
 

Topological charge and cooling scales in pure SU(2) lattice gauge theory
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Using Monte Carlo simulations with overrelaxation, we have equilibrated lattices up to β ¼ 2.928, size
604, for pure SU(2) lattice gauge theory with the Wilson action. We calculate topological charges with the
standard cooling method and find that they become more reliable with increasing β values and lattice sizes.
Continuum limit estimates of the topological susceptibility χ are obtained of which we favor
χ1/4/Tc ¼ 0.643ð12Þ, where Tc is the SU(2) deconfinement temperature. Differences between cooling
length scales in different topological sectors turn out to be too small to be detectable within our statistical
errors.
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I. INTRODUCTION

Since Lüscher proposed the gradient flow method [1],
the topic of scale setting has received increased attention.
See, for instance, the review [2]. In [3] Bonati and D’Elia
suggested replacing the gradient flow by the computation-
ally more efficient standard cooling flow [4] and supported
this idea with numerical evidence for pure SU(3) lattice
gauge theory (LGT). In a recent large statistics study of
pure SU(2) LGT [5], we investigated the approach to the
continuum limit for six gradient and six cooling scales.
They are distinguished by the use of three different energy
operators and two different ways of setting the initial
scaling to agree with the deconfining scale on small lattices.
We studied systematic errors of scale setting which,
although they are only about 1% for our largest lattices
at β ≈ 2.9 (2% at β ≈ 2.6), dominate the statistical errors.
Quantitatively gradient and cooling scales worked equally
well, with differences between the six scales within the
cooling and within the gradient group larger than
differences between corresponding scales of the two
groups. See [6] for a summary.
Using cooling we also calculated the topological charge

Q on each of our configurations and showed that our
charges of subsequent configurations are statistically in-
dependent. This was only done for the cooling flow as it
takes less than 1/34 of the CPU time needed for the
corresponding gradient flow, while the equivalence of these
scales was already demonstrated in [5]. Here we supple-
ment our previous publication by presenting details of our

calculations of Q, and adding a considerable number of
additional lattices at large β so that we can estimate finite
size corrections of the topological susceptibility, and come
up with a continuum limit extrapolation.
We investigate whether there are noticeable differences

in cooling scales when we restrict them to fixed topological
sectors. Although fixed topological sectors imply for local
operators only a bias of order 1/V [7,8], getting trapped in a
topological charge sector has often been a reason of
concern. For instance, Lüscher and Schaefer [9] proposed
to bypass the problem by imposing open boundary con-
ditions in one of the lattice directions. Recently Lüscher
[10] emphasized that master-field configurations on very
large lattices would alleviate topological freezing. We find
that the lattices used in our SU(2) investigation are so large
that the 1/V effects due to topological freezing are
swallowed by statistical errors.
In the next section we discuss our data for the topological

charge. In Sec. III we present cooling scales and our
continuum extrapolation of the topological susceptibility.
In Sec. IV we search for correlations of topological charge
sectors with differences in the considered cooling scales.
Summary and conclusions are given in Sec. V.

II. TOPOLOGICAL CHARGE

The continuum equation of the topological charge,

Q ¼ g2

16π2

Z
d4xTr �FμνFμν; ð1Þ

where �F is the dual field strength tensor, translates on the
lattice to the discretization

QL ¼
X
n

qLðnÞ; ð2Þ
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where the sum is over all lattice sites and

qLðnÞ ¼ −
1

29π2
X�4

μνρσ¼�1

ϵ̃μνρσTrU□
μνðnÞU□

ρσðnÞ: ð3Þ

Here ϵ̃ ¼ ϵ for positive indices while ϵ̃μνρσ ¼ −ϵ̃ð−μÞνρσ for
negative indices.
Measurements of this quantity on MC-generated lattice

configurations suffer from lattice artifacts, which we sup-
pressed by cooling. A SU(2) cooling step minimizes the
action locally by replacing a link variable UμðxÞ by a
function of the staple matrix U⊔

μ ðxÞ:

UμðxÞ → U0
μðxÞ≡ U⊔

μ ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detU⊔

μ ðxÞ
p : ð4Þ

After sufficiently many cooling sweeps one may reach (and
does on large enough lattices) metastable configurations to
which a topological charge can be assigned. Picking a
suitable number mc of cooling sweeps, the obtained charge
values still suffer from discretization errors, which can be
absorbed by multiplicative normalization constants NL,
replacing Qmc

L by

Qmc ¼ Nmc
L Qmc

L ; Qmc
0 ¼ nintðQmcÞ; ð5Þ

where nint stands for nearest integer and we calculate the
constants Nmc

L following the procedure most clearly
explained in Ref. [3] and there attributed to [11]. We
minimize the equation

X
conf

fNmc
L Qmc

L ðconfÞ − nint½Nmc
L Qmc

L ðconfÞ�g2; ð6Þ

where the sum is over all configurations for a fixed lattice
size and β value. The integer values Qmc

0 protect the thus
defined topological charge against renormalization.
All our lattices are of size N4. Table I gives an overview

of our largest lattices at the β values for which we
calculated the topological charge distribution. For each

parameter value we generated 128 configurations separated
by a sufficiently large number of Monte Carlo overrelax-
ation (MCOR) sweeps so that they are effectively sta-
tistically independent. Each MCOR update consists of one
heatbath followed by two overrelaxation updates. For
lattice sizes up to 524 the statistics is the one of
Ref. [5]. For our new, largest lattice, 604 at β ¼ 2.928,
lattice configurations are separated by 3 × 212 MCOR
sweeps after 215 sweeps for equilibration.
On each lattice configuration we performed 2048 cool-

ing sweeps and applied the minimization (6) with the
charges defined at mc ¼ 100, mc ¼ 1000, and mc ¼ 2048.
The corresponding multiplicative constants Nmc

L amount to
corrections in the range from up to 26% down to about 10%
for our largest lattices and β values, where there is also little
mc dependence of N

mc
L . Subsequently, we considered plots

of the 3 × 128 time series for the topological charge that we
created for the different mc values. For mc ¼ 2048 exam-
ples of these plots for increasing β values and lattice sizes
are shown in Figs. 1, 2, 3, 4. We plot Q2048ðicÞ, ic number
of cooling sweeps, instead of the integer valued charges
Q2048

0 ðicÞ, because the latter would obscure how good the
mapping on integer values really is. Apart from that, using
the integer valuesQmc

0 ðicÞ in our subsequent analysis would
lead to the same conclusions.
As discussed in [12], when approaching the continuum

limit the topological charge has to be defined at a fixed,

TABLE I. Overview of our largest N4 lattices at fixed β values.

N β N100
L N1000

L N2048
L

jQ2048
max

ð1000Þj
%

stable
jQ2048

max
ð2048Þj

16 2.300 1.202 1.178 1.155 6 61.7 3
28 2.430 1.258 1.128 1.129 15 60.9 13
28 2.510 1.148 1.127 1.124 14 66.4 10
40 2.574 1.159 1.117 1.113 17 58.6 16
40 2.620 1.135 1.111 1.110 13 78.1 12
40 2.670 1.131 1.110 1.108 10 83.6 10
40 2.710 1.131 1.107 1.105 7 87.5 7
40 2.751 1.113 1.108 1.108 8 94.5 8
44 2.816 1.111 1.105 1.101 7 89.1 7
52 2.875 1.112 1.100 1.098 7 96.9 6
60 2.928 1.106 1.107 1.097 5 96.1 5
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FIG. 1. 164, β ¼ 2.3: Cooling time series Q2048ðicÞ.
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FIG. 2. 284, β ¼ 2.51: Cooling time series Q2048ðicÞ.
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large enough number nc of cooling sweeps. This number
can agree with the number mc used for the minimization
(6), but needs not necessarily be identical. So our charges
have two labels:

Q ¼ QmcðncÞ: ð7Þ
For our first two figures a good choice of nc appears not to
exist, because there are a considerable number of transitions
between topological sectors over the entire times series range
considered, and for the 164 lattice the ultimate topological
sectorQ ¼ 0 is approached all theway. In contrast to that we
find for Figs. 3 and 4 over a large range of nc values, certainly

including nc ¼ 1000, only few transitions. Also the removal
of dislocations by an initial number of cooling of sweeps
becomes easier for increasing β. Metastable configurations
are not only more stable than at lower β values, but are also
reached earlier. In the%stable columnofTable Iwe report the
stability of charge sectors under the next 1048 cooling sweeps
after nc ¼ 1000. Starting from about β ¼ 2.574we see, up to
statistical fluctuations, a gradually improving trend with
increasing β. If one desires that roughly 90% of configura-
tions are metastable, we must require β ≳ 2.75 and lattices
large enough to accommodate physical instantons (their size
increases proportionally to our length scales of [5], to which
the largest lattice sizes are already adjusted).
The number nc ¼ 1000 is considerably larger than what

we would have expected from previous literature. For
instance, in Fig. 3 of [3] the topological charge on a 204

SU(3) lattice at β ¼ 6.2 is defined after 21 cooling sweeps.
This led us in [5] to work with nc ¼ 100 to define Qnc . For
the purpose of checking the statistical independence of our
configurations this is still sufficient, because including
some dislocations adds only some statistical noise to the
charge correlations. Early SU(2) investigations were per-
formed for such small β values and lattice sizes [13,14] that
only qualitative insights could be obtained, as already noted
in the paper by Teper [13].
We checked that our Q2048ð1000Þ charges are sta-

tistically independent, and that their charge distribution
is symmetric under Q2048ð1000Þ → −Q2048ð1000Þ within
statistical errors. For the lattices of Table I histograms of
jQ2048ð1000Þj are compiled in Table II. Table I also
compares the largest value of jQ2048ð1000Þjwith the largest
value of jQ2048ð2048Þj, and the jQ2048

max j values become quite
stable for β ≥ 2.574.

III. COOLING SCALES AND TOPOLOGICAL
SUSCEPTIBILITY

To investigate the scaling behavior of the topological
susceptibility, we have considerably extended our previous
statistics by adding a new 604 lattice at β ¼ 2.928 and
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FIG. 3. 404, β ¼ 2.751: Cooling time series Q2048ðicÞ.
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FIG. 4. 604, β ¼ 2.928: Cooling time series Q2048ðicÞ.

TABLE II. Histograms of jQ2048ð1000Þj for the β values and lattices of Table I.

β 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17

2.300 57 4 36 20 6 4 1 0 0 0 0 0 0 0 0 0 0
2.430 6 22 15 15 22 10 10 5 7 7 2 2 1 2 0 2 0
2.510 11 21 17 23 19 17 7 3 1 5 2 1 0 0 1 0 0
2.574 11 12 19 14 14 12 10 12 5 2 5 6 3 0 2 0 1
2.620 13 18 23 19 13 13 7 5 2 3 5 3 3 1 0 0 0
2.670 12 28 31 11 15 12 9 3 3 3 1 0 0 0 0 0 0
2.710 20 30 33 23 11 7 3 1 0 0 0 0 0 0 0 0 0
2.751 28 37 31 16 11 1 2 1 1 0 0 0 0 0 0 0 0
2.816 24 42 32 18 9 1 1 1 0 0 0 0 0 0 0 0 0
2.875 29 40 27 24 5 2 0 1 0 0 0 0 0 0 0 0 0
2.928 26 49 30 12 10 1 0 0 0 0 0 0 0 0 0 0 0
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smaller lattices at each β value. Results for the cooling
length scales are discussed in the next subsection followed
by an analysis of the topological susceptibility in Sec. III B.

A. Cooling length scales

Data for the cooling length scales are compiled in
Tables III and IV. For the convenience of the reader we
include for each β value the largest lattice, although they
can already be found in [5], with the exception of 604 at
β ¼ 2.928. The 284 lattices at β ¼ 2.620 and β ¼ 2.670 are
also from [5]. All other lattices are from new simulations.
For them we did not calculate the gradient length scales,
because the gradient flow takes at least 34 times more CPU
time than the cooling flow.
Following [5] we use for the calculation of the length

scales three definitions of the energy density: E0ðtÞ, E1ðtÞ,
and E4ðtÞ. E0ðtÞ is theWilson action up to a constant factor,
E1ðtÞ is the sum of the squared Pauli matrices of the
plaquette variables, and E4ðtÞ is Lüscher’s [1] energy
density which averages over the four plaquettes attached
to each site n in a fixed μν, μ ≠ ν plane. The functions

yiðtÞ ¼ t2EiðtÞ; ði ¼ 0; 1; 4Þ ð8Þ

are used to set up three cooling scales by choosing
appropriate fixed target values y0i and performing cooling
steps (4) until y0i ¼ ðt0i Þ2Eiðt0i Þ is reached. As a function of
β, the observable

s0i ðβÞ ¼
ffiffiffiffiffiffiffiffiffiffi
t0i ðβÞ

q
ð9Þ

then scales like a length.
There is some ambiguity in the choice of target values. In

[5] they are chosen so that either (superscripts 01) initial
estimates of the scales s010 and s011 (they give almost
identical values) agree with the deconfinement scaling
from β ≈ 2.3 on a 4 × 83 lattice to β ≈ 2.44 on a 6 × 123

lattice, or so that (superscripts 02) s024 agrees. This leads to
two possible values per energy observable, i.e., a total of six
targets:

y010 ¼ 0.0440; y011 ¼ 0.0430; y014 ¼ 0.0350; ð10Þ

TABLE III. Cooling length scales for the y01i set. The � denotes
lattices that are too small to be used for finite size fits. TVNR
stands for “target value not reached”.

β N L7 ¼ s010 L8 ¼ s011 L9 ¼ s014
2.300 16 1.3433(24) 1.3385(23) 1.2575(74)
2.430 28 2.0892(28) 2.0707(28) 1.9446(95)
2.510 28 2.7522(68) 2.7267(66) 2.548(15)
2.574� 16 3.512(48) 3.478(47) 3.309(48)
2.574 28 3.422(13) 3.390(13) 3.168(18)
2.574 40 3.4048(69) 3.3730(67) 3.137(17)
2.620� 16 4.55(14) 4.50(26) 4.28(12)
2.620 28 3.9752(19) 3.915(19) 3.690(24)
2.620 40 3.9509(95) 3.913(93) 3.645(22)
2.670� 16 6.28(36) 6.23(36) 5.88(38)
2.670 28 4.676(32) 4.631(31) 4.314(39)
2.670 40 4.618(17) 4.574(16) 4.298(26)
2.710� 16 8.03(76) 7.96(80) 7.67(1.3)
2.710 28 5.232(41) 5.184(40) 4.829(47)
2.710 40 5.203(21) 5.154(21) 4.794(28)
2.751� 16 TVNR TVNR TVNR
2.751 28 5.880(82) 5.824(78) 5.487(74)
2.751 40 5.913(32) 5.857(32) 5.434(40)
2.816 28 8.247(27) 8.167(26) 7.561(25)
2.816 40 7.089(58) 7.021(58) 6.517(68)
2.816 44 7.105(45) 7.039(45) 6.511(55)
2.875� 28 12.84(84) 12.06(83) 11.70(84)
2.875 40 8.55(11) 8.464(10) 7.885(97)
2.875 44 8.637(93) 8.554(92) 7.912(89)
2.875 52 8.514(60) 8.433(59) 7.825(68)
2.928� 28 16.3(1.8) 16.2(1.8) 14.8(1.7)
2.928 40 10.90(30) 10.79(29) 9.89(27)
2.928 44 10.01(16) 9.92(16) 9.18(14)
2.928 52 9.940(88) 9.846(87) 9.112(93)
2.928 60 9.835(67) 9.742(66) 9.053(70)

TABLE IV. Cooling length scales for the y02i set. The � denotes
lattices that are too small to be used for finite size fits. TVNR
stands for “target value not reached”.

β N L10 ¼ s020 L11 ¼ s021 L12 ¼ s024
2.300 16 1.8307(39) 1.8282(39) 1.728(10)
2.430 28 2.7317(43) 2.7212(42) 2.565(12)
2.510 28 3.552(10) 3.5371(99) 3.315(18)
2.574 16 4.550(69) 4.529(65) 4.323(71)
2.574 28 4.405(20) 4.386(29) 4.123(25)
2.574 40 4.377(11) 4.358(10) 4.074(20)
2.620� 16 5.82(17) 5.80(17) 5.58(17)
2.620 28 5.104(31) 5.082(31) 4.787(35)
2.620 40 5.068(15) 5.045(15) 4.725(26)
2.670 16 7.92(54) 7.89(54) 7.57(53)
2.670 28 6.021(46) 5.993(46) 5.603(58)
2.670 40 5.910(25) 5.884(25) 5.536(33)
2.710� 16 9.88(2.3) 9.86(2.3) 9.72(2.1)
2.710 28 6.675(58) 6.645(57) 6.228(67)
2.710 40 6.656(31) 6.626(30) 6.188(38)
2.751� 16 TVNR TVNR TVNR
2.751 28 7.55(13) 7.52(13) 7.07(11)
2.751 40 7.576(46) 7.541(46) 7.038(54)
2.816 28 10.48(35) 10.44(35) 9.72(34)
2.816 40 9.076(84) 9.034(84) 8.426(92)
2.816 44 9.056(65) 9.015(64) 8.349(73)
2.875� 28 14.66(92) 14.62(92) 14.26(96)
2.875 40 10.98(16) 10.93(16) 10.21(16)
2.875 44 11.11(15) 11.06(15) 10.29(15)
2.875 52 10.879(87) 10.830(86) 10.122(92)
2.928� 28 20.3(2.3) 20.0(2.3) 17.4(2.0)
2.928 40 13.99(42) 13.92(42) 12.87(40)
2.928 44 12.78(23) 12.72(23) 11.82(21)
2.928 52 12.72(13) 12.67(13) 11.76(13)
2.928 60 12.561(97) 12.503(96) 11.653(95)
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y020 ¼ 0.0822; y021 ¼ 0.0812; y024 ¼ 0.0656: ð11Þ

The numeration of the scales as L7 to L12 follows the
convention of [5], where L1 to L6 are the corresponding
gradient scales.

B. Topological susceptibility

At each β and lattice size, we calculated the topological
susceptibility

χ ¼ 1

n
1

N4

Xn
i¼1

hQ2
i i; ð12Þ

where the sum runs over our n ¼ 128 configurations at two
fixed (mc, nc) values,

nc ¼ mc ¼ 100 and nc ¼ mc ¼ 1000: ð13Þ

Results for χ1/4 with jackknife error bars are given in
Table V. For β → ∞ the product of χ1/4 with one of our
cooling length scales should approach a constant up to a2

corrections (a lattice spacing). As in Figs. 7, 8 and 10 of
Ref. [5] we choose the L10 length scale as our reference and
report in Table Vestimates of L10χ

1/4. The quantities cannot
simply be obtained by multiplying the L10 values of
Table IV with the χ1/4 estimates of Table V and using
error propagation, because their values come from the same
configurations. Instead 128 jackknife bins were calculated
for the product L10χ

1/4 at each fixed lattice size and β value.
The given error bars are from these jackknife bins.
Figure 5 shows the time evolution of L10χ

1/4 for the same
lattice sizes and β values that we used to exhibit the time
evolution of the topological charge in Figs. 1–4. There are
three almost constant lines near the top of Fig. 5: A red line
and two blue lines that fall practically on top of one another.
The red line and one of the blue lines belong to the 604

lattice at β ¼ 2.928 used for Fig. 4. Red curves are to be
read using the bottom abscissa with error bars plotted every
100 cooling sweeps, while blue curves are to be read using
the top abscissa with error bars plotted every 10 sweeps.
For the 604 lattice the blue line stays constant and the red
line continues this out to 2048 cooling sweeps.
We do not include the cooling time series for the 404

lattice at β ¼ 2.751 in Fig. 5, because they fall on top of the
time series of the 604 lattice at β ¼ 2.928.
Next we consider L10χ

1/4 from the 284 lattice at β ¼ 2.51
under cooling, given by the topmost, decreasing red curve.
As one may have expected from the time evolution of the
topological charge in Fig. 2, its susceptibility decreases
monotonically. However, the behavior of the scale during
the first 200 cooling sweeps comes as a surprise. It is given
by a second blue line that falls almost on top of the blue line
for L10χ

1/4 from the 604 lattice at β ¼ 2.928. In Fig. 2 there
are many transitions between topological sectors in this

range. So, an almost constant topological susceptibility is
only possible when the transitions that increase the topo-
logical charge are, within statistical errors, matched by
those that decrease it. An enhancement of the first 200

TABLE V. Topological susceptibility defined after 1000 and
100 cooling sweeps respectively. The � denotes lattices that are
too small to be used.

1000 100
β N χ1/4 L10χ

1/4 χ1/4 L10χ
1/4

2.300 16 0.0903(28) 0.1654(52) 0.1231(35) 0.2253(64)
2.430 28 0.0834(27) 0.2276(72) 0.1023(33) 0.2790(89)
2.510 28 0.0744(25) 0.2642(86) 0.0821(26) 0.2917(90)
2.574� 16 0.0510(37) 0.232(16) 0.0667(21) 0.3033(82)
2.574 28 0.0601(18) 0.2647(77) 0.0653(26) 0.288(11)
2.574 40 0.0609(19) 0.2666(80) 0.0677(21) 0.2963(92)
2.620� 16 0.0291(32) 0.169(17) 0.0562(20) 0.3272(63)
2.620 28 0.0537(16) 0.2740(76) 0.0570(16) 0.2912(79)
2.620 40 0.0557(19) 0.2821(93) 0.0582(19) 0.2950(94)
2.670� 16 0.026(26) 0.21(21) 0.0419(25) 0.332(13)
2.670 28 0.0467(15) 0.2811(81) 0.0477(15) 0.2873(83)
2.670 40 0.0484(16) 0.2860(90) 0.0511(17) 0.3020(96)
2.710� 16 0 0 0.0345(25) 0.341(75)
2.710 28 0.0444(16) 0.2966(97) 0.0460(17) 0.307(11)
2.710 40 0.0404(12) 0.2692(77) 0.0416(13) 0.2772(82)
2.751 28 0.0387(15) 0.2925(96) 0.0399(16) 0.3010(98)
2.751 40 0.0381(15) 0.286(11) 0.0385(15) 0.290(11)
2.816 28 0.0305(15) 0.3195(97) 0.0327(18) 0.343(14)
2.816 40 0.0324(12) 0.294(10) 0.0328(12) 0.298(10)
2.816 44 0.0332(12) 0.3010(96) 0.0336(12) 0.3045(96)
2.875� 28 0.0227(16) 0.333(12) 0.0390(17) 0.3512(94)
2.875 40 0.02748(89) 0.3017(87) 0.02800(96) 0.3074(93)
2.875 44 0.02681(92) 0.2980(92) 0.0270(11) 0.300(11)
2.875 52 0.02760(92) 0.3002(97) 0.02822(93) 0.3070(97)
2.928� 28 0.0173(17) 0.345(12) 0.0173(17) 0.345(14)
2.928 40 0.0235(11) 0.3287(97) 0.0235(11) 0.3286(98)
2.928 44 0.02492(77) 0.3185(75) 0.02534(85) 0.3239(84)
2.928 52 0.02359(81) 0.3002(94) 0.02360(80) 0.3003(93)
2.928 60 0.02297(70) 0.2885(84) 0.02313(72) 0.2906(87)
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cooling sweeps of Fig. 2 confirms this scenario. Notably,
even in the range of less than 200 cooling sweeps L10χ

1/4

scales then already very well as a constant all the way from
β ¼ 2.51 to β ¼ 2.928.
The lowest blue and red curves correspond to the 164

lattice at β ¼ 2.3 that was used for Fig. 1. Both curves are
now monotonically decreasing and demonstrate that β ¼
2.3 is too small to provide a reliable estimate of the
topological susceptibility.
Let us now discuss scaling and continuum limit extrapo-

lation of χ1/4. For this purpose we combine the results for
L10χ

1/4 at fixed β but different N using two-parameter fits,

L10χ
1/4ðβ; NÞ ¼ a1 þ

a2
N4

; ð14Þ

where a1 serves as an estimator for L10χ
1/4ðβÞ.

The lattices with � in the first column of Tables III, IV
and V turned out to be too small to deliver reliable data and
are therefore not included in these fits. For instance, as
reported in Table V, at β ¼ 2.71 the topological suscep-
tibility is zero at nc ¼ 1000 for the 164 lattice, implying
that the topological charge is zero on each of our 128
configurations. Also the cooling scale breaks down at high
β values when the lattice sizes are too small. For the 164

lattice this happens for β ≥ 2.751, and is illustrated in
Fig. 6. The trajectories for the 404 and the 284 lattice fall
nicely on top of one another, so that in the figure only the
color of the second drawn trajectory is left over. However
for the 164 lattice, the trajectory fails to take off, so that the
y020 ¼ 0.0822 target value (11) for L10 is never reached.
Carrying out the fit (14) on the remaining lattices yields

results consistent with the fitting form. In particular, in
order of β ¼ 2.928, 2.875 and 2.816, the goodness of fit is
q ¼ 0.92, 0.78 and 0.48 for nc ¼ 1000, and q ¼ 0.72, 0.57
and 0.40 for nc ¼ 100. For β ¼ 2.751, 2.71, 2.67, 2.62 and
2.574 we performed two-parameter fits with only two
lattices so that there are no q-values to report. For β ¼ 2.51,
2.43 and 2.3 the result from the single lattice listed in
Table V is taken in each case.

In Fig. 7 we show different fits of the thus obtained data.
Using the L10χ

1/4 estimates down to β ¼ 2.3, linear fits to
a2 scaling corrections given by 1/ðL10Þ2 are shown in the
upper part of the figure along with their error bar ranges,
while the lower part shows an enhancement. The con-
tinuum limit extrapolations are

L10χ
1/4¼ 0.2882ð46Þ; q¼ 0.43 for nc ¼ 1000; ð15Þ

L10χ
1/4¼ 0.2961ð49Þ; q¼ 0.05 for nc ¼ 100: ð16Þ

Although the fits to a2 scaling corrections work well, one
may question whether the L10χ

1/4 results at β ¼ 2.3 and
2.43 and to some extent also at β ¼ 2.51 and 2.574 are
really reliable. In short, one could argue in favor or against
taking out all β values for which the susceptibility after
nc ¼ 100 cooling sweeps is significantly larger than after
nc ¼ 1000 cooling sweeps. Taking them out and fitting the
remaining points to L10χ

1/4 ¼ constant, one obtains the
estimates

L10χ
1/4 ¼ 0.2799ð51Þ; q¼ 0.36 for nc ¼ 1000; ð17Þ

L10χ
1/4¼ 0.2844ð54Þ; q¼ 0.25 for nc ¼ 100: ð18Þ

To avoid overloading Fig. 7, the fit to a constant is only
indicated for nc ¼ 1000 in the upper part of the figure.
Averaging Eq. (15) with (17), and Eq. (16) with (18), we

obtain

L10χ
1/4 ¼ 0.2841ð49Þ for nc ¼ 1000; ð19Þ

L10χ
1/4 ¼ 0.2903ð52Þ for nc ¼ 100: ð20Þ

To relate χ1/4 to physical scales, we use from Table IX of
Ref. [5] the relation 1/Tc ¼ ð2.2618� 0.0042ÞL10, where
Tc is the SU(2) deconfinement temperature in lattice units.
Propagating the statistical errors, we obtain from Eqs. (19)
and (20)
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χ1/4/Tc ¼ 0.643ð12Þ for nc ¼ 1000; ð21Þ

χ1/4/Tc ¼ 0.657ð12Þ for nc ¼ 100: ð22Þ

In the literature χ1/4 for SU(2) LGT has been reported in
units of the string tension

ffiffiffi
σ

p
. The most accurate estimate

of Tc/
ffiffiffi
σ

p
appears to be Tc/

ffiffiffi
σ

p ¼ 0.7091ð36Þ from
Ref. [15], which is consistent with the earlier value
Tc/

ffiffiffi
σ

p ¼ 0.69ð2Þ [16]. Using the former and error propa-
gation our estimates (21) and (22) convert to

χ1/4/
ffiffiffi
σ

p ¼ 0.4557ð83Þ for nc ¼ 1000; ð23Þ

χ1/4/
ffiffiffi
σ

p ¼ 0.4655ð88Þ for nc ¼ 100: ð24Þ

In Table VI we compile estimates of the literature. The last
two columns report Gaussian difference tests obtained by
comparing with our estimates (23) and (24). Both of our
estimates are lower than each of the others, but this is not
surprising since the value for the topological susceptibility
goes down with increasing nc. Our nc ¼ 100 estimate of
χ1/4/

ffiffiffi
σ

p
is statistically already consistent with all but one of

the literature. That does not mean that it is a better estimate
than that at nc ¼ 1000. Because the previous literature
relied on rather small lattice sizes and β values for which

only small nc can be used. It may well be that nc ¼ 100 is
too small, and we suggest that our nc ¼ 1000 results (21)
and (23) are the best. Although there is a danger of
destroying real instantons when the value of nc is taken
too large, there is no evidence for that happening in Fig. 3
or Fig. 4.

IV. SCALES IN TOPOLOGICAL SECTORS

For β ≥ 2.71 we calculated cooling scales on the
largest lattice in the topological sectors Q1000 ≤ −2,
Q1000 ¼ −1, Q1000 ¼ 0, Q1000 ¼ 1 and Q1000 ≥ 2, and
performed student difference tests of each scale with
itself on distinct topological sectors. No statistically
significant discrepancies are encountered. In particular
there are none when comparing the Q1000 < 0 with the
Q1000 > 0 scales. To increase the statistics for the
jQ1000j ≠ 0 sectors, we combined them into jQ1000j ¼ 1

and jQ1000j ≥ 2. Together with the scales for Q1000 ¼ 0
their values are listed in Table VII. The scales L7 and L8

as well as for L10 and L11 almost agree because the
fluctuations of the operators E0 and E1 are strongly
correlated and almost identical [5]. So, they are com-
bined in the following.
A histogram of the q values of the remaining 4 × 15 ¼

60 student difference tests for the scales of Table VII is
shown in Fig. 8. When the compared data are statistically
independent, rely on the same estimator, and are drawn
from a Gaussian distribution, the student different tests
return uniformly distributed random numbers q in the range
0 < q < 1, which is consistent with Fig. 8. Furthermore,
their mean value comes out to be q̄ ¼ 0.508ð40Þ in
agreement with the expected 0.5. If there are still some
residual correlations between our q-values, this would have
decreased the error bar, because the number of independent
q would have been counted too high, while each of them
still fluctuates like a uniformly distributed random number

TABLE VI. Estimates of the topological susceptibility in units
of the string tension

ffiffiffi
σ

p
.

[Reference] (year) χ1/4/
ffiffiffi
σ

p
q1000 q100

[17] (1997) 0.501 (45) 0.32 0.44
[18] (1997) 0.528 (21) 0.00 0.01
[19] (1997) 0.480 (23) 0.32 0.56
[20] (2001) 0.4831 (56) 0.01 0.09
[20] (2001) 0.4745 (63) 0.07 0.40
[20] (2001) 0.4742 (56) 0.06 0.40

TABLE VII. Cooling scales on topological sectors of our largest lattices for β ≥ 2.71.

β jQ1000j n L7 L8 L9 L10 L11 L12

2.928 0 26 9.85(15) 9.76(15) 9.07(15) 12.61(23) 12.55(23) 11.66(21)
1 49 9.93(13) 9.83(13) 9.06(13) 12.74(18) 12.68(17) 11.66(18)
≥2 53 9.750(92) 9.650(90) 9.040(97) 12.39(14) 12.34(14) 11.64(14)

2.875 0 29 8.64(16) 8.55(16) 7.89(19) 11.16(25) 11.11(25) 10.31(24)
1 40 8.58(12) 8.50(12) 7.86(12) 11.02(17) 10.97(17) 10.15(18)
≥2 59 8.416(73) 8.338(72) 7.771(89) 10.68(10) 10.633(99) 10.02(12)

2.816 0 24 7.281(99) 7.212(98) 6.68(12) 9.32(15) 9.27(15) 8.63(16)
1 42 7.103(75) 7.036(74) 6.540(93) 9.06(12) 9.02(12) 8.41(12)
≥2 62 7.044(66) 6.979(65) 6.435(80) 8.964(91) 8.924(91) 8.22(11)

2.751 0 28 5.878(70) 5.822(69) 5.381(66) 7.55(11) 7.52(11) 7.006(95)
1 37 5.895(63) 5.840(62) 5.416(75) 7.542(96) 7.507(95) 7.10(11)
≥2 63 5.882(43) 5.828(43) 5.382(51) 7.491(61) 7.456(62) 6.920(65)

2.710 0 20 5.277(66) 5.227(65) 4.803(59) 6.750(90) 6.720(90) 6.185(97)
1 30 5.229(48) 5.179(47) 4.825(73) 6.707(77) 6.676(73) 6.267(92)
≥2 78 5.175(24) 5.127(24) 4.781(34) 6.615(34) 6.585(34) 6.161(45)
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in the interval (0,1). So, we find convincing evidence that
the 1/V bias expected for our scales due to topological
freezing disappears within our statistical noise.

V. SUMMARY AND CONCLUSIONS

Using standard cooling we calculated the topological
charge of pure SU(2) LGT for larger lattices and β values

than it was done in the literature. For the first time they
appear to be large enough to yield stable topological
sectors. See Figs. 3–5. From these data we obtain the
estimates (21) to (24), which are surprisingly close to
previous results of the literature listed in Table VI. This
may well be an accident, as the nc ¼ 1000 versus nc ¼ 100
fits of Fig. 7 illustrate.
Within our statistical fluctuations we find no observable

correlations between cooling scales (8) and topological
charge sectors. Our number of statistically independent
configurations is of a typical size as used for scale setting,
e.g., [1,9]. So, our results support that the problem of
topological freezing only becomes serious when a much
higher precision is targeted.
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