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We investigate several examples of Yang-Mills gauge configurations containing center vortex structures,
including intersection points between vortices and nontrivial color structures residing on the vortex world
surfaces. Various topological charge contributions of the color structures and intersection points are studied
in these configurations. Low-lying eigenmodes of the (overlap) Dirac operator in the presence of these
vortex backgrounds are analyzed. The results indicate characteristic properties for spontaneous chiral
symmetry breaking.
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I. INTRODUCTION

Numerical simulations have indicated that the center
vortices can account for the phenomena of the color
confinement [1–9] and spontaneous chiral symmetry
breaking [10–14]. Center vortices can contribute to the
topological charge through intersection and writhing
points [14–24] and their color structure [22,24–28]. We
have studied colorful plane vortices in Refs. [22,24].
According to the Atiyah-Singer index theorem [29–32],
the zero modes of the Dirac operator are related to the
topological charges. Any source of topological charge
can attract (would-be) zero modes, which contribute via
interactions in Monte Carlo simulations to a finite density
of near-zero modes. By the Banks-Casher relation [33],
the finite density of near-zero modes leads to a nonzero
chiral condensate and therefore chiral symmetry breaking.
For studying the contributions of different types of
topological charge sources of center vortices and analyz-
ing low-lying modes of the Dirac operator for vortex
configurations with these topological charge sources, it
is necessary to consider special vortex configurations. The
color structures and intersection points of center vortices
producing the topological charge may appear on the vacuum,
simultaneously.
In this article, we study some plane vortex configurations

in SU(2) lattice gauge theory, which are combinations of
the color structures and intersection points. These configu-
rations give the nice opportunity to study the properties of
zero modes and near-zero modes. On periodic lattices,

plane vortices appear in parallel or antiparallel pairs. By
combining two perpendicular vortex pairs and making one
of the plane vortices colorful, we get some configurations
in which the intersection points and color structures are
apart. Various topological charge contributions of the
color structures and intersection points are studied in these
configurations. We calculate eigenvalues and low-lying
eigenmodes of the overlap Dirac operator in the back-
ground of the considered vortex configurations, and the
chiral properties of the low-lying eigenmodes are analyzed.
This paper is organized as follows. In Sec. II, we describe

the planar vortex configurations. Combinations of intersec-
tions and colorful regions and topological charges of these
vortex configurations are investigated in Sec. III. Then, in
Sec. IV, we study eigenvalues and eigenmodes of the overlap
Dirac operator for the vortex configurations and analyze the
influence of combinations of intersection points and colorful
regions on low-lying modes of the Dirac operator. In the last
step, Sec. V, we summarize the main points of our study.

II. THICK PLANAR VORTEX
CONFIGURATIONS

In SU(2) lattice gauge theory, we investigate thick plane
vortices [20,25], which are parallel to two of the coordinate
axes and occur in pairs of parallel sheets because of using
periodic boundary conditions for the gauge fields. We use
vortex plane pairs which extend in zt and xy planes. The
lattice links of plane vortices as an unicolor vortex field
vary in a Uð1Þ subgroup of SU(2) and usually are defined
by the Pauli matrix σ3, i.e., Uμ ¼ expfiασ3g. For xy
vortices (zt vortices), t links (y links) are nontrivial in
one t slice t⊥ (y slice y⊥). The orientation of the vortex
flux is determined by the gradient of the angle α, which is
chosen as a linear function of the coordinate perpendicular
to the plane vortices. For xy vortices, the appropriate profile
functions for angle α are given as the following:
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α1ðzÞ ¼

8
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>>>>>>>:
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8
>>>>>>><

>>>>>>>:

0 0 < z ≤ z1 − d
−π
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2d � z2 − d < z ≤ z2 þ d

0 z2 þ d < z ≤ Nz

: ð2:1Þ

The parallel sheets of xy vortices have thickness of 2d
centered around z1 and z2. Vortex pairs with the same
(opposite) vortex flux orientation corresponding to the
angle α1 (α2) are called parallel (antiparallel) vortices. It
should be noted that the unicolor vortices defined with
Eq. (2.1) are not thickened in both transverse dimensions;
an xy vortex is thick in the z direction but still thin in the t
direction. Thus, these vortices resemble bands rather than
tubes. The vortex profiles αðxÞ similar to Eq. (2.1) are used
for zt vortices centered around x1 and x2. A zt vortex is
thick in the x direction but still thin in the y direction.
The topological charge of the configurations on the

continuum is defined as

Q ¼
Z

d4xqðxÞ ¼ −
1

16π2

Z

d4xtr½F̃ μνF μν�; ð2:2Þ

where qðxÞ denotes topological charge density, F̃ μν ¼
1
2
ϵμναβF αβ, F μν ¼ −igFμν, Fμν ¼ Fa

μν
σa

2
, and Fa

μν ¼
∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν. The plaquette definition dis-

cretizes the continuum expression [34–37]. The trace
evaluates to

tr½F̃ μνF μν� ¼ ð−2g2Þ½Fa
12F

a
34 − Fa

13F
a
24 þ Fa

14F
a
23�: ð2:3Þ

The field tensor Fμν is obtained from the plaquette variables

Uμν ¼ UμðxÞUνðxþ μÞU†
μðxþ νÞU†

νðxÞ as

UμνðxÞ ≈ exp

�

ia2gFb
μνðxÞ

σb

2

�

: ð2:4Þ

If a plaquette is written as

UμνðxÞ ¼ u0μνðxÞI þ iubμνðxÞσb; ð2:5Þ

one can obtain

Fb
μν ¼

2

a2g
ubμνðxÞ: ð2:6Þ

To define a field tensor Fμν for a single lattice point, we
average over the four adjacent plaquettes in the forward and
backward directions. This means in the above expressions
we make the substitution

UμνðxÞ → ŨμνðxÞ ¼
1

4

X
U�μ;�νðxÞ: ð2:7Þ

Combining Eqs. (2.2), (2.3), and (2.6), the lattice topo-
logical charge density is [37]

qðxÞ ¼ 1

2π2a4
½ũa12ũa34 − ũa13ũ

a
24 þ ũa14ũ

a
23�; ð2:8Þ

where ũμν are the components of Ũμν. Therefore, the lattice
topological charge is obtained as

Q ¼ a4
X

x

qðxÞ: ð2:9Þ

For the plane vortices as the unicolor vortex fields, one
gets vanishing gluonic topological charge. The color
structure and intersection points of the plane vortices can
contribute to the topological charge.
Each intersection between xy and zt vortices carries a

topological charge with modulus jQj ¼ 1=2, the sign of
which depends on the relative orientation of the vortex
fluxes [20].
A colorful region of the xy vortex with radius R around

ðx0; y0Þ at z1 and t⊥ is defined by the timelike links
expfiαn⃗ σ⃗g distributed over the full SU(2) gauge group
[22]. The color direction n⃗ is

n⃗ ¼ sin ðθðρÞÞ cosðϕÞîþ sin ðθðρÞÞ sinðϕÞĵþ cos ðθðρÞÞk̂;
ð2:10Þ

where

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx − x0Þ2 þ ðy − y0Þ2
q

;

θðρÞ ¼ π

�

1 −
ρ

R

�

HðR − ρÞ ∈ ½0; π�;

ϕ ¼ arctan
y − y0
x − x0

∈ ½0; 2πÞ: ð2:11Þ

H is the Heaviside step function. For the colorful configu-
ration as defined up to this point, one obtains a vanishing
gluonic topological charge [22], but this can be seen to
represent a lattice artifact. By a gauge transformation, one
can show that the colorful configuration represents a fast
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transition between two vacua with different winding num-
bers in the temporal direction (sharp vortices) [22,28]. After
smoothing the colorful vortices by growing the temporal
extent Δt of the configuration, the topological charge of the
configuration becomes nonzero. The topological charge of
the smoothed configuration obtains modulus jQj ¼ 1, the
sign of which depends on the profile of the colorful vortex
sheet. Therefore, for the colorful vortices, it turns out to be
quite crucial to thicken in both transverse dimensions, and
vanishing of the topological charge of the sharp vortices
(Δt ¼ 1) is a lattice artifact due to the singularity of the
vortex in temporal direction.
In the following, we study combinations of the color

structure and intersection points of center vortices.

III. COMBINATIONS OF COLORFUL REGIONS
AND INTERSECTIONS POINTS

The color structures and intersection points of center
vortices may appear on the vacuum, simultaneously. By
combining these sources of topological charge, we inves-
tigate the influence of these combinations on low-lying
modes of the Dirac operator. According to the topological
charge definition

Q ¼ −
1

32π2

Z

d4xϵμναβtr½F αβF μν� ¼
1

4π2

Z

d4xE⃗a · B⃗a;

ð3:1Þ
when a configuration has electric and magnetic fields, it
can contribute to the topological charge. The index a is
related to the three directions σa of the SU(2) color algebra.
The unicolor regions of plane vortices, as explained in the
previous section, are defined by the Pauli matrix σ3.
The unicolor region of xy vortices has only nontrivial zt
plaquettes and therefore an electric field E3

z , while the one of
the zt vortices bears nontrivial xy plaquettes and therefore a
magnetic field B3

z . The topological charge of an intersection
point between xy- and zt-vortex sheets is then proportional
to E3

zB3
z . The intersection points with the same (opposite)

orientation of xy- and zt-vortex fluxes are parallel (anti-
parallel) crossings, and their topological charge contribution
is Q ¼ 1=2 (Q ¼ −1=2).
For the colorful regions, three directions of σa contribute

to the topological charge, while for the intersection points,
one direction of σa contributes to the topological charge.
Now, we study some configurations in which the

colorful regions and intersection points are combined.
In the configurations, xy vortices which have the color
structures are thickened in both transverse dimensions, but
zt vortices are thickened in the x direction but still thin in
the y direction.
For the first step, we intersect a parallel xy-vortex pair at

(z1 ¼ 4, z2 ¼ 14) with a parallel zt-vortex pair at (x1 ¼ 4,
x2 ¼ 14) with thickness d ¼ 2 at (t⊥ ¼ 3, y⊥ ¼ 9) on a 164

lattice. We use α1, given in Eq. (2.1), as the angle profile of

the vortex pairs. The colorful region with radius R ¼ 4 is
located in the first vortex sheet of the xy-plane vortices
(z1 ¼ 4) with the center at x0 ¼ y0 ¼ 9 in the xy plane. The
intersection points and the colorful region are apart.
However, there is a quite small overlap between these
regions, which has only a minor effect. Note that the radius
of the colorful region and the thickness of vortex sheets
should be appropriate for obtaining the Dirac modes. In
Fig. 1, the topological charge of the configuration is plotted
for various values of Δt. In the plot, the Q symbol is
composed ofQint þQcol, the sum of topological charges of
intersection and colorful contributions. As shown, for the
sharp configuration where Δt ¼ 1, the total charge con-
tribution Q ¼ 2 of four intersection points appears. The
topological charge after smoothing the configuration,
where the charge contribution of color structure is added,
approaches from Q ¼ 2 to Q ¼ 2 − 1 ¼ 1. The schemat-
ical diagram for the intersection plane of this configuration
is shown in Fig. 2(a). Each intersection point and colorful
region carry topological charge Q ¼ þ1=2 and Q ¼ −1,
respectively. The minimum value of the action S as a
function of Δt corresponding to the colorful region is 1.68
Sinst around Δt ¼ R, where the instanton action Sinst ¼
8π2=g2 [22]. Therefore, we consider Δt ¼ R, with our
choice of R ¼ 4, cf. above; the transition thus occurs
between t ¼ 1 and t ¼ 5. In Fig. 3(a), the topological charge
density of the Q ¼ 1 configuration at ðt⊥¼3;y⊥¼9Þ
is plotted in the xz plane (the intersection plane), where
we can identify the positive and negative contributions
indicated in Fig. 2(a).
For the next step, we consider a configuration that is the

same as the first configuration but with the angle profile of
the vortex pairs being −α1. The parameters for this vortex

-1

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5

Q

Δt

Q = +2-1
Q =+2+1
Q =   0-1

FIG. 1. The total topological charge of some vortex configu-
rations corresponding to Fig. 2, which are combinations of
colorful region and intersection points. In the figure, topological
charge Q of any configuration is Qint þQcol, the sum of
intersection and colorful contributions. For the configurations
as the fast transition in temporal direction (Δt ¼ 1), the topo-
logical charge contribution of colorful region does not appear due
to the singularity of the configuration in temporal direction. After
growing the temporal extent of the configurations, the topological
charge contribution of the colorful region is added.
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configuration are the same as those of the Q ¼ 1 configu-
ration. As shown in Fig. 1, for the sharp configuration, the
total charge contribution Q ¼ 2 of four intersection points
appears. The topological charge after smoothing the con-
figuration approaches from Q ¼ 2 to Q ¼ 2þ 1 ¼ 3. The
schematical diagram for the intersection plane of this
configuration is shown in Fig. 2(b). Each intersection point
and colorful region carry topological charge Q ¼ þ1=2
and Q ¼ þ1, respectively. In Fig. 3(b), the topological
charge density of theQ ¼ 3 configuration at ðt⊥¼3;y⊥¼9Þ
is plotted in the intersection plane, where we can identify
the positive contributions indicated in Fig. 2(b).
For the last step, we intersect two antiparallel vortex

pairs. The parameters for this vortex configuration are the
same as those of the Q ¼ 1 configuration, and the angle

profile of the vortex pairs is α2, given in Eq. (2.1). As
shown in Fig. 1, for the sharp configuration, the total charge
contribution Q ¼ 0 of four intersection points appears.
The topological charge after smoothing the configuration
approaches from Q ¼ 0 to Q ¼ 0–1 ¼ −1. The schemat-
ical diagram for the intersection plane of this configuration
is shown in Fig. 2(c). Two of the intersection points carry
topological charge Q ¼ þ1=2, while the other two inter-
section points have Q ¼ −1=2, and the colorful region
carries topological charge Q ¼ −1. They sum up to total
topological charge Q ¼ −1. In Fig. 3(c), the topological
charge density of the Q ¼ −1 configuration at ðt⊥ ¼ 3;
y⊥ ¼ 9Þ is plotted in the intersection plane, where we can
identify the positive and negative contributions indicated
in Fig. 2(c).

FIG. 2. The geometry, field strength, and topological charge contributions of the intersection points and colorful region in the
intersection plane. The bold black line indicates that the unicolor vortex is substituted in this region by a colorful region. (a) Q ¼ 1
configuration in which two parallel vortex pairs are intersected. We use α1 as the angle profile of the vortex pairs. The total topological
charge contribution of intersection points isQ ¼ 2, and the one of colorful region isQ ¼ −1. Therefore, various contributions sum up to
a total topological charge Q ¼ 1. (b) Q ¼ 3 configuration which is the same as Q ¼ 1 configuration but the angle profile of the vortex
pairs is −α1. The total topological charge contribution of intersection points isQ ¼ 2, and the one of colorful region isQ ¼ 1. Therefore,
various contributions sum up to a total topological charge Q ¼ 3. (c) Q ¼ −1 configuration in which two antiparallel vortex pairs are
intersected. We use α2 as the angle profile of the vortex pairs. The total topological charge contribution of intersection points is Q ¼ 0,
and the one of colorful region is Q ¼ −1. Therefore, various contributions sum up to a total topological charge Q ¼ −1.

FIG. 3. The topological charge densities in the xz plane for the configurations displayed in Fig. 2, which are two intersecting xy- and
zt-plane vortex pairs with vortex centers (z1 ¼ 4, z2 ¼ 14) and (x1 ¼ 4, x2 ¼ 14) at ðt⊥ ¼ 3; y⊥ ¼ 9Þ with thickness d ¼ 2 and
Δt ¼ R ¼ 4 on a ð16Þ4 lattice. The color structure of the xy vortices is located in the first vortex sheet (z1 ¼ 4), and the vacuum to
vacuum transition occurs between t ¼ 1 and t ¼ 5. The center of the colorful region is located at x0 ¼ y0 ¼ 9 in the xy plane.
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In the next section, we analyze the low-lying modes of
the overlap Dirac operator in the background of these
vortex configurations.

IV. FERMIONIC DIRAC MODES FOR THE
VORTEX FIELDS

In the previous section, we defined some vortex con-
figurations which are combinations of the color structures
and intersection points. For studying the effect of these
configurations on fermions ψ , we determine the low-lying
chiral eigenvectors χR;L and eigenvalues jλj ∈ ½0; 2=a� of
the overlap Dirac operator [38–41]

Dov ¼
1

a

�

1þ γ5
H
jHj

�

with H ¼ γ5A;

A ¼ aDW −m; ð4:1Þ

where DW denotes the massless Wilson Dirac operator
[42,43]. The mass parameter m, which is in the range
(0,2), is chosen with m ¼ 1, and the lattice constant a is
set to a ¼ 1. The eigenvalues of the overlap Dirac operator
as a Ginsparg-Wilson operator are restricted to a circle in
the complex plane. This circle crosses the real axis at the
two points λ ¼ 0 and λ ¼ 1 (doubler modes). Zero and
doubler modes have exact chirality; i.e., they are eigen-
vectors of γ5. The eigenvalues jλj ∈ ð0; 2=aÞ come in
complex conjugate pairs. Both of the eigenvectors ψ� ¼
1ffiffi
2

p ðχR � iχLÞ belonging to one value of jλj ≠ 0; 2=a have

the same chiral density as

χ ¼ ψ†
�γ5ψ� ¼ 1

2
ðχ†RχR − χ†LχLÞ: ð4:2Þ

According to the Atiyah-Singer index theorem, the
topological charge has to be related to zero modes of
the Dirac operator by indD½A� ¼ n− − nþ ¼ Q, where n−
and nþ denote the numbers of left- and right-handed zero
modes [29–32]. For a single configuration, one never finds
fermionic zero modes of both chiralities. It means that for a
gauge field with nonvanishing topological charge Q the
overlap Dirac operator Dov has jQj exact zero modes with
chirality −signQ. Therefore, any source of topological
charge can attract zero modes contributing through inter-
actions to a finite density of near-zero modes leading to
chiral symmetry breaking via the Banks-Casher relation.
As mentioned above, we defined the Q ¼ 1 (Q ¼ 3)

configuration, which is two intersecting parallel vortex
pairs where one of the vortices is colorful, negatively
(positively) charged, and also the Q ¼ −1 configuration,
which is two intersecting antiparallel vortex pairs where
one of the vortices is colorful, negatively charged.
In Fig. 4, we show the lowest eigenvalues of the overlap

Dirac operator in the background of these configurations
compared to the eigenvalues of the free overlap Dirac

operator. For the fermion fields, we use antiperiodic
boundary conditions in the temporal direction and periodic
boundary conditions in spatial directions on a 164 lattice.
The parameters of the configurations are the same as those
in the previous section (given in Fig. 3). For better
comparison, we indicate the Dirac modes with mode
number #ðmÞ (m ≤ 0 means zero modes, and m > 0 would
be nonzero modes). As shown in Fig. 4, we find one zero
mode #ð0Þ of negative chirality for the Q ¼ 1 configura-
tion; three zero modes #ð−2Þ, #ð−1Þ, and #ð0Þ of negative
chirality for the Q ¼ 3 configuration; and one zero mode
#ð0Þ of positive chirality for the Q ¼ −1 configuration, as
expected from the index theorem. As shown in Fig. 4, we
also get one near-zero mode #ð1Þ for the Q ¼ 1 configu-
ration. The near-zero mode #ð1Þ is distinguished from the
mode #ð0Þ by the chirality properties, making it a near-zero
mode as opposed to a zero mode.
Now, we study the properties of zero modes and near-

zero modes. In Figs. 5 and 6, we show the chiral densities
of the zero modes for these configurations. The plot titles in
the density plots indicate the plane positions, the chirality
[“chi ¼ 0” means we plot χ, given in Eq. (4.2); “chi ¼ 1”
would be the right-handed chiral density χ ¼ 1

2
ðχ†RχRÞ; and

“chi ¼ −1” is the left-handed chiral density χ ¼ 1
2
ðχ†LχLÞ],

and the number n is related to the plotted mode #ðnÞ and
the maximal density in the plotted area, “max ¼ ...”
For the Q ¼ 1 configuration, the total topological

charge is a combination of Q ¼ 2 (intersection contribu-
tions) and Q ¼ −1 (color structure contribution). As
shown in Fig. 5(a), the chiral density χð#0Þ of the zero
mode for the Q ¼ 1 configuration shows four distinct
maxima near to the intersection points. Although there is
the colorful region in the configuration, it does not attract
the chiral density χð#0Þ of the zero mode anymore.
For the Q ¼ −1 configuration, the total topological

charge is a combination of Q ¼ 0 (intersection contribu-
tions) andQ ¼ −1 (color structure contribution). As shown

 0

 0.1

 0.2

 0  5  10  15

λ

mode #

Q = 1
Q = 3 
Q = -1

 trivial

FIG. 4. The lowest overlap eigenvalues for the vortex configu-
rations schematically depicted in Fig. 2 with Q ¼ 1 [Fig. 2(a)],
Q ¼ 3 [Fig. 2(b)], and Q ¼ −1 [Fig. 2(c)], compared with those
of the free Dirac operator on a 164 lattice.
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in Fig. 5(b), the chiral density χð#0Þ of the zero mode
for the Q ¼ −1 configuration is localized in the colorful
region.
For theQ ¼ 3 configuration, the total topological charge

is a combination of Q ¼ 2 (intersection contributions) and
Q ¼ 1 (color structure contribution). In Fig. 6, we show the
chiral densities of three zero modes for the Q ¼ 3 con-
figuration. Although a naive identification of topological
and chiral densities would suggest that there should be
one zero mode concentrated on the colorful region and two
on the intersection points, a quite different distribution is
in fact observed. As shown, the chiral densities of the zero
modes peak at the center of the colorful region. Two zero
modes #ð−2Þ and #ð−1Þ are concentrated completely on
the colorful region, and one zero mode #0 is on both the
intersection and colorful regions.
The index theorem may mislead one to identify topo-

logical densities with chiral densities and deduce from the
location of the chiral density where topological density
should be assigned. However, the index theorem is only
a statement about integrated densities, not the densities
themselves. The densities cannot be identified one to one.
Considering Figs. 5 and 6 together, it seems that one can

conclude that zero modes are correlated more strongly with
the colorful vortex region than with the intersection points

whenever the chirality of the zero mode can match the sign
of either of those regions of topological charge. Only in the
case of Fig. 5(a) where the chirality of the zero mode
merely matches the sign of the topological charge due to the
intersection points, the zero mode remains attached to the
intersection points.
Now, we study the low-lying modes of the considered

vortex configurations after zero modes. As mentioned
above, we find one near-zero mode #ð1Þ for the Q ¼ 1
configuration. For the Q ¼ 1 configuration, the total
topological charge is a combination ofQ ¼ 2 (intersection
contributions) and Q ¼ −1 (color structure contribution).
The Dirac operator in the background of this configuration
has one negative chirality zero mode (tied to a positive,
intersection, contribution Q ¼ 1) and two would-be zero
modes (for another intersection contribution Q ¼ 1 and
the color structure contribution Q ¼ −1). The near-zero
mode of the Q ¼ 1 configuration, as shown in Fig. 4,
originates from the overlap of these two would-be zero
modes. The left-handed chiral density χð#1Þ (chi ¼ −1) of
the near-zero mode behaves similarly to the chiral density
(chi ¼ −1) of the zero mode χð#0Þ for the configuration
Q ¼ þ1 [see Fig. 5(a)]. The right-handed chiral density
χð#1Þ (chi ¼ 1) of the near-zero mode behaves similarly to
the chiral density (chi ¼ 1) of the zero mode χð#0Þ for the

FIG. 6. The chiral densities of three zero modes for the Q ¼ 3 configuration. The chiral densities of the zero modes peak at the center
of the colorful region. Two zero modes #ð−2Þ and #ð−1Þ are concentrated completely on the colorful region, and one zero mode #0 is on
both the intersection and colorful regions.

FIG. 5. The chiral density χðxÞ of the zero mode (a) for theQ ¼ 1 configuration and (b) for theQ ¼ −1 configuration in the xz plane.
For theQ ¼ 1 configuration, the chiral density of the zero mode shows four distinct maxima near to the intersection points. The colorful
region in the configuration does not attract the chiral density of the zero mode anymore. For theQ ¼ −1 configuration, the chiral density
of the zero mode is localized in the colorful region.
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Q ¼ −1 configuration [see Fig. 5(b)]. As a result, the left-
handed chiral density of the near-zero mode spreads
near four intersection points, while the right-handed
chiral density of the near-zero mode is localized near the
colorful region.
Now, for the Q ¼ −1 configuration, we study four low-

lying modes, #ð1Þ, #ð2Þ, #ð3Þ, and #ð4Þ, as shown in Fig. 4.
For the Q ¼ −1 configuration, the total topological charge
is a combination of Q ¼ 0 (intersection contributions) and
Q ¼ −1 (color structure contribution). The Q ¼ 0 con-
figuration, as an intersecting unicolor center vortex field
with Q ¼ 0, has been studied in Ref. [20], in which two of
the intersection points carry topological charge Q ¼ þ1=2
while the other two intersection points have Q ¼ −1=2.
Two antiparallel vortex pairs are intersected similarly to the
Q ¼ −1 configuration, but we do not have the colorful
region. For theQ ¼ 0 configuration, the first four low-lying
modes are localized at intersection points. The chiral
densities of four low-lying modes χð#1Þ, χð#2Þ, χð#3Þ,
and χð#4Þ of theQ ¼ −1 configuration are shown in Fig. 7.
The chiral densities of the three low-lying modes χð#1Þ,

χð#2Þ, and χð#3Þ are localized at intersection points, while
χð#4Þ (fifth mode) is localized in the colorful region. In
Fig. 8, the eigenvalues of these four low-lying modes of the
Q ¼ −1 configuration are compared with those of the Q ¼
0 configuration. The low-lying modes #ð1Þ, #ð2Þ, and #ð3Þ
for both configurations have the same eigenvalues, while
the eigenvalue of the low-lying mode #ð4Þ is increased
compared with the one of the fourth low-lying mode of the
Q ¼ 0 configuration. Therefore, the eigenvalue of mode
#ð4Þ of the analogous Q ¼ 0 configuration is increased
through the influence of the colorful region. It is possible
that there is a level crossing and mode #ð4Þ of the Q ¼ 0
configuration, after distortion by the colorful region,
becomes a higher mode of the Q ¼ −1 configuration.

V. CONCLUSION

Understanding the dynamical mechanism of the sponta-
neous breaking of chiral symmetry in QCD is our aim. We
analyze special vortex configurations which are combina-
tions of intersection points and colorful regions for study-
ing the properties of low-lying modes of the Dirac operator.
We construct vortex configurations by combining two
perpendicular plane vortex pairs and making one of the
plane vortices colorful. The intersection points and the
colorful region are apart. Our special vortex configurations
have total topological charges Q ¼ �1 and Q ¼ 3. The
Q ¼ 1 (Q ¼ 3) configuration is two intersecting parallel
vortex pairs in which one of the vortices is colorful,
negatively (positively) charged, and also the Q ¼ −1
configuration is two intersecting antiparallel vortex pairs
in which one of the vortices is colorful, negatively charged.
These configurations give the nice opportunity to study

the properties of zero modes and near-zero modes of the
overlap Dirac operator. We have analyzed the low-lying
modes of the overlap Dirac operator in the background of
these configurations. The data provide insight, in particular,
into the interplay between chiral densities induced by
vortex intersection points and by color structure.
For the Q ¼ 1 configuration, we find one zero mode of

negative chirality and one near-zero mode. The chiral
density of the zero mode shows four distinct maxima near
to the intersection points. The chirality of the zero mode
only matches the sign of the topological charge due to
intersection points; the zero mode remains attached to the

FIG. 7. The chiral densities of four low-lying modes after one zero mode for the Q ¼ −1 configuration. The first three chiral densities
(a), (b), and (c) are localized near intersection points. (d) The fourth mode is localized near the colorful region.
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FIG. 8. The four low-lying eigenvalues for the Q ¼ −1 and
Q ¼ 0 configurations compared with those of the free Dirac
operator. For the Q ¼ 0 configuration, two antiparallel vortex
pairs are intersected. TheQ ¼ −1 configuration is the same as the
Q ¼ 0 configuration, but we have added to the configuration the
colorful region with Q ¼ −1. The eigenvalues of the first three
eigenmodes for the Q ¼ 0 configuration are the same as those of
Q ¼ −1 configuration. The eigenvalue of the fourth low-lying
mode of the Q ¼ 0 configuration is increased after locating
within the colorful region.
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intersection points. The Dirac operator in the background
of this configuration also has two would-be zero modes
(for another intersection contribution Q ¼ 1 and the color
structure contribution Q ¼ −1). The near-zero mode orig-
inates from the overlap of these two would-be zero modes.
The left-handed chiral density of the near-zero mode
spreads near to four intersection points, while the right-
handed chiral density of the near-zero mode is localized
near to the colorful region.
For the Q ¼ −1 configuration, we find one zero mode

of positive chirality. The chiral density of the zero mode
is localized in the colorful region. For this configuration,
the total topological charge is a combination of Q ¼ 0
(intersection contributions) and Q ¼ −1 (color structure
contribution). For the analogous unicolor Q ¼ 0 configu-
ration, the chiral densities of the first four low-lying
modes are localized in the intersection points. For the
Q ¼ −1 configuration, the chiral densities of three of the
first four low-lying modes, after one zero mode, behave
similarly, but the chiral density of the fourth mode is
localized in the colorful region. The eigenvalue of this
mode is increased compared to the fourth low-lying mode
of the Q ¼ 0 configuration.

For theQ ¼ 3 configuration, we find three zero modes of
negative chirality. Although a naive identification of
topological and chiral densities would suggest that there
should be one zero mode concentrated on the colorful
region and two on the intersection points, a quite different
distribution is in fact observed. The chiral densities of three
zero modes peak at the center of the colorful region. Two
zero modes are concentrated completely on the colorful
region, and one zero mode is on both the intersection and
colorful regions.
It seems that one can conclude that zero modes are

correlated more strongly with the colorful vortex region
than with the intersection points whenever the chirality of
the zero mode can match the sign of either of those regions
of topological charge.
Zero modes and near-zero modes of the type studied in

this work may be instrumental in generating a nonzero
spectral density of the Dirac operator near-zero eigenvalue
and thus lead to spontaneous chiral symmetry breaking.
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