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We use the IR fixed point predictions for gauge couplings and the top Yukawa coupling in the
minimal supersymmetric model (MSSM) extended with vectorlike families to infer the scale of
vectorlike matter and superpartners. We quote results for several extensions of the MSSM and present
results in detail for the MSSM extended with one complete vectorlike family. We find that for a unified
gauge coupling αG > 0.3 vectorlike matter or superpartners are expected within 1.7 TeV (2.5 TeV)
based on all three gauge couplings being simultaneously within 1.5% (5%) from observed values. This
range extends to about 4 TeV for αG > 0.2. We also find that in the scenario with two additional large
Yukawa couplings of vectorlike quarks the IR fixed point value of the top Yukawa coupling
independently points to a multi-TeV range for vectorlike matter and superpartners. Assuming a
universal value for all large Yukawa couplings at the grand unified theory scale, the measured top quark
mass can be obtained from the IR fixed point for tan β ≃ 4. The range expands to any tan β > 3 for
significant departures from the universality assumption. Considering that the Higgs boson mass also
points to a multi-TeV range for superpartners in the MSSM, adding a complete vectorlike family at the
same scale provides a compelling scenario where the values of gauge couplings and the top quark mass
are understood as a consequence of the particle content of the model.
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I. INTRODUCTION

The gauge structure of the standard model (SM),
its matter content and values of parameters might
contain important clues for new physics. In extensions
of the SM some of its attributes might not be just possible
choices but rather unique and some of the couplings
might be related to others. The well-known examples
are supersymmetric (SUSY) grand unified theories
(GUTs) that provide an understanding of many aspects
of the SM and also lead to a successful prediction for one
of the gauge couplings from a unified gauge coupling
at a high scale in addition to keeping the hierarchy
between the GUT scale and the electroweak (EW) scale
stable [1].
Another interesting possibility is that the values of gauge

couplings are an inevitable consequence of the particle
content of the theory depending very little on their
boundary conditions at a high scale. This occurs in models

with asymptotically divergent couplings.1 Starting with
large couplings at a high scale, in the renormalization
group (RG) evolution to lower energies, couplings are
driven to fixed ratios depending only on the particle content
of the theory. For example, the measured value of sin2 θW
was used to guess the number of families (8 to 10 chiral
families) in the SM [3,4] before the number of chiral
families and values of gauge couplings were tightly con-
strained. Very good agreement between the measured value
of sin2 θW and the infrared (IR) fixed point prediction of the
minimal supersymmetric model (MSSM) extended with
one complete vectorlike family (VF) was noticed in
Ref. [5], see also recent Ref. [6]. Similarly, if the additional
particle content appears above the EW scale, the discrep-
ancies between the values of gauge couplings predicted
from closeness to the IR fixed point and corresponding
observed values can be used to infer the mass scale of new
physics, as was done for example in the SM extended by
three complete VFs [7,8].
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1Note that any model with sufficient particle content has
asymptotically divergent couplings, for example, αEM is asymp-
totically divergent in the SM, all three couplings are asymptoti-
cally divergent in the SM extended with three complete vectorlike
families and also in the MSSM extended with one complete
vectorlike family.
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In this paper, we explore the robustness of predictions for
gauge couplings in the MSSM extended with vectorlike
families and use it to infer the scale of vectorlike matter and
superpartners (and the GUT scale) from the simultaneous
fit to measured values of gauge couplings assuming a
unified gauge coupling at the GUT scale. We quote results
for several extensions of the MSSM and present results in
detail for the MSSM extended with one complete vectorlike
family (MSSMþ 1VF). We consider scenarios with a
common mass scale for vectorlike matter (or superpartners)
at low energies and also scenarios where vectorlike masses
(or superpartners) originate from a universal mass param-
eter at the GUT scale. To see the effect of different
assumptions for vectorlike masses and superpartners we
use three-loop RG equations for gauge couplings that we
customize to reflect two-loop thresholds corresponding to
individual particles in a given model.
In addition, we investigate whether the top quark mass or

itsYukawa coupling can also be understood from the IR fixed
point behavior in these models. The top Yukawa coupling in
the SM is not far from the stable IR fixed point of the RG
equation determined by low energy values of gauge cou-
plings [9]. However, in the SM or in the MSSM (if the top
quark mass is below the IR fixed point which depends on
tan β), the IR fixed point behavior is not very effective; the
topYukawa coupling approaches the fixed point very slowly.
On the other hand, in models with asymptotically divergent
couplings, the top quarkYukawa coupling approaches the IR
fixed point very fast as a result of large gauge couplings over
the whole energy interval, no matter if the GUT scale
boundary condition is far above or far below the fixed point
[7]. Another difference from the SM or the MSSM is that
vectorlike quarks can also have large Yukawa couplings to
the up-type Higgs doublet that affect the RG flow of the top
Yukawa coupling and thus the IR fixed point prediction. We
consider scenarioswith no additionalYukawa couplings, one
and two additional large Yukawa couplings. We assume a
universal boundary condition for all Yukawas but also
discuss the variation of predictions when departing from
the universality assumption.
Among our main results is the finding that for any unified

gauge coupling, αG, larger than 0.3 vectorlike matter or
superpartners are expected within 1.7 TeV (2.5 TeV) based
on all three gauge couplings being simultaneously predicted
within 1.5% (5%) from observed values. This range extends
to about 4 TeV for αG > 0.2. Increasing the masses of
superpartners pushes the preferred scale of vectorlike quarks
and leptons down and vice versa. More precise predictions
can be made assuming a specific SUSY breaking scenario,
specific origin and pattern of vectorlike masses, and specific
GUT scale model with calculable GUT scale threshold
corrections to gauge coupling. In addition, we find that in
the scenario with two additional large Yukawa couplings of
vectorlike quarks the IR fixed point value of the top Yukawa
coupling independently points to a multi-TeV range for

vectorlike family and superpartners. In this scenario, the
measured top quark mass can be obtained from the IR fixed
point value of the Yukawa coupling for tan β ≃ 4 assuming a
universal value of all large Yukawa couplings at the GUT
scale and the range expands to any tan β > 3 for significant
departures from the universality assumption. Considering
that the Higgs boson mass also points to a multi-TeV range
for superpartners in theMSSM, adding a complete vectorlike
family at the same scale offers a compelling scenario where
the values of gauge couplings and the top quark mass are
understood as a consequence of the particle content of the
model.2

From the model building point of view, adding vectorlike
families is among the simplest ways to extend the SM or the
MSSM. Consequently, there are many studies exploring
various features of vectorlike families: examples include
studies of their effects on gauge coupling unification and
signatures [12–16], and electroweak symmetry breaking and
the Higgs mass [17–19]. In addition, vectorlike fermions,
not necessarily coming in complete GUT multiplets or
accompanied by SUSY, are often introduced on purely
phenomenological grounds to explain various anomalies.
Examples include discrepancies in precision Z-pole observ-
ables [20–23], and the muon g-2 anomaly [24,25].
This paper is organized as follows. In Sec. II, we study

the IR fixed point predictions for gauge couplings and
consequences for the spectrum of vectorlike matter and
superpartners. In Sec. III, we study the IR fixed point
prediction for the top Yukawa coupling. We summarize and
discuss results in Sec. IV. The three-loop RG equations for
gauge couplings that include two-loop threshold effects
from superpartners and vectorlike matter together with two
loop equations for Yukawa couplings and vertorlike masses
are presented in the Appendix.

II. GAUGE COUPLINGS

The renormalization group (RG) evolution for the gauge
couplings of SUð3Þ × SUð2ÞL ×Uð1ÞY is determined by
the first-order differential equations,

dαi
dt

¼ βðαiÞ; ð1Þ

where αi ¼ g2i /4π and t ¼ lnQ/Q0 with Q representing the
energy scale at which gauge couplings are evaluated. At
one-loop level, the β functions are simple,

2The motivation for the scale of superpartners and vectorlike
matter is based completely on the measured values of gauge
couplings and the top quark mass and does not take into account
any biases related to naturalness of EW symmetry breaking. Not
assuming any specific SUSY breaking/mediation model, the
scenarios we consider are sufficiently complex that none of
the model parameters need to be selected precisely in order to
obtain the required hierarchy between the EW scale and masses
of superpartners [10,11].

RADOVAN DERMÍŠEK and NAVIN MCGINNIS PHYS. REV. D 97, 055009 (2018)

055009-2



βðαiÞ ¼
α2i
2π

bi; ð2Þ

where the coefficients bi depend on the particle content of
the theory. We will consider extensions of the MSSM with
vectorlike matter in five- and ten-dimensional representa-
tions of SUð5Þ, or 16 of SOð10Þ. We will use n5 and n10
to count the number of pairs of additional multiplets,
i.e. ð5 ⊕ 5̄Þ and ð10 ⊕ 10Þ. For complete pairs of vector-
like families (VF), when n5 ¼ n10, we define n16 ≡ n5 ¼
n10. In this convention, the one-loop β-function coefficients
are

bi ¼ ð33/5; 1;−3Þ þ n5ð1; 1; 1Þ þ 3n10ð1; 1; 1Þ: ð3Þ
The MSSM beta functions are recovered for n5 ¼ n10 ¼ 0
and for our main example, the MSSM extended by
one complete vectorlike family, n16 ¼ 1, we have bi ¼
ð53/5; 5; 1Þ. Note that at one loop the beta functions for
n16 ¼ 1 and n5 ¼ 4 are identical and these choices
represent the minimal matter content for which all three
gauge couplings are asymptotically divergent.
The evolution of gauge couplings in the SM, the MSSM

and an example of the evolution in the MSSMþ 1VF are
shown in Fig. 1. For the SM andMSSM evolutions we have
used the central values of α−1EMðMZÞ ¼ 127.916, sin2 θW ¼
0.2313, and α3ðMZÞ ¼ 0.1184 [2]. The values of α1;2 are
related to αEM and sin2 θW by

sin2θW ¼ α0

α2 þ α0
;

αEM ¼ α2sin2θW; ð4Þ
where we assume the SUð5Þ normalization of the hyper-
charge, α0 ≡ ð3/5Þα1. We fix the top quark mass to
173.1 GeV, and, for the moment, we assume tan β ¼ 10

and neglect all other Yukawa couplings. In addition, for the
evolution in the MSSM, all superpartner masses are set to
MSUSY ¼ 3 TeV at the MSUSY scale with A-terms set to
−MSUSY which is consistent with obtaining the correct
mass of the Higgs boson. We use three-loop RG equations
and all particles with masses aboveMZ start contributing at
their mass scale (see the Appendix). The RG evolution
shows the well-known fact that the gauge couplings
approximately unify at MG ≃ 2 × 1016 GeV. The example
of the RG evolution of gauge couplings in the MSSMþ
1VF starts with a unified gauge coupling αG ¼ 0.3 at the
same MG. The full particle content is assumed all the way
to the EW scale.
The similarities and differences of the evolution of gauge

couplings in these models can be qualitatively understood
from the solution of the one-loop RG equations,

α−1i ðMZÞ ¼
bi
2π

ln
MG

MZ
þ α−1ðMGÞ: ð5Þ

It is well known that adding complete SU(5) multiplets at a
common scale does not change the scale of unification,
MG, at one-loop, since all three beta function coefficients
increase by the same amount, see Eq. (3). However, the
unified coupling αG increases with additional matter
content. With increasing the number of vectorlike families,
the couplings can become nonperturbative and reach
the Landau pole before they meet. Further increase
of the number of families lowers the energy scale at which
the Landau pole occurs.
This behavior of gauge couplings allows us to consider

models with a large (but still perturbative) unified gauge
coupling at a high scale, higher than the scale at which the
Landau pole would occur if the VFs were at the EW scale,
and use themeasured values of gauge couplings to determine
the mass scale of VFs. This approach was used for standard
model extensions with vectorlike families [7,8]. In the
example given in Fig. 1, we see that the crossing of the
evolution of gauge couplings in the MSSMþ 1VF and
the MSSM or the SM indicates the scale of the vectorlike
family, ≳1 TeV, required to reproduce the measured values
of all three gauge couplings.3

One of the most attractive features of these models is that,
in the RG evolution to lower energies, the gauge couplings
run to the (trivial) IR fixed point. Thus, at lower energies, the
values of the gauge couplings are determined only by the
particle content of the theory and how far from theGUT scale
wemeasure them. The first term in Eq. (5) dominates and the
exact value of αG, or evenwhether the gauge couplings unify
or not, becomes unimportant. Because of that, instead of one
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FIG. 1. Renormalization group evolution (three-loop) of the
gauge couplings, α3 (top), α2 (middle) and α1 (bottom), in the SM
(dotted lines), the MSSM (dashed lines) and in the extension of
the MSSM with one complete vectorlike family, n16 ¼ 1 (solid
lines). For the MSSM, we assume all superpartners at
MSUSY ¼ 3 TeV. For the MSSMþ 1VF, we set αG ¼ 0.3 at
MG ¼ 2 × 1016 GeV and the full particle content is assumed all
the way to the EW scale.

3Since the crossings of individual gauge couplings do not point
to exactly the same scale, some GUT scale threshold corrections
or some splitting of vectorlike masses (leading to threshold
corrections near the EW scale) is required in order to reproduce
the measured values of the gauge couplings precisely. We will
return to this later.
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prediction of the conventional unification, we have two
predictions for ratios of gauge couplings. That the ratios of
gauge couplings are approximately constant far away from
the GUT scale can also be seen in Fig. 1. Higher loop effects
do not alter amild energy dependence of the ratios. Finally, at
the scale of VF, extra matter fields are integrated out and
below this scale the gauge couplings run according to the
usual RG equations of the MSSM or the SM. In a way, the
two parameters of the conventional unification,MG and αG,
are replaced by MG and MVF.

A. IR fixed point predictions for gauge couplings

Let us neglect masses of VF for the moment and focus on
the IR fixed point predictions for the ratios of gauge
couplings. From Eq. (5), it can be seen that for sufficiently
large (but still perturbative) αG the first term will be the
dominating factor far away from the GUT scale and the
ratios between couplings at the EW scale (or any other scale
far from the GUT scale) can be understood in terms of their
beta function coefficients,

αjðMZÞ
αiðMZÞ

≃
bi
bj

: ð6Þ

Thus, these EW scale predictions are independent of any
GUT scale parameter.
For example, this relation between couplings can be used

to obtain a prediction for the Weinberg angle,

sin2 θW ¼ α0

α2 þ α0
≃

b2
b0 þ b2

; ð7Þ

where b0 ¼ ð5/3Þb1. For the MSSMþ 1VF, this gives
sin2 θW ≃ 0.2205 which is within 5% of its observed value.
The virtue of this prediction can be seen in Fig. 2 where we
show the RG evolution of sin2 θW in the MSSM (a) and in
the MSSMþ 1VF (b). In the MSSM, the predicted value of
sin2 θW crucially depends on the GUT scale and it varies
significantly with changes in αG. In contrast, for the
MSSMþ 1VF we see that sin2 θW has essentially the same
value in a huge range of the energy scale, away from the
GUT scale, and is almost unchanged for comparable
variations in αG. Higher loop effects slightly increase the
predicted value, however the insensitivity to both the GUT
scale and αG remains. We do not show two-loop results
since there is no visible difference between two-loop and
three-loop results. The one-loop and three-loop predictions
for sin2 θW in several extensions of the MSSM with
vectorlike families are summarized in Table I.
We can gain some indication of the decoupling scale for

vectorlike matter if we compare the running of this
parameter with that in the SM and the MSSM at low
energies. In the inset of Fig. 2(b), we can see that the
crossing of the evolution of sin2 θW in the SM and in the
MSSMþ 1VF appears around 3 TeV. Assuming compa-
rable masses for superpartners and vectorlike fields, in
order to obtain the correct value of sin2 θWðMZÞ, all the
extra matter must be decoupled near this scale. For lighter
superpartners, the evolution of sin2 θW in the MSSM
(dashed lines) crosses the evolution of sin2 θW in the
MSSMþ 1VF at higher energies. However, for any αG >
0.3 and superpartners above 1 TeV the indicated common
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FIG. 2. RG evolution of sin2 θW in the MSSM (a) and MSSMþ 1VF (b) neglecting threshold effects from superpartners and VF. In
(a), the dot shows the measured value of sin2 θWðMZÞ, the solid line represents its evolution according to three-loop MSSM RG
equations and dotted lines (and shaded region) illustrate the changes in the prediction resulting from varying αG in the �30% range
around the MSSM value. In (b), the evolution of sin2 θW is shown for αG ¼ 0.3 at one-loop (dashed line) and three-loop (solid line). The
variation of the three-loop prediction resulting from varying αG in the �30% range is illustrated by dotted lines and shaded region. At
low energies we also show the RG evolution of sin2 θW in the SM (solid black) and in the MSSM (dashed) with all superpartners atMZ
(bottom dashed line), 500 GeV, 1 TeV, 3 TeV (black dashed line) and 5 TeV (top dashed line). The inset zooms in the region at low
energies and the highlighted energy range indicates the masses of the vectorlike family needed for reproducing the measured value of
sin2 θWðMZÞ for any αG > 0.3 and superpartners above 1 TeV.
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scale for vectorlike matter is below 20 TeV. We will explore
the needed scale for superpartners and vectorlike matter in
more detail in the following subsection.
Another parameter free prediction of the model can be

obtained for the ratio α3/αEM by combining Eqs. (4), (6),
and (7). At the one-loop level, far below the GUT scale we
have

α3
αEM

¼ b2
b3

1

sin2 θW
¼

�
b2 þ b0

b3

�
: ð8Þ

We can obtain similar one-loop predictions as for sin2 θW
based purely on group theoretical factors and particle
content. These, together with three-loop predictions, are
summarized in Table I for various extensions of the MSSM
with vectorlike families. The one-loop prediction is typi-
cally not a very good approximation, especially for n5 ¼ 4
and n16 ¼ 1 cases, since the beta-function coefficient b3 is
small and thus two-loop effects are large. With increasing

the numbers of families the one-loop predictions are getting
closer to three-loop predictions.
The observed value, α3/αEMðMZÞ ¼ 15.14, is far from

any of the predictions. However, as we can see from Fig. 1,
α3 in the SM runs fast at low energies while αEM does not.
For example, already at 3 TeV we have α3/αEMð3 TeVÞ ¼
10.04, which is in good agreement with predictions of
models with n16 ¼ 1 or n5 ¼ 4. The common scales of
vectorlike families that lead to observed values of α3/αEM
and sin2 θW are also indicated in Table I.
The RG evolution of α3/αEM in the MSSMþ 1VF is

shown in Fig. 3. We see that higher loop effects are indeed
more important in this case and, also due to small b3, the
α3/αEM is approaching the IR fixed point prediction much
slower compared to the sin2 θW . Nevertheless, the insensi-
tivity of the prediction to both the GUT scale and αG far
below the GUT scale is still significant. There is again no
visible difference between two-loop and three-loop results.
From the crossing of the evolutions of this parameter in the

TABLE I. One-loop and three-loop predictions for sin2 θW and α3/αEM in various extensions of the MSSM. The one-loop results
represent the IR fixed point predictions, Eqs. (7) and (8). The three-loop results represent predictions at the 3 TeV scale starting from
αG ¼ 0.3 at MG ¼ 3 × 1016 GeV. The MVF represents the common scale for vectorlike masses inferred from the observed values of
either α3/αEM or sin2 θW assuming all superpartners at 3 TeV. Note that in the SM we have sin2 θWð3 TeVÞ ¼ 0.2491 and
α3/αEMð3 TeVÞ ¼ 10.04.

Model ðsin2 θWÞ1-loopIR ðsin2 θWÞ3-loop3 TeV MVF (GeV) ðα3/αEMÞ1-loopIR ðα3/αEMÞð3-loopÞ3 TeV MVF (GeV)

n16 ¼ 1 0.2205 0.2485 4.44 × 103 22.66 10.59 1.27 × 103

n16 ¼ 2 0.2700 0.2857 5.15 × 109 6.66 5.64 2.97 × 109

n5 ¼ 4 0.2205 0.2429 257 22.66 10.71 1.03 × 103

n5 ¼ 5 0.2368 0.2550 1.10 × 105 12.66 8.37 2.81 × 105

n10 ¼ 2 0.2500 0.2719 6.52 × 107 9.33 7.00 1.91 × 107

n10 ¼ 3 0.2777 0.2933 3.70 × 1010 6.00 5.23 1.77 × 1010
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FIG. 3. (a) RG evolution of α3/αEM in the MSSMþ 1VF neglecting threshold effects from superpartners and VF for αG ¼ 0.3 at one-
loop (dashed line) and three-loop (solid line). The variation of the three-loop prediction resulting from varying αG in the �30% range is
illustrated by dotted lines and shaded region. At low energies we also show the RG evolution of α3/αEM in the SM (solid black) and in the
MSSM (dashed) with all superpartners at MZ (top dashed line), 500 GeV, 1 TeV, 3 TeV (black dashed line) and 5 TeV (bottom dashed
line). (b) Shows a zoomed in region at low energies and the highlighted energy range indicates the masses of vectorlike family needed
for reproducing the measured value of α3/αEM for any αG > 0.3 and superpartners above 1 TeV.
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MSSMþ 1VF and in the SM we see that a common scale
of superpartners and vectorlike fields should be around
2 TeV. For lighter superpartners, the evolution of α3/αEM in
the MSSM (dashed lines) crosses the evolution of α3/αEM
in theMSSMþ 1VF at higher energies. Thus, for any αG >
0.3 and superpartners anywhere above 1 TeV the indicated
common scale for vectorlike matter is below 2.6 TeV.
In what follows, we will explore predictions of the
MSSMþ 1VF model in more detail.

B. Scale of vectorlike matter and superpartners
in the MSSM+ 1VF

Let us start with the assumption of a common mass scale
for vectorlike matter,MVF (at theMVF scale). This parameter
together with the GUT scale are the most important deter-
mining factors for gauge couplings at the EW scale.
Predictions for gauge couplings at the EW scale as functions
ofMG andMVF, using three-loopRGequations, are shown in

Fig. 4 for fixed values of the unified gauge coupling:
αG ¼ 0.3 (a), αG ¼ 0.4 (b) and αG ¼ 0.2 (c). In this figure,
a common scale for all superpartner masses,MSUSY¼3TeV
(at the 3 TeV scale), is assumed which corresponds to the
black dashed lines in Figs. 2 and 3 (the same scale was
also assumed in Table I). For top soft trilinear coupling
At ≃ −MSUSY, the spectrum is consistent with the measured
value of the Higgs boson mass.
A similar plot, but assuming universal soft SUSY

breaking mass parameters at the GUT scale, MSUSY;0 ≡
M1/2 ¼ m0 ¼ 9 TeV, is given in Fig. 5(a). In this case,
superpartner masses are determined from two-loop RG
evolution and they stop contributing to the running of the
gauge couplings at their corresponding scales, see the
Appendix for the RG equations including two-loop thresh-
old effects. The spectrum of superpartners obtained from
MSUSY;0 ¼ 9 TeV is shown in Fig. 5(b). It satisfies limits
from direct searches (MSUSY;0 ¼ 9 TeV is motivated
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FIG. 4. Contours of constant values of predicted gauge couplings atMZ, α1 (green), α2 (blue), and α3 (red), as functions ofMG and the
universal mass of vectorlike family,MVFðMVFÞ, in the MSSMþ 1VF for three values of αG: αG ¼ 0.3 (a), αG ¼ 0.4 (b), and αG ¼ 0.2
(c). All superpartners are integrated out at a common scale 3 TeV. Solid lines represent the central experimental values of three gauge
couplings, the shaded regions represent �10% ranges, and the dashed lines represent �20% ranges. In the overlapping (bright red)
region, all three gauge couplings are simultaneously predicted within 10% from the measured values. In the smaller dark red and black
regions, all three couplings are simultaneously predicted within �5% and �1.5%, respectively.
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mainly by the limits on the gluino mass) and is consistent
with the measured value of the Higgs boson mass.4

Focusing on the black spots in Figs. 4(a) and 5 we see
that the scale of unification giving the best prediction for all
three gauge couplings is essentially unchanged, as
expected. More importantly, decoupling the vectorlike
content at MVF ≃ 1 TeV, assuming universal superpartner
masses at 3 TeV, or the spectrum obtained from universal
GUT scale values of soft parameters, MSUSY;0 ¼ 9 TeV,
results in all the gauge couplings within 1.5% of their
measured values. Increasing superpartner masses requires
smaller MVF. Furthermore, these predictions are not very
sensitive to αG as can be seen from Figs. 4(b) and 4(c).
Increasing αG again requires smaller MVF and thus for any
αG > 0.3 the best motivated scale of vectorlike matter is
around 1 TeV. Lowering αG to 0.2 increases this scale to
4 TeV. Interestingly, the scale of superpartners suggested by
the Higgs boson mass is also in a multi-TeV range.
The gauge couplings can be reproduced precisely if GUT

scale threshold corrections leading to about 20% splitting
of individual couplings at the GUT scale are assumed. This
is a very similar result to the usual 3% correction needed in
the MSSM, since the GUT scale threshold corrections are

proportional to αG which in our case is about 7 times larger.
Alternatively, gauge couplings can also be reproduced
precisely by splitting individual vectorlike masses within
a factor of 5 between the lightest and heaviest.
Perhaps the most intriguing feature of this scenario is the

robustness of predictions for the gauge couplings. We see
that predicted values of all gauge couplings are within 10%
of their measured values (bright red) in the range ofMG that
spans 3 orders of magnitude and in the range of MVF that
spans 1 order of magnitude. Furthermore, even the range of
MG andMVF reproducing all gauge couplings within 5% of
their measured values (dark red) is significant. The α3 is the
most constraining coupling because it runs fastest below
the scale of vectorlike matter.
Comparing Figs. 4 and 5 we see that whether super-

partners are integrated at a common scale or at their
corresponding masses resulting from a universal boundary
condition at the GUT scale does not affect predictions for
gauge couplings significantly. However, imposing the
universality condition for vectorlike masses at the GUT
scale instead of a low energy scale has a more dramatic
effect. The predicted values of the gauge couplings as
functions of MG and the universal vectorlike mass at the
GUT scale,MVF;0, are shown in Fig. 6(a). Other parameters
are the same as in Fig. 4(a). Comparing the two plots we see
that threshold effects from integrating out the vectorlike
fields at their corresponding masses, resulting from the RG
flow from a common mass, significantly shrinks the
triangle of intersections of two individual couplings leading
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FIG. 5. (a) The same as in Fig. 4(a) but with superpartners integrated out at their corresponding mass scales resulting fromMSUSY;0 ¼
9 TeV at the GUT scale for αG ¼ 0.3. (b) Two-loop RG evolution of gaugino and third generation scalar masses in the MSSMþ 1VF
for tan β ¼ 10 starting from MSUSY;0 ≡M1/2 ¼ m0 at the GUT scale with masses normalized to MSUSY;0. The evolution of a given
parameter stops at the corresponding mass scale for MSUSY;0 ¼ 9 TeV.

4The SUSY spectrum is very different in this model compared
to the MSSM. Among interesting features is the closeness of M1

and M2 at low energies. Thus, a small departure from the
universality assumption at the GUT scale can lead to Wino
being the lightest supersymmetric particle.
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to predictions that agree better with observed values. Thus,
significantly smaller GUT scale threshold corrections are
required to precisely reproduce measured values. This
improvement originates from almost an order of magnitude
splitting between individual vectorlike masses at low
energies, see Fig. 6(b).
The best motivated MVF;0 from measured values of the

gauge couplings is slightly above 100 GeV which means
that the vectorlike leptons are at about 200 GeV and
vectorlike quarks in a TeV range. Vectorlike leptons with
these masses are highly constrained [26] and the vectorlike
quarks at 1 TeV are near the experimental limits. However,
decreasing αG results in an almost identical plot with all
lines moved up (as we saw in Fig. 4). For example, for
αG ¼ 0.2 the center of the best motivated region moves
to MVF;0 ≃ 1 TeV.
Finally, we study the sensitivity of the above results with

respect to MSUSY. For αG ¼ 0.3 and MG corresponding to
the best fit in Fig. 4(a), we present the predicted values of
gauge couplings as functions ofMVF andMSUSY (common
masses at low energies) in Fig. 7. We see that either
superpartners or the vectorlike quarks and leptons are
expected within 1.7 TeV (2.5 TeV) based on all three
gauge couplings being simultaneously within 1.5% (5%)
from their observed values. Similar conclusions would be
reached if we considered common masses of vectorlike
matter or superpartners at the GUT scale. The only
remaining parameter, αG, moves the whole plot slightly
along the diagonal, and the effect of varying αG can be
inferred from Figs. 4(b) and 4(c). Lowering αG to 0.2,

vectorlike matter or superpartners are expected within
about 4 TeV.
For the MSSMþ 1VF and several other extensions of

the MSSM with asymptotically divergent couplings, we
summarize the best fit values of MG and MVF based on a
simultaneous fit to all three gauge couplings in Table II. We
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FIG. 6. (a) Similar to Fig. 4(a) but with the universality condition on vectorlike masses imposed at the GUT scale, MVF;0. Vectorlike
fields are integrated out at their corresponding mass scale. (b) Two-loop RG evolution of vectorlike masses normalized to the GUT scale
value MVF;0.
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set αG ¼ 0.3 and consider the scenarios with common
superpartner masses at a low scale, MSUSY ¼ 3 TeV, and
common superpartner masses at the GUT scale,
MSUSY;0 ¼ 9 TeV. For each of these models, all three
gauge couplings are reproduced at least within 1.5% of
their measured values. The GUT scale varies slightly
between 3–6 × 1016 GeV.

III. TOP YUKAWA COUPLING

In this section we investigate whether the top quark mass
or its Yukawa coupling can also be understood from the IR
fixed point behavior. There are two immediate difficulties
with this task. First, the MSSM is a two Higgs doublet
model and thus the top quark mass is determined not only
from the top Yukawa coupling but also from the structure of
vacuum expectation values of the two Higgs doublets
parametrized by tan β. Therefore, even if there is a
prediction for the top quark Yukawa coupling, it does
not directly translate into a prediction for the top quark
mass. Nevertheless, one can instead use the measured top
quark mass to predict tan β or at least conclude that the
understanding of the top quark mass from the IR fixed point
is possible.
The second complication is that, in the MSSMþ 1VF,

there can be up to two additional large Yukawa couplings of
Hu to vectorlike quarks (in the basis where Yukawa
couplings to Hu are diagonal),

W ⊃ YUHuQŪ þ YDHuQ̄D; ð9Þ

which affect the RG flow of the top Yukawa coupling and
thus the IR fixed point prediction (we do not consider here
Yukawa couplings of Hu to vectorlike leptons since these
do not have a large effect). The one-loop beta function for
the top Yukawa coupling (neglecting the bottom Yukawa
coupling) is then given by

βð1Þyt ¼ yt

�
6y2t þ3Y2

Uþ3Y2
D−

16

3
g23−3g22−

13

15
g21

�
ð10Þ

and the two-loop beta function including threshold effects
from superpartners and vectorlike matter can be found in
the Appendix.
Neglecting the additional Yukawa couplings for the

moment, the β-function vanishes (and the IR fixed point
occurs) when

y2t ≃
8

9
g23 þ

1

2
g22: ð11Þ

If the boundary condition for yt at the GUT scale is above
the IR fixed point, the positive contribution from yt itself
dominates the RG evolution and drives yt down while, for
the boundary condition below the IR fixed point, the
negative contribution from the gauge couplings dominates
and drives yt up [9]. However, in the SM or in the MSSM
(if the top quark mass is below the IR fixed point which
depends on tan β), the IR fixed point behavior is not very
effective. Although the top quark mass happens to be near
the predicted IR fixed point, the boundary condition for yt
at the GUT scale is already close to the IR fixed point in
both models because the gauge couplings (including α3) are
small in most of the energy interval between the GUT scale
and the EW scale.
However, the IR fixed point behavior for yt is very

effective in models with asymptotically divergent couplings
because of large gauge couplings (especially α3) over the
whole energy interval [7]. This occurs no matter if the GUT
scale boundary condition is far above or far below the IR
fixed point. Thus, these models typically have a very sharp
prediction for yt at the EW scale. If the extra matter has
significant Yukawa couplings to Hu the prediction broad-
ens since the large Yukawa couplings in the model share the
IR fixed point value as can be seen from Eq. (10). Given
that the number and size of Yukawa couplings of vectorlike
matter is not known, we will consider scenarios with no
additional Yukawa couplings, one and two additional large
Yukawa couplings. We will assume a universal boundary
condition for all the Yukawas but also discuss the variation
of predictions when departing from the universality
assumption.
In Fig. 8(a), we show the RG evolution of yt in the

MSSMþ 1VF for αG ¼ 0.3 with no additional Yukawa
couplings (upper dashed blue), one additional Yukawa
coupling (lower dashed blue) and two additional
Yukawa couplings (solid blue) assuming universal boun-
dary conditions for all couplings, Y0 ¼ 3. The RG evolu-
tion of the additional couplings (not shown) closely follow
the evolution of yt. The full particle content of the
MSSMþ 1VF is assumed all the way to the EW scale.
For the case with two additional couplings, the RG
evolution is also shown for Y0 ¼ 1 and 2. Almost identical
EW scale values of yt from a large range of boundary
conditions at the GUT scale illustrate the advertised effect
of approaching the IR fixed point very fast as a result of
larger gauge couplings compared to the MSSM.

TABLE II. The best fit MG and MVF in various extensions of
the MSSM for αG ¼ 0.3 assuming MSUSY ¼ 3 TeV and
MSUSY;0 ¼ 9 TeV.

MSUSY ¼ 3 TeV MSUSY;0 ¼ 9 TeV

Model MG (GeV) MVF (GeV) MG (GeV) MVF (GeV)

n16 ¼ 1 4.06 × 1016 970.12 3.20 × 1016 886.05
n16 ¼ 2 5.87 × 1016 4.04 × 109 3.42 × 1016 2.48 × 109

n5 ¼ 4 4.48 × 1016 685.73 5.81 × 1016 638.46
n5 ¼ 5 3.86 × 1016 2.15 × 105 4.66 × 1016 2.07 × 105

n10 ¼ 2 2.98 × 1016 1.42 × 107 3.44 × 1016 1.40 × 107

n10 ¼ 3 4.69 × 1016 2.11 × 1010 3.36 × 1016 1.52 × 1010
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To gain an indication of the optimal scale of vectorlike
matter and superpartners we also plot the evolution of yt
in the two Higgs doublet model obtained from the
measured value of the top quark mass for tan β ¼ 1, 2
and 50 assuming that all Higgs bosons except the SM-like
one are heavy (gray dashed lines and shaded region at low
energies). The coupling is extracted from the equation
mt ¼ ytv sin β with v ¼ 174 GeV and appropriate correc-
tions from converting the pole mass to the running mass
[27]. For tan β ¼ 1, we also plot the RG evolution
assuming that all Higgs bosons are at the EW scale
(gray dotted line). The masses of other Higgs bosons
dramatically affect the RG evolution of yt for tan β ¼ 1

while for tan β > 2 they play only a minor role. A similar
line for tan β ¼ 2 would be just slightly above the line
shown and for tan β ¼ 50 the lines would be on top of
each other and thus we do not show them. Note also that a
line for tan β ¼ 10 would not be visibly distinguishable
from tan β ¼ 50 and thus the whole shaded range effec-
tively corresponds to the variation of tan β between 2
and 10.
From the figure we see that obtaining the top quark mass

from the IR fixed point in the case with just the top Yukawa
coupling requires small tan β, light superpartners and light
vectorlike matter which is not consistent with experimental
limits or constraints from the Higgs boson mass. Thus, for a
viable scenario with multi-TeV superpartners and larger
tan β, the top Yukawa coupling has to be somewhat below
the IR fixed point at the EW scale. Couplings below the IR

fixed point are driven to small values at the GUT scale by
large gauge couplings. For example, for tan β ¼ 10 we
need ytðMGÞ ≃ 0.12. Alternatively, the IR fixed point value
of the Yukawa coupling can lead to the measured top quark
mass if vectorlike masses are not diagonal and the top quark
is a mixture of a state with large Yukawa coupling and
another one with no Yukawa coupling. In this case a larger
Yukawa coupling than naively inferred from the top quark
mass is required [19].
Similar comments apply to the case with one additional

Yukawa coupling which also seems to be excluded by the
Higgs mass.5 However, the case with two additional
Yukawa couplings points to a multi-TeV scale for super-
partners and vectorlike matter which is not only phe-
nomenologically viable but also simultaneously favored
by understanding the values of the gauge couplings. Thus,
in what follows, we will focus on this scenario.
In Fig. 8(b), we show the impact of integrating out

superpartners and vectorlike matter on the IR predictions
of yt in the case with two additional Yukawa couplings.
We set MSUSY ¼ 3 TeV and adjust MVF so that α3
reproduces the measure value. The dashed blue lines
and shaded region show the effect of varying αG between
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FIG. 8. (a) RG evolution of yt in the MSSMþ 1VF for αG ¼ 0.3 with no additional Yukawa coupling (upper dashed blue), one
additional coupling (lower dashed blue) and two additional couplings (solid blue) assuming universal boundary condition for all
couplings, Y0 ¼ 3. For the last case the RG evolution is also shown for Y0 ¼ 1 and 2. No thresholds from superpartners or vectorlike
matter are assumed. The gray dashed lines and shaded region at low energies show the evolution of yt in the two Higgs doublet model
obtained from the measured value of the top quark mass for tan β ¼ 1, 2 and 50 assuming that all Higgs bosons except the SM-like one
are heavy. The gray dotted line for tan β ¼ 1 assumes that all Higgs bosons are at the EW scale. The inset zooms in the region at low
energies. (b) The same as in (a) for the case with two additional Yukawa couplings but with MSUSY ¼ 3 TeV and the MVF adjusted so
that α3 reproduces the measured value. The dashed blue lines and shaded region show the effect of varying αG between 0.2 and 0.4 for
Y0 ¼ 3. The green highlight shows the range of MVF required by α3 for αG between 0.2 and 0.4 with the left edge of the highlighted
region corresponding to αG ¼ 0.4 and the right edge to αG ¼ 0.2.

5This scenario might be phenomenologically viable assuming
lighter vectorlike matter and very heavy superpartners that
generate sufficient Higgs boson mass for small tan β. However,
such an arrangement is not favored by the results related to
understanding of gauge couplings discussed in the previous
section.
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0.2 and 0.4, for Y0 ¼ 3. The green highlight shows the

range of MVF required by α3 for αG between 0.2 and 0.4

with the left edge of the highlighted region corresponding
to αG ¼ 0.4 and the right edge to αG ¼ 0.2. The need to
integrate out the vectorlike matter at a slightly different
scale depending on αG results in an extra focusing effect
at low energies visible in the inset of Fig. 8(b). The
predicted value of ytðmtÞ is highly insensitive to αG. The
numerical values that correspond to Fig. 8(b) are sum-
marized in Table III that also contains similar variations
of predictions for Y0 ¼ 1, 2 depending on αG [not shown
in Fig. 8(b)], the scale of vectorlike matter for all the
cases, the tan β required for Mt ¼ 173.1 GeV and pre-
diction for Mt for tan β ¼ 2–50. We see that, assuming
universal Yukawa couplings leads to a sharp prediction
for ytðmtÞ that can be translated into a sharp prediction for

tan β. The boundary conditions for αG and Y0 are almost
irrelevant.
Breaking the universality in large Yukawa couplings

expands the region of predicted tan β. In Fig. 9 we show the
RG evolution of yt in the MSSMþ 1VF with the boundary
condition at MG varied between 2 and 4 for αG ¼ 0.3 and
fixed YUðMGÞ ¼ YDðMGÞ ¼ 3. The green highlight shows
the range where vectorlike matter is integrated out to obtain
the correct α3ðMZÞ with the left edge corresponding to
ytðMGÞ ¼ 4 and the right edge to ytðMGÞ ¼ 2. The
numerical values that correspond to Fig. 9 are summarized
in Table IV. We see that the correct top quark mass can be
obtained for any tan β > 3. Although a very sharp pre-
diction is lost, high insensitivity to all boundary conditions
remains.

IV. CONCLUSIONS

We explored extensions of the MSSM with vectorlike
families that feature asymptotically divergent gauge cou-
plings. In these models, predictions for gauge and large
Yukawa couplings are highly insensitive to boundary
conditions at a high scale. We used these predictions to
infer the scale of vectorlike matter and superpartners (and
the GUT scale). The results for several extensions of the
MSSM are summarized in tables and we discussed in detail
the MSSM extended with one complete vectorlike family,
MSSMþ 1VF (n16 ¼ 1). This model (together with
n5 ¼ 4 which has identical one-loop beta functions) stands
out since the IR fixed point predictions for the gauge
couplings are close to observed values if vectorlike matter
is not far above the EW scale. We considered scenarios with
a common mass scale for vectorlike matter (or super-
partners) at low energies and also scenarios where vector-
like masses (or superpartners) originated from a universal
mass parameter at the GUT scale.
We find that for any unified gauge coupling, αG, larger

than 0.3 vectorlike matter or superpartners are expected
within 1.7 TeV (2.5 TeV) based on all three gauge
couplings being simultaneously within 1.5% (5%) from
observed values. This range extends to about 4 TeV for
αG > 0.2. Increasing masses of superpartners pushes the
preferred scale of vectorlike quarks and leptons down and
vice versa.

TABLE III. Predictions for the top Yukawa coupling, ytðmtÞ, in
the MSSMþ 1VF for αG ¼ 0.3 and several choices of Y0

assuming two additional Yukawa couplings to Hu. The indicated
MVF is required to reproduce the measured value of α3ðMZÞ for
MSUSY ¼ 3 TeV. The tan β is the value that leads to Mt ¼
173.1 GeV and we also show the range of predicted Mt for tan β
between 2 and 50. The superscript and subscript numbers indicate
variations resulting from changing αG to 0.4 and 0.2 respectively
(variations of tan β predictions are negligible). Numerical entries
correspond to Fig. 8(b).

Y0 ytðmtÞ
MVF
(GeV)

tan β for
Mt ¼ 173.1 GeV

Mt (GeV)
for tan β ¼ 2–50

1 0.979þ0.007
−0.004 819−378þ2909

3.6 162.2þ1.3
−2.3–177.8þ0.9

−2.4
2 0.968þ0.005

−0.003 740−337þ2543
3.7 162.0þ1.6

−2.2–177.5þ1.1
−1.1

3 0.965þ0.004
−0.003 720−337þ2333

3.9 161.4þ1.6
−2.4–176.8

þ1.2
−0.9
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FIG. 9. RG evolution of yt in the MSSMþ 1VF with boundary
condition at MG varied between 2 and 4 for αG ¼ 0.3 and fixed
YUðMGÞ ¼ YDðMGÞ ¼ 3. The gray band is the same as in Fig. 8.
The green highlight shows the range where vectorlike matter is
integrated out to obtain the correct α3ðMZÞ with the left edge
corresponding to ytðMGÞ ¼ 4 and the right edge to ytðMGÞ ¼ 2.
The inset zooms in the region near MVF.

TABLE IV. Variations of predictions quoted in Table III result-
ing from breaking the universality in Yukawa couplings. We fix
YUðMGÞ ¼ YDðMGÞ ¼ 3 and present results only for αG ¼ 0.3.
Numerical entries correspond to Fig. 9.

ytðMGÞ ytðmtÞ
MVF
(GeV)

tan β for
Mt ¼ 173.1 GeV

Mt (GeV) for
tan β ¼ 2–50

2 0.92 730 � � � 154.0–168.8
4 1.01 690 3.0 165.0–180.7
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We have not required that the gauge couplings are
reproduced precisely, since significant threshold correc-
tions can originate from superpartner spectrum, spectrum
of vectorlike matter or from a specific model at the GUT
scale. For example, assuming universal vectorlike masses
and universal superpartner masses at a low scale, gauge
couplings can be reproduced precisely if GUT scale
threshold corrections leading to about 20% splitting of
individual couplings at the GUT scale are assumed. This is
a very similar result to the usual 3% correction needed in
the MSSM, since the GUT scale threshold corrections are
proportional to αG which in our case is about 7 times larger.
Alternatively, the gauge couplings can also be reproduced
precisely by splitting individual vectorlike masses within a
factor of 5 between the lightest and heaviest. Interestingly,
the spectrum of vectorlike matter resulting from a common
mass at the GUT scale leads to much better agreement with
measured values of gauge couplings and thus significantly
smaller GUT scale corrections are needed. More precise
predictions can be made assuming a specific SUSY break-
ing scenario, specific origin and pattern of vectorlike
masses and specific GUT scale model with calculable
GUT scale threshold corrections to gauge coupling. Our
predictions for the scale of vectorlike matter and super-
partners can be considered as central values that can be
shifted in both directions. Effects of specific spectrum or
GUT scale threshold corrections can be qualitatively
inferred from presented plots.
We also find that the IR fixed point behavior for the top

Yukawa coupling is very effective in the MSSMþ 1VF and
there is a very sharp prediction for its value at the EW scale.
If the extra matter has significant Yukawa couplings to Hu
the prediction broadens since the large Yukawa couplings
in the model share the IR fixed point value. In the scenario
with two additional large Yukawa couplings of vectorlike
quarks the IR fixed point value of the top Yukawa coupling
independently points to a multi-TeV range for vectorlike
family and superpartners. In this scenario, the measured top
quark mass can be obtained from the IR fixed point value of
the Yukawa coupling for tan β ≃ 4 assuming universal
value of all large Yukawa couplings at the GUT scale
and the range expands to any tan β > 3 for significant
departures from the universality assumption.
We have found that the gauge couplings and the top

Yukawa coupling can be simultaneously understood from
the IR fixed points in the MSSMþ 1VF if vectorlike matter
is near or somewhat above 1 TeV. Considering that the
Higgs boson mass also points to a multi-TeV range for
superpartners in the MSSM, adding a complete vectorlike
family at the same scale provides a compelling scenario

where the values of all large couplings in the SM are
understood as a consequence of the particle content of
the model.
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APPENDIX: RG EQUATIONS FOR THE MSSM
WITH VECTORLIKE MATTER

We use the full set of two-loop RG equations for
extensions of the MSSM with vectorlike matter that we
customize to reflect two-loop thresholds corresponding to
individual particles in a given model. In addition, we
include three-loop pure gauge terms for the beta functions
of the gauge couplings. For brevity, we define thresholds
for SUSY spectra by implicitly summing over generations,
e.g. θq̃ ¼ 1

3
ðθq̃1 þ θq̃2 þ θq̃3Þ, where θq̃i ¼ θðμ −mq̃iÞ for

squarks and similarly for the other superpartners.
Subscripts follow the convention that lower case letters
are reserved for matter fields of the SM, upper case for
additional vectorlike matter, and in either case tildes
correspond to respective scalar partners, e.g. for a vector-
like quark and scalar partner we denote θQ and θQ̃. Gaugino
thresholds are given by θMi

. Higgsinos, H̃u and H̃d are
integrated out together at a scale set by the μ term and the
threshold is denoted θH̃. Heavy Higgs contributions are
handled similarly with factors of θH, and we allow
contributions for a light SM Higgs to evolve all the way
to MZ.

1. Gauge couplings

The beta functions for the gauge couplings are given by

d
dt

gl ¼ bl
g3l

16π2
þ g3l
ð16π2Þ2

�X
k

blkg2k −
X

x¼u;d;e

Cx
lTr½Y†

xYx�

þ
X
j;k

bljk
g2jg

2
k

ð16π2Þ
�
; ðA1Þ

where the group theoretical coefficients bl, blk, and bljk can
be extracted from [28–30] and [13]. Following the pro-
cedure described above, we obtain the beta function
coefficients with thresholds corresponding to individual
particles:
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b1 ¼
23
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þ 1
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θt þ
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θq̃ þ
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θl̃ þ

3
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θ ˜̄e þ
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θ ˜̄d þ

1
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ð1þ θHÞ þ
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�
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ðθŨ þ θ ˜̄UÞ þ

1

3
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2
θ ˜̄u þ

1

2
θ ˜̄d

þ n5

�
2

3
θD þ 1

6
ðθD̃ þ θ ˜̄DÞ

�
þ n10

�
4

3
θQ þ 1

3
ðθQ̃ þ θ ˜̄QÞ þ

2

3
θU þ 1

6
ðθŨ þ θ ˜̄UÞ

�
;

b11 ¼
6823

1800
þ 17

1800
θt þ

27

100
θl̃½2 − θM1

� þ 54

25
θ ˜̄e½2 − θM1

� þ θq̃

�
1

50
− θM1

�
1

150
þ 1

300
θt

��

þ θ ˜̄u

�
192

75
− θM1

�
64

75
þ 32

75
θt

��
þ 2

25
θ ˜̄d½2 − θM1

� þ 9

100
½2θH̃ þ ð1þ θHÞð2 − θH̃θM1

Þ�

þ 9

25
n5

�
1

2
θL þ 1

4
ðθL̃ þ θ ˜̄LÞð2 − θM1

Þ þ 4

27
θD þ 2

27
ðθD̃ þ θ ˜̄DÞð2 − θM1

Þ
�

þ 9

25
n10

�
1

54
θQ þ 1

108
ðθQ̃ þ θ ˜̄QÞð2 − θM1

Þ þ 64

27
θU þ 64

54
ðθŨ þ θ ˜̄UÞð2 − θM1

Þ

þ 4θE þ 2ðθẼ þ θ ˜̄EÞð2 − θM1
Þ
�
;

b12 ¼
71

40
þ 1

40
θt þ

27

20
θl̃½2 − θM2

� þ θq̃

�
9

10
− θM2

�
3

10
þ 3

20
θt

��

þ 9

20
½2θH̃ þ ð1þ θHÞð2 − θH̃θM1

Þ�

þ 9

10
n5

�
θL þ 1

2
ðθL̃ þ θ ˜̄LÞð2 − θM1

Þ
�

þ 3

10
n10

�
θQ þ 1

2
ðθQ̃ þ θ ˜̄QÞð2 − θM1

Þ
�
;

b13 ¼
386

45
þ 10

45
θt þ θq̃

�
24

15
− θM3

�
8

15
þ 4

15
θt

��
þ θ ˜̄u

�
192

15
− θM3

�
64

15
þ 32

15
θt

��

þ 8

5
θ ˜̄d½2 − θM3

� þ 16

15
n5

�
θD þ 1

2
ðθD̃ þ θ ˜̄DÞð2 − θg̃Þ

�

þ 8

15
n10

�
θQ þ 1

2
ðθQ̃ þ θ ˜̄QÞð2 − θg̃Þ þ 8θU þ 4ðθŨ þ θ ˜̄UÞð2 − θg̃Þ

�
;

b21 ¼
7

12
þ 1

60
θt þ θq̃

�
3

10
− θM1

�
1

10
þ 1

20
θt

��
þ 3

20
½2θH̃ þ ð1þ θHÞð2 − θh̃θM1

Þ�

þ 3

10
n5

�
θL þ 1

2
ðθL̃ þ θ ˜̄LÞð2 − θM1

Þ
�
þ 1

10
n10

�
θQ þ 1

2
ðθQ̃ þ θ ˜̄QÞð2 − θM1

Þ
�
;
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b22 ¼ −
5

12
þ 49

12
θt þ

64

3
θM2

þ θl̃

�
13

2
−
33

4
θM2

�
þ θq̃

�
39

2
− θM2

�
33

2
þ 33

4
θt

��

þ 49

6
θH̃ þ ð1þ θHÞ

�
13

6
−
11

4
θH̃θM2

�

þ n5

�
49

6
θL þ ðθL̃ þ θ ˜̄LÞ

�
13

6
−
11

4
θM2

��
þ n10

�
49

2
θQ þ ðθQ̃ þ θ ˜̄QÞ

�
13

2
−
33

4
θM2

��
;

b23 ¼ 8þ 4θt þ θq̃½24 − θM3
ð8þ 4θtÞ� þ 8n10

�
θQ þ 1

2
ðθQ̃ þ θ ˜̄QÞð2 − θM3

Þ
�
;

b31 ¼
49

60
þ 17

60
θt þ θq̃

�
1

5
− θM1

�
1

15
þ 1

30
θt

��
þ θ ˜̄u

�
24

15
− θM1

�
8

15
þ 4

15
θt

��
þ 1

5
θ ˜̄d½2 − θM1

�

þ 2

15
n5

�
θD þ 1

2
ðθD̃ þ θ ˜̄DÞð2 − θM1

Þ
�

þ 1

15
n10

�
θQ þ 1

2
ðθQ̃ þ θ ˜̄QÞð2 − θM1

Þ þ 8θU þ 4ðθŨ þ θ ˜̄UÞð2 − θM1
Þ
�
;

b32 ¼
15

4
þ 3

4
θt þ θq̃

�
9 − θM2

�
3þ 3

2
θt

��
þ 3n10

�
θQ þ 1

2
ðθQ̃ þ θ ˜̄QÞð2 − θM2

Þ
�
;

b33 ¼ −
116

3
þ 38

3
θt þ 48θM3

þ θ ˜̄dð11 − 13θM3
Þ þ θq̃

�
22 − θM3

�
52

3
þ 26

3
θt

��

þ θ ˜̄u

�
11 − θM3

�
26

3
þ 13

3
θt

��
þ n5

�
38

3
θD þ ðθQ̃ þ θ ˜̄QÞ

�
11

3
−
13

3
θM3

��

þ n10

�
76

3
θQ þ ðθQ̃ þ θ ˜̄QÞ

�
22

3
−
26

3
θM3

�
þ 38

3
θU þ ðθŨ þ θ ˜̄UÞ

�
11

3
−
13

3
θM3

��
: ðA3Þ

The matrix appearing in the two-loop contribution from Yukawa couplings is given by

Cu;d;e
l ¼

0
B@

26/5 14/5 18/5

6 6 2

4 4 0

1
CA: ðA4Þ

For the three-loop pure gauge contributions to the beta functions for gauge couplings we integrate out the SUSY
spectrum at a common scale with θSUSY and similarly for the contributions from vectorlike matter with θn5 and θn10 :

b111 ¼ −
194293

12000
−
277817

4000
θSUSY −

7507

450
n5θn5 −

12859

150
n10θn10 −

7

10
n25θn5 −

207

10
n210θn10 − 9n5n10θn5θn10 ;

b112 ¼
123

160
−
2823

800
θSUSY −

27

25
n5θn5 −

1

25
n10θn10 ; b113 ¼ −

137

75
þ 959

75
θSUSY −

128

225
n5θn5 −

688

75
n10θn10 ;

b121 ¼ 0; b122 ¼
789

64
−
9129

320
θSUSY −

27

2
n5θn5 −

261

10
n10θn10 −

27

10
n25θn5 −

27

10
n210θn10 − 9n5n10θn5θn10 ;

b123 ¼ −
3

5
−
21

5
θSUSY −

16

5
n10θn10 ;

b131 ¼ 0; b132 ¼ 0;

b133 ¼
297

5
−
407

15
θSUSY −

1012

45
n5θn5 −

308

5
n10θn10 −

16

5
n25θn5 −

216

5
n210θn10 − 24n5n10θn5θn10 ;

b211 ¼ −
10077

1600
−
19171

1600
θSUSY −

441

50
n5θn5 −

1513

150
n10θn10 −

9

10
n25θn5 −

9

10
n210θn10 −

12

5
n5n10θn5θn10 ;

b212 ¼
873

160
−
117

32
θSUSY þ 3

5
n5θn5 þ

1

5
n10θn10 ; b213 ¼ −

1

5
−
7

5
θSUSY −

16

15
n10θn10 ;
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b221 ¼ 0; b222 ¼
324953

1728
−
264473

1728
θSUSY −

33

2
n5θn5 −

99

2
n10θn10 −

13

2
n25θn5 −

117

2
n210θn10 − 39n5n10θn5θn10 ;

b223 ¼ 39 − 15θSUSY þ 16n10;

b231 ¼ 0; b232 ¼ 0; b233 ¼ 81 − 37θSUSY − 36n5θn5 −
236

3
n10θn10 − 72n210θn10 − 24n5n10θn5θn10 ;

b311 ¼ −
523

120
−
3667

200
θSUSY −

2689

450
n5θn5 −

3353

150
n10θn10 −

2

5
n25θn5 −

27

5
n210θn10 − 3n5n10θn5θn10 ;

b312 ¼ −
3

40
−
21

40
θSUSY −

2

5
n10θn10 ; b313 ¼

77

15
−
11

3
θSUSY þ 8

45
n5θn5 þ

4

5
n10θn10 ;

b321 ¼ 0; b322 ¼
109

8
−
325

8
θSUSY −

27

2
n5θn5 −

117

2
n10θn10 − 27n210θn10 − 9n5n10θn5θn10 ;

b323 ¼ 21 − 15θSUSY ¼ 8n10θn10 ;

b331 ¼ 0; b332 ¼ 0;

b333 ¼
65

2
þ 499

6
θSUSY þ 430

9
n5θn5 þ

430

3
n10θn10 − 11n25θn5 − 99n210θn10 − 66n5n10θn5θn10 : ðA5Þ

2. Vectorlike mass terms

The mass terms of vectorlike fields originate from the
superpotential

W ⊃ MQQQ̄þMUUŪ þMEEĒþMLLL̄

þMNNN̄ þMDDD̄; ðA6Þ

where the fields transform under SUð3ÞC × SUð2ÞL ×
Uð1ÞY as

Q ¼
�
3; 2;

1

6

�
; Q̄ ¼

�
3̄; 2;−

1

6

�
;

U ¼
�
3; 1;

2

3

�
; Ū ¼

�
3̄; 1;−

2

3

�
;

D ¼
�
3; 1;−

1

3

�
; D̄ ¼

�
3̄; 1;

1

3

�
;

L ¼
�
1; 2;−

1

2

�
; L̄ ¼

�
1; 2;

1

2

�
;

E ¼ ð1; 1;−1Þ; Ē ¼ ð1; 1; 1Þ;
N ¼ ð1; 1; 0Þ; N̄ ¼ ð1; 1; 0Þ: ðA7Þ

The RG equation for vectorlike masses can be obtained in a
similar way as that of the μ-term in the MSSM,

dMV

dt
¼ MV

�
1

16π2
Γð1Þ
V þ 1

ð16π2Þ2 Γ
ð2Þ
V

�
ðA8Þ

with ΓðiÞ
V ¼ γðiÞV þ γðiÞV̄ and V ¼ Q;U; E; L;N;D. Neglecting

Yukawa couplings, the anomalous dimensions of the fields
and their conjugates are identical and we obtain

Γð1Þ
Q ¼ −

1

15
g21 − 3g22 −

16

3
g23;

Γð2Þ
Q ¼

�
1

15
b1 þ

1

450

�
g41 þ

�
3b2 þ

9

2

�
g42

þ
�
16

3
b3 þ

128

9

�
g43 þ

1

5
g21g

2
2 þ

16

45
g21g

2
3 þ 16g22g

2
3;

Γð1Þ
U ¼ −

16

15
g21 −

16

3
g23;

Γð2Þ
U ¼

�
16

15
b1 þ

128

225

�
g41 þ

�
16

3
b3 þ

128

9

�
g43 þ

256

45
g21g

2
3;

Γð1Þ
E ¼ −

12

5
g21;

Γð2Þ
E ¼

�
12

5
b1 þ

72

25

�
g41;

Γð1Þ
L ¼ −

3

5
g21 − 3g22;

Γð2Þ
L ¼

�
3

5
b1 þ

9

50

�
g41 þ

�
3b2 þ

9

2

�
g42 þ

9

5
g21g

2
2;

Γð1Þ
D ¼ −

4

15
g21 −

16

3
g23;

Γð2Þ
D ¼

�
4

15
b1 þ

8

225

�
g41 þ

�
16

3
b3 þ

128

9

�
g43: ðA9Þ

Threshold effects from other fields are taken into account in
the b1;2;3 coefficients given in (A2). In general, there will
also be soft-mass terms corresponding to the scalar partners
for vectorlike matter. We do not list their RGEs here as they
are quite cumbersome and almost exactly the same as
those in the MSSM differing only by a minus sign on terms
that sum over the hypercharge generator for conjugate
fields [28].
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3. Top Yukawa coupling and Yukawa couplings of vectorlike fields

In Sec. III, we introduced additional Yukawa couplings from vectorlike fields coupling to Hu,

W ⊃ YUHuQŪ þ YDHuQ̄D; ðA10Þ

that will modify the RG evolution of the top Yukawa coupling. The beta function for the top Yukawa coupling,

dyt
dt

¼
�

1

16π2
βð1Þyt þ 1

ð16π2Þ2 β
ð2Þ
yt

�
; ðA11Þ

can be extracted from [28,31]. Including thresholds we have

βð1Þyt ¼ 3

2
ðs2 þ c2θHÞy3t þ

1

2
θH̃ð2θq̃ þ θ ˜̄uÞy3t þ 3ytðs2 þ c2θHÞðy2t þ Y2

U þ Y2
DÞ

− yt

�
3

5
g21

�
17

12
þ 3

4
θH̃ −

�
1

36
θq̃ þ

4

9
θ ˜̄u þ

1

4
θH̃

�
θM1

�

þ g22

�
9

4
þ 9

4
θH̃ −

3

4
ðθq̃ þ θH̃ÞθM2

�
þ g23

�
8 −

4

3
ðθq̃ þ θ ˜̄uÞθM3

��
; ðA12Þ

as shown in [32]. Following a similar calculation for the two-loop beta function we find

βð2Þyt ¼ −
�
4ðc2s2θH þ s4Þ þ 4θH̃ðc2s2θq̃ þ c4θũÞ −

11

2
s4ð1 − θHÞ

�
y5t

−
3

2

�
3

2
ðs4 þ 2s2c2θH þ c4θHÞ þ

1

2
θH̃ðs4θq̃ þ 2s2c2θũ þ c4θũÞ

�
ð3y4t þ 3θQθUY4

U þ 3θQθDY4
DÞ

−
3

4
ð3ðs4 þ 2s2c2θH þ c4θHÞ þ θH̃ðs4θq̃ þ 2s2c2θũ þ c4θũÞÞð3y2t þ 3θQθUY2

U þ 3θQθDY2
DÞy3t

þ
�
6g22 þ

2

5
g21

�
ðs2 þ θHc2Þy3t þ

�
16g23 þ

4

5
g21

�
ððs2 þ θHc2Þy3t þ θQθUytY2

UÞ

þ
�
16g23 þ

2

5
g21

�
θQθDY2

D þ
�
13

15
b1 þ

169

450

�
g41 þ

�
3b2 þ

9

2

�
g42 þ

�
16

3
b3 þ

128

9

�
g43

þ g22g
2
1 þ 8g23g

2
2 þ

136

45
g23g

2
1; ðA13Þ

where the b1;2;3 are as in (A2), s2 ¼ sin2 β, and c2 ¼ cos2 β. The beta function for YU is identical to that for yt and the beta
function for YD differs only through terms proportional to hypercharge factors. In our analysis we have also included
corrections from switching between DR and MS schemes following the recipe of [33].
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