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We determine the normalization of scalar and pseudoscalar current operators made from nonrelativistic b
quarks and highly improved staggered light quarks in lattice quantum chromodynamics (QCD) through
O(a,) and Agep/my,. We use matrix elements of these operators to extract B meson decay constants and

form factors, and then compare to those obtained using the standard vector and axial-vector operators. This
provides a test of systematic errors in the lattice QCD determination of the B meson decay constants and
form factors. We provide a new value for the B and B; meson decay constants from lattice QCD
calculations on ensembles that include u, d, s, and ¢ quarks in the sea and those that have the u/d quark
mass going down to its physical value. Our results are fz = 0.196(6) GeV, fz = 0.236(7) GeV, and
fp./fp = 1.207(7), agreeing well with earlier results using the temporal axial current. By combining with
these previous results, we provide updated values of fp = 0.190(4) GeV, fp = 0.229(5) GeV, and

fo,/f5 = 1206(5).

DOI: 10.1103/PhysRevD.97.054509

I. INTRODUCTION

Hadronic weak decay matrix elements containing b
quarks that are calculated in lattice quantum chromody-
namics (QCD) are critical to the flavor physics program of
overdetermining the Cabibbo-Kobayashi-Maskawa (CKM)
matrix in order to find signs of new physics. The accuracy
of the lattice QCD results often limits the accuracy with
which the CKM matrix elements can be determined and
with which the associated unitarity tests can be performed
[1]. It is therefore important both to improve and to test the
accuracy of the lattice QCD results. This includes deter-
mining the lattice QCD values using a variety of different
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formalisms for b quarks and light quarks, in addition to
using different methodologies within a given formalism.
It is now becoming possible to study heavy quarks up to
the mass of the bottom quark using relativistic formalisms
[2,3], but this is relatively expensive numerically. Cons-
equently, to date, the most extensive studies of heavy
quarks in lattice QCD have been done with nonrelativistic
formalisms, such as NonRelativistic Quantum Chromo-
dynamics (NRQCD) [4] or the Fermilab formalism [5] and
its variants [6]. Relativistic formalisms have the advantage
of simple continuumlike current operators that couple to the
W boson that can be chosen to be absolutely normalized,
for example through the existence of a partially conserved
axial current (PCAC) relation [7]. The main issue with
these formalisms is then controlling discretization errors
[8]. In nonrelativistic formalisms the numerical calculation
itself is more tractable, along with the control of discre-
tization errors, but the current operators have a nonrela-
tivistic expansion and must have their normalization
matched to that of the appropriate continuum operator.
The expansion and the normalization are the main sources
of systematic uncertainty in these lattice QCD results. The

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.054509&domain=pdf&date_stamp=2018-03-20
https://doi.org/10.1103/PhysRevD.97.054509
https://doi.org/10.1103/PhysRevD.97.054509
https://doi.org/10.1103/PhysRevD.97.054509
https://doi.org/10.1103/PhysRevD.97.054509
http://www.physics.gla.ac.uk/HPQCD
http://www.physics.gla.ac.uk/HPQCD
http://www.physics.gla.ac.uk/HPQCD
http://www.physics.gla.ac.uk/HPQCD
http://www.physics.gla.ac.uk/HPQCD
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

HUGHES, DAVIES, and MONAHAN

PHYS. REV. D 97, 054509 (2018)

comparison of lattice QCD values derived using non-
relativistic and relativistic formalisms provides a test of
systematic uncertainties (see, for example, [3,9]). However,
it is also important to provide tests of systematic uncer-
tainties within a given formalism using different methods.
Here we provide such a test of the NRQCD approach by
normalizing new sets of current operators that have not
been used in this formalism before, and then comparing
results for the decay constants and form factors obtained to
the previous determinations.

The archetypal heavy meson weak decay process is
annihilation of a B meson to zv. The hadronic parameter
which controls the rate of this process is the B meson decay
constant, proportional to the matrix element to create a B
meson from the vacuum with the temporal axial current
containing a heavy quark field and a light antiquark field. The
most precise calculation to date of the B meson decay
constant, fp, uses improved lattice NRQCD and highly
improved staggered light quarks on gluon field configura-
tions that include u, d, s, and ¢ quarks in the sea with multiple
values of the lattice spacing and a u/d quark mass going
down to the physical point [9]. That calculation used lattice
QCD perturbation theory [10] to normalize the temporal
axial current operator through O(ay), O(a;Aqcp/m;,), and
O(ayaAgep) and obtained a final uncertainty of 2%,
including uncertainties from current operator matching
and missing higher order current operators.

Decay constants can also be defined in continuum QCD
from pseudoscalar current operators using the PCAC
relation. This is typically the method of choice for lattice
QCD calculations using relativistic formalisms where a
lattice PCAC relation allows the pseudoscalar current to be
absolutely normalized. This enables the D and D, decay
constants to be obtained with 0.5% uncertainties using the
highly improved staggered quarks (HISQ) formalism
[7,11,12]. Here we normalize the NRQCD-light pseudo-
scalar current through O(ay), O(a;Aqcp/m;), and
O(a,algep) and obtain a value for fp with similar
uncertainty to that determined from the temporal axial
current, providing a test of the systematic errors.

B meson exclusive semileptonic processes are important
for the determination of CKM matrix elements through the
matching of experimental decay rates to theoretical expect-
ations as a function of momentum transfer. Here the
hadronic parameters that encapsulate the information
needed on QCD effects are the form factors, calculable
in lattice QCD. For the case in which both initial and final
mesons are pseudoscalars (e.g. B — n£v) there are two
form factors, a vector form factor, and a scalar form factor.
It is the vector form factor that gives the decay rate in the
light lepton mass limit, but both form factors appear in
the lattice QCD determination of the matrix elements of the
vector current. The form factors can be separated by
comparing spatial and temporal vector current matrix
elements, but additional information can also be obtained

by determining the scalar form factor directly from the
scalar current. Indeed this method has been used for the
accurate determination of D and K meson semileptonic
form factors in lattice QCD using the HISQ formalism
[13-15]. Here we compare results using NRQCD-light
scalar currents to those obtained using vector currents for
B — nfv. We discuss how this method will be used in
improved “second generation” B meson semileptonic form
factor calculations now underway.

The paper is organized as follows: in Sec. II we derive
the normalization of the NRQCD-light scalar and pseudo-
scalar current operators; in Sec. III we combine this with
the lattice calculation of the matrix elements of different
components of the current to give results for decay
constants and form factors; Sec. IV gives our conclusions,
including planned future work using these results.

II. NORMALIZATION OF LATTICE NRQCD
CURRENT OPERATORS

Here we discuss the normalization of the lattice
NRQCD-HISQ current operators when the light quark is
taken to be massless and follow the methodology laid out in
[16,17], along with most of the notation. We will start with
a discussion of the temporal axial current and show the
modifications that need to be made to those results to yield
the normalization of the pseudoscalar current. Results for
the temporal vector/scalar case are then identical because of
the chiral symmetry of the HISQ action.

The matrix element of the appropriate temporal axial
current defined in continuum QCD between the vacuum
and pseudoscalar meson, H, at rest yields the meson decay
constant, f, via the relation

(0lAo|H) = fuMy. (1)

where My is the meson mass. The continuum QCD current
operator can be systematically expanded in terms of lattice
NRQCD-HISQ current operators (whose matrix elements
can be determined in a lattice QCD calculation) as

AO = ZCJ',AO ((Xs, amb)‘]gj,),lat’ (2)
J

where increasing j corresponds to operators that are higher
order in a relativistic expansion. The C; are dimensionless
coefficients that compensate for the different ultraviolet
behavior between the continuum and lattice regularizations
of QCD, and hence they can be calculated in perturbation
theory as a power series in the strong coupling constant, «.
The coefficients of powers of a, will depend on the bare
heavy quark mass in lattice units, am,, which is the
parameter appearing in the lattice NRQCD action (we
use b as the bare mass subscript rather than the generic label
h since, in our lattice calculations, this is always the b quark
mass). Here we work through O(«,) and include the three
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operators (j = 0, 1, 2) that allow us to match the current
through O(a;Aqcp/m),) and O(azaAqgep). The determi-
nation of the C; is done most conveniently by choosing to
match matrix elements of the left- and right-hand sides of
Eq. (2) for a heavy quark to light quark scattering process
induced by the current. The procedure then [16,17] is as
follows:
(i) calculate the amplitude for such a process through
O(ay) in continuum QCD;
(i) expand this amplitude through first order in powers
of 1/M where M is the heavy quark pole mass;
(iii) choose lattice NRQCD-HISQ operators that repro-
duce the terms in this expansion and calculate the
one-loop mixing matrix of these operators in lattice
QCD perturbation theory using the same infrared
regulation procedure as used in the continuum.
Infrared divergences must cancel between the con-
tinuum and lattice calculations in the end, since the
two only differ in ultraviolet physics. Note also that
the mixing matrix should be calculated at a pole
mass that matches that of the continuum calculation;
(iv) invert this mixing matrix to determine the (finite) C;
coefficients that will give the correct linear combi-
nation of lattice currents to produce the same one-
loop scattering amplitude as in continuum QCD.
The continuum calculation for the temporal axial current
G(x)ysyoh(x) was done in [16] in the MS scheme using
Feynman gauge, on-shell mass and wave-function renorm-
alization, and a gluon mass (1) to regulate infrared
divergences. g(x) is the light quark field and h(x) the
heavy quark field satisfying the Dirac equation, and the y
matrices are the standard ones in Euclidean space-time. The
key diagram to be calculated in continuum QCD is shown
in Fig. 1, where the double line represents an incoming
heavy quark of momentum p, the single line represents an
outgoing massless quark of momentum p’, and the cross
represents the current. The self-energy diagram must also
be evaluated to determine the wave-function renormaliza-
tion. The result for the temporal axial current amplitude is
given through 1/M as a combination of five matrix

FIG. 1. The Feynman diagram for the vertex renormalization in
continuum QCD perturbation theory. The heavy quark is denoted
by a double line, the light quark by a single line, and the exchange
of a gluon by a curly line. The current is denoted by a cross inside
a circle.

elements of Dirac spinors multiplied by factors of py,
Py, and p - p’ in [16]. By using the Dirac equation for the
light quark, and expanding the heavy quark energy and
Dirac spinor to 1/M, this is reduced to

0 0 1 1 2 2
(a(P)lAoh(p))gep=ny QL +ni Q) +4Pal.  (3)

0 0 0 0

The coefficients are

0 0
1120) =1+ a“,BE‘O),

2 2
Ny = @By )
with
o 1[,. M 3
BY = 3= -2,
T 4]
o 1 M 19
B = — 3= —-—|,
A T3P T4
o 1 167 M
= |12-222 5
A 37| 3 1 )

The constituent matrix elements are

Q) = a,(p)rsrouo(p),

1 . Y-P
Qio) = —luq(l’/)}’syo M MQ(P),

/

2 . YP
91(40) = lul]<p/) 2M

707570”Q(p)v (6)

where ug is a two-component spinor related to the Dirac
spinor u,(p) [to O(1/M?)] by

uh(p)=={1-2;47-p]ug(p) (7)

and where u,, satisfies yougy(p) = ug(p).
We now carry out the continuum calculation to the same
order for a pseudoscalar current P = g(x)ysh(x) and obtain

(q(p")|P|h(p))ocp = arit,(p")ysuy(p)

/

P-p
+Clz MZ

ﬁq(P/)}’s”h(P)v (8)

where i, and u;, are Dirac spinors and

B a, (13 u u
a —1+§ |:Z+3IHM+3IHI:|,
a 8t M
=214-——|. 9
@ 3n{ 3 l] ©)
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Here u is the scale parameter from dimensional regulari-
zation and 4 is the gluon mass. We expand the heavy quark
energy and Dirac spinor to 1/M and obtain

0 0 1 1 2 2
(a(P)IPIR(P))ocp = 1y QY + 0’y + np'Qy)  (10)

with 171@ defined in an analogous way to Eq. (4) and

0 0 4
BY =B + ” {21 M+3]

1 8
By =B+ {21 M+3]

2 2y 4
Bp:Bg(}_g. (11)

Note that BI(DO) and Bful) have the same value
[(a; — 1)/a,] coming from the first term on the right-hand
side of Eq. (8). A check on these results comes from
applying the continuum PCAC relation. This shows that the
leading order term B%) should differ between P and A, by
an amount that is the one-loop conversion factor between
the pole and MS quark mass at scale y. Using YoUp = Ug
the relationship between the operator matrix elements for
the pseudoscalar and temporal axial current cases are

0 — 0
QY = a,(p)rsuo(p) = 2
1 . Y P 1
Q) = i, (p')rs 5y wo(p) =~
2 . 7-p 2)
Qp" = ity (p") 5 Frovsue(p) = € (12)

with a sign change for the leading relativistic correction,
Jj = 1. Exactly the same relations are obtained for the scalar
case with respect to the temporal vector calculation.

The current operators needed in the lattice NRQCD
calculation are readily identified from the Q) by replacing
spinors with fields and converting momentum factors to
derivatives. This gives, for the temporal axial-vector case,

0 _
Jz(%)lat q(x)ysyoQ(x),

1 1 _ ~
J,(L\[,).lat = _Z—mbLI(X)J’s}’oY -VO(x),
Jz(420>-,lat = _2—mb‘_1<x)7 : 67/07’5}’0Q(JC), (13)

where my, is the bare lattice NRQCD quark mass and Q(x)
is the two-component NRQCD field (i.e. a four-component
field with zero in the lower two components). The
analogous expressions for the pseudoscalar case mir-
ror Eq. (12).

The next step is to calculate the mixing matrix for the
lattice operators in lattice QCD perturbation theory through
one loop. For the A, case

(a(P)I )l (p

ZZAO i (14)

with Z, ;; written as [16,17]

Z,+7Z

ZAO,ij—5ij+as{5ij {qu Z,,(1- 5:0)} AO} (15)
Z, is the coefficient of the one-loop term in the wave-
function renormalization for massless lattice quarks, here in
the HISQ formalism. Similarly, Z;, is the coefficient of the
one-loop term in the lattice NRQCD wave-function
renormalization and Z,, the coefficient of the one-loop
mass renormalization between the bare NRQCD quark
mass and the pole mass [18]. This latter factor appears for
Jj =1, 2 because of the explicit mass factor in the operator
and our choice to use the bare NRQCD mass in the
NRQCD operators relevant for the lattice calculation. {;;
are the coefficients of the one-loop terms obtained from the
renormalization of the vertex diagram with JU) at the
vertex. Note that Z,,, Z,,,, and {;; are all functions of am,,
and must be evaluated at the value of am,, being used in the
lattice QCD calculation.

Peeling off the external states we can then write, using A,
as an example,

= Z”Xzzg(},ij‘]go),lat’ (16)
ij

which determines the C; coefficients of Eq. (2). To make
the C; explicit as a power series in a, we expand the inverse
of Z to O(ay),

: Z,+7Zy
ZAOI,ij_éij_ax{éij |: 3

Then, substituting in the results for the r]( ) from Eq. (4), we
have [16]

+Z,, (1- 5,0)} +c§}°}. (17)

0
Con, =1+a (foo) T, T 500 610

Z,+Z
1 b
CI,A0=1+aS<BLJ— = Z, ~ O - 6‘?)

Z,+7Z, Ao Ao)

2
Coay = a,(BY) = £33 — 1) (18)

Z, and Z,, have logarithmic infrared divergences with a/ as
do {,’A and C?l These cancel against the logarithmic
divergences in Bi) and B [see Eq. (5)] so that Cy4,
and Cy 4, are finite. Slmllarly the linear infrared divergence
of Bfo) is canceled by a matching divergence in Céé)- Note
that the explicit factors of aM remaining in the BX])
now be replaced by am,, which is the same as aM to this

will
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order in a,. Combinations of the é’f}” that allow the C; 4, to
be determined are given for the NRQCD-HISQ case in
[10], using techniques from [19]. The calculation is done
for the standard v*-accurate NRQCD action [20,21], but the
results are also correct for the a,v*-improved NRQCD that
we will use here [22], because the impact of the a,v*
improvement terms will only appear in the matching at a2.
Here we recast the expansion of the QCD currents into a
more natural combination of lattice QCD currents as

Ag = (1 +a,2°)
0 A 1 Ay 7(2
x (J1(40),1at + (1 + aSZIO)Jx(A(J),lat + aSZZOJSO),lat)’ (19)

where, to O(ay), (1 + aszg") = Coa,» aszg" = Cy4, and
a7 =C), 4, = Co 4, The values for 2, 71, and z,° were
given in [9] and are reproduced here in Table II. The values
are the same for the temporal vector current from the chiral
symmetry of the HISQ action.

To perform the equivalent calculation for the pseudo-

scalar current we note that the Qg) are simply related to the

QX)) as in Eq. (12) and so the Jg) are similarly related to

JE{O). Hence we do not need to perform a new calculation in
lattice QCD perturbation theory. We simply need to
reconstruct the mixing matrix for the pseudoscalar case
from that of the temporal axial vector. We can then write

P=> Cipl D (20)
j
and find
Z,+7Z
Cop=1+a (Bﬁé” B 4?8),

Z,+7Z
1 b
Cl,P =-1 —a“‘(BSD) _qT_Zm,, - ?i) + 8?)’

Cop = ay(BY — Co8 + 7). (21)

Note the overall minus sign for C; p as well as the fact that
all of the ¢;; factors with either i or j equal to 1 now come in
with opposite sign. These factors are all finite, so the C; p
are still manifestly infrared finite.

Table I gives results for the finite { factors, Cfg, g?, and
Cq‘g, as well as Z,, that allow us to determine the C; p from
the C; 4, for a variety of values of the heavy quark mass in
lattice units, am,. These correspond to the values of b
quark masses used in our lattice NRQCD calculations that
will be discussed in Sec. III.

For the pseudoscalar current case, we multiply both sides
of Eq. (20) by the heavy quark mass in the MS scheme at
the scale  and then, on the right-hand side, convert these
into lattice NRQCD bare quark masses using the relation

TABLE 1. Values for the 3 ;; one-loop mixing coefficients
[defined in Eq. (15)] needed to determine the renormalization of
the lattice NRQCD-HISQ pseudoscalar/scalar current from that
of the temporal axial vector/temporal vector current for massless
HISQ quarks. Column 5 gives the one-loop NRQCD mass
renormalization coefficient. These results were calculated and
presented as the linear combination relevant for Eq. (18) in [10]
using the standard v*-accurate NRQCD action (with stability
parameter n = 4) and the individual values are given here. We
also include new results for a lighter » quark mass, am;, = 1.22,
suitable for the MILC “superfine” (0.06 fm) lattices.

Ay Ay Aoy 7

am, 10 01 12 m,

3.297 —0.0958(1) —0.1918(1) 0.029(4) 0.167(1)
3.263 —0.0966(1) —0.1941(1) 0.030(4) 0.176(1)
3.250 —-0.0970(1) —0.1950(1) 0.031(4) 0.178(1)
2.688 —0.1144(1) —0.2379(1) 0.060(4) 0.262(1)
2.660 —0.1156(1) —0.2411(1) 0.060(4) 0.264(1)
2.650 —0.1157(1) —0.2414(1) 0.061(4) 0.267(1)
2.620 —0.1171(1) —0.2448(1) 0.062(4) 0.272(1)
1.910 —0.1539(1) —0.3256(1) 0.093(4) 0.434(1)
1.890 —0.1553(1) —0.3285(1) 0.095(4) 0.448(1)
1.832 —0.1593(2) —-0.3361(1) 0.097(4) 0.466(1)
1.826 —0.1595(2) —0.3370(1) 0.098(4) 0.468(1)
1.220 —0.2258(5) —0.4625(5) 0.116(5) 0.714(1)

— 2. u 4
MS(,\
mb (//l) = my, |:1 —l—as (th —;lnﬂ—g)] (22)
Values for Z, —at a variety of am, values for lattice

NRQCD are given in Table I [10]. Then we have

P(u)mpS () = my (1 + a,zf)
0 1 2
X (‘Iz(tlo),lat - (1 + a‘VZ{))JI(LX()),lat + aSZé)Jﬁlo),lat)'

(23)

TABLE II. Values for the one-loop renormalization factors for
the NRQCD-HISQ temporal axial vector current [defined in
Eq. (19)] for massless HISQ quarks. The results for the temporal
vector current are identical. These were calculated in [9] from
numbers in [10] and are reproduced here. The results for zfo have
changed slightly for the heaviest masses because of an improved
calculation of .

Ay Ay Ao
anty ) | )
3.297 0.0238(20) 0.0242(28) —1.014(6)
3.263 0.0216(20) 0.0244(28) —1.009(6)
3.250 0.0220(10) 0.0240(22) —0.999(6)
2.688 0.0054(20) 0.0076(28) -0.712(4)
2.660 0.0056(20) 0.0074(28) —0.698(4)
2.650 0.0037(20) 0.0093(28) —0.696(4)
2.620 0.0011(20) 0.0069(28) —0.690(4)
1.910 —0.0071(20) —0.0309(36) —0.325(4)
1.890 —0.0067(20) —0.0313(36) —0.318(4)
1.832 —0.0027(20) —0.0393(36) -0.314(4)
1.826 —0.0035(30) —0.0395(42) —-0.311(4)
1.220 0.0658(40) —0.0834(58) 0.027(9)
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TABLE III.  The results from this paper are the values for the 1O T T T T ]
one-loop renormalization factors for the NRQCD-HISQ pseu-
doscalar current [defined in Eq. (23)] for massless HISQ quarks. 0.5} R
Results for the scalar current are identical.
s 0.0F E
am, 25 2 3 )
3.297 —0.0008(22) 0.2566(28) ~1.380(10) _o0sl - - - |
3.263 0.0044(22) 0.2538(28) ~1.373(10) o otoa 22"+ amy0.5029(7)
3.250 0.0060(14) 0.2524(22) —1.361(10) _10 d 2 b F I 2f +am0.5029(7)
2.688 0.0386(22) 0.1850(28) —-1.016(9) ~L L L L L o
2.660 0.0384(22) 0.1808(28) ~1.002(9) 1.0 I35 20 2.5 3.0 3.5
2.650 0.0393(22) 0.1823(28) -0.998(9) anty
%g%g g?fg?gg 8(1);5)?%8 :82228; FIG. 3. The z;, and z; factors for the O(a,) matching of the
1.890 0'1307(22) 0'0 167(36) _0'552(9) temporal axial and pseudoscalar NRQCD-HISQ currents to
1832 0.1447(22) 0.0315(36) —0.544(9) ;:(?tl'tmu;m QED [Egs. (19) and (23)] plotted against the bare
1.826 0.1455(32) 0.0299(43) ~0.539(9) athice b-quark mass.
1.220 0.327849) —0.1324(59) —0.165(14) In Fig. 3 we plot z; and z; for the temporal axial vector
We find and pseudoscalar cases. The magnitudes of z,° and z,° are
both very small and both have very little dependence on
b= Zg\o +2 fllg +Z,, amy, a fact previously remarked on in [9]. z£ and z¥ have
’ 4 larger magnitude and somewhat more dependence on am,,.
= Zfl\o + 243? _ 25?8 + e However, both are still smaller than 1 across the range of
A r amy, values we use.
. O . .
2= Z/;o +2 /;13 - (24) Note that using J(® alone in NRQCD to approximate

kY4

The values of appropriate {;; and Z,,, given in Table I enable

us to determine the zf values from the z';". The zf values are
given in Table III. The values are the same for the scalar
current due to the chiral symmetry of the HISQ action.

Figure 2 shows the different contributions to zg" and z})
as a function of am,,. This includes the finite pieces of each
of the terms in Eq. (21) that vary with am, (thereby
excluding Z,). The different contributions are all of
moderate size and show mild dependence on am,; over
the range of am, values that we use.

either the temporal axial vector or pseudoscalar currents
gives a larger renormalization factor at O(ay). This is
because the coefficient that represents the “mixing-down”
of J into J©, o, reduces the size of the one-loop
renormalization of the combined current in both cases. That
J© 4+ J0) is much closer to the continuum current than J(©)
will be demonstrated in an order-by-order comparison of
results in Sec. IIL.

The coefficients z?” and z5 have stronger am; depend-
ence dominated by that in the mixing coefficient {,. This
grows linearly with am,, at large values of am, so that, as
am,, — oo, the contribution of J? becomes an asalgep
correction term. In Fig. 4 we show {y,/am,; up to large

1.OF i values of am, (much above those that we use in practice)
—_
N T | 1.0 : : : : :
e T ::“::w‘_‘::i::_‘_‘:::% " VGI') |
0.0 enmmmmTTT % : | ‘:
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FIG. 2. The different contributions that make up the renorm-

. . . A .
alization coefficients z,° and zJ as a function of the bare heavy

quark mass in the lattice NRQCD Hamiltonian, as given in
Egs. (21) and (24). The infrared-finite pieces are plotted for
infrared-divergent contributions, and Z, is not included since it
does not vary with am,,.

amy,
FIG. 4. The one-loop mixing coefficient {4) for the temporal
axial vector NRQCD-HISQ current for massless HISQ quarks
divided by the bare heavy quark mass, am,, and plotted against
amy,. This shows that £y, grows linearly with am,, as am;, — oo.
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TABLE IV. Sets of MILC configurations [23,24] used here with their (HISQ) sea quark masses, m;,[= (m, + my)/2], m,, and m, in
lattice units. # = 10/g” is the QCD gauge coupling and the lattice spacing, a, is determined using the Y (2S5 — 15) splitting [9,22]. The
lattice size is L} x L,. Each ensemble contains around 1000 configurations, and we take 16 time sources per configuration to increase

statistics.

Set s a [fm] amj® am$® amss® am¥ amy™ L,/a L,/a
1 5.80 0.1474(5)(14)(2) 0.013 0.065 0.838 0.0641 3.297 16 48
2 5.80 0.1463(3)(14)(2) 0.0064 0.064 0.828 0.0636 3.263 24 48
3 5.80 0.1450(3)(14)(2) 0.00235 0.0647 0.831 0.0628 3.25 32 48
4 6.00 0.1219(2)(9)(2) 0.0102 0.0509 0.635 0.0522 2.66 24 64
5 6.00 0.1195(3)(9)(2) 0.00507 0.0507 0.628 0.0505 2.62 32 64
6 6.00 0.1189(2)(9)(2) 0.00184 0.0507 0.628 0.0507 2.62 48 64
7 6.30 0.0884(3)(5)(1) 0.0074 0.0370 0.440 0.0364 1.91 32 96
8 6.30 0.0873(2)(5)(1) 0.0012 0.0363 0.432 0.0360 1.89 64 96

where this behavior becomes clear. At the am;, values that
we use, the a,aAgep and a;Agep/m;, behavior is inter-
twined. Values of z3° and z§ with the linear am,, term
removed are shown in Fig. 3.

Lattice QCD results can be combined with Egs. (19) and
(23) to determine the hadronic matrix elements of the
temporal axial vector/vector and pseudoscalar/scalar
currents up to systematic uncertainties coming from miss-
ing higher order radiative and relativistic corrections
(which will differ between the currents). In Sec. III we
will compare results for hadronic decay constants obtained
using temporal axial or pseudoscalar currents and form
factors from temporal vector and scalar currents. The extent
to which they agree is a test of our systematic uncertainties.

III. LATTICE CALCULATION AND RESULTS

A. Lattice configurations and simulation parameters

The gluon field configurations used here are listed in
Table IV. They are “second-generation” MILC configura-
tions [23,24] using a gluon action fully corrected through
a,a’ [25] and HISQ quarks [8] with u, d, s. and ¢
(ny =2+ 1+ 1) flavors in the sea. They include multiple
values of the lattice spacing and multiple values of the u/d
(taken to be degenerate) sea quark mass varying from
one-fifth of the s quark mass down to the physical value.
On these gluon field configurations the B and B, decay
constants were calculated in [9] using a radiatively
improved (through «; vi) NRQCD action for the b quark
[22,26], the HISQ action for the lighter quark, and an
NRQCD-HISQ temporal axial current matched to con-
tinuum QCD following the process described in Sec. II.
Here we will compare results using the pseudoscalar
current matched to the same level of accuracy. In a similar
way, the systematic uncertainties in the semileptonic form
factor for B — x obtained from (the traditional method of)
using a vector current can be tested by employing a scalar
current. Since we are largely reusing results from earlier
papers [9,27], we do not repeat technical details, for
example on the NRQCD Hamiltonian, but refer the reader
to those papers for more detail.

B. B and B; meson decay constants

Using the PCAC relation of continuum QCD we can
determine the B meson decay constant, fp, from the matrix
element of the temporal axial current between the vacuum
and a B meson (at rest) as

(014g|B) = fpMp (25)

or from the product of the pseudoscalar density and the
quark masses as

(my, +my) (0|P|B) = f M. (26)

Here M is the B meson mass. In [9] the temporal axial
current relationship of Eq. (25) was used. A, was con-
structed from the leading and next-to-leading NRQCD-
HISQ currents in a nonrelativistic expansion and was
matched to continuum QCD according to Eq. (19). This

involves writing A in terms of the lattice currents, Jg(:))’lat,
T and 7

Ag.lat> Ap.lat
between the vacuum and a B meson are determined in
lattice QCD, so that the matrix element of A, in Eq. (25)
can be obtained to the specified level of accuracy (the

In [9] the matrix elements of each current

matrix elements for ngo)lm and Jﬁalm are the same for a

meson at rest). Since J(!) and J?) are relativistic corrections
to J(©, we expect their matrix elements to be of relative size
Aqcp/my, (*10%) compared to that of J () for a B meson at
rest, where internal momenta are of O(Aqcp). Terms
in which J(' and J® matrix elements are multiplied
by a, might then be expected to be of relative size
ay X 10% =~ 3%.

In Eq. (23) we give an expansion to the same order for
the combination of quark mass and pseudoscalar density,
mpP, in terms of the same NRQCD-HISQ currents

'Because of the mixing-down effects discussed in Sec. II, part
of the J() and J matrix elements is proportional to o, times the
matrix element of J©. This is a small effect here because the
relevant coefficient, yy, is small (see Fig. 2).
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multiplied by the bare NRQCD quark mass. Because the
matrix elements for each of the lattice NRQCD-HISQ
currents are given in [9], we can reconstruct the matrix
element of m, P required on the left-hand side of Eq. (26)
and so determine the decay constant in a different way. This
decay constant should agree with that determined from the
temporal axial current up to the uncertainties quoted. These
are dominated by systematic errors from missing higher
order matching terms and relativistic current correc-
tions [9].

Figure 5 shows how well this process works order-by-
order as relativistic current corrections and «,; matching
terms are added in. The variations match our power-
counting expectations well, as we discuss further below.
The plot shows the ratio of the decay constant obtained
using the temporal axial current to that using the

1.3 T T T T T

1.2} " & m i
S} ® & o 1
=
= i alkF—-———— === = - = o — g — — — — —
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FIG. 5. The ratio of the decay constant obtained using the

temporal axial current to that obtained using the pseudoscalar
density. Results are from lattice QCD calculations of the matrix
element from a nonrelativistic expansion of the appropriate
current operator between the vacuum and a B meson (upper
plot) or B, meson (lower plot). Results from each of the
ensembles of Table IV are shown plotted against the square of
the lattice spacing. Purple open squares denote the lowest (zeroth)

order result, while blue open circles include only J/(A?,),lat but with

O(a,) matching for that current. Green pluses include Jﬁ&m ina
matching through O(ay) and red crosses include the full match-
ing of Egs. (19) and (23). Green pluses have been offset for
clarity. The dashed lines show the relative uncertainty on fp
values quoted in [9].

pseudoscalar density. We use the results from [9], which
gives matrix elements for each contribution to the current
on each of the ensembles in Table IV. For each ensemble
the bare NRQCD quark mass am,, is tuned to that of the b
quark using the spin average of Y and 7, masses, and the
u/d quark mass, am;, is given the value used for the light
quark mass in the sea. The s quark mass is tuned using a
fictitious s5 pseudoscalar meson whose properties are well
determined in lattice QCD [28]. Values for the 7, K, and 7,
meson masses made from these light quarks are given in
[28,29]. We use a, in the V-scheme at a scale 2/a in the
operator matching as in [9].

In the determination of f from the pseudoscalar density
in Eq. (26) there is a factor of (1 4 m;/m,,) on the left-hand
side. We neglect this for the u/d quark because, at the
physical point, m;/m;, = 1/(52.55 x 27.4) [30]. This is
negligible compared to the other uncertainties. For the
additional factor of my on the right-hand side, which must
be removed to take a ratio of the two different decay
constants, we use the average of the charged and neutral
experimental B meson masses [1]. It has already been
demonstrated that the lattice QCD result for the B meson
mass, using NRQCD for the b quark, agrees with experi-
ment at the physical value of the u/d quark mass [29].

In the upper plot of Fig. 5 (for the B meson) the lowest

(zeroth) order result includes only the J ﬁx(;).lat current at tree

level, whose matrix element cancels in the ratio, and so the
result is simply m;,/Mpg. Not surprisingly, substantial
differences are seen between the results of O(20%), being
the size of the binding energy of a B meson. A significant

improvement is seen on including a, radiative corrections

to the normalization of JI(LX(?,),lat in the open blue circles. Note

that, as remarked in Sec. I, the renormalization of J;?_lat

differs from that of Jix(?.lat + ngg

1t Decause of mixing-down
effects encapsulated in 5?8- The differences between the
two decay constants are now O(10%) reflecting missing
relativistic corrections of O(Aqcp/m;,). The green pluses

and red crosses now successively include the effect of J E‘lﬁlat

at tree level and then «a, corrections multiplying the matrix

elements of both J ﬁalo)m and J fo)lat (which are the same here).

The green pluses and red crosses are very close together,
since the final a, corrections have little impact.

The final result, correct through a;Agep/m,, denoted by
the red crosses in Fig. 5 is close to the solid line at 1.0,
which indicates the same result is obtained for the decay
constant from both the temporal axial current and pseu-
doscalar density. More importantly the differences from the
value 1.0 of this ratio lie within the dashed lines that
correspond to the 2.2% relative uncertainty quoted for fp
from the temporal axial current in [9]. This uncertainty was
dominated by an estimate of the uncertainties expected
from missing higher order relativistic current corrections
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and o matching errors. Since the results from the temporal
axial current and pseudoscalar density will have different
uncertainties from the missing a2 matching, the result
of Fig. 5 is a demonstration that the estimates of these
uncertainties are realistic.

The lower plot of Fig. 5 repeats this exercise for the
decay constant of the B; meson, again using results from
[9]. In this case, using Eq. (26), we do not neglect the s
quark mass on the left-hand side. Instead we write

m?
(1 +E) myOPIB) = fudy.  (27)

and take m,/m;, = 1.0/52.55(55) [30]. We use the exper-
imental value of the B, meson mass to determine a ratio of
the decay constants from temporal axial current and
pseudoscalar density. The lower plot of Fig. 5 has identical
features to that of the upper plot. This is not surprising
because the relative effect of the matrix elements of the
relativistic current corrections is the same for u/d and s
quarks as can be seen from the results in [9].

We can complete the analysis by fitting the decay constant
results for fp and fp , obtained from the pseudoscalar
density, as a function of u/d quark mass and lattice spacing,
to extract physical results for comparison to the final
answers obtained using the temporal axial current. In the
temporal axial current case, because of a normalization
factor from the meson states, the hadronic quantity naturally
obtained from the lattice QCD calculation is fz/Mp,

denoted by ®. The contributions to ® from J;(?.lat and

JSO)‘lal are tabulated in [9]. The equivalent hadronic quantity

corresponding to matrix elements of m, P is f 5(My)>/>. The
values we need for m; P matrix elements are obtained by
combining the appropriate ® values for J® and JV as in
Eq. (23), including multiplication by am, and then by an
additional power of 1/a to convert to GeV units. In this case,
the additional multiplication by 1/a will slightly increase
the uncertainty in the values we are fitting because of the
uncertainty in the determination of the lattice spacing.

We plot f(1/Mg)? for the B and B, mesons in Fig. 6, as
well as plot our fits to the light quark mass and lattice
spacing dependence that enables us to extract a physical
result. Figure 7 shows a similar plot for the ratio for B, to B.
Following [9] we use a fit form

fe(V/Mp)(a.M,) = fp(\/Mp)*(1+d,(Aa)? +dy(Aa)*)

M2 3(1+34%)
1+by -2 =M
X< + l,lA)Q( 4/\% ( ﬂ)
x (1+ea2[1+ e26my, + e3m3)).

(28)

Here d; and d, allow for discretization effects and are also
om,; dependent (suppressed for clarity). b; allows for

321
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FIG. 6. Results for the decay constants of B and B; mesons
(multiplied by the 3/2 power of the meson mass) for the
ensembles in Table IV, obtained from the pseudoscalar current
and plotted against the light quark mass in units of the strange
quark mass (given as M2/ M,%S). The grey bands show the results
of the fit described in the text. Errors on the data points include
statistics/fitting only; the grey band includes the full error from
the fit to lattice spacing and quark mass effects along with the
perturbative matching uncertainty.

dependence on the light quark mass, including the
chiral logarithm, /(M?2). For the B, case the chiral logarithm
term is not present and b,; — by . e; allows for a?
corrections from only matching to one loop in perturbation
theory, while e, 5 allow for the fact that the higher order
matching coefficients can in principle have am,; depend-
ence. These priors are given identical values as in [9], except
for e; = 0.0(3) as the pseudoscalar matching coefficients
are slightly larger than their temporal axial-vector counter-
parts. Extrapolating to the physical point in the absence of
electromagnetism, i.e. M, = M, , where m; = (m, +m)/2,
we find fg(Mp)? =237(7) GeV3, fp (Mp)? =
2.94(8) GeV3, and fp (Mp )%/ f5(Mp)*/? = 1.237(7).
Our complete error budget is given in Table V, with a
breakdown that follows [9]. Errors arising from statistics,
the lattice spacing, operator matching, and chiral param-
eters are estimated directly from the fit. The remaining
source of systematic error in the decay constants comes
from missing higher order relativistic corrections to the

TABLE V. Full error budget for f5 (Mg )32, f5(Mp)*/?, and
their ratio as a percentage of the final answer.

Error % Ratio fp.(Mp )3? fe(Mpg)3?
a dependence 0.0 1.1 1.1
Chiral 0.02 0.12 0.13

g 0.0 0.01 0.01
Stat/scale 0.3 1.1 1.1
Operator 0.0 2.0 2.1
Relativistic 0.5 1.0 1.0
Total 0.6 2.8 2.8
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current. As discussed in [9], for the heavy-light system
under consideration the higher order relativistic corrections
will be of the size (Agcp/am;,)? ~0.01, which we take for
this component of the error.

We can convert the above results into values of the decay
constants using the PDG masses [31] for My = (Mp, +
Mp-)/2 =527963(15) GeV and My = 5.36689(19).
Our final results for the decay constants obtained from
the pseudoscalar current are fp = 0.196(6) GeV,
fg, =0.236(7) GeV, and fp /fp = 1.207(7).

As the same matrix elements are used as input when
determining the decay constant from temporal axial-vector
and pseudoscalar currents, we must include correlations
when performing an average of the results obtained here
and in [9]. As the different values for fp = are slightly

outside the lo error, we scale the error of the weighted

averaged value by \/y?/d.o.f. when the y*/d.o.f. > 1. This
is a conservative option and gives the scaled weighted
averages as fp = 0.190(4) GeV, fp =0.229(5) GeV,
and fp /fp = 1.206(5). These are shown and compared
to previous determinations, in Fig. 10, to be discussed
further in Sec. IV.

C. Scalar form factor for B — 7 decay

Another process where accurate determination of the
matrix elements of heavy-light currents is required is for the
weak semileptonic decays of B mesons to light mesons.
The archetypal process here is B — n£v. The hadronic
parameters needed to determine the rate for this decay are
known as form factors, and they are now functions of g2,
the squared 4-momentum transfer between the initial and
final mesons. For B — n£v there are two form factors
which we will denote f, and f, but the experimental rate
is sensitive to f, (only) if the final state lepton is light. The
form factors are related to the matrix elements of vector and
scalar currents by

M — M2
(VH18) = 1.7 |y + =M e |
M2 — M2
+fo(q2)BTC1” (29)
and
M — M?>
SIB) = n_8 "7 30
(S1B) = fola?) HE = (30)

There is a kinematic constraint that f (0) = f(0).

At the zero recoil, maximum g2, point we can compare
the matrix elements of the temporal vector and scalar
currents directly. At that point, where ¢° = Mz — M,

(2|VOIB) = fo(qmax) (Mp + M,) (31)

and

my, —m
h (7|SIB) = fo(qma)(Mp + M,).  (32)
For currents made of NRQCD b quarks combined with
HISQ light quarks, the chiral symmetry of the HISQ action
guarantees that the nonrelativistic expansion of the tem-
poral vector current has the same form as for the temporal
axial vector current given in Eq. (19). Likewise m,,S has the
same expansion as m;, P given in Eq. (23). As for the case of
the decay constant discussed in Sec. III B, the currents that
appear in each order of the nonrelativistic expansion are the
same for S and V°. Thus we can construct the matrix
element of m,;S given the lattice matrix elements of the
different current contributions for V. These are given for
the zero recoil situation in [27] for the same 2 + 1+ 1
gluon field configurations as used for the decay constants in
Sec. III B, and listed in Table IV.

Figure 8 shows the ratio of the scalar form factor at zero
recoil determined from Egs. (31) and (32) using succes-
sively more accurate representations of the NRQCD-HISQ
temporal vector and scalar currents from Eqgs. (19) and (23).
The matrix elements for the individual lattice current pieces
are calculated in [27], noting that the matrix element of J i/z(,)

is equal to that of J 80) at zero recoil. In the additional mass

factors on the left-hand side of Eq. (32) we ignore m,
compared to m,, as it is less than a 0.5% effect across our
range of light quark mass values. For M we average the
charged and neutral B meson masses, as in Sec. III B, and
for M, we use the values appropriate to these ensembles
given in [9,29].

Figure 8 shows a very similar picture to that of Fig. 5
with the ratio of the two results becoming closer to 1.0 as

veoarse |

126} X
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L4l N
% fine

1.18 }%
L6l T
114} P
iPhysical point ) )
0.00 0.05 0.10 0.15 0.20 0.25
My/My,
FIG. 7. Results for the ratio of By to B decay constants

(multiplied by the 3/2 power of the ratio of meson mass)
obtained from the pseudoscalar current. The data points are as
shown in Fig. 6, and the grey band is the result of the fit described
in the text, including uncertainties from lattice spacing and quark
mass effects along with uncertainties from higher-order relativ-
istic corrections to the current.
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FIG. 8. The ratio of the scalar form factor at zero recoil for the B
to  decay obtained from the temporal vector current to that from
using the scalar current. Results are from lattice QCD calculations
of the matrix element of a nonrelativistic expansion of the
appropriate current operator between a 7 meson and a B meson.
Results from each of the ensembles of Table IV are shown plotted
against the square of the lattice spacing. Symbols are as in Fig. 5,
with the green pluses offset for clarity. The dashed line gives the
relative error on f((gZ.) quoted in [27].

nonrelativistic current corrections are included and radia-
tive corrections to them are added. In the case given here, in
which the 7z meson is at rest, the power-counting expect-
ations as higher order currents are added in are the same as
for the B meson decay constant case discussed in Sec. I1I B.
Not surprisingly the results mirror the B decay constant
case. With the most accurate matching that we have, the
ratio of the results for the scalar form factor differs from one
by less than the relative uncertainty on f(g2.) of 3%
quoted in [27].

In [27] the ratio of f((g2,y) to the decay constant ratio
fg/f- was calculated to see if this ratio became one in the
massless 7 meson limit, as expected from soft pion
theorems [32-35]. This was indeed found to be the case,
resolving a long-standing issue in the literature. The
quantity calculated in [27] was

[fB/fﬂ] ’

which becomes f((q2a)f=/fs as M, — 0. The piece of
this ratio that involves b quarks is fo(g2.x)/f5. and this
was determined for NRQCD b quarks from the ratio of the
matrix element between z and B of the temporal vector
current divided by the matrix element between the vacuum
and B of the temporal axial vector current. Because of the
chiral symmetry of HISQ quarks the matching of these two
NRQCD-HISQ currents to their continuum counterparts is
the same. Then the overall renormalization factor (1 +
a,zo + -+ +) [see Eq. (19)] cancels between them, and the
renormalization uncertainty from missing a2 and higher
order terms is much reduced. The ratio Ry, can then be
determined to high accuracy. In [27] Rp, was mapped out

RBI[ =

(33)
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FIG.9. Theratio of Rp, values (see text for definition) obtained
using a combination of temporal vector and temporal axial vector
currents to that from a combination of scalar and pseudoscalar
currents. Results from each of the ensembles of Table IV are
shown plotted against the square of the lattice spacing. Symbols
are as in Fig. 5, with the green pluses offset for clarity. The dashed
line gives the relative error on Ry, from using the temporal vector
current for f, and temporal axial current for f5 quoted in [27].

as a function of M, and extrapolated to M, = 0 using chiral
perturbation theory to show that Rz, (M, = 0) was close to
1 with an uncertainty of 5%. The temporal vector current
was used for f(g2.«) and the temporal axial current for f .

Here we can also calculate Rp,, using the scalar current
for fo(g2ax) and the pseudoscalar current for fz. Again the
overall renormalization factor between the two will cancel
[see Eq. (23)]. Figure 9 shows the ratio of Ry, calculated in
these two different ways as, once again, successively more
accurate representations of the b-light currents are used.
Now, because of cancellation of the overall renormalization
factors, there is no difference between the zeroth order
result and the O(a;) result. Once a;Aqcp/m), corrections
are included, the ratio of Rp, values is very close to one and
well within the uncertainty of 2% on Rp,(M, = M o)
quoted in [27].

IV. CONCLUSIONS

Here we have given the matching calculation that enables
matrix elements of heavy-light scalar and pseudoscalar
currents accurate through O(a;Aqcp/my) to be determined
in lattice QCD using NRQCD b quarks and HISQ light
quarks. This expands the range of methods we can apply to
B physics using NRQCD and the tests we can do of our
systematic error budget.

In Sec. III B we determined the B and B, meson decay
constants using the pseudoscalar current and then com-
pared to the previously determined values obtained from
using the temporal axial current [9]. Since there is no PCAC
relation connecting these two currents in lattice NRQCD,
they do not have to give the same answer. The way in which
the nonrelativistic approximation to the continuum current
is built up (albeit from the same ingredients) and the way in
which it is renormalized are both different in the two cases.
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The systematic uncertainties from missing higher order
terms will then also be different. We see in Fig. 5 the results
coming closer together as we include higher orders in the
nonrelativistic expansion and matching on both sides. The
final results, at the best accuracy that we can currently
achieve, agree to within the expected remaining systematic
uncertainty. This uncertainty is dominated by unknown o?
terms in the overall renormalization (multiplying the
leading current). The agreement is confirmation that the
error budget is a reasonable one. Our results for the B and
B, decay constants from the pseudoscalar current are

f5 = 0.196(6) GeV,
f5 =0236(7) GeV,
fe./fp=1207(7). (34)

Our new results for the B and B, decay constants (and
their ratio) can be considered as independent values from
those obtained using the temporal axial current in [9]. They
use the same raw lattice data in the form of matrix elements
for the current components, and so their statistical uncer-
tainties are correlated. Their systematic uncertainties are
not the same, however, since they come largely from
unknown, and different, relativistic and o? matching
corrections. We can then perform a weighted average of
the results arising from the two methodologies, including
the statistical correlations, to obtain

f5 = 0.190(4) GeV,
f5, = 0.229(5) GeV,
f5./f5=1.206(5). (35)

These results have very similar uncertainties to those in [9]
but do contain more information.

Figure 10 gives a summary of lattice QCD results for [,
f,» and their ratio. It includes results from a variety of light
and heavy quark formalisms for calculations that have
included at least 2 flavors of quarks in the sea. The most
realistic version of QCD corresponds to the results in the
top box, including the values we give here, where u, d, s,
and ¢ sea quarks are incorporated. Our results have the
additional advantage of including physical values for the
u/d sea quarks, taking m, = m,. The results for f plotted
in Fig. 10 correspond to a B meson made with a light quark
with the u/d average mass. The grey bands show
average values from [1], where there is also discussion
of the effects of isospin breaking. The main message from
Fig. 10 is that of good agreement between the different
lattice QCD results, which is another good test of system-
atic uncertainties.

A similarly encouraging picture was given of the
comparison of temporal vector and scalar current results
for the scalar form factor for B — z decay in Sec. III C. The
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FIG. 10. A summary of lattice QCD calculations for fg, f5 ,
and their ratio. The new results reported here are those for the
pseudoscalar current given by the red open circles, showing good
agreement with earlier results (given by red open squares) using
the temporal axial current [9]. The average of these results is
given by blue diamonds. Other results in this summary are taken
from [36-42] and use a variety of different quark formalisms for
heavy and light quarks as well as working with gluon field
configurations that include different numbers of flavors of sea
quarks. The results for f5 correspond to those for a light valence
quark of mass equal to the average of u and d quark masses
except for “RBC/UKQCD15” which correspond to the neutral bd
meson and “FNAL/MILC11” which correspond to the charged
bt meson. The experimental result for the charged B meson is an
average from the Particle Data Group [1], as are the grey bands.

calculations compared were done at zero recoil where the z
is at rest in the rest frame of the B. Here we discuss briefly
the potential uses of our new method to determine the
vector form factor f, away from the zero recoil point,
where connection to experimental decay rates can be made
for the determination of Cabibbo-Kobayashi-Maskawa
matrix element |V ,].

Power counting in powers of the inverse heavy quark
mass must be modified for current matrix elements away
from the zero recoil point as the momentum of the light
meson in the final state increases. Subleading currents that
include a spatial derivative on the light quark field will have
matrix elements that grow as |p’|/my;, and these can
become relatively large compared to the leading order
current if p’ > Agcp. The issue is discussed for the
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NRQCD-asqtad case in [43] where ratios of the subleading
matrix elements to the leading matrix elements between the
B meson and a heavy pion of the spatial vector current are
shown. The matrix elements for currents denoted J,(cz) and

J ,({4) grow as a proportion of the leading order (J ECO)) matrix

element as the pion momentum is increased. This is also
true, although not shown there, for the matrix elements of

the temporal vector current J(()z). These three currents are

analogous to the current Jﬁlat [Eq. (13)] considered here,

in having a derivative on the light quark field; for the spatial
vector there are two such currents with different y matrix
structures. Note that the matrix elements for the subleading
currents that contain a derivative on the heavy-quark field
show much more benign behavior, as might be expected.

The subleading currents with derivatives on the light quark
field do not appear at tree level in the expansion of the
continuum heavy-light current [see Eq. (19)] and so are
suppressed by powers of a;. In the NRQCD-asqtad case the
a, coefficients of these subleading currents were calculated
and turned out to be small for the largest contribution, from

J ,<{4> [43]. For the NRQCD-HISQ case these coefficients are
only known for the temporal vector current (see Table IT[10]).
As we move away from zero recoil in B — n decay,
systematic uncertainties from these subleading currents will
grow if they are not included in our nonrelativistic expansion
of the continuum current. It is therefore important to work
with NRQCD-HISQ currents that do include the subleading
currents with derivatives on the light quark field so that
accuracy can be maintained as far from zero recoil as possible.

Here we have provided a way of doing this by using the
temporal vector and scalar currents [and Egs. (29) and
(30)], as used for example in calculations with purely HISQ
quarks [13,14]. As we have shown, both of these con-
tinuum currents can be written as a nonrelativistic expan-
sion in NRQCD-HISQ currents that includes terms that will
become O(ay|p’|/m;) away from the zero recoil point.
Using simple power-counting estimates these could be of

size 7% for p’ ~1 GeV (double that at the zero recoil
point). Dropping these terms means that there could be
systematic uncertainties at this level. If the relativistic
expansion instead includes these correction terms, as we
show how to do here, uncertainties are then O(a?|p’|/m,,)
and O(a,|p’[*/m3), which reduces them to the 3% level.
This improved approach will be used in NRQCD-HISQ
work on the second-generation 2 + 1 4+ 1 HISQ configu-
rations, extending [27] away from zero recoil.

It should also be noted that the expansion for the
pseudoscalar heavy-light current will allow more form
factors to be separated out in the analysis of B meson
decays to light vectors [44,45]. Processes such as B, —
¢¢T¢~ and B — K*¢T¢~ provide key opportunities for
stringent tests of the Standard Model [46,47] and will need
increasingly accurate lattice QCD results for comparison.
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