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We study the vacua of an SUð3Þ × SUð3Þ-symmetric model with a bifundamental scalar. Structures of
this type appear in various gauge theories such as the renormalizable coloron model, which is an extension
of QCD, or the trinification extension of the electroweak group. In other contexts, such as chiral or family
symmetry, SUð3Þ × SUð3Þ is a global symmetry. As opposed to more general SUðNÞ × SUðNÞ-symmetric
models, the N ¼ 3 case is special due to the presence of a trilinear scalar term in the potential. We find that
the most general tree-level potential has only three types of minima: one that preserves the diagonal SUð3Þ
subgroup, one that is SUð2Þ × SUð2Þ ×Uð1Þ symmetric, and a trivial one where the full symmetry remains
unbroken. The phase diagram is complicated, with some regions where there is a unique minimum, and
other regions where two minima coexist.
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I. INTRODUCTION

Several quantum field theories of interest for physics
beyond the Standard Model have an SUð3Þ × SUð3Þ
symmetry, which is spontaneously broken. The embedding
of the QCD gauge group, SUð3Þc, into an SUð3Þ1 ×
SUð3Þ2 gauge symmetry has been considered in various
contexts, including dynamical symmetry breaking [1], rare
Z decays [2], the study of heavy color-octet spin-1 particles
such as the axigluon [3,4] or the coloron [5,6], composite
Higgs models based on the top-seesaw mechanism [7],
and so on. This requires the spontaneous breaking of the
product group into its diagonal subgroup. A simple
structure that achieves that breaking consists of a single
scalar field that transforms in the bifundamental represen-
tation, with a potential that includes a trilinear interaction,
as discussed in the renormalizable coloron model (ReCoM)
[8–10]. A model of this type has been recently proposed as
a solution to the strong CP problem [11].
The spontaneous breaking of an SUð3Þ × SUð3Þ sym-

metry down to its diagonal SUð3Þ group is also encoun-
tered in certain tumbling theories [12], latticized extra
dimensions [13], or the chiral symmetry of QCD with three
light quark flavors [14].
Another example of a symmetry breaking pattern is

given by the so-called trinification [15–17], which is an
embedding of the SUð2ÞW × Uð1ÞY electroweak group into

an SUð3ÞL × SUð3ÞR gauge group. In that case the sym-
metry breaking may be achieved in two steps, with the first
one, SUð3ÞL × SUð3ÞR → SUð2ÞL × SUð2ÞR ×Uð1ÞB−L,
being again due to the vacuum expectation value (VEV)
of a bifundamental scalar. The same symmetry breaking
pattern has been studied, in the case of global symmetries,
as a possible origin for the mass hierarchy between the
fermions of the third generation and those of the first two
generations [18–20].
Here we study the scalar potential of the most general

renormalizable potential for a scalar field that is an
SUð3Þ × SUð3Þ bifundamental. Besides a mass term and
two quartic terms, the potential includes a cubic term, or
more precisely a trilinear interaction given by the deter-
minant of the bifundamental, which in SUðNÞ × SUðNÞ-
symmetric models is specific only to the case N ¼ 3 (the
determinant term is also present for N ¼ 2 or 4, but with a
different mass dimension). The parameter space spanned
by the coefficients of these four terms leads to a nontrivial
vacuum structure that has not been fully explored thus far.
Given the applications mentioned above, we are par-

ticularly interested in identifying the regions of parameter
space where the potential has global or local minima that
are either SUð3Þ symmetric or SUð2Þ × SUð2Þ ×Uð1Þ
symmetric.1 Also, we would like to know if there exist
vacua (either global or just local minima) with other
symmetry properties. In the absence of the cubic term in
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1A comparison of the SUð3Þ-symmetric and SUð2Þ × SUð2Þ×
Uð1Þ-symmetric minima has been performed in [18], without
differentiating between regions where a unique vacuum exists
and regions where there is a local minimum in addition to the
global minimum.
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the potential, it has been known for a long time that there
are no other nontrivial vacua [21]. In the presence of the
cubic term, though, it is not immediately clear if other
vacua exist. For example, in Ref. [15] it is speculated that
the potential for the bifundamental scalar may have a
minimum that preserves an SUð2Þ ×Uð1Þ group, and
another minimum that breaks SUð3Þ × SUð3Þ down to
Uð1Þ ×Uð1Þ. Wewill prove that such patterns of symmetry
breaking are not possible, even when the vacuum resides in
a local minimum instead of a global minimum.
Another question (partially addressed in [9,18]) is about

the asymptotic behavior of the potential: what ranges of
parameters make the potential bounded from below? We
find a condition involving the two quartic couplings which
is necessary and sufficient for that.
In Sec. II we present the renormalizable potential and

the parameter space. In Secs. III–V we identify all possible
local minima, and we compute the physical scalar masses
in the SUð3Þ-symmetric and SUð2Þ × SUð2Þ ×Uð1Þ-
symmetric vacua. The conditions for having a potential
bounded from below are derived in Sec. VI. We analyze the
phase diagram of this theory, including all global minima,
in Sec. VII. Section VIII includes our conclusions.

II. SUð3Þ × SUð3Þ WITH A SCALAR
BIFUNDAMENTAL

Consider an SUð3Þ1 × SUð3Þ2 symmetry with a scalar Σ
transforming in the ð3; 3̄Þ representation. Thus, Σ is a 3 × 3
matrix with complex entries. The renormalizable potential
of Σ is given by

VðΣÞ ¼ −m2
ΣTrðΣΣ†Þ − ðμΣ detΣþ H:c:Þ

þ λ

2
½TrðΣΣ†Þ�2 þ κ

2
TrðΣΣ†ΣΣ†Þ: ð2:1Þ

The dimensionless couplings λ and κ are real numbers. The
mass-squared parameter, m2

Σ, may be positive or negative.
The phase rotation freedom of Σ allows us without loss
of generality to choose the coefficient of the trilinear term
(a mass parameter) to be real and satisfy

μΣ ≥ 0: ð2:2Þ

The potential VðΣÞ has an accidental Z3 symmetry. If
μΣ ¼ 0, then the Z3 symmetry is enhanced to a global
Uð1ÞΣ symmetry, with Σ carrying nonzero global charge.
We also note that when both μΣ ¼ 0 and κ ¼ 0 the potential
has an enhanced SOð18Þ symmetry.
Even though the scalar Σ has 18 degrees of freedom,

upon an SUð3Þ1 × SUð3Þ2 transformation the most general
form of its VEV is a diagonal 3 × 3 matrix. Furthermore,
the diagonal SUð3Þ1 × SUð3Þ2 transformations, associated
with the T3 and T8 generators, can be used to get rid of two
phases. Thus, the most general VEV of Σ has four real
parameters:

hΣi ¼ diagðs1; s2; s3Þeiα=3; with si ≥ 0; i ¼ 1; 2; 3;

and − π < α ≤ π: ð2:3Þ

The 1=3 in the complex phase of the VEV is due to the Z3

symmetry. We seek the values of si and α that correspond
to local minima of the potential.
To identify the extrema of the VðΣÞ potential, we need to

find si, i ¼ 1, 2, 3 and α that satisfy the extremization (or
more precisely stationarity) conditions, which are given by

1

2

∂V
∂s1 ¼ ðλþ κÞs31þ λs1ðs22þ s23Þ−μΣs2s3 cosα−m2

Σs1 ¼ 0;

ð2:4Þ

two analogous equations for ∂V=∂s2 and ∂V=∂s3 (the
i ¼ 1, 2, 3 indices are cyclical); and finally

∂V
∂α ¼ 2μΣs1s2s3 sin α ¼ 0: ð2:5Þ

This set of cubic equations in si appears difficult to
solve analytically; however, the first three equations can
be replaced by a set of quadratic and linear equations as
follows:

∂V
∂s1 −

∂V
∂s2 ¼ 2ðs1 − s2Þ½ðλþ κÞðs21 þ s22 þ s1s2Þ þ λðs23 − s1s2Þ þ μΣs3 cos α −m2

Σ� ¼ 0

∂V
∂s2 −

∂V
∂s3 ¼ 2ðs2 − s3Þ½ðλþ κÞðs22 þ s23 þ s2s3Þ þ λðs21 − s2s3Þ þ μΣs1 cos α −m2

Σ� ¼ 0

∂V
∂s2 þ

∂V
∂s3 ¼ 2ðs2 þ s3Þ½ðλþ κÞðs22 þ s23 − s2s3Þ þ λðs21 þ s2s3Þ − μΣs1 cos α −m2

Σ� ¼ 0: ð2:6Þ

To find the solutions to the set of Eqs. (2.5) and (2.6) we will consider a few separate cases.
A solution to the extremization conditions represents a local minimum if and only if the second-derivative matrix has

only positive eigenvalues. Denoting that matrix by ∂2V=ð∂si∂sjÞ with i; j ¼ 1;…; 4, where s4 ≡ αμΣ, we find
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1

2

∂2V
∂si∂sj ¼

0
BBB@

ð2λþ 3κÞs21 þ Δ 2λs1s2 − μΣs3 cos α 2λs1s3 − μΣs2 cos α s2s3 sin α

2λs1s2 − μΣs3 cos α ð2λþ 3κÞs22 þ Δ 2λs2s3 − μΣs1 cos α s3s1 sin α

2λs1s3 − μΣs2 cos α 2λs2s3 − μΣs1 cos α ð2λþ 3κÞs23 þ Δ s1s2 sin α

s2s3 sin α s3s1 sin α s1s2 sin α s1s2s3 cos α=μΣ

1
CCCA; ð2:7Þ

where we defined

Δ≡ λðs21 þ s22 þ s23Þ −m2
Σ: ð2:8Þ

Let us first apply these minimization conditions to the
extrema located at the trivial solution to Eq. (2.6),
s1 ¼ s2 ¼ s3 ¼ 0, for any α. Three of the eigenvalues of
∂2V=ð2∂si∂sjÞ are equal to −m2

Σ, while the fourth one is
zero (representing a flat direction along α). Thus, there is a
minimum with VðΣÞ ¼ 0 at s1 ¼ s2 ¼ s3 ¼ 0 provided
m2

Σ < 0.

III. SUð3Þ-SYMMETRIC VACUUM

We now search for minima that have s1 ¼ s2 ¼ s3 > 0,
so that the VEV preserves an SUð3Þ symmetry, which is the
diagonal subgroup of the SUð3Þ1 × SUð3Þ2 symmetry.
The three Eq. (2.6) are then replaced by a single quadratic
equation:

ð3λþ κÞs21 ¼ μΣs1 cos αþm2
Σ: ð3:1Þ

The extremization condition (2.5) becomes sin α ¼ 0. The
phase α is further constrained by requiring stability of the
potential. The second-derivative matrix shown in Eq. (2.7)
has an eigenvalue equal to the 44 entry, namely s31 cos α=μΣ.
Imposing that this be positive implies α ¼ 0.
For the range of parameters where

μ2Σ > −4ð3λþ κÞm2
Σ; ð3:2Þ

there are two solutions to the extremization conditions:

s1 ¼ s2 ¼ s3 ¼
1

2ð3λþ κÞ
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð3λþ κÞm2

Σ þ μ2Σ

q
þ μΣ

�
:

ð3:3Þ

Given that si > 0, the above solution with positive sign is
valid only when

3λþ κ > 0; ð3:4Þ

while the solution with negative sign requires m2
Σ < 0.

We need to determine the regions of parameter space
where these extrema satisfy the minimization conditions
along the si directions with i ¼ 1, 2, 3. The 3 × 3 upper-left
block of the second-derivative matrix shown in Eq. (2.7)
may be written as follows:

M2 ¼

0
B@

1 0 0

0 1=
ffiffiffi
2

p
1=

ffiffiffi
2

p

0 −1=
ffiffiffi
2

p
1=

ffiffiffi
2

p

1
CA

×
1

2

∂2V
∂si∂sj

0
B@

1 0 0

0 1=
ffiffiffi
2

p
−1=

ffiffiffi
2

p

0 1=
ffiffiffi
2

p
1=

ffiffiffi
2

p

1
CA

¼

0
B@

M2
11 M2

12 0

M2
12 M2

22 0

0 0 M2
3

1
CA; ð3:5Þ

where the elements of the 2 × 2 upper-left block ofM2 are
given by

M2
11 ¼

1

3λþ κ
½2ðλþ κÞm2

Σ þ ð5λþ 3κÞμΣs1�;

M2
22 ¼ 2

2λþ κ

3λþ κ
ðm2

Σ þ μΣs1Þ;

M2
12 ¼

ffiffiffi
2

p

3λþ κ
½2λm2

Σ − ðλþ κÞμΣs1�; ð3:6Þ

and the 33 entry of M2 is

M2
3 ¼

2

3λþ κ
½κm2

Σ þ ð3λþ 2κÞμΣs1�: ð3:7Þ

The eigenvalues ofM2 are the squared masses of the radial
modes. SUð3Þ invariance implies that two eigenvalues are
equal, M2

2 ¼ M2
3, because they are the squared masses

of different components (associated with the T3 and T8

generators) of an SUð3Þ-octet scalar. The third eigenvalue
represents the squared mass of an SUð3Þ-singlet scalar, and
is given by

M2
1 ¼ 2m2

Σ þ μΣs1: ð3:8Þ

The minimization condition M2
1 > 0 is equivalent to

1

3λþ κ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð3λþ κÞm2

Σ þ μ2Σ

q
� μΣ

�
> 0; ð3:9Þ

where the þ or − sign corresponds to the sign chosen for
the extremum (3.3). This condition can never be satisfied
by the negative solution (since m2

Σ < 0 in that case), which
thus is at most a saddle point.
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The minimization condition (3.9) is automatically sat-
isfied by the positive solution [given the constraint (3.4) in
that case], so only M2

3 > 0 remains to be imposed:

ð3λþ 2κÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð3λþ κÞm2
Σ þ μ2Σ

q
þ μΣ

�
> −2κð3λþ κÞm

2
Σ

μΣ
:

ð3:10Þ

For m2
Σ > 0 we find that the positive solution from (3.3)

represents a local minimum if and only if either κ ≥ 0
or else

κ < 0 and ð3λþ 2κÞμ2Σ > κ2m2
Σ: ð3:11Þ

For m2
Σ ≤ 0 the positive solution is a local minimum when

−3λ< κ and λ<0;

or

−
3

2
λ< κ and λ>0;

or

−2λ< κ<−
3

2
λ<0 and ð3λþ2κÞμ2Σ> κ2m2

Σ: ð3:12Þ

To derive the above conditions we used the constraints (3.2)
and (3.4). The value of the potential at the SUð3Þ-
symmetric vacuum is given by

Vð3Þ
min ¼ −

3

2ð3λþ κÞ
�
m4

Σ þ
m2

Σμ
2
Σ

3λþ κ

þ μ4Σ þ μΣð4ð3λþ κÞm2
Σ þ μ2ΣÞ3=2

6ð3λþ κÞ2
�
: ð3:13Þ

We will discuss the conditions for a global minimum in
Sec. VII.
Among the 18 degrees of freedom in Σ, there are 8

massless Nambu-Goldstone bosons (NGBs). If SUð3Þ ×
SUð3Þ is a gauge symmetry, the 8 NGBs become the
longitudinal degrees of freedom for a heavy spin-1 field
transforming as an octet under the unbroken SUð3Þ. The
remaining 10 degrees of freedom are massive and can be
decomposed into 8þ 1þ 10 under the unbroken SUð3Þ
vacuum symmetry [8]. The heavy octet scalar has a squared
mass given in Eq. (3.7), and one of the singlet scalars has a
squared mass given in Eq. (3.8), with s1 being the positive
solution shown in Eq. (3.3). The mass of the remaining
heavy singlet scalar is

M10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3μΣs1

p
: ð3:14Þ

In the μΣ → 0 limit, this state becomes the NGB associated
with the global Uð1ÞΣ symmetry mentioned after Eq. (2.2).

IV. SUð2Þ × SUð2Þ × Uð1Þ-SYMMETRIC VACUUM

We now seek minima with two of the si vanishing, so
that the VEV preserves an SUð2Þ × SUð2Þ ×Uð1Þ sym-
metry. It is sufficient to set s1 > 0 and s2 ¼ s3 ¼ 0, as this
is equivalent up to SUð3Þ1 × SUð3Þ2 transformations to the
cases s1 ¼ s2 ¼ 0 or s1 ¼ s3 ¼ 0. Another transformation,
along the diagonal generators, can be used in this case to
eliminate the phase α from the VEV (2.3). The extremiza-
tion conditions (2.6) take a simple form,

ðλþ κÞs21 ¼ m2
Σ: ð4:1Þ

For ðλþ κÞm2
Σ > 0 the extremum is at

s1 ¼
jmΣjffiffiffiffiffiffiffiffiffiffiffiffiffijλþ κjp : ð4:2Þ

Using the same rotation on the second-derivative matrix
∂2V=ð2∂si∂sjÞ as in Eq. (3.5), we find the eigenvalues

M2
1 ¼ 2m2

Σ;

M2
2 ¼ −

κ

λþ κ
m2

Σ − μΣs1;

M2
3 ¼ −

κ

λþ κ
m2

Σ þ μΣs1: ð4:3Þ

The minimization condition M2
1 > 0 is satisfied provided

m2
Σ > 0, which implies κ > −λ. As mΣ is real and its sign

is irrelevant, we choose mΣ > 0. Given that M2
3 > M2

2, it
remains to impose M2

2 > 0, so that

−λ < κ < 0 and μΣ < −
κmΣffiffiffiffiffiffiffiffiffiffiffi
λþ κ

p : ð4:4Þ

Thus, an SUð2Þ × SUð2Þ ×Uð1Þ-symmetric local mini-
mum exists at

s1 ¼
mΣffiffiffiffiffiffiffiffiffiffiffi
λþ κ

p ; s2 ¼ s3 ¼ 0: ð4:5Þ

The value of the potential at this minimum is

Vð2;2;1Þ
min ¼ −

m4
Σ

2ðλþ κÞ < 0: ð4:6Þ

The degrees of freedom in the Σ field are grouped into 9
massless NGBs and 9 massive scalars. The latter can be
decomposed into two real scalars transforming as ð2; 2Þ0
under the unbroken SUð2Þ × SUð2Þ × Uð1Þ vacuum sym-
metry, and a real singlet scalar. The squared masses of these
heavy scalars are given by the eigenvalues of the second-
derivative matrix, shown in Eq. (4.3). More precisely, the
mass of the real singlet scalar is
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Mð1;1Þ0 ¼
ffiffiffi
2

p
mΣ; ð4:7Þ

while the two SUð2Þ × SUð2Þ bifundamentals have non-
degenerate masses:

Mð2;2Þ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jκjs21 � μΣs1

q
: ð4:8Þ

V. ABSENCE OF LESS SYMMETRIC VACUA

Let us now seek extrema with two of the si equal but
nonzero, so that the remaining symmetry of the Σ VEV is
the diagonal SUð2Þ ×Uð1Þ subgroup of SUð3Þ1 × SUð3Þ2.
It is sufficient to consider the case

s2 ¼ s3 > 0 and s2 ≠ s1 ≥ 0; ð5:1Þ

because SUð3Þ1 × SUð3Þ2 transformations can connect this
extremum to the ones with permutations of the i ¼ 1, 2, 3
indices (s3 ≠ s1 ¼ s2 > 0 or s2 ≠ s1 ¼ s3 > 0). The
extremization conditions Eqs. (2.6) and (2.5) are in this
case given by

s1 sin α ¼ 0;

ðλþ κÞðs21 þ s22 þ s1s2Þ þ λs2ðs2 − s1Þ þ μΣs2 cos α ¼ m2
Σ;

ðλþ κÞs22 þ λðs21 þ s22Þ − μΣs1 cos α ¼ m2
Σ: ð5:2Þ

The solution s1 ¼ 0 to the first equation implies
cos α ¼ 0, due to the last two equations above. At this
extremum, the second-derivative matrix [see Eq. (2.7)] is
block diagonal, with one of the 2 × 2 blocks having the
determinant equal to −s42 < 0. Thus, at least one of the
eigenvalues is negative so that the extremum at s1 ¼ 0 is
only a saddle point.
The other solution to the first Eq. (5.2), sin α ¼ 0, leads

to more complications. One of the eigenvalues of the
second-derivative matrix is given by its 44 entry, and it
is positive only for cosα ¼ 1. Imposing this condition as
well as the positivity condition (5.1), we find that the
extremization conditions (5.2) have a solution,

s1 ¼ −
μΣ
κ

> 0;

s2 ¼ s3 ¼
�
κ2m2

Σ − ðλþ κÞμ2Σ
κ2ð2λþ κÞ

�
1=2

> 0;

α ¼ 0; ð5:3Þ

only for

κ < 0 and
1

2λþ κ
½ðλþ κÞμ2Σ − κ2m2

Σ� < 0: ð5:4Þ

To see if the extremum (5.3) may be a minimum, we use
the mass-squared matrix M2 of Eq. (3.5), which in this
case has the following nonzero elements:

M2
11 ¼

1

2λþ κ

�
−κm2

Σ þ ðλþ κÞð4λþ 3κÞ μ
2
Σ
κ2

�
;

M2
22 ¼ 2m2

Σ − 2ðλþ κÞ μ
2
Σ
κ2

;

M2
12 ¼ −

ffiffiffi
2

p
ð2λþ κÞ μΣ

κ
s2;

M2
3 ¼

2κ

2λþ κ

�
m2

Σ − ð3λþ 2κÞ μ
2
Σ
κ2

�
: ð5:5Þ

The determinant of M2 is given by −ð2λþ κÞs22ðM2
3Þ2, so

a necessary minimization condition is

2λþ κ < 0; ð5:6Þ

which in conjunction with (5.4) implies λþ κ < 0 and
m2

Σ < 0. Another necessary minimization condition is that
the trace of the upper 2 × 2 block of M2 (or equivalently
the sum of the first and second eigenvalues) is positive,
M2

11 þM2
22 > 0, which leads to

ðλþ κÞμ2Σ > −κð4λþ κÞm2
Σ: ð5:7Þ

The remaining minimization condition is M2
3 > 0,

implying

ð3λþ 2κÞμ2Σ < κ2m2
Σ; ð5:8Þ

which is incompatible with (5.7). Thus, the solution (5.3) is
only a saddle point.
Let us finally seek solutions to the extremization con-

ditions (2.6) and (2.5) where si ≠ sj for all i ≠ j, with i,
j ¼ 1, 2, 3. Note that when s2 ≠ s3 the last two equations in
(2.6) are equivalent to

κs2s3 ¼ −μΣs1 cos α;

ðλþ κÞðs22 þ s23Þ ¼ m2
Σ − λs21: ð5:9Þ

From Eq. (2.4) it follows that

s21 ¼
1

2λþ κ

�
m2

Σ − ðλþ κÞ μ
2
Σ
κ2

cos2α

�
: ð5:10Þ

As at most one si vanishes, we can take s1, s2 > 0, so
Eq. (2.5) becomes μΣs3 sin α ¼ 0. The solution with s3 ¼
cos α ¼ 0 is not allowed because Eqs. (5.9) and (5.10)
imply s1 ¼ s2. The solution with s3 > 0 and sin α ¼ 0 is
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less obvious, but it also leads to s1 ¼ s2. Thus, there is no
extremum when all three si’s are different.

VI. ASYMPTOTIC BEHAVIOR

A necessary condition for the existence of a global
minimum is that there are no runaway directions at large
field values. In other words, VðΣÞ must have a lower limit
as si → ∞.
At large field values, where the μΣ and mΣ terms

can be neglected, the potential (2.1) has the following
asymptotic form:

V∞ ¼ λ

2
ðs21 þ s22 þ s23Þ2 þ

κ

2
ðs41 þ s42 þ s43Þ: ð6:1Þ

Hence, in the case where s1 ¼ s2 ¼ s3 → ∞, the condition
that VðΣÞ is bounded from below is 3λþ κ > 0 (this was
also derived in [9]). A separate necessary condition for
VðΣÞ to be bounded from below is obtained in the case
where si → ∞ for a single value of i: λþ κ > 0. These two
conditions (which agree with those stated in [18] using a
different notation) can be combined as follows:

κ > max f−λ;−3λg; ð6:2Þ

which is a necessary condition to have VðΣÞ bounded
from below.
We now prove that (6.2) is also a sufficient condition to

have a bounded potential. For λ ≥ 0, the condition becomes
κ > −λ so that

V∞ >
λ

2
ðs21 þ s22 þ s23Þ2 −

λ

2
ðs41 þ s42 þ s43Þ

¼ λðs21s22 þ s21s
2
3 þ s22s

2
3Þ ≥ 0: ð6:3Þ

For λ < 0, condition (6.2) becomes κ > −3λ > 0, which
implies

V∞ > −
κ

6
ðs21 þ s22 þ s23Þ2 þ

κ

2
ðs41 þ s42 þ s43Þ

¼ κ

12
½ð2s21 − s22 − s23Þ2 þ 3ðs22 − s23Þ2� ≥ 0: ð6:4Þ

Therefore, (6.2) is the sufficient and necessary condition to
have VðΣÞ bounded from below.

VII. GLOBAL MINIMUM

As established in Secs. II–V, the renormalizable
potential for a single bifundamental scalar allows only
three possible vacua:

SUð3Þ × SUð3Þ vacuum∶ s1 ¼ s2 ¼ s3 ¼ 0

SUð3Þ vacuum∶

s1 ¼ s2 ¼ s3 ¼
1

2ð3λþ κÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð3λþ κÞm2
Σ þ μ2Σ

q
þ μΣ

�
;

α ¼ 0

SUð2Þ × SUð2Þ ×Uð1Þ vacuum∶

s1 ¼
mΣffiffiffiffiffiffiffiffiffiffiffi
λþ κ

p ; s2 ¼ s3 ¼ 0: ð7:1Þ

Let us analyze which of these local minima represents a
global minimum of the potential. To this end we need to
impose first the condition that VðΣÞ is bounded from below,
namely (6.2). In this case the regions of parameter space
where the SUð3Þ-symmetric and SUð2Þ × SUð2Þ ×Uð1Þ-
symmetric vacua exist, namely (3.13) and (4.4), are
simpler.
Three regions of parameter space have a single vacuum:

mΣ > 0; κ < 0 and
μΣ
mΣ

<
−κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3λþ 2κ
p

⇒ SUð2Þ × SUð2Þ ×Uð1Þ vacuum

mΣ > 0 and

	
κ ≥ 0 or

μΣ
mΣ

>
−κffiffiffiffiffiffiffiffiffiffiffi
λþ κ

p



⇒ SUð3Þ vacuum

m2
Σ < 0 and

−μ2Σ
m2

Σð3λþ κÞ < 4

⇒ SUð3Þ × SUð3Þ vacuum ð7:2Þ

where again we choose mΣ > 0 when m2
Σ > 0.

In the other regions there is competition between two
vacua. Studying the sign of the potential at the SUð3Þ-
symmetric minimum, Vð3Þ

min of Eq. (3.13), we find2

m2
Σ < 0 and

9

2
<

−μ2Σ
m2

Σð3λþ κÞ

⇒

	
SUð3Þ global min:

SUð3Þ × SUð3Þ local min:

m2
Σ < 0 and 4 <

−μ2Σ
m2

Σð3λþ κÞ <
9

2

⇒

	
SUð3Þ × SUð3Þ global min:

SUð3Þ local min:
ð7:3Þ

2This result agrees with the one derived in Appendix A of
Ref. [9], namely the SUð3Þ global minimum at rΔ < 3=2 in the
notation used there. The competition between the SUð2Þ×
SUð2Þ × Uð1Þ-symmetric minimum and the SUð3Þ-symmetric
minimum is not discussed in Ref. [9].
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For the remaining region of parameter space,

mΣ>0;κ<0 and
−κffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λþ2κ

p <
μΣ
mΣ

<
−κffiffiffiffiffiffiffiffiffiffi
λþκ

p ; ð7:4Þ

there is competition between the SUð3Þ and SUð2Þ ×
SUð2Þ × Uð1Þ local minima. We need to compare the
values of the potential at these minima, which are given
in Eqs. (3.13) and (4.6). The SUð3Þ minimum is deeper,

Vð3Þ
min < Vð2;2;1Þ

min , if and only if3

μΣ
mΣ

>

�ð4λþ 2κÞ3=2ffiffiffiffiffiffiffiffiffiffiffi
λþ κ

p − 2ð4λþ κÞ
�

1=2

≡ ξðλ; κÞ: ð7:5Þ

One can check that the function defined above, ξðλ; κÞ, is
real and positive in this region of parameter space. As a
result, we find the following possible vacua:

mΣ > 0; κ < 0 and ξðλ; κÞ < μΣ
mΣ

<
−κffiffiffiffiffiffiffiffiffiffiffi
λþ κ

p

⇒

	
SUð3Þ global min:

SUð2Þ × SUð2Þ ×Uð1Þ local min:

mΣ > 0; κ < 0 and
−κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3λþ 2κ
p <

μΣ
mΣ

< ξðλ; κÞ

⇒

	
SUð2Þ × SUð2Þ ×Uð1Þ global min:

SUð3Þ local min:
ð7:6Þ

The phase diagram of this model, based on Eqs. (7.2),
(7.3) and (7.6), is shown in Fig. 1 in the λ−1=2μΣ=mΣ versus
κ=λ plane, for mΣ > 0 and λ > 0. Note that for λ > 0 the
lower limit κ=λ > −1 is required in order to have the
potential bounded from below, while there is no upper limit
on κ=λ at tree level.
The region where the global minimum is SUð2Þ×

SUð2Þ × Uð1Þ-symmetric lies below the solid blue line
in Fig. 1, which is given by the function ξðλ; κÞ= ffiffiffi

λ
p

[see
Eq. (7.5)]. In the region above or to the right of that line, the
global minimum is SUð3Þ symmetric.
A change of parameters that crosses the boundary

between these two regions represents a first-order phase
transition: both local minima exist for parameter points
between the blue dashed line and the red dotted line of
Fig. 1. In between these two minima there is a shallow
saddle point, of coordinates given in (5.3), which is
SUð2Þ × Uð1Þ symmetric. In Fig. 2 we show the potential
for a point (μΣ=mΣ ¼ 0.2, κ ¼ −0.21, λ ¼ 1) from the

ξðλ; κÞ= ffiffiffi
λ

p
curve, where the SUð3Þ-symmetric vacuum and

the SUð2Þ × SUð2Þ ×Uð1Þ-symmetric vacuum have the
same depth and are global minima. The shallowness of the
potential around both minima is related to the smallness of
jμΣ=mΣj and jκ=λj. The mass of the “angular mode” is
parametrically smaller than the “radial mode.”

*

FIG. 2. Contours of the VðΣÞ potential in the (s1=mΣ, s2=mΣ)
plane, along the s2 ¼ s3 and α ¼ 0 direction. The depth of the
potential is encoded in the colors: from dark blue representing
the deepest potential, to bright red representing the highest.
The potential is computed at a point in parameter space
(μΣ=mΣ ¼ 0.2, κ ¼ −0.21, λ ¼ 1) chosen such that the SUð3Þ-
symmetric minimum (marked by a white △) and the
SUð2Þ × SUð2Þ ×Uð1Þ-symmetric minimum (marked by a
white �) have equal depths, of −0.632m4

Σ. The saddle point
between the two minima (marked by a white tilted line) has an
SUð2Þ × Uð1Þ symmetry and a depth of −0.627m4

Σ.

FIG. 1. Phase diagram of the SUð3Þ × SUð3Þ model with a
scalar bifundamental, for m2

Σ > 0 and λ > 0, in the plane of
μΣ=ðmΣ

ffiffiffi
λ

p Þ versus the ratio of quartic couplings κ=λ. The global
minimum is SUð2Þ × SUð2Þ ×Uð1Þ-symmetric in the blue
shaded region, and SUð3Þ-symmetric in the unshaded region.
Between the dashed blue line and the solid blue line there is also
an SUð3Þ-symmetric local minimum, while between the dotted
red line and the solid blue line there is also an SUð2Þ×
SUð2Þ × Uð1Þ-symmetric local minimum. In the gray-shaded
region at κ=λ < −1 the potential is not bounded from below.

3This inequality has also been obtained in [18], without
proving that the Σ field configurations diagðus; us; usÞ and
diagðut; 0; 0Þ are minima of the full tree-level potential, or that
other minima do not exist. An argument about the absence of
other minima is given in [19] based on a conjecture [22] (using a
method [23] to identify extrema). The conditions for symmetry
breaking in the case m2

Σ < 0 have not been discussed in [18,19].
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The region wheremΣ > 0 and λ < 0 has only the SUð3Þ-
symmetric vacuum. In the phase diagram for m2

Σ < 0,
shown in Fig. 3, there is competition between the SUð3Þ ×
SUð3Þ vacuum and the SUð3Þ vacuum, as described by the
inequalities (7.2) and (7.3). On the boundary between the
two regions defined in (7.3), given by the solid blue line
in Fig. 3, the two minima are degenerate. The saddle point
that separates these two global minima corresponds to the
negative-sign solution of Eq. (3.3).
In Fig. 4, we show the potential for a point with m2

Σ < 0,
located on the boundary at μΣ=jmΣj ¼ 1.8, κ ¼ 0.12,

λ ¼ 0.2, where the depth of the potential is the same at
the two minima (V ¼ 0), and at the saddle point it is given
by V ¼ 0.52m4

Σ.
It is interesting to study the mass spectra of heavy scalars

at different points on the phase diagrams. As the parameters
are changed such that an SUð3Þ-symmetric vacuum
approaches the blue dashed line of Fig. 1, the octet scalar
becomes lighter [see Eq. (3.7)], until it vanishes on that
line. Similarly, as an SUð2Þ × SUð2Þ ×Uð1Þ-symmetric
vacuum is moved to the right or up on Fig. 1, the mass of
the lighter bifundamental scalar decreases [see Eq. (4.8)],
until it vanishes on the red dotted line. Finally, as an SUð3Þ-
symmetric vacuum is moved down or to the right on Fig. 3,
one of the singlet scalars becomes lighter [see Eq. (3.8)],
until it vanishes on the blue dashed line.
Note that the inequalities (7.2), (7.3) and (7.6) do not

explicitly refer to the cases where some parameters vanish.
The reason for that is that the analysis in those cases
becomes sensitive to loop corrections.4 For example, λ ¼ 0
at tree level makes the vertical axis ill defined in Fig. 1, but
one-loop corrections would generate a nonzero λ. Likewise,
mΣ ¼ 0 is not stable against loops. By contrast, the μΣ ¼ 0
limit is protected by a globalUð1ÞΣ symmetry, as discussed
in Sec. II.
For some regions of the phase diagrams (Figs. 1 and 3),

the one-loop effective potential could change the quanti-
tative, or even qualitative, features of the locations of
different symmetries. The corrections from the one-loop
effective potential become especially important when there
are light pseudo-NGBs in the mass spectrum. In analogy to
the analysis performed in grand unified models [26], there
is a color-octet NGB in the limit of κ → 0 and μΣ → 0. The
properties of this color octet will be influenced by the loop
corrections to the potential induced by its gauge inter-
actions. The actual phase diagram around the origin of
Fig. 1 will likely be modified. Similarly, along the dashed
blue and dotted red lines, there are massless scalars, whose
properties are sensitive to loop corrections. Computing the
effect of loop corrections on the locations of the dashed
blue and dotted red lines in these phase diagrams is beyond
the scope of this paper. Nevertheless, the bulk behaviors of
the phase diagrams obtained from the tree-level analysis
should be overall reliable.
Lastly, we emphasize that although the global mini-

mum of the potential will eventually be the vacuum, the
universe might be stuck for a while in the shallower local
minimum. Thus, a local minimum may be a viable
vacuum provided that it is longer lived than the age of
the universe, and that the thermal history allows the
universe to settle in it.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

SU(3) global min.

SU(3)xSU(3) local min.

SU(3)xSU(3) vacuum

dednuobnu
laitnetop

FIG. 3. Phase diagram for m2
Σ < 0, in the plane of μΣ=jmΣj

versus 3λþ κ. The global minimum is SUð3Þ symmetric in the
unshaded region and SUð3Þ × SUð3Þ symmetric in the yellow
shaded region. Between the dashed blue line and the solid blue
line there is also an SUð3Þ-symmetric local minimum, while in
the unshaded region there is also an SUð3Þ × SUð3Þ-symmetric
local minimum. In the gray-shaded region at 3λþ κ < 0 the
potential is not bounded from below.

FIG. 4. Same as Fig. 2, except that the potential is computed at
a point in parameter space (m2

Σ < 0 and μΣ=jmΣj ¼ 1.8, κ ¼ 0.12,
λ ¼ 0.2) chosen such that the SUð3Þ-symmetric minimum
(marked by a white △) and the SUð3Þ × SUð3Þ-symmetric
minimum (marked by a white ∘) have equal depths. The saddle
point between the two minima (marked by a white tilted line) has
the same SUð3Þ symmetry, and it corresponds to the negative-
sign solution of Eq. (3.3).

4The computation of the one-loop effective potential is a
mature subject (see, e.g., [24]), and even the three-loop effective
potential has been recently computed for a general renormaliz-
able theory [25].

YANG BAI and BOGDAN A. DOBRESCU PHYS. REV. D 97, 055024 (2018)

055024-8



VIII. CONCLUSIONS

We have analyzed the vacuum structure of an
SUð3Þ × SUð3Þ-symmetric renormalizable theory with a
bifundamental scalar field. The parameter space is four
dimensional, with two quartic couplings and two mass
parameters. One of the latter, which is the coefficient of a
cubic term in the potential, is not present in SUðNÞ×
SUðNÞ-symmetric theories for N ≠ 3.
There are three possible types of vacua, with different

symmetry properties: SUð3Þ, SUð2Þ × SUð2Þ ×Uð1Þ and
SUð3Þ × SUð3Þ. Depending on which of these is a global
minimum, and whether there are also some local minima,
the parameter space is divided into seven regions. These are
described by Eqs. (7.2), (7.3) and (7.6). Remarkably, the
phase diagram of the theory can be fully displayed in two-
dimensional plots, namely Figs. 1 and 3. We have also
computed the mass spectrum of physical spin-0 particles in
the different vacua and identified the scalars whose masses
vanish on the boundaries of various regions on the phase
diagram.
The cubic term in the potential, of coefficient μΣ > 0,

plays an important role in the selection of the possible
vacua. Even when the bifundamental scalar has a positive
squared mass, i.e., m2

Σ < 0 in the notation of Eq. (2.1), a
nontrivial VEV is developed for μΣ above a coupling-
dependent value (see Fig. 3), breaking the symmetry down
to SUð3Þ. For a negative squared mass (or equivalently

mΣ > 0), as μΣ increases, the region with an SUð3Þ-
symmetric vacuum is enlarged, while the region with an
SUð2Þ × SUð2Þ ×Uð1Þ-symmetric vacuum is reduced
(see Fig. 1).
The vacuum structure of this theory is useful for various

model building applications, including in the contexts of
the ReCoM [8,9] and trinification [15–17], fermion mass
hierarchies [18,19], or chiral symmetry breaking in strongly
coupled gauge theories [27]. In addition, it opens new
possibilities for nonstandard cosmology, such as color
breaking in the early universe followed by color restoration
at a lower temperature [28]. In particular, the presence of
two minima of different symmetry properties, which for a
range of parameters are nearly degenerate and separated
by a shallow saddle point (see Fig. 2), may lead to exotic
cosmological or astrophysical phenomena.
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