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We present a numerical study of three-dimensional two-color QCD with N ¼ 0, 2, 4, 8 and 12 flavors of
massless two-component fermions using parity-preserving improved Wilson-Dirac fermions. A finite
volume analysis provides strong evidence for the presence of SpðNÞ symmetry-breaking bilinear
condensate when N ≤ 2 and its absence for N ≥ 8. A weaker evidence for the bilinear condensate is
shown for N ¼ 4. We estimate the critical number of flavors below which scale-invariance is broken by the
bilinear condensate to be between N ¼ 4 and 6.
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I. INTRODUCTION

Three-dimensional gauge theories coupled to an even
number of two-component massless fermions can be
regularized to form a parity-invariant theory. The parity-
invariant fermion action for N flavors of two-component
fermions coupled to SUðNcÞ gauge-field Aμ is

Sf ¼
Z

d3x
XN=2

i¼1

fϕ̄iðxÞCðAÞϕiðxÞ þ χ̄iðxÞC†ðAÞχiðxÞg;

ð1Þ
where CðAÞ is the two-component Dirac operator, with an
ultraviolet regularization being imposed implicitly. In the
continuum,

CðAÞ ¼
X3
μ¼1

σμð∂μ þ iAμðxÞÞ; ð2Þ

with σμ being the three Pauli matrices. One can think of the
above parity-invariant theory ofN flavors of two-component
fermions to be equivalent to a theory of N

2
flavors of four-

component fermions ψ i with a Hermitian Dirac operator D:

Sf ¼
XN=2

i¼1

Z
d3xψ̄ iðxÞDψ iðxÞ; ð3Þ

with the following identifications

ψ iðxÞ ¼
�
ϕiðxÞ
χiðxÞ

�
;

ψ̄ iðxÞ ¼ ðχ̄iðxÞ; ϕ̄iðxÞÞ;

DðAÞ ¼
�

0 C†ðAÞ
CðAÞ 0

�
: ð4Þ

Since C† ¼ −C in the continuum, the theory has a global
UðNÞ flavor symmetry. However, the Nc ¼ 2 theory is
special, and there is a larger SpðNÞ global symmetry
following from the property σ2τ2Cσ2τ2 ¼ Ct, where σ2
and τ2 are Pauli matrices in spin and color space respectively
[1]. This is also related to the fact that the operatorD can be
made real symmetric in a suitable basis [2].
Consider such a theory on an Euclidean periodic l3ph

torus. Physics depends on the dimensionless size,
l ¼ lphg2ph, where g2ph is the physical coupling constant.
Since g2ph has the dimension of mass, these theories are
superrenormalizable, and the continuum limit in a lattice
regularization at a fixed l can be obtained by setting the
lattice coupling constant (same as the lattice spacing) to
g2lat ¼ l

L on a periodic L3 lattice and taking L → ∞. The
physics of this theory will smoothly crossover from a
noninteracting theory at small l to a strongly interacting
theory as l → ∞; this strongly interacting theory could
either be scale-invariant or scale-breaking. Scale-breaking
is expected to produce a parity-preserving nonzero fermion
bilinear condensate, that for a generic SUðNcÞ gauge theory
breaks the UðNÞ flavor symmetry to UðN

2
Þ ×UðN

2
Þ [3,4],

but in the case of SUð2Þ gauge theory breaks the SpðNÞ
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symmetry to SpðN
2
Þ × SpðN

2
Þ [1]. The possibility of the

generation of any parity-breaking bilinear condensate has
been argued against in [4].
A numerical study of the Abelian Uð1Þ gauge theory

using Wilson fermions showed no evidence for a bilinear
condensate for any even value of N > 0 [5]. Since the
Wilson fermions realize the UðNÞ flavor symmetry only in
the continuum limit, overlap fermions were used to study
the theory with the symmetry present even away from the
continuum. This enabled us to study the scale-invariant
properties of the theory in further detail [6]. Assuming the
N ¼ 2 theory to be scale-invariant, a strong infrared duality
[7,8] predicts an enhanced Oð4Þ symmetry and this was
also verified using overlap fermions [9]. Since the Abelian
theory is scale invariant for all even values of N, we turn to
SUðNcÞ non-Abelian theory in this paper in order to study a
transition from a scale invariant theory to one that breaks
scale invariance as one changes the number of flavors. It is
worth noting that three dimensional SUð2Þ gauge theories
with even number of massless fermions appear in the study
of spin liquids [7,10–12]. The non-Abelian theory in the
’t Hooft limit (number of colors going to infinity at a fixed
number of flavors) has been shown to have a nonzero
bilinear condensate [13]. Dagotto, Kocić and Kogut [14]
numerically investigated the SUð2Þ theory with staggered
fermions on small lattices (mainly on L ¼ 8). They tried to
deduce the presence or absence of the condensate in the
massless limit by computing it at two different fermion
masses and then extrapolating it to zero.
The four-dimensional SUðNcÞ gauge theory coupled to

massless fermions becomes infra-red free and loses asymp-
totic freedom above a certain number of fermion flavors. In
4 − ϵ dimensions, ϵ-expansion calculation suggests the
infra-red free behavior develops into a non-trivial con-
formal (IR) fixed point if N > 11Nc [15,16]. Also, an
earlier analysis using the Schwinger-Dyson equations [17]
using 1=N-expansion in three dimensions, similar to the
one for the Abelian theory [18], suggests that the theory is

scale invariant if N > 256
3π2

N2
c−1
Nc

. However, a study of the flow
of four-fermion operators in the ϵ-expansion [16] suggests a
new IR fixed point, different from the one at large-N, might
be present if N < 11Nc þ ½12þ 8

Nc
þOðN−2

c Þ�ϵþOðϵ2Þ.
It is tempting to identify the lower bounds on N as a critical
N� below which scale invariance is broken but one has to
consider the possibility that it is a point that separated one
class of IR fixed points from another. There is indication of
such a scenario in QED3 where the IR fixed point at N ¼ 2
has an Oð4Þ symmetry unlike the IR fixed point at N ¼ ∞.
Therefore, a first principle numerical estimate of an N� that
is below any of the bounds obtained from other calculations
(with their own underlying assumptions) has interesting
implications.
We are, therefore, motivated to perform a careful

numerical study of the Nc ¼ 2 theory with N flavors of

massless two-component fermions with the sole aim of
obtaining the critical number of fermions, N�, such that the
theory develops a scale for N < N� and is scale-invariant
forN ≥ N�. Since we are interested in numerically studying
several different values of N and our aim is only to locate
the critical number of flavors, we use improved Wilson
fermions [5] in order to reduce the computational cost. A
careful study of the transition from above N� to below N�
will require overlap fermions [6] or domain wall fermions
[19,20]. The type of lattice fermions one uses is irrelevant
for the continuum physics; however, the main difference
arises at finite lattice spacings where the propagator of
two-component Wilson fermions is not anti-Hermitian but
the propagator of two-component overlap fermions is anti-
Hermitian. We reserve the computation of using UðNÞ
symmetry preserving lattice fermions for the future, which
will give us more information on the fermion bilinear
correlators and serve the purpose of cross-checking the
continuum results in this study.

II. FINITE VOLUME ANALYSIS OF LOW LYING
EIGENVALUES OF THE MASSLESS

DIRAC OPERATOR

The basic philosophy of the finite volume analysis in this
paper is the same as in [5]. The eigenvalues of the
Hermitian Dirac operator D in Eq. (4) occur in positive-
negative pairs �λ given by the equation

C†Cuλ ¼ λ2uλ: ð5Þ

The eigenvalues λ are gauge invariant and discrete at finite
l. Therefore, we study the ordered discrete spectrum of
eigenvalues of

ffiffiffiffiffiffiffiffiffi
C†C

p
:

0 < λ1ðlÞ < λ2ðlÞ < � � � ; ð6Þ

obtained as observables in the N flavor theory of massless
fermions. Henceforth, we will use λi to denote the expect-
ation value of the ith lowest eigenvalue of

ffiffiffiffiffiffiffiffiffi
C†C

p
over the

gauge-field path integral. The asymptotic behavior of λiðlÞ
as l → ∞ falls into three types:

Type 1: Free field behavior will result in λiðlÞ ∝ 1
l with

the proportionality constants determined by the mean
value of the gauge field which is equivalent to the
induced boundary conditions on the fermions. Such a
behavior is certainly expected in small l due to the
asymptotic freedom in the theory.

Type 2: A complete level repulsion between the eigen-
values will result in λiðlÞ ∝ 1

l3 with the proportionality
constants determined by one value of the bilinear
condensate Σ that breaks scale-invariance.

Type 3: In an interacting scale-invariant theory, the
eigenvalues which have the naive dimension of mass,
will scale as λiðlÞ ∝ 1

l1þγm with 0 < γm < 2 being the
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mass anomalous dimension. Here, we are assuming
there are no further restrictions in three dimensions on
the possible values γm can take between 0 and 2.

Since the theory at very small l will be noninteracting, we
expect a smooth crossover from the 1

l behavior at small l to
one of the above cases as l → ∞.1 As an abuse of notation,
we will use γm ¼ 2 to mean the scale-breaking type (2)
behavior even though the exponent is no longer an
anomalous dimension in this case.
We have summarized the numerical details pertaining to

the lattice simulation and the extraction of the low-lying
spectrum in Appendix A. Having chosen a numerical
approach to study the theory as a function of l, we have
to face its limitations. The lattice spacing is given by l

L and
in spite of improving the lattice action we have to face the
fact that as l gets large we have to make L also large to
reduce lattice spacing effects. Furthermore, if l

L > 2.3 we
will be in a lattice theory with strong coupling and there is a
bulk crossover [22,23] that separates an unphysical strong
coupling phase from the continuum phase that we want to
study. Using the computing resources available to us, we
were able to go up to L ¼ 28 in a theory withN ≥ 2, and up
to L ¼ 32 in the quenched limit (N ¼ 0). If we now ask for
acceptable levels of lattice spacing effects and also require
that we are in the continuum phase of the theory we are led
to study the theory for l ≤ 17 and this is what we have
performed here.
At this point, it is appropriate to make a few remarks

about the analysis performed earlier in [14]. The lattice
coupling constant in [14] is defined as β ¼ 4

g2lat
¼ 4L

l and one
should set β > 1.7 to be in the continuum phase of the
theory. Using such values of β which are in the continuum
phase, Dagotto et al., found indications of nonzero con-
densate in the massless theory only for N ¼ 0, 2 and 4
using 83 lattice by a linear extrapolation of condensate at
two different nonzero fermion masses. With the increased
computational resources available at present, one could put
their observations on a firmer footing by following a similar
approach by simulating a wide range of fermion masses m
at different lattice volumes in order to take a controlled
thermodynamic as well as the massless limits. In this case,
one should also follow an unbiased approach by assuming a
ΣðmÞ ∼m2−γ þOðmÞ mass dependence of the condensate
at infinite volume [24], in order to allow for the massless
theory to be scale-invariant. However, we use the finite-size
scaling of eigenvalues of the massless Dirac operator to
determine the presence or absence of condensate along the

lines of our previous studies of QED3. This method is also
advantageous because we avoid the presence of two scales
l and m at once in the problem.
If the theory has a bilinear condensate, the behavior of

the eigenvalues as a function of l will smoothly cross over
from the type (1) to type (2) as we increase l. The type
(2) asymptotic behavior will be given by

λiðlÞ ∼
zi
Σl3

; ð7Þ

where Σ is the value of the bilinear condensate per fermion
flavor at l ¼ ∞ and zi’s are universal numbers given by an
appropriate random matrix model [1,25]. If 1=

ffiffiffi
Σ

p
sets the

typical spontaneously generated length-scale in the system,
then this crossover to the asymptotic behavior happens only
for box sizes l ∼Oð1= ffiffiffi

Σ
p Þ, which renders the measure-

ment of small values of Σ computationally difficult. As we
get closer to the critical number of flavors N� from below,
the value of the bilinear condensate would get smaller,
making it more difficult to decide if the theory has a
nonzero bilinear condensate or not. If the theory does not
have a bilinear condensate the behavior of λiðlÞ will
smoothly cross over from type (1) to type (3) as l is
increased and the asymptotic behavior will set in early in l
if we are well above N� since we expect γm to approach
zero (free field behavior) as N → ∞.
With the above picture in mind as we change the number

of flavors, we will start by defining

ΣiðlÞ≡ zi
λiðlÞl3

; ð8Þ

where the estimate of λi is made by averaging over the
eigenvalues measured in different gauge configurations
sampled by Monte Carlo. We use zi simply to scale the
right-hand side and we make no assumption about the
presence of a nonzero bilinear condensate; for the type
(3) conformal behavior of λ, ΣðlÞ as defined above will
approach 0 as l−2þγm . We fit the data for ΣiðlÞ to the
functional form

ΣiðlÞ ¼ ai0ðγmÞl−2þγm

�
1þ ai1ðγmÞ

l
þ ai2ðγmÞ

l2

�
with

ai0 > 0; 0 < γm < 2; ð9Þ

where the three fit parameters, aikðγmÞ, k ¼ 0, 1, 2 depend
on the choice of γm and i. Note that our choice implies that
ai0ðγmÞ cannot be zero implying that the term in front of the
parenthesis is the asymptotic behavior. By studying the χ2

per degree of freedom (χ2=DOF) of the fits as a function of
γm, we will be able to find the value that best fits the data for
a given i. We expect the best value of γm, where the χ2 is
minimized, to be independent of i. As per our discussion in
the previous paragraph, we expect this approach to work

1One could have taken a different approach and kept the
physical extent in one of the directions fixed at a value 1=T while
taking l → ∞ in other directions, in which case we would
be studying the theory at finite temperature T, and there might
be singular behavior around some Tc. We are not taking
that approach here (c.f. [21] for such an approach in three-
dimensional quenched SU(3) theory).
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with relative ease for value of N away from N�. Contrary to
the form used in Eq. (7), we can also use

ΣiðlÞ ¼ Σþ a1
l
þ a2
l2

; ð10Þ

where we are assuming the possibility for a nonzero
condensate Σ, with the finite volume correction that is
Taylor expandable in 1=l. This form does not allow for an
anomalous dimension, which is indeed the case when there
is a condensate. Since we will have results for λiðlÞ in a
finite range of l, both Eq. (9) and Eq. (10) should result in
the same physical conclusion well away from N�. But, we
expect conflicts between these two forms closer to N�.
In both the ansätze, we could have included more orders of
1=l corrections. But empirically, we find that 1=l and 1=l2

corrections are enough to describe our data well. Therefore,
our conclusions have to be interpreted in a Bayesian
sense—given the priors that only 1=l and 1=l2 finite
volume corrections are important in the data we have, and
assuming this continues to be the case at even larger l
where we do not have the data, we ask for the probable
values of the anomalous dimension or the condensate.
For N < N�, we will be able to further substantiate our

results via a comparison with the appropriate random
matrix models. Random matrix models appropriate for
describing low-lying eigenvalues in a three dimensional
gauge theory coupled to massless fermions that generates a
non-zero bilinear condensate can be found in [25] where
the fermion operator C for each fermion flavor is realized
as a random anti-Hermitian matrix. Under parity, C → C†

and therefore these random matrix models will be parity-
invariant for even number of flavors since the Haar measure
of a random Hermitian matrix is parity-invariant. Since our
gauge group is SUð2Þ, C is a real-symmetricM ×M matrix
in the random matrix model defined by [1,26]

Z ¼
Z

½dC�e− π2

16MTrC
2

detNC; ð11Þ

and it is assumed thatM is taken to infinity. Ordering of the
eigenvalues of C is according to the absolute value of C
since this matches with the definition in a parity invariant
theory. We opted to numerically simulate the random
matrix model, and the universal numbers, zi, appearing
in Eq. (7) are the averages of the eigenvalues so ordered.
We have listed their values in Table I.

III. RESULTS

We present the results of our numerical analysis in this
section. We have given the list of our simulation points
(l, L, N) along with the corresponding averages of the first
four eigenvalues of the massless Hermitian Wilson-Dirac
in Tables-III, IV, V, VI, VII in Appendix B. Using the
eigenvalues at fixed l at four different values of L, we
obtained the continuum eigenvalues, λiðlÞ; i ¼ 1, 2, 3, 4,
by using a linear extrapolation in 1=L. We have also
tabulated these continuum values in the same set of tables.
To illustrate the extrapolation pictorially, we show these
continuum extrapolations along with the 1-σ error bands for
λ1l for N ¼ 2 and N ¼ 12 in Fig. 1.
Using the continuum extrapolated values of λiðlÞ, we

obtained ΣiðlÞ as defined in Eq. (8). We fit ΣiðlÞ as a
function of l using Eq. (9) with different values of the
exponent γm. In Fig. 2, we show the χ2=DOF for these fits
as a function of γm for different N, as labeled on top of
each panel. The different curves in the panels correspond to
χ2=DOF of the fits to the four different Σi. In order to easily
interpret the plot, a rule of thumb is that the fit using a value
of γm is good if its χ2=DOF is about 1, while it being 2 or
above is indicative of the fit describing the data poorly.
In the different panels, the limit γm → 2 points to a theory
with a bilinear condensate and the limit γm → 0 points to a
free field behavior.
For the N ¼ 0 and N ¼ 2 theories, the χ2=DOF has a

minimum around γm ¼ 2, thereby favoring a nonzero
bilinear condensate. The N ¼ 8 and N ¼ 12 theories
clearly disfavor γm ¼ 2, instead favoring a scale-invariant
behavior with a nontrivial anomalous dimension. For both
these N, the χ2 minima are seen at two values of γm; one at
γm ≈ 0.4 and another at γm ≈ 1.4. The two allowed values
of γm separated by 1, points to the possibility that the
l−2þ0.4 behavior of ΣiðlÞ describing the data at large values
of l could either correspond to the leading term in Eq. (9),
or it could be the subleading term in Eq. (9) which is
dominant in the range of l where we have the data, with
the leading l−2þ1.4 term becoming dominant only at even
larger l where we do not have the data. If one assumes a
well-behaved 1=l expansion with successively smaller
higher order terms, with no crossover from one type of
leading behavior to another, one would favor the smaller of
the allowed values of γm, which is around 0.4 to 0.5 for both
N ¼ 8 and 12. At all flavors, the allowed range of γm as
deduced from Σ1 is broader than as allowed by other Σi.
The most likely cause is that the behavior of the lowest
eigenvalue is affected the most by the need to fine tune the
Wilson mass to realize massless fermions on the lattice as
explained in Appendix A. This is enhanced at N ¼ 4 as is
evident from the flat behavior of the χ2 for i ¼ 1 at N ¼ 4.
For N ¼ 4, the range of allowed γm as deduced from the
other i are also broad and includes γm ¼ 2, and hence we are
unable to rule out scale-breaking in this case. In the following
subsections, we analyze the different N separately.

TABLE I. The values of the first four zi for the nonchiral
random matrix model for N ¼ 0, 2, 4, 8 and 12.

N ¼ 0 N ¼ 2 N ¼ 4 N ¼ 8 N ¼ 12

i ¼ 1 0.642 2.002 3.320 5.903 8.480
i ¼ 2 1.564 3.147 4.624 7.450 10.22
i ¼ 3 2.537 4.241 5.800 8.769 11.64
i ¼ 4 3.525 5.281 6.904 9.978 12.95
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A. N = 0

Using the four values of zi for N ¼ 0 in Table I, we
obtained ΣiðlÞ from Eq. (8). In Fig. 3, we have plotted
ΣiðlÞ as a function of 1=l. One can see that the asymptotic
behavior has set in for l ≥ 14 with a finite value of the
bilinear condensate in the l → ∞ limit. In the same plot,
we have also shown the error bands of fits to the data using
Eq. (10). We find the values of Σi extrapolated to infinite l
for i ¼ 1, 2, 3, 4 to be 0.0165(8),0.0154(7),0.0147(5) and
0.0143(4) respectively. It is reassuring that the values of Σi

for different i converge to about the same value within
errors in the l → ∞ limit. By taking the average over all the
four values of Σiðl ¼ ∞Þ, we quote the value of the bilinear
condensate per color degree of freedom for N ¼ 0 as

Σ
Nc

¼ 0.0076� 0.0003; Nc ¼ 2; ð12Þ

with the error being purely statistical. We take the spread
of values in the four different Σi to be a measure of the
systematic errors in the various extrapolations, and we

FIG. 1. The continuum limits of λ1l at different fixed l using a 1=L extrapolation for N ¼ 2 flavors is shown in the left panel and for
N ¼ 12 in the right panel. The values of l are given by the side of the data.

FIG. 2. A plot of χ2 per degree of freedom as a function of γm for different flavorsN. The different curves are obtained from various Σi.
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conservatively estimate this systematic error to be about
0.0011. In the N ¼ 0 quenched theory, the fermions are
used merely as a probe with no backreaction on the gauge
fields. Since the pure SUð2Þ theory does have a scale, it
is not a surprise to find a bilinear condensate in this case.
We remind the reader that the above value of condensate is
dimensionless and in units of the coupling g2ph. When the
above value of condensate per color is measured in units
of the ’t Hooft coupling, Ncg2ph, it is roughly a factor of
2 smaller than the corresponding value in the ’t Hooft limit
in [13]. It is also interesting to note that a linear extrapo-
lation in 1

Nc
of theNc ¼ 1 value in [9] and theNc ¼ 2 value

obtained here of the quenched condensates in units of
’t Hooft coupling is consistent with the value in the
’t Hooft limit.

B. N = 2

We use the four values of zi forN ¼ 2 in Table I to obtain
ΣiðlÞ from Eq. (8). In Fig. 4, we show the l dependence of
Σi. Unlike the N ¼ 0 theory, we do not see an asymptotic
plateauing of the condensate even at the largest l we were
able to simulate. We have shown the fits of the data to
Eq. (10) by the solid lines in the same plot for the different
values of i. From these extrapolations, we estimate the
condensate at infinite volume for i ¼ 1, 2, 3, 4 to be
0.0030(4), 0.0039(4), 0.0042(4), 0.0042(4) respectively.
We find the condensates estimated from different eigen-
values to converge to significantly nonzero values at
l ¼ ∞. As in the case of N ¼ 0, these extrapolated values
of Σi from i ¼ 2, 3 and 4 agree within errors. But, the
extrapolated central value of Σ1 is 30% lower than the
others, but still significantly larger than zero. We think this

is due to the difficulty in tuning the Wilson mass to obtain
exactly massless fermions. One can rectify this in a future
study with overlap fermions. Taking the average over the
estimates of Σ from all the four low-lying eigenvalues, the
condensate per color degree of freedom for N ¼ 2 is

Σ
Nc

¼ 0.0019� 0.0002; Nc ¼ 2; ð13Þ

with the error being purely statistical. Taking the spread in
the estimated values of Σi=Nc, a conservative estimate of
the systematic error is 0.0006. Note that the value con-
densate measured in units of ’t Hooft coupling is lower by a
factor of 10 compared to the one in the ’t Hooft limit.

C. N = 4

For N ¼ 4, we again use the four corresponding values
of zi in Table I to obtain ΣiðlÞ from Eq. (8). From the third
panel of Fig. 2 which shows the χ2=DOF as a function of γm
for N ¼ 4, we find a wide range of values of γm, including
γm ¼ 2, that fits the data well. Therefore, we analyze the
data first assuming the presence of nonvanishing conden-
sate, in which case we force γm ¼ 2 and extrapolate the
condensate to infinite volume using Eq. (10). This pro-
cedure is shown on a linear scale on the left panel of Fig. 5.
This leads to the values 0.0015(6), 0.0026(6), 0.0030(5),
0.0032(5) for Σ1, Σ2, Σ3 and Σ4 respectively in the infinite
volume limit. We stress that this analysis involves a prior
assumption that γm ¼ 2, and with this assumption we find a
possible nonzero condensate. However, on the right panel
of Fig. 5, we again show ΣiðlÞ as a function of 1=l, but on
a log-log plot; a power-law behavior will be seen as a
straight line on this scale with the slope being the scaling
exponent. Now we can see a possible scaling behavior
setting in for l > 13. Assuming a perfect l−2þγm behavior

FIG. 3. A plot of ΣiðlÞ as a function of l for N ¼ 0 flavors i.e.,
the quenched limit. The different colors correspond to different i
as specified in the plot. The data as well as the error bands of the
fit using Eq. (10) are shown. The different Σi extrapolate to about
the same value in the infinite volume limit.

FIG. 4. A plot of ΣiðlÞ as a function of l for N ¼ 2, with the
different symbols and error bands as explained in Fig. 3.
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for l > 13, we find γm ≈ 0.60 if the theory is scale-
invariant. Thus, the two different analyses leads to two
different conclusions. A more careful analysis, using even
larger values of l than we have used, could place this
theory on either side of the critical value N�.

D. N = 8 and 12

Having found an indication of transition from scale-
broken to conformal phase at N ≈ 4, we studied N ¼ 8 and
12 to see if we find strong evidence for a scale-invariant

behavior. In Fig. 6, we show the behavior of ΣiðlÞ as a
function of l in log-log plots. For both N ¼ 8 and 12 we
find an asymptotic power-law behavior setting in for l > 4.
Incorporating the 1=l and 1=l2 corrections in Eq. (9), we
find the values for γm to be 0.38(8) and 0.48(6) for N ¼ 8
and 12 corresponding to the first minima of the two seen in
the last two panels of Fig. 2. The fits to the data with these
exponents are also shown along with the data in Fig. 6.
Thus N ≥ 8 clearly lie in the scale-invariant phase. Even
though there is strong evidence for the presence of
γm ≠ 2, we nevertheless performed an analysis assuming
the presence of non-zero Σi using Eq. (10). We find the
extrapolated values of the condensates, after averaging
over the four different estimates Σi, to be 0ð2Þ × 10−6 and
0ð7Þ × 10−6 for N ¼ 8 and 12 respectively, and hence
consistent with a scale-invariant behavior.

FIG. 5. Plots of ΣiðlÞ as a function of l for N ¼ 4 in linear
scale (left panel) and in log-log scale (right panel). The analysis
on the left panel assumes the presence of a nonzero condensate in
the infinite volume limit, and hence explicitly sets γm ¼ 2. The
error bands for the infinite volume extrapolations are shown along
with the data in the left panel. The analysis on the right panel
assumes the absence of a condensate, and hence uses a γm ≠ 2.
A possible l−2þγm scaling behavior, with γm ≈ 0.6, is seen in the
large l we simulated.

FIG. 6. A log-log plot of ΣiðlÞ as a function of l for N ¼ 8 and
12. They clearly show a power-law behavior with the exponent
γm < 2. This suggests N ¼ 8 and 12 are scale-invariant theories.
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E. Combined analysis of condensate

We consolidate our results on the condensate from
different flavors in Fig. 7. For the sake of clarity, we have
only shown the data for the second eigenvalue. The plot

shows the condensate at finite l as we have defined using
Eq. (8). In the same plot, we also show the expected
value of condensate at infinite volume, with the starting
assumption that there is no nontrivial scaling dimension
present, which forces γm ¼ 2. As we have explained, this is
a good assumption for N ¼ 0 and 2, and we find a nonzero
condensate in these cases. While this is a bad assumption
forN ¼ 8 and 12, the extrapolated values of the condensate
in these cases is nevertheless consistent with zero.
However, our results are inconclusive about the N ¼ 4
case; analyses assuming γm ¼ 2 as well as γm < 2 are
consistent with the data. Thus, we have shown a non-zero
value of condensate in Fig. 7. We could not study any
critical ΣðNÞ ∼ jN − N�jΔ behavior near N� ≈ 4 given the
access to only two scale-broken integer number of dynami-
cal flavors.

F. A flow from UV to IR

As explained in the beginning of this section, we used
Eq. (9) to describe the data and also to find the value of γm
that best describes the asymptotic finite-size scaling behav-
ior of the low-lying eigenvalues. Once we have fit the data
using Eq. (9), we can define an l dependent γm as

γðiÞðlÞ≡ 2þ ∂ log ðΣiðlÞÞ
∂ logðlÞ ; ð14Þ

which will flow from γðiÞ ¼ 0 in the UV limit l → 0, to
γðiÞ ¼ γm in the IR limit l → ∞ for all i. In Fig. 8, we show
this flow for all N. As expected the value of γðiÞðlÞ
increases from values closer to zero in smaller volumes
as l is increased. For N ¼ 0 and N ¼ 2, in the infinite l
limit, the values of γðiÞ converge to values around 2, thereby
showing the presence of condensate for these smaller

FIG. 7. A plot of the condensate Σ2ðlÞ, as determined from the
second smallest eigenvalue, shown as a function of fermion flavor
N at different fixed l, as labeled by the side. The open symbols
correspond to the value of condensate determined at finite l, as
defined in Eq. (8). The black solid symbol corresponds to the
extrapolated value of condensate at infinite l. The points are
connected by lines to aid the eye.

FIG. 8. The flow of γðiÞðlÞ as defined in Eq. (14) to its asymptotic value γm in the infinite volume limit for N ¼ 0, 2, 4, 8 and 12.
The different colored error bands correspond i ¼ 1, 2, 3, 4. The dashed vertical lines correspond to the value of 1=l for the largest l we
have the data for, at each N.
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values of N. For N ¼ 8 and 12, γðiÞ clearly flows to
asymptotic values smaller than 1, indicating the presence
of nontrivial mass anomalous dimension characteristic of
infrared fixed points in these theories. For N ¼ 4, γð1Þ

seems to flow to value less than 1, but γðiÞ from larger i flow
to values around 1.5 at 68% confidence. However, at
94% confidence levels, the flow to γ ¼ 2 is also possible.
So, this plot sums up our restricted knowledge of theN ¼ 4
theory. In order to give confidence in the extrapolations to
l → ∞, in the different panels, we have separated the range
of l where we have the data from the range of larger l
where we do not. The flow to infinite l which is
extrapolative, is smooth and well-behaved. In all the panels,
in the range of l where we have the data, the values of
γðiÞðlÞ from different i do not in general agree. But γðiÞ for
N ¼ 0, 2, 8 and 12 converge to values consistent with each
other in the infinite l limit thereby giving confidence in the
conclusions drawn in these cases.

IV. CONCLUSIONS

We have performed a numerical analysis of three dimen-
sional SUð2Þ gauge theory coupled to an even number of
massless fermions in such a way that parity is preserved.
We used Wilson fermions instead of overlap fermions to
reduce the computational cost. The price to pay was the
absence of the full SpðNÞ flavor symmetry away from the
continuum limit but this did not prevent us from extracting
the critical number of fermion flavors.
We studied the finite volume behavior of the low lying

Dirac spectrum in a periodic finite physical volume of size
l3 using two different forms, namely, Eq. (9) and Eq. (10).
The first one has the anomalous dimension, γm, as a
parameter that we varied to find the best fit. We found
that the data clearly favored γm ¼ 2 for N ¼ 2 and N ¼ 4
and the data clearly favored γm < 2 for N ¼ 8 and N ¼ 12.
Given the numerical limitations in obtaining results at
arbitrary large values of l, our data showed it did not favor
γm ¼ 2 for N ¼ 4. The presence of a nonzero bilinear
condensate for N ¼ 0 and N ¼ 2, and the absence of one
for N ¼ 8 and N ¼ 12 remained true when the data was
analyzed using Eq. (10) which did not have the freedom of
choosing a γm away from integer values. Analysis of the
N ¼ 4 data using Eq. (10) suggests a small value for the
bilinear condensate.
We therefore conclude that the critical number of flavors

is somewhere between N ¼ 4 or N ¼ 6 and we are not able
to exclude N ¼ 4 using the analysis presented in this paper.
Having narrowed down the critical value of the number of
flavors to one of two integers, the next step is to study the
N ¼ 4 and N ¼ 6 theories using overlap [6] or domain-wall
fermions [19,20]. Since the UðNÞ flavor symmetry as well
as the larger SpðNÞ global symmetry will be exact in the
lattice theory, the behavior of all low lying eigenvalues can
be used in the numerical analysis with equal confidence.

Furthermore, one can also study the propagator of scalar and
vector mesons and extract the behavior of their masses in
finite volume.
The analysis presented in this paper clearly shows that

one can use SUð2Þ gauge theories with massless fermions
in three dimensions to numerically study the transition from
scale invariant behavior to one that generates a scale using
continuum finite volume analysis. It will also be interesting
to test the predictions for symmetry breaking in Ref. [31].
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APPENDIX A: WILSON FERMIONS IN
THREE DIMENSIONS

In our lattice simulation, both the gauge field as well as
the N flavors of fermions are dynamical. That is, the
Boltzmann weight e−S in our simulation using the Hybrid
Monte Carlo (HMC) technique [27] uses S ¼ Sf þ Sg,
where Sf and Sg are the fermion and gauge action
respectively. The lattice variables are the SU(2) gauge-
links; a gauge linkUμðnÞ is an SUð2Þmatrix that represents
the parallel transporter from site n ¼ ðn1; n2; n3Þ to site
ðnþ μ̂Þ, with 1 ≤ ni ≤ L. We impose periodic boundary
condition for both the gauge field as well as the fermions in
all three directions of the lattice; for SU(2) theory this
boundary condition is sufficient since both 1 as well as −1
are part of the gauge group. We use the standard single
plaquette gauge action, namely,

Sg ¼ −
2L
l

X
n

X3
μ>ν¼1

TrPμνðnÞ; ðA1Þ

where PμνðnÞ is the parallel transporter around a plaquette
in μν-plane at lattice site n:

Pμν ¼ UμðnÞUνðnþ μ̂ÞU†
μðnþ ν̂ÞU†

νðnÞ: ðA2Þ
We reduced lattice spacing effect in fermion action as well
as fermionic observables by smoothening the gauge field
that enters the Dirac operator using the technique of gauge-
link smearing. For this, we used 1-level improved stout
links [28], denoted by VμðnÞ:

VμðnÞ ¼ ei
s
4
QμðnÞUμðnÞ where QμðnÞ

¼
X
ν≠μ

1

2i

�
PμνðnÞ −

1

2
TrPμνðnÞ

�
− H:c: ðA3Þ
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We used an optimum value s ¼ 0.65where the value of the
smeared plaquette was maximized. For the regularized
two-component Dirac operator in Eq. (4), we used the
two-component Wilson-Dirac operator CW given by

CWðn;mÞ ¼ ð−3þMPÞδn;m

þ 1

2

X3
μ¼1

fð1þ σμÞVμðnÞδnþμ̂;m

þ ð1 − σμÞV†
μðn − μ̂Þδn−μ̂;mg; ðA4Þ

where σμ are the Pauli matrices, and MP is the Wilson
mass which needs to be fine-tuned to non-zero values at
finite lattice spacings in order study massless continuum
fermions. The above two-component Wilson-Dirac oper-
ator satisfies Ct

Wðn;mÞ ¼ σ2τ2CWðn;mÞσ2τ2, and hence
there is a Spð1Þ symmetry associated with a single flavor
of two-component Wilson fermion even at finite lattice
spacing. We incorporated the resulting fermion determi-

nant, det ðCWC
†
WÞN=2, from the N=2 parity-invariant pairs

of two-component Wilson-Dirac fermions in our HMC
simulation using using N=2 pseudo-fermion random
vectors as explained in [5]. In the HMC, we were able
to marginally optimize the molecular dynamics stepsize
by using the Omelyan symplectic integrator [29] as well
as by tuning the stepsize at run-time such that the
acceptance is above 80%.
As discussed earlier, the eigenvalues of the four-com-

ponent Hermitian Wilson-Dirac operator, DW , appear in �
pairs. The operator CW is not anti-Hermitian but becomes
essentially one upon tuning MP to achieve massless
fermions. As such, the Spð1Þ × Spð1Þ symmetry at finite
lattice spacing becomes the full Spð2Þ symmetry only in
the continuum limit. But, the positive eigenvalues of DW

can be used to study the presence or absence of a bilinear
condensate as discussed in the context of UðNÞ flavor
symmetry [5]. In order to realize massless fermions, we
tuned the value ofMP at each simulation point to that value
where the lowest eigenvalue of CWC

†
W is minimized when

measured over a small ensemble of thermalized configu-
rations at that simulation point. Since these tuned MP are
required for any future computation at larger l and L, and

also for normalizing the eigenvalues of the overlap operator
which makes use of the Wilson-Dirac kernel [6], we
parametrize the tuned value of MPðlÞ for different L
and N using

MPðlÞ ¼ M1 þM2lþM3l2; ðA5Þ

and tabulate these parameters in Table II.
We used Ritz algorithm [30] to compute the four low-

lying eigenvalues of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C†
WCW

q
. We measured the eigen-

values every five trajectories of HMC after thermalization,
and this way we collected about 3500 to 4500 measure-
ments at different l, L and N. We accounted for autocor-
relations in the data by using blocked jack-knife error
analysis. The simulation points at N ¼ 0, 2, 4, 8 and 12
along with the low-lying eigenvalue measurements are
tabulated in Appendix B.

APPENDIX B: TABLES OF MEASUREMENTS

In the following tables, we have given the values and the errors of the four low-lying eigenvalues of the Dirac operator for
N ¼ 0, 2, 4, 8 and 16. For each physical l, we have given these measurements made using different L3 lattices. The L ¼ ∞
values are the continuum values obtained through a linear 1=L extrapolation.

TABLE II. Table of values for M1, M2 and M3 which para-
metrize the l dependence of the tuned Wilson mass MP as given
in Eq. (A5). The values at different L and N are tabulated.

N L M1 × 102 M2 × 103 M3 × 104

0 16 2.45 2.70 7.58
20 2.14 1.48 5.52
24 1.26 2.58 3.34
28 0.82 2.82 2.25
32 0.41 3.18 1.39

2 16 3.09 3.66 4.80
20 1.82 3.62 3.14
24 1.25 3.60 1.89
28 0.69 3.79 1.11

4 16 2.98 5.43 2.61
20 1.98 4.11 3.04
24 1.21 4.19 1.14
28 0.96 3.62 0.84

8 16 3.33 5.92 1.08
20 2.08 4.90 0.82
24 1.41 4.21 0.60
28 0.98 3.79 0.37

12 16 3.91 4.78 1.18
20 2.36 4.41 0.66
24 1.72 3.72 0.49
28 1.12 3.57 0.27
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TABLE III. Measurements for N ¼ 0.

l L λ1l λ2l λ3l λ4l

4 16 1.942(29) 2.295(27) 2.748(20) 3.004(18)
20 1.892(43) 2.246(42) 2.711(28) 2.965(27)
24 1.902(46) 2.249(44) 2.723(33) 2.971(31)
28 1.917(37) 2.261(34) 2.722(26) 2.973(24)
32 1.891(56) 2.246(53) 2.704(41) 2.959(37)
∞ 1.857(66) 2.199(61) 2.674(46) 2.919(42)

6 16 1.227(18) 1.902(16) 2.454(11) 2.816(9)
20 1.267(18) 1.928(16) 2.473(10) 2.830(8)
24 1.291(24) 1.938(19) 2.485(11) 2.834(8)
28 1.230(28) 1.881(22) 2.447(12) 2.800(11)
32 1.314(38) 1.973(30) 2.506(19) 2.854(15)
∞ 1.343(43) 1.958(35) 2.497(22) 2.842(19)

8 16 0.693(9) 1.419(9) 2.003(6) 2.440(5)
20 0.727(10) 1.473(7) 2.044(7) 2.480(6)
24 0.736(15) 1.467(18) 2.059(12) 2.492(9)
28 0.759(12) 1.485(12) 2.065(11) 2.505(8)
32 0.727(17) 1.473(16) 2.065(10) 2.509(6)
∞ 0.814(20) 1.562(20) 2.144(15) 2.585(10)

10 16 0.450(5) 0.997(8) 1.508(7) 1.949(6)
20 0.457(6) 1.044(9) 1.567(8) 2.009(8)
24 0.476(7) 1.065(8) 1.602(7) 2.047(6)
28 0.467(8) 1.061(12) 1.611(9) 2.058(8)
32 0.480(8) 1.066(14) 1.604(13) 2.069(10)
∞ 0.508(12) 1.160(17) 1.745(15) 2.210(12)

12 16 0.320(3) 0.705(5) 1.097(5) 1.465(6)
20 0.327(3) 0.748(6) 1.163(6) 1.550(6)
24 0.340(4) 0.777(6) 1.211(7) 1.605(6)
28 0.339(5) 0.776(8) 1.209(9) 1.604(9)
32 0.350(5) 0.805(8) 1.237(9) 1.646(8)
∞ 0.375(7) 0.899(11) 1.389(12) 1.832(13)

13 16 0.279(2) 0.600(4) 0.937(5) 1.260(6)
20 0.285(3) 0.634(6) 1.000(9) 1.347(10)
24 0.293(3) 0.658(7) 1.031(7) 1.386(7)
28 0.291(4) 0.658(6) 1.036(7) 1.404(8)
32 0.294(5) 0.673(7) 1.062(11) 1.432(14)
∞ 0.312(6) 0.748(9) 1.187(12) 1.613(13)

14 16 0.251(3) 0.521(3) 0.802(4) 1.082(5)
20 0.258(3) 0.553(4) 0.854(5) 1.155(5)
24 0.257(4) 0.578(6) 0.902(7) 1.224(8)
28 0.250(3) 0.577(5) 0.911(7) 1.237(7)
32 0.253(5) 0.593(11) 0.938(12) 1.270(12)
∞ 0.256(6) 0.665(9) 1.069(11) 1.460(12)

15 20 0.226(3) 0.482(4) 0.750(5) 1.016(6)
24 0.226(3) 0.497(4) 0.779(5) 1.052(6)
28 0.228(4) 0.513(6) 0.804(7) 1.095(8)
32 0.225(3) 0.516(6) 0.813(9) 1.110(11)
∞ 0.226(8) 0.578(13) 0.927(18) 1.274(21)

16 20 0.228(2) 0.453(3) 0.675(4) 0.900(4)
24 0.203(3) 0.441(4) 0.687(4) 0.931(4)
28 0.199(2) 0.440(3) 0.700(5) 0.958(5)
32 0.204(3) 0.462(5) 0.721(8) 0.988(10)
∞ 0.203(12) 0.500(19) 0.808(27) 1.139(29)

TABLE IV. Measurements for N ¼ 2.

l L λ1l λ2l λ3l λ4l

2 16 3.053(15) 3.216(15) 3.435(14) 3.568(14)
20 3.105(37) 3.269(36) 3.483(32) 3.616(31)
24 3.037(46) 3.204(45) 3.429(39) 3.564(38)
28 3.005(52) 3.165(51) 3.402(44) 3.535(43)
∞ 3.026(80) 3.191(79) 3.429(70) 3.564(68)

3 16 2.771(10) 3.001(10) 3.266(9) 3.439(9)
20 2.701(36) 2.934(36) 3.216(30) 3.388(30)
24 2.799(42) 3.022(42) 3.286(35) 3.460(33)
28 2.783(45) 3.004(45) 3.274(38) 3.446(36)
∞ 2.761(70) 2.975(71) 3.259(59) 3.434(56)

4 16 2.501(14) 2.796(14) 3.112(11) 3.322(10)
20 2.494(29) 2.790(30) 3.113(25) 3.319(23)
24 2.546(28) 2.839(28) 3.151(24) 3.357(21)
28 2.516(34) 2.818(33) 3.121(26) 3.330(25)
∞ 2.570(56) 2.870(55) 3.167(44) 3.372(41)

5 16 2.209(10) 2.589(9) 2.945(8) 3.191(7)
20 2.252(20) 2.610(19) 2.954(15) 3.204(13)
24 2.248(26) 2.620(24) 2.968(17) 3.214(18)
28 2.278(30) 2.645(31) 2.979(25) 3.224(22)
∞ 2.364(46) 2.700(45) 3.014(36) 3.263(32)

6 16 1.953(8) 2.393(7) 2.776(6) 3.061(5)
20 1.935(17) 2.377(18) 2.771(14) 3.048(12)
24 2.005(17) 2.426(16) 2.798(11) 3.073(9)
28 2.036(25) 2.439(24) 2.815(20) 3.086(17)
∞ 2.089(36) 2.475(34) 2.841(26) 3.094(21)

7 16 1.710(9) 2.193(8) 2.595(5) 2.904(5)
20 1.730(15) 2.200(14) 2.609(12) 2.910(8)
24 1.773(16) 2.242(17) 2.639(13) 2.942(11)
28 1.786(27) 2.259(23) 2.642(18) 2.939(16)
∞ 1.881(36) 2.324(34) 2.708(26) 2.989(22)

8 16 1.500(7) 1.998(6) 2.410(5) 2.738(5)
20 1.564(11) 2.041(10) 2.448(9) 2.762(7)
24 1.570(12) 2.051(12) 2.457(11) 2.779(8)
28 1.595(20) 2.061(19) 2.466(14) 2.781(12)
∞ 1.730(26) 2.164(25) 2.555(22) 2.852(18)

9 16 1.337(7) 1.835(6) 2.240(4) 2.578(4)
20 1.391(11) 1.856(13) 2.270(9) 2.610(7)
24 1.419(19) 1.872(17) 2.278(15) 2.607(13)
28 1.463(19) 1.914(19) 2.318(15) 2.635(11)
∞ 1.612(30) 1.981(29) 2.396(23) 2.707(19)

10 16 1.195(6) 1.655(6) 2.060(6) 2.400(5)
20 1.248(10) 1.708(12) 2.101(9) 2.435(8)
24 1.289(17) 1.754(15) 2.139(12) 2.473(10)
28 1.288(13) 1.723(17) 2.131(15) 2.463(11)
∞ 1.433(23) 1.880(27) 2.258(23) 2.574(18)

11 16 1.074(7) 1.502(7) 1.891(6) 2.220(7)
20 1.132(11) 1.554(10) 1.940(8) 2.272(8)
24 1.162(14) 1.580(13) 1.962(10) 2.289(9)
28 1.178(13) 1.591(15) 1.969(12) 2.301(13)

(Table continued)
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TABLE IV. (Continued)

l L λ1l λ2l λ3l λ4l

∞ 1.328(24) 1.727(25) 2.092(20) 2.425(21)
12 16 0.958(7) 1.357(6) 1.727(6) 2.056(6)

20 1.022(11) 1.424(13) 1.789(11) 2.110(11)
24 1.074(12) 1.469(11) 1.835(10) 2.155(10)
28 1.073(21) 1.445(22) 1.830(19) 2.138(15)
∞ 1.277(27) 1.656(27) 2.025(23) 2.310(22)

13 16 0.872(7) 1.237(6) 1.582(5) 1.891(4)
20 0.932(11) 1.301(12) 1.657(10) 1.967(8)
24 0.961(9) 1.334(11) 1.693(12) 1.996(10)
28 0.977(14) 1.349(15) 1.708(15) 2.023(14)
∞ 1.133(22) 1.517(23) 1.905(23) 2.216(20)

14 16 0.788(7) 1.129(7) 1.451(6) 1.743(5)
20 0.846(9) 1.186(7) 1.517(9) 1.816(9)
24 0.926(11) 1.255(12) 1.575(12) 1.876(11)
28 0.916(11) 1.248(11) 1.575(11) 1.879(11)
∞ 1.123(21) 1.434(20) 1.768(21) 2.092(19)

15 20 0.777(11) 1.095(13) 1.408(12) 1.698(10)
24 0.805(10) 1.115(11) 1.428(11) 1.711(10)
28 0.835(12) 1.161(11) 1.473(9) 1.768(7)
∞ 0.979(45) 1.320(48) 1.636(42) 1.945(34)

16 20 0.700(7) 1.007(10) 1.299(10) 1.566(9)
24 0.734(11) 1.031(13) 1.323(13) 1.598(13)
28 0.779(10) 1.075(12) 1.372(10) 1.645(8)
∞ 0.967(34) 1.237(44) 1.546(40) 1.842(33)

17 20 0.621(7) 0.899(9) 1.173(10) 1.426(9)
24 0.667(7) 0.948(8) 1.222(8) 1.477(8)
28 0.698(10) 0.980(11) 1.262(10) 1.526(9)
∞ 0.892(33) 1.186(38) 1.484(38) 1.773(36)

TABLE V. Measurements for N ¼ 4.

l L λ1l λ2l λ3l λ4l

2 16 3.351(16) 3.509(16) 3.693(14) 3.814(14)
20 3.309(23) 3.464(22) 3.657(20) 3.778(19)
24 3.286(31) 3.445(31) 3.638(27) 3.761(26)
28 3.260(44) 3.421(43) 3.609(39) 3.736(38)
∞ 3.146(63) 3.305(61) 3.514(56) 3.642(54)

4 16 2.778(12) 3.045(11) 3.313(9) 3.503(9)
20 2.768(19) 3.037(18) 3.302(17) 3.492(15)
24 2.741(18) 3.010(17) 3.283(14) 3.475(13)
28 2.776(24) 3.046(25) 3.317(19) 3.500(19)
∞ 2.722(39) 2.990(38) 3.270(31) 3.455(30)

6 16 2.286(10) 2.655(8) 2.970(7) 3.215(6)
20 2.293(13) 2.666(13) 2.983(11) 3.224(9)
24 2.285(12) 2.654(11) 2.974(10) 3.213(7)
28 2.342(18) 2.693(17) 3.009(14) 3.241(14)
∞ 2.343(29) 2.692(26) 3.019(22) 3.234(19)

8 16 1.880(8) 2.303(7) 2.655(6) 2.934(4)
20 1.899(12) 2.325(10) 2.671(8) 2.952(6)
24 1.903(12) 2.313(10) 2.660(9) 2.935(8)
28 1.923(19) 2.344(18) 2.693(14) 2.957(12)

(Table continued)

TABLE V. (Continued)

l L λ1l λ2l λ3l λ4l

∞ 1.964(28) 2.365(25) 2.706(20) 2.972(16)
10 16 1.568(7) 2.006(6) 2.359(5) 2.651(5)

20 1.616(9) 2.032(8) 2.387(6) 2.680(5)
24 1.613(9) 2.037(7) 2.391(7) 2.680(5)
28 1.668(15) 2.063(18) 2.413(13) 2.688(11)
∞ 1.747(22) 2.111(20) 2.470(17) 2.744(15)

12 16 1.362(8) 1.770(8) 2.115(6) 2.404(5)
20 1.407(12) 1.805(14) 2.145(9) 2.426(11)
24 1.416(9) 1.808(8) 2.143(8) 2.428(7)
28 1.433(11) 1.815(10) 2.157(10) 2.449(9)
∞ 1.527(21) 1.879(20) 2.210(17) 2.494(16)

13 16 1.272(5) 1.661(5) 1.992(5) 2.274(5)
20 1.322(7) 1.691(6) 2.017(6) 2.306(4)
24 1.346(12) 1.713(11) 2.049(9) 2.327(7)
28 1.368(15) 1.730(13) 2.063(11) 2.341(10)
∞ 1.502(22) 1.818(20) 2.152(17) 2.432(16)

14 16 1.204(9) 1.581(8) 1.893(6) 2.168(5)
20 1.220(10) 1.588(9) 1.914(8) 2.193(7)
24 1.272(10) 1.623(8) 1.940(8) 2.216(8)
28 1.267(12) 1.629(10) 1.952(9) 2.226(8)
∞ 1.372(22) 1.697(20) 2.030(17) 2.306(15)

15 20 1.175(7) 1.526(6) 1.835(5) 2.109(6)
24 1.196(12) 1.547(12) 1.863(10) 2.130(10)
28 1.239(15) 1.573(13) 1.876(13) 2.141(11)
∞ 1.369(45) 1.683(41) 1.987(36) 2.226(35)

16 20 1.103(7) 1.442(7) 1.736(6) 1.998(5)
24 1.140(9) 1.473(9) 1.769(8) 2.035(8)
28 1.144(14) 1.472(13) 1.772(12) 2.036(11)
∞ 1.278(40) 1.578(38) 1.888(34) 2.162(31)

17 20 1.052(7) 1.382(8) 1.667(8) 1.919(8)
24 1.064(10) 1.376(9) 1.676(9) 1.931(9)
28 1.123(9) 1.436(10) 1.721(10) 1.973(11)
∞ 1.276(34) 1.533(35) 1.831(36) 2.085(35)

TABLE VI. Measurements for N ¼ 8.

l L λ1l λ2l λ3l λ4l

2 16 3.597(18) 3.746(18) 3.903(16) 4.016(16)
20 3.582(17) 3.732(16) 3.895(15) 4.006(15)
24 3.602(24) 3.749(24) 3.912(22) 4.025(22)
28 3.596(30) 3.740(30) 3.903(27) 4.018(26)
∞ 3.593(52) 3.735(52) 3.909(47) 4.023(46)

4 16 3.084(13) 3.323(13) 3.541(11) 3.706(10)
20 3.098(13) 3.330(13) 3.545(10) 3.710(10)
24 3.092(18) 3.332(16) 3.549(15) 3.715(13)
28 3.084(18) 3.317(18) 3.537(16) 3.705(14)
∞ 3.097(35) 3.326(34) 3.545(30) 3.715(27)

6 16 2.711(9) 3.002(8) 3.257(7) 3.456(6)
20 2.679(15) 2.984(14) 3.242(11) 3.442(11)
24 2.695(16) 2.988(16) 3.241(14) 3.441(13)
28 2.666(25) 2.958(24) 3.225(21) 3.427(19)
∞ 2.626(35) 2.930(33) 3.194(29) 3.398(27)

(Table continued)
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TABLE VI. (Continued)

l L λ1l λ2l λ3l λ4l

8 16 2.379(10) 2.711(10) 2.986(9) 3.207(7)
20 2.382(10) 2.715(8) 2.992(8) 3.215(6)
24 2.374(13) 2.708(12) 2.989(9) 3.213(8)
28 2.375(15) 2.708(14) 2.983(10) 3.206(10)
∞ 2.370(27) 2.705(27) 2.985(21) 3.215(19)

10 16 2.147(10) 2.497(8) 2.780(7) 3.014(7)
20 2.158(11) 2.507(10) 2.788(8) 3.021(7)
24 2.149(14) 2.504(13) 2.786(10) 3.018(9)
28 2.193(18) 2.528(18) 2.809(14) 3.038(13)
∞ 2.208(30) 2.544(28) 2.823(23) 3.047(20)

12 16 1.957(10) 2.301(8) 2.589(7) 2.821(6)
20 1.962(12) 2.318(12) 2.596(10) 2.834(8)
24 1.946(14) 2.289(13) 2.584(11) 2.825(9)
28 1.972(19) 2.316(18) 2.592(15) 2.833(13)
∞ 1.963(30) 2.312(27) 2.590(23) 2.845(20)

13 16 1.878(11) 2.222(9) 2.504(7) 2.737(6)
20 1.885(7) 2.239(6) 2.520(6) 2.754(5)
24 1.883(18) 2.237(17) 2.516(13) 2.757(10)
28 1.909(16) 2.250(14) 2.533(12) 2.770(9)
∞ 1.930(31) 2.287(26) 2.566(22) 2.811(17)

14 16 1.813(8) 2.161(7) 2.430(6) 2.665(5)
20 1.819(11) 2.152(11) 2.429(8) 2.666(8)
24 1.839(11) 2.174(11) 2.452(8) 2.686(8)
28 1.858(15) 2.182(14) 2.455(11) 2.688(10)
∞ 1.899(24) 2.196(23) 2.487(19) 2.719(16)

15 20 1.748(11) 2.082(10) 2.360(8) 2.591(8)
24 1.758(12) 2.081(11) 2.365(9) 2.602(8)
28 1.790(16) 2.127(14) 2.393(11) 2.629(10)
∞ 1.873(52) 2.201(46) 2.459(38) 2.711(35)

16 20 1.677(13) 2.015(10) 2.290(10) 2.522(9)
24 1.715(11) 2.044(11) 2.316(8) 2.546(8)
28 1.729(13) 2.054(12) 2.325(13) 2.557(10)
∞ 1.868(50) 2.161(44) 2.424(43) 2.651(37)

17 20 1.621(12) 1.953(12) 2.230(9) 2.461(8)
24 1.663(7) 1.980(6) 2.249(6) 2.479(5)
28 1.668(14) 1.992(12) 2.267(12) 2.489(10)
∞ 1.814(49) 2.098(46) 2.357(40) 2.564(33)

TABLE VII. Measurements for N ¼ 12.

l L λ1l λ2l λ3l λ4l

2 16 3.739(9) 3.879(9) 4.027(9) 4.133(8)
20 3.724(11) 3.868(11) 4.016(10) 4.125(9)
24 3.738(23) 3.877(23) 4.025(22) 4.133(21)
28 3.728(23) 3.874(24) 4.021(21) 4.127(21)
∞ 3.705(36) 3.856(37) 4.003(34) 4.114(32)

(Table continued)

TABLE VII. (Continued)

l L λ1l λ2l λ3l λ4l

4 16 3.302(9) 3.510(9) 3.702(8) 3.852(7)
20 3.273(8) 3.489(8) 3.681(7) 3.834(8)
24 3.300(13) 3.514(12) 3.710(12) 3.857(11)
28 3.270(18) 3.483(17) 3.676(15) 3.828(14)
∞ 3.243(27) 3.473(27) 3.667(24) 3.820(22)

6 16 2.940(6) 3.198(6) 3.422(6) 3.599(5)
20 2.946(9) 3.201(8) 3.423(6) 3.599(6)
24 2.949(11) 3.209(11) 3.431(9) 3.605(9)
28 2.947(14) 3.211(12) 3.437(11) 3.616(10)
∞ 2.963(22) 3.227(21) 3.450(18) 3.626(16)

8 16 2.693(6) 2.973(6) 3.211(6) 3.403(5)
20 2.698(6) 2.982(6) 3.219(5) 3.407(4)
24 2.686(10) 2.975(9) 3.219(7) 3.413(7)
28 2.668(17) 2.946(16) 3.189(12) 3.387(11)
∞ 2.673(22) 2.967(21) 3.210(18) 3.407(16)

10 16 2.497(7) 2.793(6) 3.038(6) 3.238(5)
20 2.477(11) 2.775(10) 3.021(10) 3.225(9)
24 2.501(12) 2.805(11) 3.049(8) 3.249(7)
28 2.500(11) 2.799(10) 3.044(8) 3.245(8)
∞ 2.498(21) 2.807(18) 3.054(15) 3.257(15)

12 16 2.367(6) 2.671(6) 2.912(5) 3.111(5)
20 2.345(10) 2.646(9) 2.893(8) 3.097(6)
24 2.349(15) 2.651(13) 2.897(10) 3.098(9)
28 2.354(12) 2.653(12) 2.903(9) 3.103(8)
∞ 2.321(22) 2.613(21) 2.877(17) 3.082(15)

13 16 2.291(8) 2.588(7) 2.829(6) 3.029(6)
20 2.282(6) 2.590(5) 2.833(4) 3.034(3)
24 2.265(10) 2.577(9) 2.820(7) 3.028(7)
28 2.284(8) 2.581(8) 2.825(8) 3.030(7)
∞ 2.260(19) 2.568(17) 2.816(15) 3.032(14)

14 16 2.239(6) 2.532(6) 2.777(6) 2.981(4)
20 2.214(12) 2.520(11) 2.766(9) 2.973(7)
24 2.223(12) 2.521(11) 2.770(9) 2.975(7)
28 2.232(11) 2.532(11) 2.775(8) 2.980(7)
∞ 2.207(21) 2.518(20) 2.765(16) 2.972(14)

15 20 2.173(9) 2.472(9) 2.722(7) 2.923(6)
24 2.166(10) 2.469(9) 2.711(7) 2.911(5)
28 2.167(12) 2.469(14) 2.714(11) 2.917(9)
∞ 2.150(41) 2.461(42) 2.684(34) 2.886(28)

16 20 2.126(10) 2.425(8) 2.666(8) 2.868(6)
24 2.108(11) 2.407(9) 2.654(8) 2.856(7)
28 2.124(9) 2.422(8) 2.668(9) 2.869(7)
∞ 2.115(37) 2.407(32) 2.663(32) 2.862(27)

17 20 2.078(10) 2.375(9) 2.613(7) 2.818(6)
24 2.082(11) 2.369(10) 2.610(7) 2.814(7)
28 2.065(13) 2.358(13) 2.600(10) 2.805(9)
∞ 2.050(44) 2.324(41) 2.576(32) 2.780(29)
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