUaR will be absent but effectively induced
by the replacements QaL → φ=Λ0QaL, uaR → uaRφ=Λ0,
and UaR → UaRφ=Λ0, so that the mixing between tL
and the heavy UaL or the lighter ðuL; cLÞ will be further
suppressed by ϵ0=v ∼ 10−3 compared to the estimates
discussed above. This property renders the top quark
essentially unmixed with the rest.
Therefore, our minimal mechanism of breaking the 3-3-1

symmetry by the use of just two triplets, together with the
Z2 symmetry above, correctly displays the qualitative
hierarchy between the masses for the third family quarks
and those of the first two families. Comparing the mass
matrices in Eqs. (50) and (53), it is clear that we have
enough freedom to obtain the correct masses for the SM
quarks and the correct Cabibbo-Kobayashi-Maskawa
(CKM) mixing matrix in a quantitative way. We can write

Md ¼ ðVd
LÞ†diagðmd;ms;mbÞ;

Mu ¼ ðVu
LÞ†diagðmu;mc;mtÞ; ð55Þ

already discarding the unobservable rotation matrices for
the right-handed quarks. The CKM matrix is fixed by

VCKM ¼ ðVu
LÞ†Vd

L; ð56Þ

so that Vd
L can be considered free, while Vu

L is fixed by
VCKM and Vd

L. From the discussion above, Vu
L is essentially

block-diagonal with the third family practically decoupled
from the rest. Another possibility to naturally suppress the
coupling hdan would be to implement the Froggatt-Nielsen
mechanism [45] (see also [46] for a proposal along this
line in a 3-3-1 model). We leave this question for future
investigations.
We briefly comment on the model with β ¼ −1=

ffiffiffi
3

p
where the heavy quark content is inverted—we would have
two heavy quarks Da of charge −1=3 and just one quark U
of charge 2=3—and the heavy charged leptons Ei are

replaced by neutral leptons Ni that could participate in the
mass generation mechanism for light neutrinos. The natural
hierarchy in the up-type and down-type quark sectors
would be very similar and the implementation of the Z2

symmetry is analogous.

IV. SUPPRESSED FLAVOR CHANGING
CURRENTS

We consider first the FCNC interactions mediated by
scalars. To that end it is instructive to consider first the
breaking of SUð3ÞL ⊗ Uð1ÞX to the SM gauge group by
hχi and rewrite

χ ¼
 
−ϕ1

χ03

!
; ρ ¼

 
ϕ̃2

ρ−3

!
; ð57Þ

where ϕ1, ϕ2 are SUð2ÞL doublets of Y ¼ 1=2. At this
stage, only

ffiffiffi
2

p
Reχ03 acquires a vev w ∼ 10 TeV andffiffiffi

2
p

Reðχ03Þ and ρ−3 will be heavy SM singlet scalars of
Y ¼ 0 and Y ¼ −1, respectively. The scalar

ffiffiffi
2

p
Imχ03 and

the doublet ϕ1 will be absent in the unitary gauge because
they will be absorbed by the gauge bosons Z0

μ and
ðVþ

μ ; V0
μÞT .6 See Sec. II B for their composition after

EWSB. When taking into account the effective operators
in (47), it is convenient to write

1

Λ
χ� × ρ� ¼

 
ϕ3

ϕ†
1
ϕ2

Λ

!
; ð58Þ

where

ϕ3 ¼
1

Λ
ðχ0�3 ϕ2 − ρþ3 ϕ̃1Þ ∼

Reχ03
Λ

ϕ2; ð59Þ

is a SM effective Higgs doublet. The dominant contribution
coming from (47) at this stage will be

ϕ3 →
hχ03i
Λ

ϕ2 ¼
ϵ

v
ϕ2 ∼ 10−2ϕ2: ð60Þ

We also separate the quark triplets in Eq. (3) and lepton
triplets in Eq. (2) into SM doublets and singlets as

QaL ¼
�
iσ2qaL
UaL

�
; Q3L ¼

�
q3L
DL

�
; ψ iL ¼

�
liL
EiL

�
;

ð61Þ

6The charged component of ϕ1 will have a small admixture
with ρþ3 after Electroweak symmetry breaking (EWSB); see
Eq. (22).
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where qaL is the usual quark doublet of family a ¼ 1, 2, σ2
is one of the Pauli matrices, and liL are the usual lepton
doublets.
At this stage of breaking, the model is equivalent to the

SM with additional heavy singlet vectorlike quarks (VLQ)
D, U1;2, singlet vectorlike leptons Ei and heavy singlet
scalars

ffiffiffi
2

p
Reðχ03Þ, ρ�3 , with the additional heavy gauge

bosons. The Yukawa interactions in (5) and (47) that only
involve the light doublet ϕ2 are

−L0 ¼ q̄aLϕ2

ffiffiffi
2

p

ϵ0
½ðMdÞaidiR þ ðMdDÞaDR�

þ q̄3Lϕ3

ffiffiffi
2

p

ϵ
½mbd3R þ ðMdDÞ3DR�

þ q̄aLϕ̃3

ffiffiffi
2

p

ϵ
½ðMuÞaiuiR þ ðMuUÞabUbRÞ�

þ q̄3Lϕ̃2

ffiffiffi
2

p

v
½mtu3R þ ðMuUÞ3bUbR� þ H:c: ð62Þ

See the Appendix for other interactions involving heavy
particles. Note that d3R ≈ bR, u3R ≈ tR and q3L ≈ ðtL; bLÞT
are almost the mass eigenstates except for suppressed
mixing with the lighter quarks or the heavier D, Ua.
With only one effective Higgs doublet, there is natural
flavor conservation and no flavor changing neutral inter-
actions mediated by scalars [47], except for the ones
induced by the small mixing between SM and heavy
quarks [44]. This contrasts with the usual mechanism for
breaking the 3-3-1 symmetry involving three SUð3ÞL
triplets: usually there are two light Higgs doublets which
induce suppressed but nonvanishing neutral flavor chang-
ing interactions at tree level [48].
We can consider now the currents coupling with the

gauge bosons. There are two types of FCNC interactions
for SM fermions: (i) the ones coming from the mixing
between the third family of quarks and the first two families
and (ii) the ones coming from the mixing between heavy
fermions and the SM fermions. The first type (i) inevitably
appears in all 3-3-1 models because one of the quark
families is treated differently by the SUð3ÞL. Treating the
third family differently is the only option if we want to
avoid unrealistic flavor changing contributions in the mass
differences of the K0, D0 and B0 systems for a Zμ

2 of mass
no larger than a few TeV [48]. Sufficiently suppressed
mixing of the third family with the lighter ones thus leads to
experimentally allowed flavor changing contributions. In
our model, however, because of the different mass gen-
eration mechanism, such a mixing is already naturally
suppressed at least at the level of ϵ=v ∼ 10−2 for the up-type
quarks (further suppressed with the Z2 implementation)
and at least ms=mb ∼ 10−2 for the down-type quarks. The
flavor changing interactions of type (ii) are well known to
be naturally suppressed by the hierarchy of SM fermions

and heavy fermions [44]. We discuss these suppressed
interactions in more detail in the following.
The fermionic currents couple with a vector boson Vμ as

L ⊃ −VμJ
μ
V: ð63Þ

For the neutral gauge boson V ¼ Z0, we have

JμZ0 ¼ gZ0Ψ̄γμ½s2WY −
ffiffiffi
3

p
c2WT8�Ψ; ð64Þ

where gZ0 ≡ gffiffi
3

p
cW

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4s2W=3

p and Ψ is the collection of all the

fermions in the symmetry basis. The flavor changing piece
can be extracted as

g−1Z0 J
μ
Z0 jFCNC ¼ ð−c2WÞū3Lγμu3L þ ð−c2WÞd̄3Lγμd3L

þ
�
−
3

2
þ 2s2W

�
ŪaLγ

μUaL

þ
�
1

2
− s2W

�
D̄Lγ

μDL

þ
�
c2W þ 1

2

�
ĒiLγ

μEiL; ð65Þ

where c2W ≡ cos 2θW , and we have subtracted the flavor
universal part common to the first two families of quarks
and three family of leptons. Small mixing terms appear
when we go to the basis of physical fields of definite
masses. We can clearly see in (65) the two types of FCNC
discussed above: the first line induces interactions of
type (i) while the rest induces the type (ii) currents. For
type (i), only the mixing between the third family and the
first two families will be observable. This mixing is
naturally suppressed by ϵ=v ∼ms=mb ∼ 10−2 in our model
which is typically below the current limits coming from
meson mixing [49].
As the interaction with the Z boson is identical to the

ones in the SM for the usual quarks and leptons, FCNCs
are only of type (ii):

g−1Z JμZjFCNC ¼ −
1

2
ŪaLγ

μUaL þ 1

2
D̄Lγ

μDL þ 1

2
ĒiLγ

μEiL;

ð66Þ

where gZ ≡ g=cW . We have again subtracted the family
universal contributions from the first families of quarks and
leptons. The coupling with W is the same as in the SM in
the symmetry basis and small nonunitary effects appear
through mixing between heavy and SM fermions. Flavor
changing interactions are constrained by the search for
singlet VLQs at the LHC [50] and by indirect constraints
coming from precision electroweak observables and Large
Electron-Positron Collider (LEP) [51]. The former con-
strains the masses to be above around 1 TeV and the latter
constrains the mixing angle between the heavy quarks and
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the third family to be less than 0.04 for the down-type
quarks and 0.14 for the up-type quarks for heavy quarks of
1 TeV. So our heavy quarks of masses at the scale w ∼
10 TeV and mixing angle of less than 10−2 are not
currently observable. If the heavy quark masses are lowered
to few TeV, and the Z2 that decouples the top is present,
the dominant channel for Ua will be Ua → Wbþ X, as
Ua → htþ X and Ua → Ztþ X will be negligible. For D,
the channels D → hbþ X and D → Wtþ X are similarly
important. The constraints for singlet vectorlike leptons are
much more relaxed.
For completeness, we also collect the interactions with

the heavy gauge bosons V0, Vþ:

−LV ¼ gffiffiffi
2

p
�
−q̄aLγμ

�
V0
μ

−V−
μ

�
UaL þ q̄3Lγμ

�Vþ
μ

V0
μ

�
DL

þ l̄iLγμ
�Vþ

μ

V0
μ

�
EiL

�
þ H:c:; ð67Þ

where the heavy gauge bosons ðVþ
μ ; V0

μÞT have the same
gauge quantum numbers as the SM Higgs doublet. These
gauge bosons lie at the scale w and interactions with two
SM fermions are suppressed by the heavy-light mixing.

V. AN ULTRAVIOLET COMPLETION
OF THE MODEL

We show in this section a simple ultraviolet completion
of the model allowing for the generation of the effective
operators in Eq. (47). In order to achieve that, we add a
scalar field η ∼ ð1; 3; 1=3Þ which transforms in the same
way as χ under SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX. We assume
that η has a massM ≫ w, vmuch larger than the rest of the
other fields in the model. Thus, as we describe below, η can
be integrated out so that the remaining effective theory is
exactly the model studied above with the dimension-5
effective operators given in (47).
With the introduction of η, the total scalar potential is

VTðη; χ; ρÞ ¼ Vðχ; ρÞ þ Vη; ð68Þ

where Vðχ; ρÞ is given in Eq. (6) and

Vη ¼ M2η†ηþ ðλ5ðη†ηÞ þ λ6ðρ†ρÞ þ λ7ðχ†χÞÞðη†ηÞ
þ λ8ðη†ρÞðρ†ηÞ þ λ9ðη†χÞðχ†ηÞ
− ½fηρχ − λ10ðη†ρÞðρ†χÞ − ðλ11η†χ þ λ12η

†η

þ λ13χ
†χ þ λ14ρ

†ρÞðη†χÞ þ H:c:�; ð69Þ

where M2 > 0 is the quadratic mass for η; with the
coupling constant f, which we take as being real, having
dimension of mass; and the λ’s (< 4π) are the usual scalar
field perturbative self-interaction coupling constants. Also,
we consider a basis ðχ; ηÞ in which the bilinear terms in

these fields are diagonal. In fact, bilinear terms, such as
μ23η

†χ, can be eliminated through a rotation to the diagonal
basis, implying effectively a change on the original
quadratic mass parameters along with a redefinition of
the quartic coupling constants.
We can see that the approximate conservation of the

global charge G in this UV completion is guaranteed by the
fact that the breaking is induced solely by a soft breaking
of the PQ symmetry through the f term in (69). Therefore
the breaking effects are all proportional to the breaking
parameter f even if we consider radiative corrections, and
this fact justifies the approximate conservation of G at low
energies.
The Yukawa interactions involving η are similar to those

for χ in Eq. (5), adding to such an equation the terms

LY ⊃ yeisψ iLηe0sR þ yuamQaLη
�u0mR þ ydnQ3Lηd0nR þ H:c:

ð70Þ

Assuming M ≫ jfj≳ w, at low energies η is effectively
given by

η ≈
f
M2

ρ�χ� þ � � � ; ð71Þ

where the ellipsis stands for operators which are even
more suppressed byM.7 Replacing this last expression for η
in Eq. (70), we get the effective operators in Eq. (47) with
the identification Λ ¼ M2=f. Moreover, there exist cor-
rections to tree level parameters that shift the couplings
λ3 → λ3 − jfj2=M2 and λ4 → λ4 þ jfj2=M2. As an exam-
ple, the value Λ ¼ 983 TeV can be achieved with M ≈
105 GeV and f ≈ 104 GeV. We see that for jλ3;4j of order
unity, the correction jfj2=M2 ∼ 10−2 does not have a
significant impact on those couplings.

VI. PHENOMENOLOGY OF THE Z0 BOSON

In this section, we present some results involving the
new neutral vector boson within the context of the LHC at
the 14 TeV energy regime. By the reason that the mixing
angle θ in Eq. (44) between Z and Z0 is small for w ≫ v, we
have Z2 ≈ Z0. Thus, we consider in the following analysis
the new vector boson as being Z0 and its couplings with
fermions. Constraints on the Z0 mass coming from FCNCs
can be strongly dependent on the specific model of choice.
In particular, for 3-3-1 models with β ¼ �1=

ffiffiffi
3

p
, it has

been shown that by choosing either the first or the third
quark family to transform differently from the others leads
to different constraints on the w scale and, consequently, on

7There are other terms of the same order in 1=M2 that correct
the contribution of χ but only (71) leads to a vev in a direction
orthogonal to hχi and hρi.
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the new gauge boson masses [17]. For other versions, a
lower-bound of 3 TeV for the Z0 mass has been found [52].
In addition, previous studies concerning the Z0 branching

ratios for the β ¼ � ffiffiffi
3

p
versions have identified a lepto-

phobic character of such a neutral gauge boson [53]. In our
case, within a scenario where the exotic masses are just
above 1 TeV, the Z0 branching ratios are divided into
Br½Z0→νν̄�≃45%, Br½Z0→ll̄�≃13% and Br½Z0→qq̄�≃
42%. Thus, when we compare the leptonic Z0 branching
ratio with the SM Br½Z → ll̄� ≃ 3%, we can conclude that
the search for the new gauge boson can be accessible via a
clean dilepton signal at the LHC. Moreover, from the
relation among the gauge boson masses, it is clear that our
Z0 can only decay into fermions and scalars, in contrast
with the leptophobic versions where the channels involving
the new SUð3ÞL gauge bosons are present. Finally, by
calculating the Z0 width, we find that ΓZ0 is around 5%MZ0 .
Then, by considering the possibility of the SUð3ÞL

breaking scale being at the OðTeVÞ, leading to a mass
scale for the new gauge bosons of a few TeVs, we explore
the production of a muon pair through the decay of the
heavy Z0. It is clear that, from the experimental point of
view, the new neutral gauge boson can be observed in the
invariant mass formed by the dilepton mass spectrum. The
peak observed in the invariant mass distribution for the final
particles, over a smooth SM background, represents the
evidence for new physics. Thus, in general, the experi-
mental analysis searches for narrow resonances where the
experimental resolution is the dominant contribution to the
observable width of a peak structure appearing over a SM
background. In this approach, theoretical cross section
predictions for specific models are usually calculated in
the narrow width approximation. Obviously, when the
width is wide, the resonance appears as a broad shape
and can be almost flat around the Z0 pole.
Thus, within this narrow width approximation, we show

below the invariant mass and transverse momentum pT
distributions of the emerging leptons in the processes
pþ p → μþ þ μ− þ X at 14 TeV, involving the Z0 of this
new 3-3-1 version. We leave for a future work the study of
the effects of a Z0 with wide width, like the one predicted in
the so-called minimal version.
To carry out our analysis, we consider the general

Lagrangian for the neutral currents involving Z and Z0
contributions,

LNC ¼ −
g

2 cos θW

X
f

½f̄γμðgV þ gAγ5ÞfZμ

þ f̄γμðg0V þ g0Aγ
5ÞfZ0

μ�; ð72Þ

where f stands for leptons and quarks, g is the weak
coupling constant, and gV , gA, g0V and g0A, are the SM and
3-3-1 couplings which are presented in the Table II, where
we take the approximation v=w ≪ 1 and assume no flavor

mixing. Below the electroweak scale, the phenomenology
predicted by the new model involving γ and Z coincides
with the SM one.
By following previous studies on Z0 concerning strate-

gies for the identification of this particle on the muon
channel [54–56], as well as the last ATLAS report [57], we
have applied some cuts in order to obtain clear distributions
for the invariant masses and transverse momentum of the
final muons. In agreement with the ATLAS detector
performance, the cuts adopted for the pseudorapidity and
the transverse momentum of the muons are: jηj < 2.5 and
pT > 30 GeV. For the invariant mass of the muon pair,
we have used a strong cut (Mμμ > 1000 GeV) in order to
suppress the SM background.
In our simulations, we have made use of the CompHep

[58] and the MadAnalysis [59] packages and adopted the
CTEQ6L [60] parton distribution functions set, evaluated at
the

ffiffiffî
s

p
factorization/renormalization scale, i.e., the center-

of-mass energy at the parton level.
Upon assuming 3, 4 and 5 TeV for the Z0 mass, we

observe the resonance peaks around the respective masses
in the invariant mass distribution. If we consider two values
for the projected LHC integrated luminosity (L ¼ 100 fb−1

and L ¼ 300 fb−1) at
ffiffiffi
s

p ¼ 14 TeV, we obtain the number
of events as shown in Fig. 1. As the width of the heavy
boson satisfies the relation ΓZ0 ∼ 5%MZ0 , our results are in
accordance with Ref. [56].
In order to identify the new gauge boson, we also consider

the muon pT distribution, where two peaks are expected to
appear, corresponding to one half of the resonance masses
(MZ, MZ0), but, in this case, due to the invariant mass cut
adopted, the first peak moves justly to one half of this cut
(∼500 GeV). By applying an additional cut in the muon
transverse momentum, pT > 500 GeV, we obtain the dis-
tributions shown in the Fig. 2. We can identify the peak
around the MZ0=2 values, with MZ0 ¼ 3, 4 and 5 TeV,
respectively. It is clear that, forMZ0 ¼ 3 and 4 TeV, the peak
is well defined, and for greater masses, the peak is smooth
like the SM background. Then, with a stronger cut on the
invariant mass or on the muon pT , we might obtain a clearer
peak for higher masses in the pT distribution.
Therefore, as claimed in [54,56], we can use the trans-

verse momentum distribution of the final muons as an

TABLE II. The vector and axial couplings of Z and Z0 to
leptons (e, μ and τ) and quarks (u and d) in the 3-3-1 models. θW
is the Weinberg angle.

gV gA g0V g0A
Zl̄l=Z0 l̄l − 1

2
þ 2 sin2 θW − 1

2
− 1þ2 sin2 θW

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3−4 sin2 θW

p − 1−2 sin2 θW
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3−4 sin2 θW

p

Zūu=Z0ūu 1
2
− 4 sin2 θW

3
1
2

3þ2 sin2 θW
6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3−4 sin2 θW

p 1−2 sin2 θW
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3−4 sin2 θW

p

Zd̄d=Z0d̄d − 1
2
þ 2 sin2 θW

3
− 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3−4 sin2 θW

p
6

1

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3−4 sin2 θW

p
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additional tool to distinguish the signal coming from the Z0
from the SM background. Thus, by a simple analysis of the
invariant masses and transverse momentum of the final μ,
we get clear signals for the Z0. Moreover, by considering
the projected luminosities for the LHC run-II, we obtain a
considerable number of events revealing the existence of
the new gauge boson. In a recent work [61], a phenom-
enological analysis of the Z0 has been performed for the
version considered in this paper. The authors have sug-
gested that the possibility of detecting the new particle can
be achieved by considering just the production of a pair
of leptons. From their analysis using, for example, the
Forward-Backward asymmetry, they have concluded that
at the LHC at 14 TeV, it is possible to identify the Z0 boson.
Our strategy is a little different from the one used by those
authors. We use the invariant mass distributions and the
transverse momentum of the final leptons, in order to
distinguish the signal from the SM background. In any
case, our conclusions are similar regarding the possibility
of discovering the Z0 in the run II of the LHC.
It is beyond the scope of our work to make a detailed

analysis of the final states, including Z − Z0 interferences,

detector efficiencies, hadronization, etc. However, based on
our results, it is not hard to establish the existence or to
exclude the Z0 predicted by this model. Finally, a complete
analysis involving the Z0 predicted by different versions of
the 3-3-1 model within the next stage of the LHC energy is
mandatory, but we postpone this study to a future work.

VII. CONCLUSIONS

In this work we have presented a version of the 3-3-1
model, defined by β ¼ 1=

ffiffiffi
3

p
in the electric charge operator

in Eq. (1), which at low energies contains only two scalar
triplets in order to achieve the correct breakdown of gauge
symmetries. Eight out of the twelve degrees of freedom
contained in the scalar triplets are absorbed in the longi-
tudinal components of the vector bosons Z, W�, Z0, V�,
V0, V0†. This leaves three spin-0 bosons in the particle
spectrum, two neutral CP even scalars h, H, and a charged
scalar φ�. The neutral scalar, h, is identified with the
discovered Higgs boson, and gets its mass at the scale v,
related to the SUð2ÞL ⊗ Uð1ÞY → Uð1ÞQ symmetry break-
down. Both the neutral, H, and the charged, φ�, scalars are

FIG. 1. Number of μþμ− pairs as a function of three represen-
tative Z0 masses at the 14 TeV LHC with L ¼ 100 fb−1 (upper
panel) and L ¼ 300 fb−1 (lower panel).

FIG. 2. Number of μþ as a function of the pT of the emerging
μ at the 14 TeV LHC with L ¼ 100 fb−1 (upper panel) and
L ¼ 300 fb−1 (lower panel).
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supposedly heavier, since they get their masses at the scale
w, associated with the SUð3ÞL ⊗ Uð1ÞX → SUð2ÞL ⊗
Uð1ÞY symmetry breakdown. In comparison to other
Standard Model extensions, such as the Two Higgs
Doublet Model for example, our construction has a smaller
number of extra scalars at the TeV scale because no CP odd
neutral state is part of the spectrum. For the same reason,
FCNC mediated by scalars are very much suppressed and
absent in the limit of no mixing between SM fermions and
heavy fermions.
The model has three extra charged leptons, Ei, two up-

type quarks Ua, and one down-type quark D, beyond the
Standard Model fermion content. Although the model with
just two scalar triplets has a consistent pattern of gauge
symmetry breakdown to the electromagnetic factor Uð1ÞQ,
some of the standard fermionic fields remain massless due
to a residual global Uð1ÞG symmetry which, as we observed
in Eq. (12), involves diagonal generators of spontaneously
broken gauge symmetries plus a sort of Peccei-Quinn
symmetry. This Uð1ÞG symmetry seems to be a common
feature of 3-3-1 models with just two scalar triplets and has
also been identified in another version of the model [42]. To
overcome this problem, we have introduced a heavy scalar
triplet with mass M ≫ w, which is integrated out from
the low energy theory leaving it with effective operators
breaking Uð1ÞG explicitly, completing the mass generation
mechanism for the fermions. As we have shown, the
effective operators furnish a less fine-tuned mass gener-
ation for leptons and up-type quarks compared to the
Standard Model. Such a mechanism, however, does not
work as naturally for the standard down-quark mass
hierarchy and a solution based on an additional Z2

symmetry has also been provided. Natural hierarchies
between the heavy quarks and the third family quarks,
and between the third family and the lighter two families,
arise, and this feature naturally suppresses the mixing
between them leading to suppressed FCNC interactions.
From the phenomenological standpoint, we have

explored the possibility to discover the predicted Z0 by
considering the leptonic decay channel within the LHC
energy regime. By making a simple analysis involving the
invariant masses and transverse momentum of the final
muons, and by selecting appropriate cuts for the final states,
we have concluded that clear signals can reveal the
presence of the new neutral gauge boson. If we take the
projected integrated luminosities for the next LHC phase,
we find a considerable number of events for processes
involving Z0 and the final muons, which could confirm one
of the predictions of the model. Moreover, other potential
tests involve the pair and single production of the new
leptons and quarks, in addition to the V�, V0, V0† vector

bosons. For the minimal scalar sector, containing only an
extra Higgs and a charged scalar, the production of H via
gluon fusion, i.e. gg → H, and the analysis of the final states
bb̄bb̄, bb̄ττ and bb̄γγ represent an excellent prospect for the
discovery or exclusion of the new neutral scalar state. On the
other hand, the associated productions of the charged Higgs
with a top quark and with a W boson, via the partonic
processes bg → tH− and bb̄ → H−Wþ, can be also tested at
the LHC. Thus, considering both the theoretical and the
phenomenological aspects presented, this new model is
surely worth our attention in further studies.
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APPENDIX: HIGHER ORDER OPERATORS

We collect here the terms that we have omitted in (62):

−L0 ⊃ −q̄3Lϕ1

ffiffiffi
2

p

w
MDDR þ q̄aLϕ̃1

ffiffiffi
2

p

w
MUa

UaR

þ D̄Lχ
0
3

ffiffiffi
2

p

w
MDDR þ ŪaLχ

0�
3

ffiffiffi
2

p

w
MUa

UaR

−
ϕ†
2ϕ1

Λ
ŪaL

ffiffiffi
2

p

w
½ðMuÞaiuiR þ ðMuUÞabUbRÞ�

þ ϕ†
1ϕ2

Λ
D̄L

ffiffiffi
2

p

w
½mbd3R þ ðMdDÞ3DRÞ� þ H:c:

ðA1Þ

−L� ⊃ D̄L

ffiffiffi
2

p

v
½mtu3R þ ðMuUÞ3bUbR�ρ−3

þ ŪaL

ffiffiffi
2

p

ϵ0
½ðMdÞaidiR þ ðMdDÞaDRÞ�ρþ3 þ H:c:

ðA2Þ

Note that there are also effective Yukawa interactions
involving ρ�3 in (62) coming from the terms within ϕ3.
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