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In the context of an atom endowed with nuclear electric dipole moments (EDM), we consider the effects
on the Schiff moment of CPT-even Lorentz-violating (LV) terms that modify the Coulomb potential. First,
we study the modifications on the Schiff moment when the nucleus interacts with the electronic cloud by
means of a Coulomb potential altered only by the P-even LV components. Next, by supposing the existence
of an additional intrinsic LV EDM generated by other LV sources, we assess the corrections to the Schiff
moment when the interaction nucleus-electrons runs mediated by a Coulomb potential modified by both the
P-odd and P-even LV components. We then use known estimates and EDMmeasurements to discuss upper
bounds on the new Schiff moment components and the possibility of a nuclear EDM component ascribed to
LV effects.
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I. INTRODUCTION

The possibility of detecting permanent electric dipole
moments (EDMs) cannot be underestimated since it is
related to a few major problems in contemporary
physics [1–4]. The EDM interactions are P odd and
T odd and, consequently, CP odd (if the CPT theorem
holds). The breaking of CP is one of the crucial
Sakharov conditions for the baryon asymmetry in the
Universe [5], and the CKM matrix is insufficient to
account for it alone, so that there is room for new
physics or some as-yet-unknown phenomenology from
other sectors of the standard model. In the strong
interactions, CP violations are parametrized by the θ
term, which is extremely small for as of yet unknown
reasons. This poses the strong CP problem, whose
solution via spontaneous breaking of the Peccei-Quinn
symmetry involves axions [6]. Although yet undetected,
axions could induce oscillating EDMs [7].
The P and T-odd nuclear forces could generate EDM by

rendering charge fluctuations over a finite-sized nucleus.
To date, the best experimental upper bound on a nuclear
EDM is jdð199HgÞj < 7.4 × 10−30 e cm [8]. According to

the Schiff theorem [9], in an atom with a pointlike nucleus
and nonrelativistic electrons that interact only electrostati-
cally, the nuclear EDM is completely screened at first order
by the atom’s electrons [9], causing no Stark spectrum shift.
For a finite-sized nucleus, however, the first order screening
is no longer complete, there appearing the nuclear Schiff
moment, whose interaction with the electrons generates
atomic EDM [9–11]. Such a nuclear EDM might yield an
electric dipole moment for the atom as a whole by a process
that involves the mixing of electron wave functions of
opposite parity. The Schiff moment physics has been
extensively investigated, with several discussions and
corrections having been performed upon it. Experimental
and theoretical proposals to verify considerable enhance-
ments to the octupole and Schiff moments in heavy nuclei
have been considered [12–15]. A proper relativistic treat-
ment of the electrons in an atom with a finite-sized nucleus
was considered in Ref. [16], with the generalization of the
Schiff moment and the evaluation of the local dipole
moment (LDM) incorporating the relativistic corrections.
Numerical evaluations of the Schiff moment [17] and their
relation to the atomic EDM magnitude (for a few heavy
atoms) are also known [18]. Further developments include,
for example, a more general form of the Schiff moment
obtained via calculations at the operator level [19], the
evaluation of internal nucleon contribution to the Schiff
moment [20], the enhancement of Schiff and octupole
moments (by more than 2 orders of magnitude) in atoms
with asymmetrically deformed nuclei with collective P and
T-odd electromagnetic interactions [21], analysis of the
Schiff theorem in ions and molecules [22], and other
important results [23].
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Lorentz-violating (LV) theories have been under inves-
tigation since the 1990s in different theoretical frameworks. In
the standard model extension (SME) [24], many develop-
ments were performed in several sectors of interactions,
yielding tight constraints on the magnitude of the violation
coefficients [25]. In the gauge electromagnetic sector, many
studies have scrutinized the effects of the CPT-odd [26] and
CPT-even terms [27]. The CPT-even gauge photon sector is
modified by the tensor ðKFÞαβμν [27,28], whoseP-odd andP-
even anisotropic repercussionson theCoulombpotentialwere
properly evaluated [29–31]. Nuclear systems have also been a
suitable environment to test and examine Lorentz violation,
involving detailed analysis of beta decay [32] and nuclear
spin/magnetic dipole moment calculations [33]. Recently,
some implications of the P-even coefficients, ðkDEÞij, on the
Coulomb potential were investigated in atoms with non-null
nuclear quadrupole moments ðQijÞ. Estimating the energy
anisotropy yielded by the interaction of the nuclear quadru-
pole moment with valence protons, δE ¼ KðkDEÞijQij, very
tight bounds were set on the LV parameters [34].
LV theories were also applied to address the muon

magnetic dipole moment [35], the neutron EDM [36],
one-loop contributions to lepton EDM induced by the a
LV fermion term [37], and by the CPT-odd gauge
coefficient [38], which has also been examined in other
respects [39]. Some CPT-even coefficients, originally
belonging to the tensor ðKFÞαβμν, were also considered in
nonminimal couplings between fermions and photons,
with the focus on the EDM generation [40–42]. Non-
minimal couplings involving higher derivatives [43,44]
and higher-dimension operators [45] were also consid-
ered. However, to date, no study has been proposed to
investigate the impact of a spacetime anisotropy, stem-
ming from Lorentz symmetry violation, on the EDM
issues connected to the Schiff theorem or the nuclear
Schiff moment. In the present paper, we evaluate the
contributions that a Lorentz-violating anisotropic
Coulomb potential may induce to the atomic EDM
shielding problem. More specifically, we calculate how
the modified Coulomb potential and an intrinsic nuclear
EDM, coming from the CPT-even Lorentz-violating
tensor, ðKFÞαβμν, yields corrections to the residual inter-
action known as the Schiff moment.

II. SCHIFF MOMENT IN A LORENTZ-VIOLATING
ENVIRONMENT

We consider an atomic nucleus whose charge density
is ρðrÞ ¼ ρ0ðrÞ þ δρðrÞ, where ρ0ðrÞ corresponds to
the spherically symmetric part, normalized to unity,R
ρ0ðrÞd3r ¼ Ze, and the charge density fluctuations due

to P and T-odd nuclear interactions are encoded in δρðrÞ, as
described in Refs. [10,21]. A neutral atom has an electronic
cloud with N ¼ Z electrons; otherwise, one has an ion of
(N − Z) charge. The nuclear EDM arises from the P and
T-odd interactions, being given by

d ¼ Ze
Z

rδρðrÞd3r: ð1Þ

Now we regard an anisotropic Lorentz-violating Coulomb
potential studied in Ref. [31], which yields the following
potential:

A0ðrÞ ¼
1

4π

q
r

�
ð1 − nÞ þ κij

rirj

2r2

�
; ð2Þ

for a point particle of charge q, where κij ¼ ðke−Þij is a
symmetric, parity-even, and traceless tensor, and n¼
trðkDEÞ=3, with ðkDEÞij ¼ −2ðKFÞ0i0j (see Ref. [27]).
Our goal is to investigate how this modified potential
could change the conclusions of Schiff’s theorem [9] or
contribute to the Schiff moment. The starting point is
writing out the Hamiltonian for an atom in a region with an
external field E0,

H ¼ K þ V0ðLVÞ þ V þ UðLVÞ þW; ð3Þ

with K representing the kinetic term,

K ¼ −
XN
i

1

2me

∂2

∂R2
i
−

1

2M
∂2

∂q2N ; ð4Þ

while the electrostatic potential (V) due to the external
field is

V ¼ −
XN
i

ð−eRiÞ · E0 − ZeqN · E0: ð5Þ

Here, W ¼ −d · E0 is the interaction between the
nuclear EDM and the external field. Above, Ri and qN
correspond to the ith electron’s and the nucleus positions,
respectively, while r is measured starting from the nucleus’
center. The anisotropic electrostatic potential between the
atomic components (electron-electron, electrons-nucleus),
V0ðLVÞ, now receives contributions stemming from the
Lorentz-violating potential (2), that is,

V0ðLVÞ ¼e2
XN
i>j

� ð1−nÞ
jRi−Rjj

þκkl
ðRi−RjÞkðRi−RjÞl

2jRi−Rjj3
�

−Ze2
XN
i

Z
ρ0ðrÞ

�ð1−nÞ
jR̃i−rjþκkl

ðR̃i−rÞkðR̃i−rÞl
2jR̃i−rj3

�
d3r;

where R̃i ¼ ðRi − qNÞ gives the position of the ith electron
from the nucleus. The same holds for the electrostatic
potential, UðLVÞ ¼ UðisÞ þUðanÞ, which accounts for the
interaction of the N electrons with the nuclear charge
fluctuation, δρðrÞ, whose isotropic and anisotropic LV
interactions, UðisÞ; UðanÞ, are written as
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UðisÞ ¼ −Ze2
XN
i

Z
δρðrÞð1 − nÞ d3r

jR̃i − rj ; ð6Þ

UðanÞ ¼−Ze2
XN
i

Z
δρðrÞ

�
κkl

2

ðR̃i− rÞkðR̃i− rÞl
jR̃i− rj3

�
d3r; ð7Þ

respectively. In order to investigate the possible contribu-
tions, we need to expand UðLVÞ in powers of jR̃ij−1. In this
task, there appear terms such as

∂i∂j∂k

�
1

R̃

�
¼

�
∂i∂j∂k −

1

5
ðδij∂k þ δik∂j þ δjk∂iÞ∂2

�
1

R̃

þ 1

5
ðδij∂k þ δik∂j þ δjk∂iÞ∂2

1

R̃
: ð8Þ

In accordance with the literature [10,15,22], the term inside
brackets in Eq. (8) corresponds to an octupole moment
operator that can be neglected. In addition, the charge
octupole,

oijk ¼ rirjrk −
r2

5
ðδijrk þ δikrj þ δjkriÞ; ð9Þ

can also be used to manipulate terms appearing in the
expansions [21] and to further separate the ones in oijk. It
just so happens that the usual Schiff moment calculation
yields the same result for both procedures. This is not the
case, however, when anisotropic pieces are involved. First,
we expand its isotropic part (the first piece), UðisÞ, as

UðisÞ ≈ ð1 − nÞ
�
−ed ·

XN
i

R̃i

jR̃ij3

− 4π
Ze2

10

Z
d3rδρðrÞr2r ·

XN
i

∇i½δðR̃iÞ�
�
: ð10Þ

In order to expand the anisotropic part, we need to write
a ¼ ðR̃i − rÞkðR̃i − rÞl=jR̃i − rj3, as a Taylor series, that is,

a ≈ −rm∂m

�ðR̃iÞkðR̃iÞl
jR̃ij3

�
þ 1

6
rmrprq

×

�
∂k∂m∂p∂q

�
1

jR̃ij

�
ðR̃iÞl þ ∂p∂q∂k

�
1

jR̃ij

�
δml

þ ∂m∂q∂k

�
1

jR̃ij

�
δpl þ ∂m∂p∂k

�
1

jR̃ij

�
δql

�
; ð11Þ

where we omitted the zeroth and second order terms, for
δρðrÞ is odd. We have also used the fact that

ðR̃iÞkðR̃iÞl
jR̃ij3

¼ −∂k

�
1

jR̃ij

�
ðR̃iÞl: ð12Þ

Note, still, that the term

rmrprq∂k∂m∂p∂q

�
1

jR̃ij

�
ðR̃iÞl; ð13Þ

in Eq. (11), can only be unambiguously rewritten by group-
ing rmrprq as in Eq. (9), in which we ignore the charge
octupole term, oijk, as usual. After this step, this ambiguity is
removed, and we can use (8) to address the remaining
derivatives. This procedure enables us to correctly expand the
anisotropic term, achieving the full expression

UðLVÞ≈ ð1−nÞ
�
−ed ·

XN
i

R̃i

jR̃ij3

−4π
Ze2

10

Z
d3rδρðrÞr2r ·

XN
i

∇i½δðR̃iÞ�
�

þe
XN
i

ðκÞkl
2

dm∂m

�ðR̃iÞkðR̃iÞl
jR̃ij3

�

þ4π
XN
i

Z
r2δρðrÞκ

kl

2

Ze2

10

×

�
ðR̃iÞlri∂i∂kþ

2

5
δklri∂iþ

9

5
rl∂k

�
d3rδðR̃iÞ: ð14Þ

Now it is necessary to introduce the displacement operator

QD ¼ d
Ze

·
∂

∂qN ; ð15Þ

which allows us to compute the commutator ½QD; V0ðLVÞ� ¼
d
Ze ·

∂
∂qN ½V0ðLVÞ�. Deriving with respect to the coordinates qlN

is equivalent to deriving in the components ðRiÞl, since∂lðqNÞFðRi − qNÞ ¼ −∂lðRiÞFðRi − qNÞ, or simply∂=∂qN ¼
−∂=∂Ri. Expanding the derivatives ∂V0ðLVÞ=∂Ri [in a
similar way to the ones performed on UðLVÞ], making
simplifications, the following commutator is obtained,

½QD;V0ðLVÞ�

¼UðLVÞ−4πe
XN
i

1

10

×

�
Ze

Z
d3rδρðrÞr2

�
ð1−nÞrk− 9

10
rlκkl

�

−
5

3

Z
r2ρ0ðrÞd3r

�
ð1−nÞdk−2

5
dlκkl

��
∂kδðR̃iÞ; ð16Þ

where UðLVÞ is given by Eq. (14) and ∂kδðR̃iÞ¼
∂kðRi−qNÞ½δðRi−qNÞ�. This calculation implies that
½QD;V0ðLVÞ�¼UðLVÞ−Hresidual. On the other hand,
½QD; V� ¼ W, ½QD; K� ¼ 0, so that the full Hamiltonian
(3) can be written as
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H ¼ H0ðLVÞ þ ½QD; H0ðLVÞ� þHresidual; ð17Þ

withH0ðLVÞ¼KþV0ðLVÞþV andUðLVÞþW¼½QD;H0ðLVÞ�−
Hresidual. Equation (17) implies the shielding of the pointlike
dipole except for the residual interaction, consequence
of the finite nuclear size, which provides the atom with
EDM. In this case, the atomic EDM will be generated by a
Schiff-like moment that appears inside the residual inter-
action term, Hresidual ¼ HSchiffðLVÞ, read from Eq. (16) as

HSchiffðLVÞ ¼ −4πeSk
ð1Þ

XN
i

∂kδðR̃iÞ; ð18Þ

where the modified Schiff moment,

Sk
ð1Þ ¼ ð1 − nÞSk − SkðLV1Þ; ð19Þ

is composed of two contributions,

Sk ¼ 1

10

�
Ze

Z
δρðrÞr2rkd3r−5

3
dk

Z
r2ρ0ðrÞd3r

�
; ð20Þ

SkðLV1Þ ¼
κkl

10

�
Ze

9

10

Z
δρðrÞr2rld3r−2

3
dl
Z

r2ρ0ðrÞd3r
�
:

ð21Þ

The usual Schiff moment, Sk, is induced by theP and T-odd
interactions that generate the charge fluctuations δρðrÞ,
while SkðLV1Þ is the anisotropic piece associated with the LV
tensor, κkl. The Lorentz violation also contributes by
yielding the factor (1 − n), which alters the weight of the
usual moment (SkÞ on the total modified Schiff moment.
Although the LV term containing κkl does not act as source
of elementary dipole moment, d, it creates a new Schiff
moment component, which impacts the atomic electric
dipole moment in an anisotropic manner. In writing
SkðLV1Þ ¼ κklS̃l, with

S̃l¼ 1

10

�
Ze

9

10

Z
δρðrÞr2rld3r−2

3
dl
Z

r2ρ0ðrÞd3r
�
; ð22Þ

and comparing the expressions (20) and (21), one notes
that the LV kernel, S̃l, has in principle the same order of
magnitude and the same direction as the usual Schiff
moment, Sk.
A point worth mentioning is that the usual Schiff

moment is aligned with the nuclear spin (I), that is,
S ¼ SÎ. The same holds for S̃. In contrast, the Lorentz-
violating piece (21) is no longer aligned with the spin, for it
is rotated by the matrix κkl, so that

Sk
ð1Þ ¼ SÎk þ S̃ðκklÎlÞ: ð23Þ

We note the existence of an EDM associated with the LV
piece, SkðLV1Þ, which we represent as ðdLVÞk ¼ ακkldl, being
dl the EDM associated with the usual Schiff moment and α
a constant. Concerning the measurement respects, it is
worth to discuss how the Schiff moment components not
aligned with the spin could become manifest in usual
experiments designed to detect nuclear EDM of atoms. In
typical setups, an atom endowed with spin I, magnetic
moment μ ¼ μI and EDM d ¼ dI, is placed in a region
with an electric and a magnetic field, which cause a kind of
Zeeman interaction, U ¼ −ðμBþ dEÞ · I. This interaction
implies precession frequency around the B axis equal to
ωi ¼ ðμBþ dEÞ=2 (for spin 1=2 systems). These experi-
ments begin with parallel E and B fields, then the electric
field is inverted, modifying the precession frequency to
ωf ¼ ðμB − dEÞ=2. The measured precession variation is a
response due solely to the EDM, Δω ¼ dE. In principle,
the fact that the LV piece SkðLV1Þ is not parallel to the spin

does not avoid its detection, since the spin, even if initially
prepared in one particular axis, will precess around the
magnetic field direction. The point is that the LV EDM
piece will yield precession around the magnetic field as
well, inasmuch as it also is written in terms of the nuclear
spin. It implies a variation on the frequency precession,
ΔωLV ¼ jdLV jE, after inverting the electric field. The key
experimental point is to find a way in which this new
contribution could be separated from the usual one.

III. INTRINSIC LV NUCLEAR EDM

The P and T-odd interactions act as possible generators of
nuclear intrinsic EDM in the atom. In a CPT-even scenario,
the EDM interactions are also CP odd; however, they can be
CP even in a LV and CPT-odd framework. It is worth
supposing other sources (beyond the usual nuclear inter-
actions) that could yield intrinsic EDM to the nucleus, not
necessarily associated to the nuclear spin. This can be
performed byLorentz-violatingP andT-odd terms belonging
to theCPT-even andCPT-odd quark sector of the SME [24].
It can be also triggered by dimension-fiveCPT-odd and CP-
even nonminimal interactions between quarks and the electro-
magnetic field [46]. Once the intrinsic nuclear LV EDM (dilv)
is generated, it is uniformly distributed over the nucleus and
interacts with the electronic cloud by means of a modified
Coulomb potential, as the one of Eq. (2). Now, we examine
this situation, rewriting UðisÞ and UðanÞ in Eqs. (6), (7), as

U0
ðisÞ ¼ −eð1 − nÞdilv ·

XN
i

R̃i

jR̃ij3

− Ze2
XN
i

Z
δρðrÞð1 − nÞ d3r

jR̃i − rj ; ð24Þ
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U0
ðanÞ ¼ e

κkl

2

XN
i

�
−3

ðR̃iÞkðR̃iÞldilv · R̃i

jR̃ij5
þ2

dilv · R̃i

jR̃ij3
�

−Ze2
XN
i

Z
δρðrÞ

�
κkl

2

ðR̃i− rÞkðR̃i− rÞl
jR̃i− rj3

�
d3r: ð25Þ

The new potential U0 ¼ U0
ðisÞ þU0

ðanÞ is expanded as before,
yielding

UðLV2Þ≈ð1−nÞ
�
−eðdilvþdδÞ ·

XN
i

R̃i

jR̃ij3

−4π
Ze2

10

Z
d3rδρðrÞr2r ·

XN
i

∇i½δðR̃iÞ�
�

þe
XN
i

κkl

2
ðdintþdδÞm∂m

�ðR̃iÞkðR̃iÞl
jR̃ij3

�

þ4π
XN
i

Z
r2δρðrÞκ

kl

2

Ze2

10

×

�
ðR̃iÞlri∂i∂kþ

2

5
δklri∂iþ

9

5
rl∂k

�
d3rδðR̃iÞ; ð26Þ

in which dδ stands for the EDM generated by the
charge fluctuations. The displacement operator (15) is now
rewritten as

QD ¼ ðdilv þ dδÞ
Ze

·
∂

∂qN ; ð27Þ

leading to the following commutator:

½QD;V0ðLV2Þ� ¼UðLV2Þ−4πe
XN
i

1

10

×

�
Ze

Z
d3rδρðrÞr2

�
ð1−nÞrk− 9

10
rlκkl

�

−
5

3

Z
r2ρ0ðrÞd3r

�
ð1−nÞðdilvþdδÞk

−
2

5
ðdilvþdδÞpκkp

��
∂kδðR̃iÞ: ð28Þ

In comparison with Eq. (16), one notes that the total EDM is
modified, d → dilv þ dδ. Furthermore, the commutator
½QD; V� still yieldsW, so that the Schiff shielding is preserved
at first order, and the residual interaction keeps its form,
HSchiffðLVÞ ¼ −4πeSk

ð2Þ
P

N
i ∂kδðR̃iÞ, with

Sk
ð2Þ ¼ ð1 − nÞSkð2Þ þ SkðLV2Þ; ð29Þ

being the modified Schiff moment, which now receives
contributions from dilv and dδ, written in two pieces,

Skð2Þ ¼
1

10

�
Ze

Z
δρðrÞr2rkd3r

−
5

3
ðdilv þ dδÞk

Z
r2ρ0ðrÞd3r

�
; ð30Þ

SkðLV2Þ ¼ −
κkl

10

�
Ze

9

10

Z
δρðrÞr2rld3r

−
2

3
ðdilv þ dδÞl

Z
r2ρ0ðrÞd3r

�
: ð31Þ

We can rewrite (29) at first order in terms of the usual Schiff
moment

Sk
ð2Þ ¼ ð1 − nÞSk − 1

6
ðdilvÞk

Z
r2ρ0ðrÞd3rþ SkðLV1Þ; ð32Þ

where Sk is the usual Schiff moment (20). Thus, in the
presence of an intrinsic EDM, the Schiff theorem is kept
unharmed, with the Schiff moment receiving a new contri-
bution stemming from the intrinsic EDM. Note that the
modified Schiff moment (32) generally does not point in
the same direction as the nuclear spin I, since the intrinsic
moment dilv carries LV “rotations”. At first order, one can
neglect dilv insideSkðLV2Þ, given that dilv should also depend on
LV coefficients, as commented in the Conclusions. For this
reason, the LV Schiff moment (31) becomes equal to the one
in Eq. (21).
In the following, we consider the case in which the total

nuclear EDM, dilv þ dδ, interactswith the electronic cloud by
a Coulomb potential altered byP-odd coefficients belonging
to the tensor ðKFÞαβμν, as κj ¼ 1

2
ϵjpqðκDBÞpq, with ðκDBÞjk ¼

ϵkpqðKFÞ0jpq [27]. In Ref. [30], the induced modifications
to the Coulomb potential were evaluated at second
order in κi: A0ðrÞ¼ ðq=4πÞfð1þcκÞ=r− ðκ · rÞ2=2r3g,
wherecκ ¼ −κ2=2, inwhich the anisotropyappears at second
order. Following the same steps, the modified Schiff moment
is Sk

ð3Þ ¼ ð1þ cκÞSkð3Þ − SkðLV3Þ, which now receives contri-

butions from dilv and dδ, written in two pieces,

Skð3Þ ¼
1

10

�
Ze

Z
δρðrÞr2rkd3r

−
5

3
ðdilv þ dδÞk

Z
r2ρ0ðrÞd3r

�
; ð33Þ

SkðLV3Þ ¼ −
κkκl

10

�
Ze

9

10

Z
δρðrÞr2rld3r

−
2

3
ðdilv þ dδÞl

Z
r2ρ0ðrÞd3r

�
; ð34Þ
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which, at first order in the LV parameter (κl), is

Sk
ð3Þ ¼ Sk −

1

6
ðdilvÞk

Z
r2ρ0ðrÞd3r: ð35Þ

IV. CONCLUSIONS AND FINAL REMARKS

We have discussed the repercussions of LV terms
belonging to the electromagnetic CPT-even sector of the
SME to the nuclear Schiff moment and also the effect of an
additional intrinsic LV nuclear EDM, dilv. The achieved
modified LV Schiff moments (19), (32), (35) do not point in
the same direction as the nuclear spin, as it occurs with the
usual Schiff moment. Thus, it is important to examine how
these LV components can be detected, regarding the small
magnitude of all EDM pieces. In typical experiments to
measure EDM, the atom spin I is prepared in a given
direction, and then it interacts with controlled electric and
magnetic fields, as already mentioned. Away to isolate the
LV contribution could be preparing the nuclear spin state to
point in the same direction as the magnetic field axis,
I ¼ jIjẑ, with jsz�i. In this configuration, only the LV
EDM component will yield torque and precession. The x
component of the Schiff moment (23), therefore, is given
entirely in terms of SkðLV1Þ, that is,

Sx
ð1Þ ¼ S̃ðκ13ÎzÞ; ð36Þ

so that the precession motion will be caused only by the
κ13S̃3 component. In such a situation, usual EDM experi-
ments can be used to constrain the magnitude of LV Schiff
moment. Using recent calculations and experimental data,
we can set bounds on the LV Schiff moment components,
observing that S̃ and S have the same order of magnitude. In
Ref. [18], the EDM of a few atoms was estimated in terms
of their Schiff moments. Among them, the 199Hg atom is
the one which possesses the most precise EDM measure-
ment. According to those calculations, the magnitude
of the EDM is dð199HgÞ ¼ −2.8 × 10−17 ðS=e fm3Þ e cm.
The experimental data of Ref. [8] for the 199Hg EDM is,
jdð199HgÞj < 7.4 × 10−30 e cm. In a setup as proposed
above, the following upper bound is obtained:

jhSx
ð1Þiz�j ¼ jS̃κ13j ⪅ 2.6 × 10−13 e fm3: ð37Þ

It is also relevant to point out that these bounds are set in the
Earth’s reference frame (RF), where the experimental appa-
ratus is located, and that the LV coefficients are not constant
in it. In order towrite these results in terms of the coefficients
measured in a Sun-based RF, where these coefficients are
approximately constant, it is necessary to perform the
sidereal analysis, i.e., translate the bounds between these
RFs. We will consider, as in the literature [41,47], the Earth-
based lab’s RF at the colatitude χ, rotating around the Earth’s

axis with angular velocityΩ ¼ 2π=23h 56s. For experiments
up to a few weeks long, the transformation law for a rank-2

tensor is AðLabÞ
ij ¼ RikRjlA

ðSunÞ
kl , with Rij representing

merely a spatial rotation

Rij ¼

0
B@

cos χ cosΩt cos χ sinΩt − sin χ

− sinΩt cosΩt 0

sin χ cosΩt sin χ sinΩt cos χ

1
CA: ð38Þ

The Earth-based RF has an axis x, y, and z, while the Sun-

based RF hasX, Y, and Z as an axis. Hence, AðLabÞ
ij ≡ Aðx;y;zÞ

ij

and AðSunÞ
ij ≡ AðX;Y;ZÞ

ij . Furthermore, by definition, the z axis
matches the direction of the Earth’s rotation axis and the x
axis points from the Earth’s center to the Sun on the vernal
equinox in 2000—for more details, see Ref. [47].
According to the transformation law mentioned

above, the time-averaged bound (37) is hðκÞzxiðLabÞ¼
1
2
ðsinχcosχÞ½ðκXXþκYY−2κZZÞSun�. Given that TrðκÞ ¼ 0,
it holds that hðκÞzxiðLabÞ ¼ − 3

2
ðsin χ cos χÞ½ðκZZÞðSunÞ�, so

that the upper bound (37) now constrains one of the
diagonal elements of the κ matrix (in the Sun’s RF),

jS̃ cos χ sin χjjκZZj ⪅ 1.7 × 10−13 e fm3: ð39Þ

As one considers that S̃ has the same order of magnitude of
the usual Schiff moment, S̃ ∼ 10−12 e fm3, the bounds (37)
and (39) allow for major LV coefficients acting on the
nucleus physics, jκZZj≲ 0.17, although without enhancing
the atomic EDM—a possibility that certainly deserves
more investigation.
Such a scenario is also interesting if one takes into

account the presence of the intrinsic LV nuclear EDM, dilv,
stemming from LV interactions. The estimates in the
literature for the Schiff moment [18] do not account for
the last term in Eq. (32) nor Eq. (35), which could amplify/
modify the total Schiff moment. First, it is necessary to
make presumptions about the structure of this LV EDM
piece, such as it not being parallel to the nuclear spin I. A
first possibility is to consider that dilv points in a specific
fixed direction in spacetime, given by the LV background
under consideration, without relation to the nuclear spin,
such as it occurs in some LV nonminimal coupling systems,
in which the LV background is coupled directly to the field
strength [48]. In this case, the intrinsic dilv would not cause
spin precession around the magnetic field, since it would
not be written in terms of the spin I. Furthermore, the
implied torque associated to the fixed direction of dilv in
spacetime could yield dissipation of an initial precession. In
this case, the rate of the dissipation or change in the
precession frequency would work as a channel for con-
straining the dilv magnitude. It is worth mentioning that
such a spin-independent EDM (or MDM) in the direction of
background does not appear in any nonminimal coupling,
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as the CPT-even nonminimal couplings [40,41], for in-
stance. As a second possibility, the EDM dilv can also
emerge as the result of the presence of LV coefficients in
the nuclear interactions, properly coupled to the nuclear
fields (instead of electromagnetic field). In this case, it is
expected that dilv should depend on both the spin I and
background fields directions, so that the intrinsic LV
nuclear EDM, dilv, could also imply precession, being
subject to constraining by the procedure that led to the
bound (37).
Considering the possibility of separating the repercus-

sions of parity-odd and parity-even LV coefficients, we
could choose to work with the Schiff moment (35) in
order to focus on the dilv effects. Taking the nuclear
spin aligned with the magnetic field in the z axis, the
usual Schiff moment does need to be considered for
precession respects, so that the effective Schiff moment
Skð3Þ ¼ ðdkilv=6Þ

R
r2ρ0ðrÞd3r. Taking dilv and dδ propor-

tional but not parallel, jdilvj ¼ βjdδj, for a constant β, it

holds that dkilv
R
r2ρ0ðrÞd3r ¼ βηS̃ k̂. Here, it was used that

the piece jdδj
R
r2ρ0ðrÞd3r has the same order of magnitude

of the Schiff moment S̃k, jdδj
R
r2ρ0ðrÞd3r ∼ ηS̃. With this

hypothesis, we obtain Sk
ð3Þ ¼ βS̃d̂kilv=6, with ðη ∼ 1Þ. In this

case, if the vector dilv has an x component, it turns out that
Sx
ð3Þ ¼ βS̃=6. Following the route that led to bound (37), one

achieves β=6≲ 0.17or β ≲ 1.0. The attainment of a non-null
β, compatible with the current experimental measurements,
can indicate the existence of nuclear intrinsic EDM (due to
LV effects only), dilv, and sensitive Lorentz violation in
nuclear systems. This is a new issue that remains to be
properly investigated and involves the uncovering of the
theoretical structure of dilv.
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