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We examine the possibility of dynamical supersymmetry breaking in two-dimensional N ¼ ð2; 2Þ
supersymmetric Yang-Mills theory. The theory is discretized on a Euclidean spacetime lattice using a
supersymmetric lattice action. We compute the vacuum energy of the theory at finite temperature and take
the zero-temperature limit. Supersymmetry will be spontaneously broken in this theory if the measured
ground-state energy is nonzero. By performing simulations on a range of lattices up to 96 × 96we are able
to perform a careful extrapolation to the continuum limit for a wide range of temperatures. Subsequent
extrapolations to the zero-temperature limit yield an upper bound on the ground-state energy density. We
find the energy density to be statistically consistent with zero in agreement with the absence of dynamical
supersymmetry breaking in this theory.
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I. INTRODUCTION

The investigations of supersymmetric gauge theories on
a spacetime lattice are important for understanding the
nonperturbative structure of such theories and in particular
they can address the question of whether dynamical
supersymmetry (SUSY) breaking takes place in such
theories. This is a crucial question for efforts to construct
supersymmetric theories which go beyond the Standard
Model since the low-energy world is clearly not super-
symmetric while nonrenormalization theorems typically
ensure that supersymmetry cannot break in perturbation
theory [1].
Unfortunately, there are a plethora of problems to

overcome for lattice formulations of supersymmetric
theories. Supersymmetry is a spacetime symmetry, which
is generically broken by the lattice regularization pro-
cedure. Hence, the effective action of the lattice theory
typically contains relevant supersymmetry-breaking inter-
actions. To achieve a supersymmetric continuum limit it is
necessary to fine-tune the lattice couplings to these terms
as the lattice spacing is reduced. Since generically there

are very many such terms this is in practice impossible.
One exception to this is N ¼ 1 super Yang-Mills (SYM)
where only a single coupling, the gluino mass, must be
tuned. In addition, it has also been shown that fine-tuning
to a supersymmetric continuum limit is also possible for
N ¼ ð2; 2Þ in two dimensions. Using Wilson fermions,
the only relevant parameter that has to be fine-tuned is the
scalar mass since the bare gluino mass is an irrelevant
parameter. The continuum value for the critical scalar
mass is known up to one-loop order in lattice perturbation
theory and that has already been employed in the
numerical simulations. See Refs. [2–4] for discussions
and references therein.
The attempt to formulate supersymmetric theories on

the lattice has a long history starting in Refs. [5–10].
Recent approaches to this problem have focused on
preserving a subalgebra of the full supersymmetry algebra
which can protect the theory from some of these danger-
ous supersymmetry-violating terms; for a review, see
Ref. [11]. For supersymmetric theories with extended
supersymmetry various supersymmetric lattice formula-
tions exist. One approach that was pioneered by Cohen,
Kaplan, Katz and Ünsal in Refs. [12–14] is based on
orbifolding and deconstruction of a supersymmetric
matrix model. A second approach uses the idea of
topological twisting to isolate appropriate nilpotent scalar
supersymmetries that can be transferred to the lattice. Two
independent discretization schemes have been proposed in
this approach: that proposed by Sugino in Refs. [15,16]
where the fermions are associated with sites and a
geometrical approach in which fermions are generically
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associated with links [17].1 In four spacetime dimensions,
the geometrical approach has been used to construct a
supersymmetric lattice action for N ¼ 4 SYM [20,21]
and has been shown to be identical to the orbifolding
constructions in Refs. [22,23]. For an elaborate discussion
on the relation between all these constructions,
see Ref. [24].
In this paper, we will study N ¼ ð2; 2Þ SYM theory

using the geometrical discretization scheme. It is the
simplest two-dimensional supersymmetric theory that
can be studied on the lattice. This theory is a particularly
interesting theory in the continuum because of its exotic
phases as discussed by Witten in Ref. [25]. This theory
is conjectured to flow in the infrared to a conformal field
theory. For recent developments, see Ref. [26]. The goal
of this paper is to calculate the vacuum energy density
accurately for this theory and hence determine whether
supersymmetry breaking occurs. It is well known [27]
that the vacuum energy can be thought of as an order
parameter for SUSY breaking. The spontaneous break-
ing of supersymmetry in this two-dimensional theory has
been considered theoretically in Ref. [28] and numeri-
cally in Refs. [29,30]. In Ref. [28] it was conjectured
that in fact supersymmetry may break in this theory.
Related work for N ¼ ð2; 2Þ super QCD on the lattice
was described in Ref. [31]. In the context of orbifold
lattice theories, it was shown in Ref. [32] that the
vacuum energy of these theories does not receive any
quantum corrections in perturbation theory leaving only
nonperturbative mechanisms to drive supersymmetry
breaking.
In this four-supercharge theory, unlike the 16-super-

charge case in two dimensions, the thermal instabilities at
low temperatures are less severe and we can access
relatively small temperatures without truncating the Uð1Þ
degree of freedom as done in our recent work [33,34].
However, we have to use a small mass term to control the
classical flat directions associated with the scalars. This
small mass term was also implemented while exploring the
phase structure at large N using Sugino’s lattice construc-
tion in Ref. [35].
The plan of this paper is as follows. In Sec. II we

review the lattice construction for N ¼ ð2; 2Þ SYM on a
two-dimensional square lattice. Then in Sec. III we
mention results on the phase of the Pfaffian, discuss
our procedure of extracting the ground-state energy and
comment on the OðaÞ-improved action we use for the
analysis. We end the paper with conclusions and a brief
discussion in Sec. IV.

II. TWO-DIMENSIONAL N = ð2;2Þ LATTICE SYM

The two-dimensional N ¼ ð2; 2Þ SYM theory is the
simplest supersymmetric gauge theory which admits
topological twisting [36] and thus satisfies the requirements
for a supersymmetric lattice construction following the
prescription given in Refs. [37,38], where the first
numerical simulations of this construction were
performed. The theory has global symmetry group
G ¼ SOð2ÞE × SOð2ÞR1

× Uð1ÞR2
, where SOð2ÞE is the

two-dimensional Euclidean Lorentz rotation symmetry,
SOð2ÞR1

is the symmetry due to reduced directions and
Uð1ÞR2

is the R-symmetry of the parent four-dimensional
N ¼ 1 SYM theory. This theory can be twisted in two
inequivalent ways (the A-model and B-model twists)
depending on how we embed the SOð2ÞE group into
SOð2ÞR1

× SOð2ÞR2
, the internal symmetry group.

We are interested in the B-model twist, which gives rise
to a strictly nilpotent twisted supersymmetry charge. After
twisting, the fields and supersymmetries are expressed as
representations of the twisted Euclidean Lorentz group

SOð2Þ0 ¼ diagðSOð2ÞE × SOð2ÞR1
Þ: ð1Þ

The action of continuum N ¼ ð2; 2Þ SYM takes the
following Q-exact form after twisting:

S ¼ N
2λ

Q
Z

d2xΨ; ð2Þ

where

Ψ ¼ Tr

�
χabF ab þ η½D̄a;Db� −

1

2
ηd

�
; ð3Þ

and λ ¼ g2N is the ’t Hooft coupling. We use an anti-
Hermitian basis for the generators of the gauge group
with TrðTaTbÞ ¼ −δab.
The four degrees of freedom appearing in the above

action are just the twisted fermions ðη;ψa; χabÞ and a
complexified gauge field Aa. The complexified field is
constructed from the usual gauge field Aa and the two
scalars Ba present in the untwisted theory:Aa ¼ Aa þ iBa.
The twisted theory is naturally written in terms of the
complexified covariant derivatives

Da ¼ ∂a þAa; D̄a ¼ ∂a þ Āa; ð4Þ

and complexified field strengths

F ab ¼ ½Da;Db�; F̄ ab ¼ ½D̄a; D̄b�: ð5Þ

The nilpotent supersymmetry transformations associated
with the scalar supercharge Q are given by

1Yet another construction was formulated by D’Adda,
Kanamori, Kawamoto and Nagata, [18] but was later shown to
be equivalent to the orbifolding constructions when restricted to a
sector containing a scalar supercharge [19].
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QAa ¼ ψa;

Qψa ¼ 0;

QĀa ¼ 0;

Qχab ¼ −F̄ ab;

Qη ¼ d;

Qd ¼ 0: ð6Þ

Performing the Q variation on Ψ and integrating out the
auxiliary field d yields

S ¼ N
2λ

Z
Tr

�
−F̄ abF ab þ

1

2
½D̄a;Da�2

− χabD½aψb� − ηD̄aψa

�
: ð7Þ

The prescription for discretization is straightforward.
The complexified gauge fields are mapped to complexified
Wilson links

AaðxÞ → UaðnÞ; ð8Þ

living on the links of a square lattice with integer-valued
basis vectors along two directions,

μ̂1 ¼ ð1; 0Þ; μ̂2 ¼ ð0; 1Þ: ð9Þ

They transform in the appropriate way under UðNÞ lattice
gauge transformations

UaðnÞ → GðnÞUaðnÞG†ðnþ μ̂aÞ: ð10Þ

Supersymmetry invariance then implies that ψaðnÞ live
on the same links and transform identically. The scalar
fermion ηðnÞ is associated with a site and transforms in the
following way under gauge transformations:

ηðnÞ → GðnÞηðnÞG†ðnÞ: ð11Þ

The field χabðnÞ, as a 2-form, should be associated with a
plaquette. In practice, we introduce diagonal links running
through the center of the plaquette and choose χabðnÞ to
lie with opposite orientation along those diagonal links.
This orientation ensures gauge invariance. Figure 1 shows
the unit cell of the lattice theory with field orientation
assignments.
The continuum covariant derivatives are replaced by

covariant difference operators and they act on the twisted
fields in the following way:

D̄ð−Þ
a faðnÞ ¼ faðnÞŪaðnÞ − Ūaðn − μ̂aÞfaðn − μ̂aÞ;

DðþÞ
a fbðnÞ ¼ UaðnÞfbðnþ μ̂aÞ − fbðnÞUaðnþ μ̂bÞ:

The lattice field strength is given by F abðnÞ ¼ DðþÞ
a UbðnÞ,

and is antisymmetric. It transforms like a lattice 2-form and
yields a gauge-invariant loop on the lattice when contracted
with χabðnÞ. Similarly, the term involving the covariant

backward difference operator, D̄ð−Þ
a UaðnÞ, transforms as a

0-form or site field and hence can be contracted with the
site field ηðnÞ to yield a gauge-invariant expression.
The lattice action is Q exact

S ¼ N
2λ

X
n

TrQ
�
χabðnÞDðþÞ

a UbðnÞ

þ ηðnÞD̄ð−Þ
a UaðnÞ −

1

2
ηðnÞdðnÞ

�
: ð12Þ

Applying the Q transformation on the lattice fields and
integrating out the auxiliary field d, we obtain the gauge-
invariant and Q-supersymmetric lattice action

S ¼ SB þ SF; ð13Þ

where the bosonic action is

SB ¼ N
2λ

X
n

Tr

�
F †

abðnÞF abðnÞ þ
1

2
ðD̄ð−Þ

a UaðnÞÞ2
�
;

and the fermionic piece

SF ¼ N
2λ

X
n

Trð−χabðnÞDðþÞ
½a ψb�ðnÞ − ηðnÞD̄ð−Þ

a ψaðnÞÞ:

It was correctly noted in Ref. [39] that for simulation
purposes, we need to add a small supersymmetry-breaking
scalar potential to stabilize the SUðNÞ flat directions of the

FIG. 1. The unit cell and field orientations of the two-
dimensional N ¼ ð2; 2Þ lattice SYM theory.
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theory. We add a single trace deformation term to the action
in Eq. (13) as,

Ssoft ¼
N
2λ

μ2
X
n;a

TrðŪaðnÞUaðnÞ − INÞ2; ð14Þ

with a tunable parameter μ. Exact supersymmetry at μ ¼ 0
ensures that allQ-breaking terms vanish as some (positive)
power of μ.

III. LATTICE SIMULATIONS

We simulate the theory on a square lattice with anti-
periodic boundary conditions for fermions in the temporal
direction. The physical size of the lattice is β × L, where β
is the dimensionful temporal extent and L is the dimen-
sionful spatial extent. We denote the lattice spacing as a
while Nt is the number of lattice sites along the temporal
direction and Nx is the number of sites along the spatial
direction. Thus the dimensionful quantities are β ¼ aNt
and L ¼ aNx. In our case the lattice is symmetric:
Nt ¼ Nx.
In two dimensions, the ’t Hooft coupling λ is dimen-

sionful and we can construct the dimensionless temporal
circle size,

rτ ¼
ffiffiffi
λ

p
β: ð15Þ

The quantity rτ also serves as the effective coupling. Its
inverse is the dimensionless temperature t. Since we have
only considered symmetric lattices, the spatial circle size is
the same as the temporal circle size, rx ¼ rτ. As discussed
above we use a small mass parameter μ ¼ ζ rτ

Nt
¼ ζ

ffiffiffi
λ

p
a

to regulate potential divergences associated with the flat
directions. As for the case of the 16-supercharge theory in
two dimensions [33,34], we extrapolate all our results
to μ ¼ 0.
To examine the question of supersymmetry breaking

we consider the system at nonzero temperature and
subsequently take the temperature to zero after taking
the limits ζ → 0 and a → 0. A nonzero value of the vacuum
energy would indicate supersymmetry breaking. Notice
that if supersymmetry is intact in a finite volume, it is
unbroken even in infinite volume [40].
We compute the ground-state energy density in two-

dimensional N ¼ ð2; 2Þ SYM using the publicly available
code presented in Ref. [41]. In the four-supercharge case,
the expression for the effective bosonic action, which is
related to the dimensionless energy density we measure,
was first given in Ref. [42].
We can have two different definitions for the ground-

state energy based on whether we take the massless (scalar
mass) limit followed by the continuum limit or vice versa.
In both cases, the zero-temperature limit is taken at the end.
Thus, we have

E0
VAC

N2λ
¼ lim

β→∞
lim
a→0

lim
μ→0

hVACj
�
−2S̄
N2λ

�
jVACi; ð16Þ

and

EVAC

N2λ
¼ lim

β→∞
lim
μ→0

lim
a→0

hVACj
�
−2S̄
N2λ

�
jVACi; ð17Þ

where,

S̄ ¼ 1

Lβ

�
SB −

3

2
N2NxNt

�
: ð18Þ

We provide the simulation data in Tables II and III.
It is clear from the tables that the order of taking these
different limits is consistent within errors and we will quote
results only for EVAC

N2λ
. We integrate out the fermions to

produce a Pfaffian, which in turn is represented by the
square root of a determinant. The fermion determinant with
a fractional power can be simulated using a rational hybrid
Monte Carlo algorithm [43]. In the simulations we used
the absolute value of the Pfaffian. The phase of the Pfaffian
may be incorporated back into the expectation values of
observables by reweighting although as will be seen in the
next section the measured Pfaffian phase is always small in
our simulations.

A. Phase of the Pfaffian

The phase of the Pfaffian was studied in Ref. [44] for
two different lattice constructions. Soon after, the phase
of the Pfaffian for the construction we use here was
calculated in Ref. [45] and it was observed that it
vanishes as one approaches the continuum limit. It
was correctly noted in Ref. [46] that the absence of
the sign is a property of the correct continuum limit. In
this paper, we will study the phase of the Pfaffian at
stronger couplings than have been explored before and
on much larger lattices using the parallel code developed
in Ref. [41]. We show that the phase fluctuations become
small and vanish as we take the continuum limit. This is
true for all couplings we have considered. However, on a
fixed lattice volume, the magnitude of the phase fluctua-
tions grows with the coupling. This implies that access-
ing stronger couplings (t ≤ 1=9) requires the use of larger
lattices if we are to avoid a sign problem. We show these
results in Fig. 4.

B. Ground-state energy

We now present our simulation results on the ground-
state energy of the theory. We would like to extrapolate the
lattice data for the ground-state energy density EVAC

N2λ
to zero

temperature after taking the continuum (a → 0) and
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massless (μ → 0) limits. A representative example of the
mass extrapolations and continuum extrapolations are
shown in Figs. 2 and 3, respectively. At the end, we
perform three types of extrapolations in temperature using
power-law, exponential, and constant fits.
We show the vacuum energy density vs inverse temper-

ature for Uð2Þ in Fig. 5. Extrapolating rτ → ∞ using the
range rτ ∈ ½6; 9�

EVAC

N2λ
¼

8>><
>>:

0.06ð4Þ; χ2=d:o:f: ¼ 0.40∶ power-law fit;

0.06ð2Þ; χ2=d:o:f: ¼ 1.26∶ exponential fit;

0.08ð2Þ; χ2=d:o:f: ¼ 0.63∶ constant fit:

ð19Þ

In Fig. 6 we show the vacuum energy density vs inverse
temperature for the gauge group Uð3Þ. Extrapolating
rτ → ∞ using the range rτ ∈ ½6; 9�

FIG. 2. The ζ2 → 0 extrapolation of the ground-state energy
density for Uð3Þ, rτ ¼ 9.

FIG. 3. The ða=LÞ2 → 0 extrapolation of the ground-state
energy density for Uð3Þ, rτ ¼ 9.

FIG. 4. Pfaffian phase fluctuations, 1 − hcosϕi, for some Uð3Þ
ensembles used in this work. We have measured the phase for
three couplings used in this work. We keep the mass parameter,
ζ ¼ 0.50 for all couplings. Note that at sufficiently weak cou-
plings, large lattices are not needed to control the sign problem.

FIG. 5. The β → ∞ extrapolation of the ground-state energy for
the Uð2Þ gauge group. The inset zooms in to show the low-
temperature regime. For details, see Table II.

FIG. 6. The β → ∞ extrapolation of the ground-state energy for
the Uð3Þ gauge group. The inset zooms in to show the low-
temperature regime. For details, see Table III.
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EVAC

N2λ
¼

8<
:

0.05ð2Þ; χ2=d:o:f: ¼ 0.11∶ power-law fit;

0.04ð4Þ; χ2=d:o:f: ¼ 0.11∶exponential fit;
0.05ð2Þ; χ2=d:o:f: ¼ 0.06∶constant fit:

ð20Þ

We note that the errors in our results do not allow us
to make conclusive statements about the exact form of
the energy dependence on the temperature. Both power,
exponential and constant fitting functions yield comparable
results consistent with vanishing ground-state energy. Our
calculation puts an upper bound on the dimensionless
energy density using the constant fit at EVAC

N2λ
¼ 0.08ð2Þ

for Uð2Þ and EVAC
N2λ

¼ 0.05ð2Þ for Uð3Þ.
While this work was in progress results were presented

on the tree-level OðaÞ improvement of Sugino’s lattice
action for two-dimensionalN ¼ ð2; 2Þ SYM [47]. We note
that our lattice formulation already possesses this improve-
ment which we see in Fig. 3 and in Table I.

IV. CONCLUSIONS

In this paper we have examined the possibility of
dynamical supersymmetry breaking in two-dimensional
N ¼ ð2; 2Þ SYM through lattice simulations. The lattice
theory is exactly supersymmetric, gauge-invariant, local,
and doubler free. We found an upper bound on the vacuum
energy density of EVAC

N2λ
¼ 0.08ð2Þ and EVAC

N2λ
¼ 0.05ð2Þ for

Uð2Þ and Uð3Þ respectively. The energy density is sta-
tistically consistent with zero and hence with the absence of
dynamical supersymmetry breaking. It would be interesting
to examine the spectrum in future work to confirm the
absence of spontaneous supersymmetry breaking perhaps
by searching for signals of a Goldstino as was done in
Ref. [31]. We have also measured the phase of the Pfaffian
on all our ensembles and found that while the average
phase grows with the coupling it decreases as we take the
continuum limit in agreement with theoretical expectations.
In practice, it is numerically small for all our ensembles.
The question of supersymmetry breaking in this model was
addressed before in Ref. [29]. Our current work, in addition
to using a different lattice action, has employed stronger
couplings (and hence lower temperatures) and much
smaller lattice spacings. For example, the lowest temper-
ature used in the earlier work was t ¼ 1=6 as compared to
t ¼ 1=9 in this work while the largest lattice used here is
96 × 96 as compared to 30 × 12 in the earlier study.
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TABLE I. Numerical results showing that our action is effec-
tively OðaÞ improved. We measure the deviation of the bosonic
action/site from its supersymmetric value of 3

2
N2 and fit it to a

power law. The first column shows the soft-mass parameter, ζ, we
use to regulate the flat directions. The second column is the
obtained value of the power, p, when constraining the intercept to
vanish, while the third is the obtained value of the power, p,
without constraining the intercept. We quote results from one of
the couplings used in this work, rτ ¼ 6. On the top, we show the
results with Uð3Þ and with Uð2Þ at the bottom. The fits are very
good with a maximum χ2=d:o:f: ¼ 2.80.

ζ ∝ ða=LÞp ∝ ða=LÞp þ c

0.40 1.86(9) 1.76(22)
0.50 1.76(6) 1.60(15)
0.55 1.79(5) 1.90(11)
0.60 1.74(4) 1.70(11)

ζ ∝ ða=LÞp ∝ ða=LÞp þ c

0.40 1.73(10) 1.58(24)
0.50 1.71(7) 1.74(17)
0.55 1.69(6) 1.57(14)
0.60 1.78(5) 1.98(12)
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APPENDIX: DATA TABLES FOR Uð2Þ AND Uð3Þ

TABLE II. The action density, −S̄=N2λ, which is related to the ground-state energy density using Eq. (16) or
Eq. (17) with gauge group Uð2Þ for different lattices, mass parameters and couplings used in this work. The results
are obtained through blocked jackknife analyses. We have considered at least 5000 thermalized molecular dynamics
time units in each case.

rτ Nx × Nt −S̄=N2λjζ¼0.4 −S̄=N2λjζ¼0.5 −S̄=N2λjζ¼0.55 −S̄=N2λjζ¼0.6

1.0 24 × 24 1.14(33) — — —

2.0 24 × 24 0.53(10) — — —

4.0 24 × 24 0.253(21) 0.332(23) 0.440(20) 0.502(21)
32 × 32 0.272(34) 0.355(35) 0.407(35) 0.501(33)
48 × 48 0.354(43) 0.378(48) 0.531(45) 0.538(45)
96 × 96 0.26(10) 0.40(10) 0.48(10) 0.63(10)

lima→0, then limμ→0 ¼ 0.151ð65Þ
limμ→0, then lima→0 ¼ 0.148ð65Þ

6.0 24 × 24 0.20(1) 0.30(1) 0.35(1) 0.43(1)
32 × 32 0.22(1) 0.32(2) 0.39(2) 0.44(1)
48 × 48 0.25(2) 0.37(2) 0.44(2) 0.48(2)
96 × 96 0.27(5) 0.45(5) 0.48(2) 0.62(5)

lima→0, then limμ→0 ¼ 0.083ð37Þ
limμ→0, then lima→0 ¼ 0.079ð38Þ

7.0 24 × 24 0.20(1) 0.28(1) 0.33(1) 0.38(1)
32 × 32 0.22(1) 0.30(1) 0.38(1) 0.43(1)
48 × 48 0.25(1) 0.34(2) 0.41(2) 0.47(2)
96 × 96 0.27(4) 0.38(3) 0.45(3) 0.56(4)

lima→0, then limμ→0 ¼ 0.056ð28Þ
limμ→0, then lima→0 ¼ 0.055ð28Þ

7.5 24 × 24 0.19(1) 0.29(1) 0.33(5) 0.38(1)
32 × 32 0.19(1) 0.31(1) 0.36(1) 0.42(1)
48 × 48 0.23(1) 0.34(2) 0.39(1) 0.47(2)
96 × 96 0.24(3) 0.40(3) 0.45(3) 0.48(3)

lima→0, then limμ→0 ¼ 0.035ð23Þ
limμ→0, then lima→0 ¼ 0.033ð24Þ

8.0 24 × 24 0.20(1) 0.28(1) 0.33(1) 0.36(1)
32 × 32 0.20(1) 0.29(1) 0.35(1) 0.40(1)
48 × 48 0.22(1) 0.34(1) 0.37(1) 0.44(1)
96 × 96 0.27(2) 0.36(3) 0.44(3) 0.54(3)

lima→0, then limμ→0 ¼ 0.023ð19Þ
limμ→0, then lima→0 ¼ 0.022ð20Þ

9.0 24 × 24 0.184(5) 0.260(4) 0.304(4) 0.361(4)
32 × 32 0.20(1) 0.30(1) 0.35(1) 0.39(1)
48 × 48 0.22(1) 0.32(1) 0.36(1) 0.45(1)
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