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We present an improved analysis of our lattice data for the η–η0 system, including a correction of
the relevant correlation functions for residual topological finite size effects and employing consistent
chiral and continuum fits. From this analysis we update our physical results for the masses Mη ¼
557ð11Þstatð03ÞχPT MeV and M0

η ¼ 911ð64Þstatð03ÞχPT MeV, as well as the mixing angle in the quark
flavor basis ϕ ¼ 38.8ð2.2Þstatð2.4Þ∘χPT in excellent agreement with other results from phenomenology.

Similarly, we include an analysis for the decay constant parameters, leading to fl ¼ 125ð5Þstatð6ÞχPT MeV
and fs ¼ 178ð4Þstatð1ÞχPT MeV. The second error reflects the uncertainty related to the chiral extrapo-
lation. The data used for this study has been generated on gauge ensembles provided by the European
Twisted Mass Collaboration with Nf ¼ 2þ 1þ 1 dynamical flavors of Wilson twisted mass fermions.
These ensembles cover a range of pion masses from 220 MeV to 500 MeV and three values of the lattice
spacing. Combining our data with a prediction from chiral perturbation theory, we give an estimate for the
physical η, η0 → γγ decay widths and the singly-virtual η, η0 → γγ� transition form factors in the limit of
large momentum transfer.

DOI: 10.1103/PhysRevD.97.054508

I. INTRODUCTION

The axial anomaly and the topological nature of
quantum chromodynamics (QCD) are able to explain the
large experimentally observed mass of the η0 meson. This
understanding was possible due to perturbative arguments
leading to the Witten-Veneziano [1,2] formula. This was
recently confirmed nonperturbatively using lattice simu-
lations in Ref. [3].
Beyond masses, there is also the phenomenon of mixing:

η and η0 mesons are not flavor eigenstates, but represent a
mixing of an octet and a singlet state. In contrast to the ω–ϕ
meson mixing in the vector channel, the mixing in the
pseudoscalar channel is ideal at the SU(3) symmetric point
with mixing angle ϕ ¼ 54.7∘ (in the quark flavor basis), but
exhibits significantly smaller ϕ-values at physical quark

masses [4]. The precise knowledge of the mixing angle is
important for several phenomenological applications, most
notably for improving the theoretical estimate of the
hadronic contribution to the anomalous magnetic moment
of the muon [5].
The investigation of η and η0 mesons requires a non-

perturbative method, provided by lattice QCD. However,
such an investigation is challenging due to large contribu-
tions by so-called fermionic disconnected diagrams.
Flavor-singlet pseudoscalar mesons have been studied
using lattice QCD before. For Nf ¼ 2 results can be found
in Refs. [6–10]. For Nf ¼ 2þ 1 or Nf ¼ 2þ 1þ 1 they
were studied in Refs. [4,11–19]. For an approach based on
a purely gluonic operator see Ref. [20].
In this paper we extend our previous studies [4,16,17] of

properties of η and η0 mesons in two ways: first by an
improved analysis: on an enlarged number of Monte Carlo
ensembles we perform consistent chiral and continuum
extrapolations. This leads to slightly changed results when
compared to Ref. [4], mostly within the quoted error bars,
with the exception being the mixing angle ϕ. The larger
change in ϕ comes from the fact that we are now able to
resolve the lattice spacing dependence in ϕ, too, due to
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more ensembles at the finest lattice spacing value.
Moreover, by using derivatives of correlation functions
instead of the correlation function themselves, we are able
to remove systematic effects from not optimally sampled
topological sectors.
Second, for the first time we estimate flavor-singlet

pseudoscalar decay constants from lattice QCD. We use
these to determine also physical η, η0 → γγ decay widths
and the singly-virtual η, η0 → γγ� transition form factors in
the limit of large momentum transfer. A first account of this
work can be found in Ref. [17].
For the determinations of the aforementioned decay

constants we rely on chiral perturbation theory instead
of determining them directly from flavor-singlet axial-
vector matrix elements. The reason for this procedure is
an unfavorable signal-to-noise ratio in some of those
matrix elements, which prevents a meaningful analysis.
The results are compared to phenomenological determi-
nations mostly summarized in Ref. [21].
The results presented here are based on gauge configu-

rations produced by the European Twisted Mass
Collaboration (ETMC) with active up/down, strange and
charm quarks. Based on three values of the lattice spacing
and pion masses ranging from 220 to 500 MeV, the ETMC
ensembles allow us to perform a controlled chiral and
continuum extrapolation. Dedicated ensembles with varied
strange quark masses let us control also the strange quark
mass dependence.

II. LATTICE SETUP

The calculations for this work have been performed on
gauge configurations generated by the European Twisted

Mass Collaboration (ETMC) [22–24] using Nf ¼ 2þ 1þ
1 dynamical quark flavors of twisted Wilson fermions at
maximal twist. In the gauge sector the Iwasaki action
[25,26] has been used in the generation of configurations

SG½U� ¼ β

3

X
x

 
b0
X4
μ;ν¼1
1≤μ<ν

Re trð1 − P1×1
x;μνÞ

þ b1
X4
μ;ν¼1
μ≠ν

Re trð1 − P1×2
x;μνÞ

!
; ð1Þ

where b1 ¼ −0.331 and b0 ¼ 1–8b1. P1×1
x;μν and P1×2

x;μν denote
quadratic (plaquette) and rectangular Wilson loops com-
posed of gauge links.
In the twisted basis the fermionic action containing

a mass-degenerate, light quark doublet χl ¼ ðχu; χdÞT
reads [27–29]

Sl½χl; χ̄l; U� ¼ a4
X
x

χ̄lðxÞðDW ½U� þm0 þ iμlγ5τ3ÞχlðxÞ;

ð2Þ

while for a nondegenerate, heavy quark doublet χh ¼
ðχc; χsÞT we have [29,30]

Sh½χh; χ̄h; U� ¼ a4
X
x

χ̄hðxÞðDW ½U� þm0 þ iμσγ5τ1

þ μδτ3ÞχhðxÞ; ð3Þ

where the Pauli matrices τi, i ¼ 1, 2, 3 act in flavor space.
The massless Wilson Dirac operator

TABLE I. Overview of ensembles and respective input parameters. In addition, we give the total number of gauge configurationsNconf
used, the spacing in terms of HMC trajectories between two adjacent configurations used in our study ΔN and the number of stochastic
samples for the computation of the quark disconnected diagrams NS. The spatial extend L=a satisfies T=a ¼ 2 · L=a on all ensembles.

Ensemble β T=a L=a aμl aμσ aμδ Nconf ΔN NS

A30.32 1.90 64 32 0.0030 0.150 0.190 1363 4 24
A40.32 1.90 64 32 0.0040 0.150 0.190 863 4 24
A40.24 1.90 48 24 0.0040 0.150 0.190 1877 4 32
A60.24 1.90 48 24 0.0060 0.150 0.190 1248 4 128
A80.24 1.90 48 24 0.0080 0.150 0.190 2449 2 32
A100.24 1.90 48 24 0.0100 0.150 0.190 2489 2 32
A80.24s 1.90 48 24 0.0080 0.150 0.197 2514 2 32
A100.24s 1.90 48 24 0.0100 0.150 0.197 2312 2 32
B25.32 1.95 64 32 0.0025 0.135 0.170 1467 4 24
B35.32 1.95 64 32 0.0035 0.135 0.170 1251 4 24
B55.32 1.95 64 32 0.0055 0.135 0.170 4996 4 48
B75.32 1.95 64 32 0.0075 0.135 0.170 922 8 24
B85.24 1.95 48 24 0.0085 0.135 0.170 573 10 32
D15.48 2.10 96 48 0.0015 0.120 0.1385 1034 2 24
D20.48 2.10 96 48 0.0020 0.120 0.1385 429 4 24
D30.48 2.10 96 48 0.0030 0.120 0.1385 458 8 24
D45.32sc 2.10 64 32 0.0045 0.0937 0.1077 1074 4 48
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DW ¼ DW ¼ 1

2
ðγμð∇μ þ∇⋆Þ − a∇⋆

μ∇μÞ; ð4Þ

depends implicitly on the gauge links U. The doublets χl
and χh are related to doublet fields in the physical basis ψ l,
ψh via chiral rotations. The bare strange and charm quark
masses ms, mc are given in terms of the bare input
parameters μδ and μσ

μc;s ¼ μσ � Zμδ; ð5Þ

where Z ¼ ZP=ZS denotes the ratio of pseudoscalar and
scalar flavor nonsinglet renormalization factors. The renor-
malized quark masses require an additional factor of
nonsinglet 1=ZP

μrc;s ¼ Z−1
P μσ � Z−1

S μδ; ð6Þ

which is the same as for the light bare quark mass, i.e.
μrl ¼ μl=ZP.
We employ 17 gauge ensembles as detailed in Table I at

three different values of β corresponding to three different
values of the lattice spacing a, cf. Table II. Compared to
previous studies of the η, η0–system [3,4], we have added
one more ensemble at the finest lattice spacing (D20.48)
and significantly increased the statistic on the B55.32
ensemble. In general, all observables have been computed
with the full statistic as given in Table I with exception of
the kaon mass MK and the kaon decay constant fK , that
have been computed only on a subset of configurations in
many cases. However, this is sufficient for our purposes as
we are neither interested in MK nor fK themselves in this
study. The resulting errors for derived observables are
always dominated by the statistical uncertainties in the
flavor-singlet sector, anyways.
Table II also contains the results for Z at each value of β,

which are needed for the computation of matrix elements.
The labels M1 and M2 refer to the two different methods
used in Ref. [31] for the determination of renormalization
factors. In addition, we included the values for the Sommer
scale r0 at each value of the lattice spacing, r0=a, that were
taken again from Ref. [31] together with the physical value

r0 ¼ 0.474ð14Þstat fm; ð7Þ

which is required to set the scale in our study. Note that in
an earlier publication in Ref. [4] slightly different values
have been used for r0 and r0=a. However, those are now
superseded by the values from the final analysis in Ref. [31]
that we use here.
While the values of aμσ and aμδ defining the bare strange

and charm masses are generally fixed for each choice of β,
we include a few dedicated ensembles (A80.24s, A100.24.s
and D45.32sc), which have been generated with different
μδ—and in case of D45.32sc—also different μσ values.
This allows us to explicitly resolve the dependence on the
strange quark mass and obtain more stable results from
chiral fits.
For the computation of quark-disconnected diagrams we

employ stochastic volume sources. The corresponding
number of stochastic samples NS is included in Table I
and is chosen such that the final statistical errors are
dominated by gauge noise. The statistical errors for all
observables are computed using the blocked bootstrap with
10 000 samples and blocklengths chosen such that the
effective length of every block corresponds to at least 20
HMC trajectories. This has been found sufficient to deal
with autocorrelations in an earlier study in Ref. [16].

III. COMPUTATION OF MASSES
AND AMPLITUDES

The extraction of masses and matrix elements for the η,
η0–system has already been discussed in detail in previous
publications [3,4,16,17]. In the following we will first
briefly summarize the relevant methods and then introduce
a modification leading to systematic improvement of our
existing analysis. This improvement concerns a possible
contamination of the large–t behavior of the flavor-singlet
correlations functions induced by imperfectly sampled
topology. Finally, we detail the extraction of mixing
parameters and further, derived observables such as decay
widths.

A. Correlation function matrix

In the physical basis we consider the following three
local pseudoscalar operators

P0;phys
l ðxÞ ¼ 1ffiffiffi

2
p ψ̄ lðxÞiγ5ψ lðxÞ; ð8Þ

P�;phys
h ðxÞ ¼ ψ̄hðxÞiγ5

1� τ3

2
ψhðxÞ; ð9Þ

where ψ̄ lðxÞ, ψ lðxÞ and ψ̄hðxÞ, ψhðxÞ denote degenerate
light and non-degenerate heavy quark doublets, respec-
tively. While the doublet structure of the fields is required
for the rotation to the twisted mass basis, the flavor
projector ð1� τ3Þ=2 disentangles charm (“þ”) and strange
(“−”) contributions. Upon rotation to the twisted basis the
operators read at maximal twist

TABLE II. Values of r0=a, a and Z corresponding to the three
values of β [31]. The labels M1 and M2 refer to two methods used
to determine renormalization constants in this reference.

β r0=a a [fm] Z (M1) Z (M2)

1.90 5.31(8) 0.0885(36) 0.699(13) 0.651(06)
1.95 5.77(6) 0.0815(30) 0.697(07) 0.666(04)
2.10 7.60(8) 0.0619(18) 0.740(05) 0.727(03)
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P0;phys
l ðxÞ → −

1ffiffiffi
2

p χ̄lðxÞτ3χlðxÞ≡ S3;tm
l ðxÞ; ð10Þ

P�;phys
h ðxÞ → 1

2
χ̄hðxÞð−τ1 � iγ5τ3ÞχhðxÞ≡ P�;tm

h ðxÞ:
ð11Þ

In Refs. [4,16] it has been shown that the charm quark
operator essentially has no overlap with the η, η0–states and
can hence be neglected. Therefore, we drop it from the
actual analysis and keep only light and strange quark
operators, i.e. Stm

l ðxÞ≡ S3;tm
l ðxÞ and Ptm

s ðxÞ≡ P−;tm
h ðxÞ.

Considering renormalization, the operators can be written as

Stm;r
l ðxÞ ¼ 1ffiffiffi

2
p ZSχ̄lðxÞτ3χlðxÞ; ð12Þ

Ptm;r
s ðxÞ ¼ 1

2
ZPχ̄hðxÞ

�
−
ZS

ZP
τ1 − iγ5τ3

�
χhðxÞ: ð13Þ

Pulling out a factor Z2
P from the resulting 2 × 2 correlation

function matrix we have

CrðtÞ ¼ Z2
PC̃ðtÞ; ð14Þ

where

C̃ðtÞ ¼
� hS̃tm

l ðtÞS̃tm
l ð0Þi hS̃tm

l ðtÞP̃tm
s ð0Þi

hP̃tm
s ðtÞS̃tm

l ð0Þi hP̃tm
s ðtÞP̃tm

s ð0Þi

�
ð15Þ

contains operators that are projected to zero-momentum
and renormalized up to a global factor of flavor nonsinglet
ZP, i.e.

S̃tm
l ðxÞ ¼ 1ffiffiffi

2
p Z−1χ̄lðxÞτ3χlðxÞ; ð16Þ

P̃tm
s ðxÞ ¼ 1

2
χ̄hðxÞð−Z−1τ1 − iγ5τ3ÞχhðxÞ: ð17Þ

The mixing of flavor nonsinglet pseudoscalar and scalar
currents in the heavy quark basis remains manifest in the
corresponding ratio of renormalization constants Z. Note
that the construction of these operators requires only the ratio
Z instead of ZP and ZS separately. We will show later that
renormalization of the correlation function matrix up to a
global factor Z2

P is sufficient for the calculation of the mixing
parameters, as this factor will be absorbed by the renorm-
alization of corresponding factors of quark masses.
As first proposed in Ref. [32] and subsequently used in

Refs. [4,9], we replace the quark-connected pieces in the
correlation functions by the ground state contribution. This
allows to extract the η and η0 states from the resulting
principal correlators from the earliest available timeslice
tη;η

0
1 ¼ 2a on, leading to a significant improvement in the

signal-to-noise ratio. For further technical details on this
procedure, including fit parameters and results, we refer to
the Appendix and tables therein.

B. Correlator improvement for topological effects

In Ref. [33] it has been pointed out that the large–t
behavior of quark-disconnected contribution Cdisc

2pt ðtÞ to
pseudoscalar flavor-singlet correlation functions in finite
volume and for fixed (or imperfectly sampled) topology
differs from zero. This has been further investigated
numerically in Ref. [18], where the effect on the correlation
functions has been shown explicitly for different topologi-
cal charge sectors. In fact, the leading term in the 1=V
expansion contributing to at large–t at fixed topological
charge Q behaves as

Cdisc
2pt ðtÞ ∼

a5

T

�
χt −

Q2

V
þ c4
2Vχt

�
; ð18Þ

where χt denotes the topological susceptibility and c4 the
kurtosis of the topological charge distribution. While we do
not find deviations from a zero topological charge in the
gauge average on any of the ensembles used in this study, it
is still to be expected that an imperfectly sampled topo-
logical charge distribution leads to deviations from the
infinite volume result. Only on very few ensembles we find
a shift at the level of single correlation functions, which is
not compatible with zero within errors. This is most notably
the case for the light quark correlation function C̃llðtÞ ¼
hS̃tm

l ðtÞS̃tm
l ð0Þi on D45.32, which yields the dominant

contribution to the η0 principal correlator that is shown
in the left panel of Fig. 1. This ensemble exhibits the
smallest physical volume of all ensembles in this study.
In order to remove any constant shift from our corre-

lation functions we replace the correlators in Eq. (15) by a
naive time-derivative, i.e. the difference of two adjacent
timeslices

C̃ðtÞ → C̃ðtÞ − C̃ðtþ ΔtÞ≡ C̃0ðtÞ; ð19Þ

before solving the generalized eigenvalue problem (GEVP)

C̃0ðtÞvnðt; t0Þ ¼ λnðt; t0ÞC̃0ðt0Þvnðt; t0Þ ð20Þ

where n ¼ η, η0 denotes the two states for the 2 × 2
problem and using fixed t0=a ¼ 1. Taking into account
periodic boundary conditions, this changes the functional
form of the correlation functions in Eq. (15) from an even
cosh-like to an odd sinh-like behavior

C̃0ijðtÞ ¼
X
n

An
i ðAn

j Þ�
2En

· 4 sinh

�
En

Δt
2

�
exp

�
−En

T
2

�

× sinh

�
En

�
T − Δt

2
− t

��
; ð21Þ
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where An
i (An

j ) denotes the physical amplitudes for the nth
state with respect to the ith (jth) element of the basis
containing N operators. The asymptotic behavior for the
principal correlators then takes the same form

λnðt; t0Þ ∼ sinh

�
En

�
T − Δt

2
− t

��
; ð22Þ

which is fitted to the lattice data to extract the energies.
Including only correlation functions projected to zero
momentum, we have En ¼ Mn, which yields Mη and
Mη0 for the two lowest states. The information on physical
amplitudes can be retrieved from eigenvectors in the
standard way [34]

An
i ¼

ffiffiffiffiffiffiffiffi
2En

p
·
P

N
j¼1 C̃

0
ijðtÞvnj ðt; t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððvnðt; t0ÞÞTC̃0ðtÞvnðt; t0ÞÞ · λnðt; t0Þ
q : ð23Þ

Note that amplitudes computed in this way from the
correlation function matrix in Eq. (15) are renormalized
only up to a factor of ZP, which turns out sufficient for our
purposes.
In addition to removing a constant shift in the η0 principal

correlator, the derivative correlator has much smaller point
errors compared to the standard approach, which can be
seen comparing the left and the right panel of Fig. 1. The
data in the right panel has been generated using a time shift
of Δt=a ¼ 1. In fact, the actual choice of Δt has little
impact on the final results from correlated fits within errors,
hence we use Δt=a ¼ 1 throughout our analysis. The only
effect of values Δt=a > 1 is less reduction in correlation
between adjacent time slices in C̃0ðtÞ but in the final fits this
is compensated by the behavior of individual point errors.

IV. EXTRACTION OF MIXING PARAMETERS
AND DECAY WIDTHS

The general definition of meson decay constants
employs the axial-vector matrix element in the physical
basis

h0jAμ
ajPðpÞi ¼ ifPapμ; ð24Þ

where P ¼ π; K; η; η0;… denotes the desired meson state
(with momentum p) and the index a is used to distinguish
different flavor structures for the axial-vector current.
First we consider the charged meson sector for a light

quark doublet imposing exact isospin symmetry. In this
case the physical axial-vector current transforms into the
vector current in the twisted basis at maximal twist. By
virtue of the PCVC relation this leads to a convenient
expression for the pion decay constant

fπ ¼ 2μl
h0jPa

l jπ�i
M2

π
; a ¼ 1; 2; ð25Þ

which can be used to compute fπ in twisted mass lattice
QCD without the need for any renormalization and to
high statistical precision due to the pseudoscalar current
[35–37]. A similar relation holds in the heavy-light meson
sector for the kaon

fK ¼ ðμl þ μsÞ
h0jP̃þ;tm

neutraljKi
M2

K
; ð26Þ

where P̃þ;tm
neutralðxÞ ¼ 1

2
ðZ−1ð−χ̄dðxÞχcðxÞ þ χ̄dðxÞχsðxÞÞ þ

χ̄dðxÞiγ5χcðxÞ þ χ̄dðxÞiγ5χsðxÞÞ. While there is again no
overall renormalization factor needed, the ratio Z is

(a) (b)

FIG. 1. (a) Eigenvalues λη;η
0
from solving the GEVP Eq. (20) for the correlation function matrix in Eq. (15). (b) Same as left panel, but

from solving the GEVP for the derivative correlation function matrix defined in Eq. (19).
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required due to mixing between scalar and pseudoscalar
currents and also implicitly in μs as defined in Eq. (5).
In the flavor-singlet sector, there exist two popular

choices for the basis of two local operators made from
degenerate light quark fields and a strange quark field. The
first one is the so-called octet-singlet basis

Aμ
8ðxÞ ¼

1ffiffiffi
6

p ðψ̄uðxÞγμγ5ψuðxÞ þ ψ̄dðxÞγμγ5ψdðxÞ

− 2ψ̄ sðxÞγμγ5ψ sðxÞÞ; ð27Þ

Aμ
0ðxÞ ¼

1ffiffiffi
3

p ðψ̄uðxÞγμγ5ψuðxÞ þ ψ̄dðxÞγμγ5ψdðxÞ

þ ψ̄ sðxÞγμγ5ψ sðxÞÞ; ð28Þ

which is the preferred basis in the formulation of (χPT). A
second choice is the quark flavor basis, defined by

Aμ
l ðxÞ ¼

1ffiffiffi
2

p ðψ̄uðxÞγμγ5ψuðxÞ þ ψ̄dðxÞγμγ5ψdðxÞÞ; ð29Þ

Aμ
sðxÞ ¼ ψ̄ sðxÞγμγ5ψ sðxÞ: ð30Þ

In any case, the most general parametrization of the decay
constant parameters faP for two local operators made from
degenerate light quark fields and a strange quark field,
reads:

� fηa fηb

fη
0
a fη

0
b

�
¼
�
fa cosϕa −fb sinϕb

fa sinϕa fb cosϕb

�

≡ Ξðϕa;ϕbÞdiagðfa; fbÞ; ð31Þ

where a ¼ 8, b ¼ 0 or a ¼ l, b ¼ s, for octet-singlet and
quark flavor basis, respectively. For the octet-singlet basis it
is found in χPT that the leading contribution to the difference
of the two mixing angles jϕ0 − ϕ8j is a purely SUð3ÞF–
breaking effect, while at the same order in the chiral power
counting Okubo-Zweig-Iizuka (OZI)-violating terms con-
tribute only to the flavor-singlet decay constant parameter f0
[38,39]. Therefore jϕ0 − ϕ8j cannot be expected to be small.
On the other hand in the quark flavor basis the corresponding
difference ϕl − ϕs is proportional only to an OZI-violating
term. Since in the SUð3ÞF-symmetric theory, the mixing
angles fulfill ϕs ¼ ϕl ¼ arctan

ffiffiffi
2

p ≡ ϕSUð3ÞF , their individ-
ual numerical values are not small. This leads to the
expectation

���� ϕl − ϕs

ϕl þ ϕs

���� ≪ 1; ð32Þ

which has been confirmed numerically in a previous
lattice study [4]. Therefore, it is reasonable to define a
simplified scheme in the quark flavor basis (the so-called

Feldmann-Kroll-Stech scheme [39]), employing only a
single mixing angle, i.e. rewriting Eq. (31) as

� fηl fηs

fη
0
l fη

0
s

�
¼ Ξðϕ;ϕÞdiagðM2

π; 2M2
K −M2

πÞ: ð33Þ

For a more detailed discussion of the relation between the
two schemes, we refer to the review given in [21].
In principle, the left-hand side of Eq. (33) could be

computed directly from the lattice. However, we find that
axial-vector interpolating operators do not give a sufficient
signal in practice. Therefore, in the physical basis of QCD
we resort to pseudoscalar matrix elements

hPa ¼ 2mah0jPajPi; ð34Þ

where again P ¼ η, η0 andma for a ¼ l, s denotes the quark
mass for the light and strange quark, respectively. The
pseudoscalar flavor-singlet operators are the ones given in
Eqs. (8), (9), i.e. Pl ¼ P0;phys

l for light quarks and Ps ¼
P−;phys

h ðxÞ for the strange component. Applying χPT to the
same order as for the splitting of the mixing angles, one
obtains the desired relation between the mixing parameters
from the axial-vector case in Eq. (33) and the matrix
elements hPa [21]

�hηl hηs

hη
0
l hη

0
s

�
¼ Ξðϕ;ϕÞdiagðM2

πfl; ð2M2
K −M2

πÞfsÞ: ð35Þ

On the lattice we work in the twisted basis, thus the
pseudoscalar currents in the physical basis of QCD need to
be replaced by their twisted counterparts. Considering
renormalization the matrix elements that are actually
computed on the lattice are given by

hP;tm;r
l ¼ μlh0jS̃tm

l jPi; ð36Þ

hP;tm;r
s ¼ μsh0jP̃tm

s jPi; ð37Þ

for P ¼ η, η0. They are obtained from Eq. (23) solving the
GEVP for the correlation function matrix in Eq. (15) and
multiplying by a factor of the twisted bare light or strange
quark mass. Note that the factor ZP, which would otherwise
be needed to renormalize the operators S̃tm

l , P̃tm
s , is

canceled by the factor 1=ZP required for the renormaliza-
tion of the quark masses μl, μs. We point out that it is an
intrinsic advantage of the twisted-mass formulation that the
computation of the flavor-singlet mixing parameters does
not require knowledge of the singlet pseudoscalar renorm-
alization factor Z0

P at all and that even the non-singlet ZP is
not required explicitly. The latter is similar to fπ , which can
be computed in the twisted mass formulation without the
need for renormalization, or fK, which involves only the
ratio of non-singlet renormalization factors Z ¼ ZP=ZS.
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Finally, we note that the mixing angle ϕ is always
invariant under renormalization as it is computed from the
(double-) ratio of matrix elements

tanϕ ¼ −

ffiffiffiffiffiffiffiffiffiffi
hη

0
l h

η
s

hηl h
η0
s

vuut ; ð38Þ

unlike the decay constant parameters fl, fs, that depend
on Z.
Using the values for the mixing parameters it is possible

to derive estimates and constraints for further physical
observables which are driven by the chiral anomaly. First of
all, there are relations to the η and η0 decay widths derived
from effective field theory, given by [39]

Γη→γγ ¼
α2QEDM

3
η

288π3
·

�
5 cosϕ
fl

−
ffiffiffi
2

p
sinϕ
fs

�2
; ð39Þ

Γη0→γγ ¼
α2QEDM

3
η0

288π3
·

�
5 sinϕ
fl

þ
ffiffiffi
2

p
cosϕ
fs

�2
: ð40Þ

Secondly, effective field theory yields relations for the
pseudoscalar transition form factors Fηγγðq2Þ and Fη0γγðq2Þ
in the limit of large Euclidean momentum transfer Q2 and
the mixing parameters in the quark flavor basis [5]1

lim
Q2→∞

Q2Fηγγ� ðQ2Þ ¼
ffiffiffi
2

p

3
· ½5fl cosϕ−

ffiffiffi
2

p
fs sinϕ�≡ F̂ηγγ� ;

ð41Þ

lim
Q2→∞

Q2Fη0γγ� ðQ2Þ¼
ffiffiffi
2

p

3
· ½5fl sinϕþ

ffiffiffi
2

p
fs cosϕ�≡ F̂η0γγ� ;

ð42Þ

where we have introduced the shorthand notation F̂Pγγ� ,
P ¼ η, η0 for later use.

V. RESULTS

Since our simulations are performed at unphysical values
of the quark masses and finite lattice spacing, a chiral
extrapolation is required to obtain physical results. To this
end we employ a fit ansatz for each observable O inspired
by leading order in χPT

ðrn0O½r20Δl; r20Δs; ða=r0Þ2�Þm

¼ ðrn0O
∘ Þm þ

X
i¼l;s

Li · r20Δi þ Lβ ·

�
a
r0

�
2

ð43Þ

where we defined

Δl ¼ M2
π ¼ 2B0ml þOðm2Þ;

Δs ¼ 2M2
K −M2

π ¼ 2B0ms þOðm2Þ; ð44Þ

as leading order proxies for the light and strange quark
mass, respectively. In the above fit model n is an integer
such that rn0O is dimensionless and m denotes the power of
the observable required for the chiral expansion, i.e. m ¼ 2
for masses and m ¼ 1 for decay constant parameters and
the mixing angle ϕ. The same values of m are used for
ratios of the respective quantities, e.g. m ¼ 2 for fitting
Mη=MK. The first term on the right-hand side (r.h.s.) of
Eq. (43) is included as a free parameter only for observables
that do not vanish in the SUð3ÞF chiral limit and take a
non-trivial value, such as Mη0 , decay constants or ratios
thereof. For observables with an analytically known
value (e.g. Mη=MK → 1, ϕ → arctan

ffiffiffi
2

p
) the parameter

O
∘
is replaced by the respective value.
The constants Ll;s;β are always free parameters and

determined from the fit. They are used to perform chiral
and continuum extrapolations, as well as to correct our
lattice data for unphysical values of the quark masses and
possibly lattice artifacts in plots, e.g. in the right panel of
Fig. 2. Note that the resulting point errors are highly
correlated. The Oða2Þ term ∼Lβ has been included to
parametrize the leading lattice artifact.
The actual observables O considered in our fits are listed

in Table IV together with the resulting fit parameters and
values for χ2=d:o:f:. Note that for the decay constant
parameters fl and fs we have to resort to fitting ratios
fl=fπ and fs=fk, which cancel most of the lattice artifacts
and ms-dependence (in case of fs) that otherwise prevents
reasonably fitting the above model.
The lattice results for the masses Mπ , MK, Mη and Mη0

are listed together with the mixing angle ϕ in Table III.
Additional information on the fits of the asymptotic form in
Eq. (22) to the data for the η, η0 principal correlators can be
found in the Appendix in Table XI. For Mη, Mη0 and the
mixing angle ϕ we find that the data are well described by
this fit ansatz. In particular the light quark mass dependence
for Mη, Mη0 is mild over the full range of available pion
masses, as can be seen in Fig. 2. However, the mass of the η
depends strongly on the strange quark mass, which is
expected from χPT. Therefore, we consider the ratio with
the kaon mass Mη=MK, which cancels most of the ms

dependence and assign a systematic error from the differ-
ence of the two central values. For the remaining observ-
ables we assess the uncertainty related to our fitting

1Note that the relative factor of 1=
ffiffiffi
2

p
in our definition

compared to Ref. [5] is due to a different normalization of the
pion decay constant fπ , i.e. 92 MeV vs 130 MeV (this work).
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procedure by performing a cut in the pion mass for the
data entering the fits. Including only ensembles with
Mπ < Mcut

π ¼ 390 MeV reduces the number of data
points in the fit from 17 to 11, which is still large enough
to obtain reliable fits. We assign a systematic uncertainty
to each observable from the difference to the central
values from a fit with the aforementioned pion mass
cut Mcut

π ¼ 390 MeV, that should reflect the uncertainty
related to the chiral extrapolation. Our final results for the η
and η0 masses at the physical point read:

Mphys
η ¼ 557ð11Þstatð03ÞχPT MeV; ð45Þ

Mphys
η0 ¼ 911ð64Þstatð03ÞχPT MeV; ð46Þ

where we have used the experimental values for Mπ

and MK to set the light and strange quark mass to their
physical values and the Sommer parameter r0 in Eq. (7) to
set the scale. Both results are in good agreement with
experiment and compatible with the previous result in

(a) (b)

FIG. 2. (a) Measured Mη (filled symbols) and M0
η (open symbols) as a function of the pion mass squared in units of r0. Errors on the

scale have not been propagated in the data point errors. (b) Combined leading order chiral and continuum extrapolation. Data are
corrected to physical value of ms and for Oða2Þ lattice artifacts using the parameters obtained from the leading order chiral fits. Point
errors are increased compared to left panel and highly correlated due to this correction. Conversion to physical units has been done using
the value of r0 in Eq. (7).

TABLE III. Lattice data for observables that are invariant under renormalization, i.e. mesons masses in lattice units and the mixing
angle ϕ. Note that the kaon mass has been computed only on a smaller subset of configurations, except for A80.24s, B55.32 and
D45.32sc. Errors are statistical only.

Ensemble aMπ aMK aMη aMη0 ϕ [deg]

A30.32 0.12384(53) 0.2511(07) 0.2807(20) 0.474(23) 51.0(2.6)
A40.32 0.14128(26) 0.2569(07) 0.2847(30) 0.444(12) 45.4(1.3)
A40.24 0.14520(40) 0.2590(09) 0.2859(20) 0.426(09) 47.0(1.0)
A60.24 0.17316(38) 0.2663(11) 0.2930(20) 0.448(11) 47.9(0.8)
A80.24 0.19922(30) 0.2779(08) 0.2945(20) 0.477(13) 50.7(1.0)
A100.24 0.22161(35) 0.2878(08) 0.3034(19) 0.454(10) 50.6(0.8)
A80.24s 0.19895(42) 0.2550(05) 0.2637(32) 0.447(19) 53.2(1.2)
A100.24s 0.22207(27) 0.2655(11) 0.2763(21) 0.462(11) 54.6(0.7)
B25.32 0.10708(32) 0.2130(06) 0.2373(16) 0.392(09) 47.4(1.1)
B35.32 0.12530(28) 0.2181(06) 0.2405(23) 0.390(11) 50.6(1.2)
B55.32 0.15567(17) 0.2288(02) 0.2481(08) 0.416(06) 49.5(0.5)
B75.32 0.18082(30) 0.2378(07) 0.2500(31) 0.402(12) 51.6(1.3)
B85.24 0.19299(58) 0.2459(26) 0.2493(45) 0.428(15) 54.7(1.6)
D15.48 0.06912(30) 0.1691(12) 0.1866(35) 0.298(17) 39.6(2.7)
D20.48 0.07870(26) 0.1732(03) 0.1872(50) 0.346(24) 38.1(3.2)
D30.48 0.09788(29) 0.1774(04) 0.1864(46) 0.319(25) 39.2(3.7)
D45.32sc 0.11847(54) 0.1747(04) 0.1897(19) 0.294(11) 46.1(1.8)

KONSTANTIN OTTNAD and CARSTEN URBACH PHYS. REV. D 97, 054508 (2018)

054508-8



Ref. [4]. The statistical errors are slightly increased
compared to the old results, which is due to the additional
degrees of freedom (d.o.f.) in the now fully consistent,
combined chiral and continuum fits.
As mentioned before, we have computed the ratio

Mη=MK to assess the uncertainty of the chiral and con-
tinuum extrapolation for the η mass. This ratio has indeed
been found to cancel most of the strange quark mass
dependence in Mη [4,16]. The combined leading order
chiral and continuum extrapolation to the physical point
using the fit ansatz in Eq. (43) yields

ðMη=MKÞphys ¼ 1.114ð31Þstat: ð47Þ

Plugging in the neutral kaon mass givesMη¼ 0.554ð15Þstat,
which confirms our result from the direct fit and extrapo-
lation of Mη. We point out that we use neutral meson
masses (Mexp

π0 , M
exp
K0

) to set the quark masses and define the
physical point, as we do not include electromagnetic effects
in our simulations. Using charged meson masses leads to an
ambiguity of a few MeV, which is still below the statistical
uncertainty even for Mη.
Regarding further systematics, we have checked for

residual excited state effects after replacing the connected
correlation functions by the ground state contributions. To
this end, we have varied the lower bound of the fit range

tη;η
0

1 . While this yields larger errors for increasing values of

tη;η
0

1 , the results typically agree even within the smaller

errors of the fits using tη;η
0

1 ¼ 2a. In particular, there is no
significant trend observed from this procedure. Besides, on
ensembles with sufficient statistics (e.g. B55.32) we find
agreement with results from solving the GEVP without
replacing the connected pieces by the ground state con-
tribution. Therefore, it is not possible to resolve any
additional excited state contamination within the present
statistical precision.

Similarly, we do not observe significant finite volume
effects in the current setup. While the pion and kaon masses
in Table III are in principle affected by finite volume effects
within their much higher statistical precision, these effects
are negligible for the final observables within the statistical
error. The remaining observables (i.e. Mη, Mη0 , ϕ, fl and
fs) are not sensitive to the finite lattice volume within
statistical errors. While the ensembles listed in Table I
cover different physical volumes as well as different values
of MπL, there are two dedicated ensembles (A40.24,
A40.32) which differ only by their volume, while other
physics related parameters are the same for these ensem-
bles. Again, the results on these two ensembles are found to
be compatible within errors.
In Fig. 3 we show results from the improved analysis for

the mixing angle ϕ in the quark flavor basis as defined in
Eq. (38). The blue band in both panels represents the chiral
extrapolation in M2

π in the continuum limit and at physical
strange quark mass as obtained from the fit model in
Eq. (43). While the data in the right panel has been
corrected also for the mismatch in the strange quark mass
and the continuum limit, the data in the left panel are shown
at finite values of the lattice spacing together with an error
band from the corresponding chiral extrapolation at fixed
lattice spacing. The final result for the mixing angle at
physical quark masses and in the continuum reads

ϕphys ¼ 38.8ð2.2Þstatð2.4Þ∘χPT; ð48Þ

in excellent agreement with results from phenomenology
[5,21,40–42]. We remark that the value quoted above is
lower by about three σ than what we found in Ref. [4]. The
reason for this discrepancy is that in Ref. [4] we were not
sensitive to lattice artifacts. Due to the improved analysis
and the additional ensembles, the a2 dependence can be
resolved now, which is responsible for a 6∘ decrease in the
central value.

TABLE IV. Final values of the parameters from chiral and continuum fits as defined in Eq. (43) for each observableO. For observables

with analytically known / trivial value in the chiral limit, the respective parameter ðrn0O
∘ Þm has been fixed to this value (values without

error) and is not a free parameter in the fit. For the decay constant ratios we include results for both renormalization methods, while all

other (invariant) results are for fits to data using Z fromM2. The values for the fit parameters of ϕ are obtained assuming that ϕ and ϕ
∘
are

given in radian measure. Additionally, we include the reduced χ2 values and d.o.f. Errors are statistical only.

O ðrn0O
∘ Þm Ll Ls Lβ χ2=d:o:f: d.o.f.

M2
η 0 0.280(30) 0.641(25) 3.0(2.4) 1.31 14

ðMη=MKÞ2 1 −0.158ð17Þ 0.094(24) 1.1(2.3) 1.99 14
M2

η0 4.1(1.0) 0.75(25) 0.22(35) 7.3(21.3) 1.35 13

ϕ arctan
ffiffiffi
2

p
0.091(14) −0.105ð12Þ 4.5(1.2) 1.35 14

fl=fπ (M1) 1.01(06) −0.010ð20Þ 0.015(20) −6.2ð1.4Þ 1.38 13
fl=fπ (M2) 0.96(10) −0.040ð21Þ 0.003(29) −1.2ð1.2Þ 1.39 13
fs=fK (M1) 1.231(60) −0.125ð15Þ 0.009(26) −2.6ð1.0Þ 1.45 13
fs=fK (M2) 1.080(54) −0.057ð18Þ 0.025(20) 1.6(1.0) 0.92 13
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In Fig. 4 we show the lattice data for the decay constant
parameters fl and fs for both choices of Z, i.e. the plots in
the left and right columns show data for Z from method M1
and M2, respectively. While fl is essentially unaffected by
the choice of renormalization, the impact on fS turns out to
be very significant. Although formally of Oða2Þ, the
difference from the choice of renormalization dominates
the results and would lead to substantial systematic
uncertainties in any attempt of a chiral and continuum
extrapolation. Moreover, fs is rather sensitive to the strange
quark mass, as can be inferred from comparing results for
ensembles A80.24, A100.24 with their counterparts
A80.24s and A100.24s, which have a lighter strange quark
mass. This is not surprising, because the matrix element in
Eq. (37) that determines fs is directly proportional to μs.
However, μs as defined in Eq. (5) itself depends explicitly
on Z. This seems to enhance the effect on fs of different
choices for Z. In fact, we cannot exclude that even terms of
higher order (e.g. a term ∼a2ms) are numerically large for a
chiral and continuum extrapolation of fs, hence it is not
reasonable to attempt a leading order fit.
We find that taking ratios instead of fitting fl, fs

individually allows to circumvent most of these issues
and greatly improve the quality of the fits. In particular, we
find that forming the ratio of fs with the kaon decay
constant fK leads to a milder dependence on the choice of Z
and it prevents extreme lattice artifacts as observed for fs
using Z from methodM1. This is immediately evident from
comparing the plots in Fig. 5, which shows results for the
ratio fs=fK for Z from both methods, with the correspond-
ing ones for fs in Fig. 4. Similarly, taking fl=fπ leads to

better fits than considering fl itself. Still, we find that
values for Z computed from method M2 result in generally
smaller cut-off effects compared to method M1, as can be
seen from the fitted values for Lβ in Table IV. Besides,
method M2 gives a somewhat better fit for fs=fK.
Therefore, we prefer to choose to use Z from method
M2 to compute the final results in our analysis.
In Table V we collect the lattice results for fl, fs, fl=fπ

and fs=fK from method M2 that enter the final fits.
Figure 6 shows the chiral and continuum fit to fl=fπ
and fs=fK together with the extrapolated lattice data,
which appear to be rather well described by the fit
ansatz. The final physical results for the decay constant
parameters read

ðfl=fπÞphys ¼ 0.960ð37Þstatð46ÞχPT or

fphysl ¼ 125ð5Þstatð6ÞχPT MeV; ð49Þ

ðfs=fKÞphys ¼ 1.143ð23Þstatð05ÞχPT or

fphyss ¼ 178ð4Þstatð1ÞχPT MeV; ð50Þ

where we have used the experimental values
fexpπ ¼ 130.50 MeV, fexpK ¼ 155.72 MeV to extract fl
and fs, respectively [43].
Plugging the physical values for Mη, Mη0 , fl, fs and ϕ

into Eqs. (39), (40) we can finally compute the η, η0 → γγ
decay widths, leading to

Γphys
η→γγ ¼ 0.71ð9Þstatð7ÞχPT keV; ð51Þ

(a) (b)

FIG. 3. (a) Mixing angle ϕ as a function of M2
π corrected to physical value of the strange quark mass using LO chiral extrapolation.

Physical value from full LO fit (see text). The extrapolations resulting from chiral fits at fixed lattice spacing and for physical strange
quark mass are shown as red, pink and gray error bands, corresponding to β-values of 1.90, 1.95 and 2.10, respectively. Blue error band
and solid line correspond to continuum limit extrapolation. (b) Same, but data also corrected for continuum limit. The SU(2)-chiral
extrapolation band is shown only for continuum limit and at physical strange quark mass.
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(a) (b)

(c) (d)

FIG. 4. (a, b) Lattice data for decay constant parameter fl in units of r0 using Z from renormalization method M1 (left panel) and M2
(right panel). Errors on the scale have not been propagated in the data point errors. (c, d) Same, but for fs.

(a) (b)

FIG. 5. (a) Lattice data for fs=fK using Z value from method M1. (b) Same but for Z from M2.
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Γphys
η0→γγ ¼ 4.4ð1.3Þstatð0.6ÞχPT keV: ð52Þ

The large statistical error for Γphys
η0→γγ is dominated by the

error on the η0 mass, which enters to third power in Eq. (40).
Figure 7 shows Γphys

η→γγ and Γphys
η0→γγ together with the

corresponding results at unphysical quark masses and finite
lattice spacing, computed on the individual ensembles.
Since Eqs. (39), (40) become rigorous only in the chiral

limit, it is expected that there should be corrections at finite
quark masses. Indeed, this is clearly observed for Γphys

η→γγ,
which scales strongly with ms and exhibits also a residual
light quark mass dependence. This might explain why the
result differs by more than 2σ from the PDG value Γexp

η→γγ ¼
0.52ð2Þ keV [43]. The situation is different for Γphys

η0→γγ,
which is essentially a constant in ml and ms, albeit with
larger point errors. In fact, the data is compatible with a
constant fit over the entire range in Mπ , confirming the

(a) (b)

FIG. 6. (a) Lattice data for fl=fπ which has been corrected for the mismatch of the strange quark mass and lattice artifacts from leading
order chiral fits. The physical value from the LO fit is shown together with a solid line and gray error band for the chiral extrapolation in
M2

π atms ¼ ms;phys and in the continuum limit. (b) Same but for fs=fK. The data in both panels has been generated using Z from method
M2. Errors are statistical only and highly correlated due to the correction for quark masses and the continuum limit.

TABLE V. Results for decay constants and ratios fl=fπ , fs=fK . The Z factors used at each β are the ones frommethodM2, cf. Table II.
Note that the kaon decay constant has been computed only on a smaller subset of configurations, except for A80.24s, B55.32 and
D45.32sc. Errors are statistical only.

Ensemble afπ afK afl afs fl=fπ fs=fK

A30.32 0.064 73(37) 0.0839(04) 0.0474(32) 0.0999(18) 0.732(49) 1.190(23)
A40.32 0.068 51(21) 0.0854(04) 0.0621(10) 0.1005(14) 0.906(14) 1.177(19)
A40.24 0.066 60(31) 0.0854(05) 0.0616(12) 0.0990(12) 0.925(17) 1.159(14)
A60.24 0.072 16(25) 0.0872(05) 0.0630(24) 0.1043(14) 0.872(34) 1.196(19)
A80.24 0.075 93(19) 0.0898(05) 0.0640(17) 0.1036(11) 0.842(23) 1.152(14)
A100.24 0.079 50(18) 0.0910(05) 0.0712(19) 0.1033(11) 0.895(24) 1.135(15)
A80.24s 0.078 48(25) 0.0888(02) 0.0664(37) 0.0999(12) 0.846(47) 1.125(13)
A100.24s 0.079 15(16) 0.0899(06) 0.0679(21) 0.1026(15) 0.858(26) 1.141(22)
B25.32 0.056 95(28) 0.0771(03) 0.0507(09) 0.0885(09) 0.890(15) 1.149(12)
B35.32 0.060 70(23) 0.0790(04) 0.0542(13) 0.0909(11) 0.893(20) 1.150(15)
B55.32 0.065 29(10) 0.0805(01) 0.0585(10) 0.0930(04) 0.896(15) 1.155(04)
B75.32 0.069 06(21) 0.0824(05) 0.0649(15) 0.0919(14) 0.939(21) 1.116(20)
B85.24 0.070 71(35) 0.0834(11) 0.0604(18) 0.0888(30) 0.854(26) 1.064(42)
D15.48 0.043 57(23) 0.0574(07) 0.0412(21) 0.0677(13) 0.947(48) 1.178(31)
D20.48 0.045 01(21) 0.0575(02) 0.0426(21) 0.0691(16) 0.947(46) 1.203(39)
D30.48 0.047 47(24) 0.0588(03) 0.0419(31) 0.0712(19) 0.883(65) 1.210(33)
D45.32sc 0.048 03(26) 0.0527(03) 0.0491(21) 0.0586(08) 1.021(41) 1.111(15)
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applicability of the formula at least for the η0. The result of
such a fit is Γphys

η0→γγ ¼ 5.5ð1.2Þstat keV with χ2=d:o:f: ¼
20.5=16. In any case, Γphys

η0→γγ is in agreement with the value

Γexp
η→γγ ¼ 4.4ð2Þ keV within its large error.
Similarly, for the transition form factors at large momen-

tum transfer in Eqs. (41), (42) we obtain

F̂phys
ηγγ� ¼ 155ð14Þstatð23ÞχPT MeV; ð53Þ

F̂phys
η0γγ� ¼ 277ð09Þstatð01ÞχPT MeV: ð54Þ

The much smaller relative statistical error for F̂η0γγ� is
caused by anticorrelation, which leads to cancellation of
statistical fluctuations in the sum of the two terms on the
r.h.s. of Eq. (42). In a similar way statistical fluctuations
are enhanced in the difference of terms for F̂ηγγ�, while the
absolute value of the result is smaller.
Nevertheless, even for F̂phys

ηγγ� the relative statistical
precision is better than 10%, whereas the systematic
uncertainty due to neglecting higher orders in the chiral
fits is clearly dominating. The situation seems slightly
better for F̂η0γγ�, but also in this case it is impossible to fully
assess the systematics arising due to the use of Eq. (42) in
the current setup. Therefore, any further improvement
beyond the current precision must be subject to a future,
dedicated study of η, η0 → γγ transition form factors, which
ultimately should allow to map out the momentum depend-
ence of the transition form factors as well. Still, our results
turn out to be in good agreement with a recent phenom-
enological determination employing a rational approximant
analysis in Refs. [41,42].

VI. SUMMARY

In this paper we have for the first time pre-
sented results for flavor singlet, pseudoscalar decay
constants using lattice QCD. Thanks to the gauge
ensembles with Nf ¼ 2þ 1þ 1 dynamical quarks pro-
vided by the ETMC Collaboration, we could study the
continuum and chiral extrapolations in a controlled way.
In particular, dedicated ensembles with varied bare
strange quark mass allow to resolve the strange quark
mass dependence.
For determining the decay constants fl and fs, we

had to rely on χPT in order to be able to extract them
from pseudoscalar matrix elements. This was necessary,
because the axial-vector matrix elements turned out to
be too noisy. While masses and mixing angle(s) are
independent of any renormalization constants, ZS and
ZP are needed for fl and fs, which have been
determined in two different ways in Ref. [31].
Depending on which way (M1 or M2) we follow we
observe large lattice artifacts in particular in fs. This we
understand, because in fs the strange quark mass
dependence is largest and the strange quark mass at
separate β-values is strongest influenced by the way the
renormalization constants are implemented. Therefore,
we decided to rely only on method M2 with signifi-
cantly smaller lattice artifacts.
Moreover, it turned out that the chiral extrapolation is

most conveniently performed by using ratios fs=fK and
fl=fπ . In those ratios most of the quark mass depend-
encies cancel out. Our final estimates for fl and fs are
in very good agreement to existing phenomenological
determinations [21]. Having fl and fs at hand we can

(a) (b)

FIG. 7. (a) Results for η → γγ decay widths using Z from method M2. (b) Same, but for η0. Final, physical values are obtained by
plugging in the physical extrapolated values for all the required quantities on the r.h.s. of Eqs. (39), (40).
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also—again relying on χPT—estimate η, η0 decay
widths. Within the large statistical uncertainties we
observe reasonable agreement to the PDG values.
Compared to Ref. [4], we have also updated the

results for Mη, Mη0 and the mixing angle ϕ in the quark
flavor basis. This update was necessary because we have
additional ensembles, more statistics and an improved
analysis available. The results are, however, compatible.
The somewhat larger difference in ϕ is—as mentioned
already before—due to the fact that we can now resolve the
lattice spacing dependence.
Currently, we are working on improving the signal

obtained from the axial-vector matrix elements. More-
over, we are working on extracting η and η0 directly at
the physical point. These steps should allow us to cross-
check the χPT formulae used in this paper and reduce the
corresponding systematic uncertainties.
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APPENDIX: SUPPLEMENTARY TABLES

In the following we collect tables containing addi-
tional results and information on the fits performed for
this study. Tables VI–X contain the value of the lower
bound of the fit ranges ½tij1 =a; ::; tij2 =a�, tij2 ¼ T=2 − 2a to
the quark-connected derivative correlators, which are
required for replacing them by the respective ground
state correlator. Each table corresponds to one matrix
elements as indicated in the captions by the indices
i; j ¼ 0;…; 2, which are used as a shorthand for labeling
the elements of the original 3 × 3 correlation function
matrix made from the operators in Eqs. (10), (11). For
technical reasons we perform the replacement of con-
nected contributions at this level, before applying the
ratio of renormalization factor Z and rotating to the final
operator basis given in Eqs. (12), (13) up to a factor ZP.
The charm quark operator is only dropped after this for the
actual calculation (i.e. before solving the GEVP), reducing
the problem to a 2 × 2 matrix. Note that only five out of
nine matrix elements involve a quark-connected contribu-
tion to the full correlator. These are the ones entirely made

up from either only light or only heavy quarks fields.
The contractions for matrix elements, which contain both
types of quarks yield only quark-disconnected diagrams.
In addition, we include the correlated, reduced χ2–values
(χ2=d:o:f:) for each fit, together with the corresponding
p-value and the value of the mass aMij

conn and its error,
which where used for the identification of the final plateau
from scanning different values of t1=a.

TABLE VI. Fit parameters and resulting masses with statistical
errors for ground-state fits to the quark-connected correlation
function on matrix element i ¼ j ¼ 0, i.e. hS3;tm

l ðtÞS3;tm
l ð0Þiconn.

Ensemble t001 =a ðχ2=d:o:f:Þ00 p-value aM00
conn

A30.32 18 1.31 0.214 0.2095(66)
A40.32 10 1.02 0.435 0.2301(21)
A40.24 9 0.94 0.501 0.2402(29)
A60.24 14 0.88 0.518 0.2488(58)
A80.24 15 1.34 0.235 0.2576(36)
A100.24 16 0.62 0.686 0.2851(34)
A80.24s 18 0.85 0.468 0.2510(78)
A100.24s 16 0.88 0.495 0.2774(35)
B25.32 11 0.96 0.507 0.1813(21)
B35.32 14 1.50 0.095 0.1907(21)
B55.32 19 0.93 0.504 0.2117(15)
B75.32 18 0.93 0.512 0.2350(21)
B85.24 13 1.21 0.289 0.2314(35)
D15.48 28 1.64 0.045 0.1108(34)
D20.48 27 2.17 0.003 0.1170(32)
D30.48 32 1.08 0.370 0.1275(40)
D45.32sc 21 0.89 0.528 0.1534(38)

TABLE VII. Fit parameters and resulting masses with
statistical errors for ground-state fits to the quark-connected
correlation function on matrix element i ¼ j ¼ 1, i.e.
hPþ;tm

h ðtÞPþ;tm
h ð0Þiconn.

Ensemble t111 =a χ2=d:o:f: p-value aM11
conn

A30.32 20 0.96 0.475 0.306 83(07)
A40.32 23 0.87 0.518 0.308 08(10)
A40.24 15 0.80 0.567 0.307 56(10)
A60.24 11 0.80 0.630 0.311 36(08)
A80.24 10 0.69 0.763 0.315 80(06)
A100.24 16 0.89 0.487 0.316 64(09)
A80.24s 14 2.15 0.035 0.271 59(10)
A100.24s 12 0.91 0.518 0.276 04(07)
B25.32 16 1.17 0.292 0.257 47(05)
B35.32 15 0.96 0.491 0.262 56(05)
B55.32 19 0.92 0.512 0.264 26(03)
B75.32 14 0.98 0.473 0.263 17(04)
B85.24 12 0.99 0.442 0.264 09(12)
D15.48 34 1.36 0.184 0.222 05(05)
D20.48 32 0.95 0.494 0.223 08(05)
D30.48 36 1.13 0.339 0.224 67(07)
D45.32sc 20 0.97 0.459 0.210 52(09)
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TABLE VIII. Fit parameters and resulting masses with stat-
istical errors for ground-state fits to the quark-connected
correlation function on matrix element i ¼ 1, j ¼ 2, i.e.
hPþ;tm

h ðtÞP−;tm
h ð0Þiconn.

Ensemble t121 =a χ2=d:o:f: p-value aM12
conn

A30.32 21 0.92 0.497 0.3068(08)
A40.32 23 1.00 0.425 0.3077(09)
A40.24 14 0.89 0.517 0.3079(09)
A60.24 11 1.42 0.163 0.3115(08)
A80.24 10 0.97 0.475 0.3161(06)
A100.24 16 0.89 0.485 0.3166(09)
A80.24s 16 2.34 0.039 0.2728(13)
A100.24s 17 0.88 0.474 0.2766(06)
B25.32 21 1.65 0.106 0.2579(08)
B35.32 15 0.94 0.512 0.2623(05)
B55.32 20 0.96 0.471 0.2642(03)
B75.32 24 0.87 0.502 0.2626(14)
B85.24 13 0.91 0.507 0.2643(13)
D15.48 33 1.47 0.127 0.2219(04)
D20.48 36 0.71 0.702 0.2247(06)
D30.48 36 0.88 0.540 0.2245(07)
D45.32sc 23 0.91 0.489 0.2092(15)

TABLE IX. Fit parameters and resulting masses with statis-
tical errors for ground-state fits to the quark-connected cor-
relation function on matrix element i ¼ 2, j ¼ 1, i.e.
hP−;tm

h ðtÞPþ;tm
h ð0Þiconn.

Ensemble t211 =a χ2=d:o:f: p-value aM21
conn

A30.32 24 0.71 0.618 0.3074(10)
A40.32 24 1.12 0.349 0.3088(10)
A40.24 16 0.81 0.542 0.3079(10)
A60.24 11 0.83 0.601 0.3116(07)
A80.24 11 1.21 0.279 0.3154(06)
A100.24 17 0.86 0.484 0.3162(10)
A80.24s 14 2.22 0.299 0.2719(09)
A100.24s 12 0.96 0.473 0.2759(06)
B25.32 17 1.56 0.971 0.2580(06)
B35.32 16 0.96 0.486 0.2626(04)
B55.32 19 0.81 0.620 0.2643(03)
B75.32 22 0.92 0.486 0.2622(08)
B85.24 12 1.22 0.279 0.2648(11)
D15.48 32 1.30 0.204 0.2222(03)
D20.48 34 0.96 0.479 0.2238(05)
D30.48 36 1.14 0.328 0.2248(06)
D45.32sc 23 0.86 0.527 0.2098(13)

TABLE X. Fit parameters and resulting masses with statistical
errors for ground-state fits to the quark-connected correlation
function on matrix element i ¼ j ¼ 2, i.e. hP−;tm

h ðtÞP−;tm
h

ð0Þiconn.
Ensemble t221 =a χ2=d:o:f: p-value aM22

conn

A30.32 20 0.95 0.477 0.306 80(08)
A40.32 24 0.76 0.578 0.308 90(10)
A40.24 15 0.91 0.490 0.308 34(09)
A60.24 18 0.30 0.825 0.312 21(19)
A80.24 18 0.37 0.774 0.314 63(13)
A100.24 12 0.92 0.506 0.317 42(05)
A80.24s 16 2.23 0.048 0.272 87(11)
A100.24s 14 1.01 0.425 0.276 22(08)
B25.32 21 1.93 0.506 0.257 92(07)
B35.32 23 0.88 0.511 0.260 89(09)
B55.32 21 0.91 0.503 0.264 14(03)
B75.32 23 0.83 0.548 0.262 05(10)
B85.24 12 1.06 0.388 0.264 89(11)
D15.48 33 1.41 0.154 0.222 19(04)
D20.48 36 0.72 0.692 0.224 86(06)
D30.48 36 0.87 0.555 0.224 60(06)
D45.32sc 24 0.66 0.657 0.209 32(16)

TABLE XI. Final fit ranges to η and η0 principal correlators
together with resulting χ2=d:o:f: an p-values. All fits start at

tη;η
0

1 ¼ 2a; see text.

Ensemble tη2=a tη
0
2 =a ðχ2=d:o:f.Þη ðχ2=d:o:f:Þη0 pη pη0

A30.32 14 8 0.92 0.96 0.518 0.443
A40.32 8 8 1.71 1.04 0.128 0.391
A40.24 9 14 2.03 1.41 0.058 0.163
A60.24 8 9 0.51 0.91 0.769 0.487
A80.24 10 13 0.88 0.87 0.525 0.559
A100.24 10 10 0.84 0.94 0.554 0.473
A80.24s 11 12 0.56 0.86 0.815 0.561
A100.24s 9 15 0.99 1.77 0.429 0.047
B25.32 13 8 0.94 0.84 0.495 0.518
B35.32 11 13 0.91 1.58 0.511 0.105
B55.32 8 8 0.69 0.83 0.628 0.529
B75.32 8 14 0.50 0.93 0.774 0.507
B85.24 9 8 0.86 1.27 0.521 0.272
D15.48 10 8 0.87 0.88 0.528 0.494
D20.48 9 8 0.88 0.64 0.506 0.666
D30.48 8 10 0.87 0.50 0.498 0.832
D45.32sc 11 9 0.44 0.34 0.897 0.915
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Table XI contains the upper bound for the final
fit ranges ½tη;η01 =a;…; tη;η

0
2 =a� to the η and η0 principal

correlators from solving the GEVP in Eq. (20). Besides,
the resulting correlated χ2=d:o:f: and p–values are given.

Finally, in Table XII we have included the numerical
data for the decay widths and transition form factors for
each ensemble, which have been used for Figs. 7 and 8,
respectively.

TABLE XII. Data for the decay widths computed from Eqs. (39), (40) and the transition form factors in the large
momentum limit as given in Eqs. (41), (42). Result are obtained using Z factors from method M2, cf. Table II. Errors
are statistical only.

Ensemble aΓη→γγ · 107 aΓη0→γγ · 106 aF̂ηγγ� aF̂η0γγ�

A30.32 3.65(45) 5.5(1.6) 0.015(09) 0.1293(55)
A40.32 2.90(23) 2.4(0.2) 0.053(03) 0.1518(21)
A40.24 2.63(19) 2.3(0.2) 0.047(03) 0.1522(23)
A60.24 2.62(18) 2.6(0.4) 0.045(06) 0.1576(40)
A80.24 2.24(16) 3.1(0.4) 0.041(04) 0.1608(32)
A100.24 1.83(14) 2.3(0.2) 0.051(04) 0.1741(37)
A80.24s 1.23(17) 2.5(0.6) 0.040(06) 0.1654(70)
A100.24s 1.16(11) 2.8(0.3) 0.034(03) 0.1707(42)
B25.32 2.29(15) 2.6(0.3) 0.035(03) 0.1285(17)
B35.32 1.70(15) 2.4(0.3) 0.032(03) 0.1376(24)
B55.32 1.67(06) 2.5(0.2) 0.040(02) 0.1457(16)
B75.32 1.15(12) 1.9(0.2) 0.045(03) 0.1583(28)
B85.24 1.08(16) 2.8(0.4) 0.033(04) 0.1507(39)
D15.48 2.38(25) 1.4(0.5) 0.044(08) 0.0975(23)
D20.48 2.26(28) 2.1(0.8) 0.046(09) 0.1003(25)
D30.48 2.21(34) 1.7(0.9) 0.042(12) 0.1012(31)
D45.32sc 1.12(11) 1.2(0.3) 0.051(05) 0.1109(32)

(a) (b)

FIG. 8. (a) Results for the η → γγ transition form factor behavior at large Q2 using Z from method M2. (b) Same, but for η0.
Extrapolated (physical) values are obtained by plugging in our physical results for all the required quantities on the r.h.s. of
Eqs. (39), (40).
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