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Lattice QCD calculations including the effects of one or more nondegenerate sea quark flavors are
conventionally performed using the rational hybrid Monte Carlo (RHMC) algorithm, which computes the
square root of the determinant of D†D, where D is the Dirac operator. The special case of two degenerate
quark flavors with the same mass is described directly by the determinant ofD†D—in particular, no square
root is necessary—enabling a variety of algorithmic developments, which have driven down the cost of
simulating the light (up and down) quarks in the isospin-symmetric limit of equal masses. As a result, the
relative cost of single quark flavors—such as the strange or charm—computed with RHMC has become
more expensive. This problem is even more severe in the context of our measurements of the ΔI ¼ 1/2
K → ππ matrix elements on lattice ensembles with G-parity boundary conditions, since G-parity is
associated with a doubling of the number of quark flavors described by D, and thus RHMC is needed for
the isospin-symmetric light quarks as well. In this paper we report on our implementation of the exact one
flavor algorithm (EOFA) introduced by the TWQCD Collaboration for simulations including single flavors
of domain wall quarks. We have developed a new preconditioner for the EOFA Dirac equation, which both
reduces the cost of solving the Dirac equation and allows us to reuse the bulk of our existing high-
performance code. Coupling these improvements with careful tuning of our integrator, the time per
accepted trajectory in the production of our 2þ 1 flavor G-parity ensembles with physical pion and kaon
masses has been decreased by a factor of 4.2.
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I. INTRODUCTION

Lattice QCD simulations are typically performed using
variants of the hybrid Monte Carlo (HMC) algorithm,
which includes the effects of dynamical sea quarks through
the determinant of a fermion matrix evaluated by stochas-
tically sampling a discretized QCD path integral.
Conventional simulations choose the Hermitian fermion
matrix M ¼ D†D rather than the lattice Dirac operator
M ¼ D, since the latter, in general, has a complex
spectrum, and is thus less amenable to standard numerical
algorithms. While D describes a single quark flavor, D†D
describes two degenerate quark flavors with the same mass.
As a result the standard HMC algorithm naturally describes
the light (up and down) quarks in the isospin-symmetric
limit mu ¼ md considered in most lattice calculations.
Simulations including single quark flavors (such as the
strange or charm) are typically performed by taking an
overall square root of the determinant of M ¼ D†D,

leading to the rational hybrid Monte Carlo (RHMC)
algorithm. While RHMC has found widespread usage in
the lattice QCD community, RHMC calculations are
typically more expensive than HMC calculations for the
same input quark mass, in part because many of the
techniques which have been developed to accelerate
HMC simulations of degenerate quark flavor pairs are
not applicable to RHMC.
A number of recent developments in the HMC algorithm

used by the RBC/UKQCD Collaboration have driven down
the cost of simulating degenerate pairs of isospin-symmet-
ric quarks with the same mass. These developments
include: extensive force tuning via Hasenbush mass pre-
conditioning [1], the zMöbius domain wall fermion action
[2], reduced Ls approximations to the light quark deter-
minant [2], and the use of implicitly restarted, mixed-
precision defect correction methods in the conjugate
gradient algorithm [3]. In Table I we list timings for a
recent large-scale calculation which utilizes these tech-
niques. We now find that the single-flavor strange and
charm quark determinants, which we simulate using the
RHMC algorithm, are collectively the most expensive part
of the calculation. To address this, we have turned to
exploring TWQCD’s recently proposed exact one flavor
algorithm (EOFA), which allows for simulating single
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quark flavors without the need for RHMC [4]. Preliminary
results have suggested that EOFA simulations can outper-
form RHMC simulations, both in terms of computer time
and a reduced memory footprint, while producing exactly
the same physics [5,6].
The RBC/UKQCD Collaboration’s ongoing efforts to

probe direct CP-violation in K → ππ decays provide a
second motivation for exploring EOFA. The collaboration
has recently reported the first calculation of the ΔI ¼ 1/2
K → ππ decay amplitude with physical kinematics in
Ref. [7], which, when combined with previous results
for the ΔI ¼ 3/2 amplitude [8] determines the standard
model CP-violating parameters ϵ and ϵ0 entirely from first
principles. An important ingredient in this calculation was
the introduction of G-parity boundary conditions for the
quark fields [7,9]: since the pion is G-parity odd, the pion
momenta are quantized along G-parity directions as

pi
π ¼

ð2ni þ 1Þπ
L

; ni ∈ Z; ð1Þ

allowing the ensemble parameters to be tuned such that the
K → ππ decay has both physical kinematics and the final
pions in the ground state. Since the G-parity transformation
G ¼ CeiπIy is the product of charge conjugation and a 180°
isospin rotation about the y-axis—at the lattice boundary
the light quark doublet transforms as ðu; dÞ ↦ ðd̄;−ūÞ—
the G-parity Dirac operator inherently describes two quark
flavors. The standard lattice technique for obtaining a
Hermitian, positive-definite fermion matrix—by taking
the square of the Dirac operator, M ¼ D†D—results in
a theory with four degenerate quark flavors on a G-parity
ensemble, and a square root is required to reduce to a two-
flavor simulation. Describing the light quark pair on a G-
parity ensemble is a particularly attractive target for EOFA,
since many of the techniques we use to accelerate the
calculation of the light quark determinant for ensembles
with periodic boundary conditions—including defect cor-
rection solvers, the forecasted force gradient integrator
[10], and Hasenbusch mass preconditioning—are not
applicable or of limited utility for RHMC simulations,
but are expected to perform well in the context of EOFA.
More generally, since there is no straightforward way to
start the multishift conjugate gradient solver used for

RHMC with a nonzero initial guess, techniques which rely
on forecasting or restarting the solver are not applicable.
In this work we discuss the RBC/UKQCD

Collaboration’s implementation and tests of the exact
one flavor algorithm, as well as the use of EOFA in
generating gauge field configurations for our ongoing
first-principles calculation of the ratio of standard model
parameters ϵ0/ϵ from ΔI ¼ 1/2 K → ππ decays with G-
parity boundary conditions. We have independently imple-
mented EOFA in the Columbia Physics System (CPS),
BAGEL fermion sparse matrix library (BFM), and the Grid
data parallel C++ QCD library (Grid), for Shamir and
Möbius domain wall fermions, with periodic, anti-periodic,
and G-parity boundary conditions. We will demonstrate in
the following sections that a significant improvement over
the RHMC algorithm in terms of wall clock time is indeed
possible with EOFA after introducing a variety of precon-
ditioning and tuning techniques. Early work in this direc-
tion was presented at the 34th International Symposium on
Lattice Field Theory [6]; here we will elaborate on the
details and discuss our first large-scale EOFA calculation.

II. THE EXACT ONE FLAVOR ALGORITHM

The exact one flavor algorithm was developed by the
TWQCD Collaboration and used to enable efficient sim-
ulations of single quark flavors on GPU clusters, where
memory usage is a significant constraint. In Ref. [11] the
authors discuss their construction of a positive-definite
pseudofermion action describing a single flavor of Wilson
or domain wall quark, and elaborate on the details of this
construction in Ref. [4]. The key is their observation that a
ratio of determinants of domain wall fermion (DWF) Dirac
operators can be factorized as

det

�
Dðm1Þ
Dðm2Þ

�
¼ 1

detðMLÞ
·

1

detðMRÞ
; ð2Þ

with ML and MR Hermitian and positive-definite. In a
subsequent paper the authors benchmark EOFA against
RHMC for Nf ¼ 1 and Nf ¼ 2þ 1 lattice QCD simula-
tions, and demonstrate a number of advantages of the
EOFA formalism [5]. These include substantial reductions
in the pseudofermion force and in the memory footprint of
the algorithm, since, in the context of EOFA, inversions of
the Dirac operator can be performed using the ordinary
conjugate gradient (CG) algorithm rather than the multi-
shift CG used for RHMC. They ultimately find that they are
able to generate HMC trajectories 15–20% faster using
EOFA rather than RHMC after retuning their integration
scheme to take advantage of these properties. More
recently, TWQCD has used EOFA to generate Nf ¼ 2þ
1þ 1 domain wall fermion ensembles with dynamical
strange and charm quarks [12].
We note that the construction of the exact one flavor

pseudofermion action has been detailed by TWQCD in

TABLE I. Timings for one HMC trajectory of RBC/UKQCD’s
802 × 96 × 192 × 32 Nf ¼ 2þ 1þ 1 ensemble with physical
quark masses and a−1 ≈ 3 GeV on a 12 288-node Blue Gene/
Q partition [2].

Action Component Timings

Gauge 5970 s 12.0%
Light Quarks 19 600 s 39.4%
Strange and Charm Quarks 24 200 s 48.6%
Total 49 770 s ...
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Ref. [4,11] and summarized in our own formalism in
Ref. [6]. We will not repeat this discussion here, other
than to give a brief overview and to introduce the notation
used in this work. We write the 5D Möbius domain wall
fermion (MDWF) operatorDDWF in terms of the 4DWilson
Dirac operator DW and 5D hopping matrix Lss0 as

ðDDWFÞxx0;ss0 ¼ ððcþ dÞðDWÞxx0 þ δxx0 Þδss0
þ ððc − dÞðDWÞxx0 − δxx0 ÞLss0

ðDWÞxx0 ¼ ð4 −M5Þδxx0 −
1

2

X
μ

½ð1 − γμÞUμðxÞδxþμ̂;x0

þ ð1þ γμÞU†
μðx0Þδx−μ̂;x0 �

Lss0 ¼ ðLþÞss0Pþ þ ðL−Þss0P− ð3Þ

with

ðLþÞss0 ¼ ðL−Þs0s ¼
(
−mδLs−1;s0 ; s¼ 0

δs−1;s0 ; 1 ≤ s ≤ Ls − 1
: ð4Þ

Here x and s are spacetime indices in the 4D bulk and along
the fifth dimension, respectively, with Ls denoting the total
number of s sites, P� ¼ ð1� γ5Þ/2 denoting the chiral
projection operators, and ðR5Þss0 ≡ δs;Ls−1−s0 denoting the
operator which performs a reflection in the fifth dimension.
We recover four-dimensional quark fields q and q̄ with
definite chiralities from the five-dimensional quark fields ψ
and ψ̄ described by DDWF at the boundaries of the fifth
dimension

qR ¼ PþψLs−1 qL ¼ P−ψ0

q̄R ¼ ψ̄Ls−1P− q̄L ¼ ψ̄0Pþ
: ð5Þ

Green’s functions constructed from q and q̄ approximate
continuum QCD arbitrarily well in the limit of vanishing
lattice spacing and infinite 5D spacetime volume. The
tunable parameters in Eq. (3) are the domain wall parameter
M5, the bare quark mass m, and the Möbius scale α ¼ 2c;
the parameter d is fixed at d ¼ 1/2. DWF with the Shamir
kernel is recovered from the more general Möbius operator
in the limit α → 1. For more detail regarding our MDWF
formalism we direct the reader to Ref. [13].
The construction of the exact one flavor action for

domain wall fermions begins by factorizing the MDWF
Dirac operator as [14]

DDWF ¼ DEOFA · D̃; ð6Þ

with

ðDEOFAÞxx0;ss0 ≡ ðDWÞxx0δss0 þ δxx0 ðMþÞss0Pþ
þ δxx0 ðM−Þss0P−

ðD̃Þss0 ≡ dðδss0 − Lss0 Þ þ cðδss0 þ Lss0 Þ: ð7Þ

The operator D̃ relating DDWF and DEOFA has no depend-
ence on the gauge field, so we are free to replaceDDWF with
DEOFA in Eq. (2) without modifying physical observables
described by a properly normalized path integral. In fact, it
can be shown analytically using the explicit form of D̃
listed in Appendix A that

detðD̃Þ ¼ ððcþ dÞLs þmðc − dÞLsÞ12V; ð8Þ

where V ¼ L3T is the 4D spacetime volume. This sub-
stitution facilitates the construction of a proper action since
the operator γ5R5DEOFA is manifestly Hermitian for any
choice of the Möbius scale α, whereasDDWF satisfies a less
trivial γ5-Hermiticity condition when α ≠ 1 [15]. However,
this comes at the cost of substantially more expensive
inversions, sinceDEOFA is dense in ss0 whereasDDWF has a
well-known tridiagonal block structure.
After introducing DEOFA, TWQCD’s construction pro-

ceeds by applying the Schur identity

det

��
A B

C D

��
¼ detðAÞ det ðD − CA−1BÞ

¼ detðDÞ det ðA − BD−1CÞ ð9Þ

to DEOFA, treated as a 2 × 2 block matrix in its spinor
indices, and rearranging terms to arrive at the right-hand
side of Eq. (2). Crucially, factors of γ5R5 can be freely
inserted under the determinant to replace DEOFA with the
Hermitian operator H ≡ γ5R5DEOFA, since detðγ5Þ ¼
detðR5Þ ¼ 1. The final form of the exact one flavor
pseudofermion action is SEOFA ¼ ϕ†MEOFAϕ, with

MEOFA ≡ 1 − kP−Ω†
−½Hðm1Þ�−1Ω−P−

þ kPþΩ
†
þ½Hðm2Þ − Δþðm1; m2ÞPþ�−1ΩþPþ:

ð10Þ

In Appendix A we collect explicit expressions for k, Ω�,
Δ�, DEOFA, and D̃ for Shamir and Möbius DWF, since, to
the authors’ knowledge, these expressions have not pre-
viously appeared in the literature. In Ref. [4] these
operators are constructed recursively for the more general
case of DWF with weights ρs ¼ cωs þ d and σs ¼ cωs − d
that are allowed to vary along the fifth dimension, subject to
the constraint that ωs is reflection-symmetric in s. Shamir
and Möbius DWF are simpler, special cases with ωs ¼ 1.
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III. SUMMARY OF ENSEMBLES USED
IN THIS WORK

The properties of the lattices used in this work are
summarized in Tables II and III. In all cases we use the
Iwasaki gauge action (I) [16], and on some ensembles
supplement this with the dislocation suppressing determinant
ratio (DSDR) [17,18]; we abbreviate the combined action
including both terms as “ID.” The additional DSDR term is
designed to suppress the dislocations of the gauge field
associated with tunneling between topological sectors,
thereby reducing the degree of residual chiral symmetry
breaking. For strong coupling simulations, where these
dislocations occur frequently, the DSDR term reduces the
costs associated with light quark masses while still main-
taining good topological sampling. We simulateNf ¼ 2þ 1
quark flavors using domain wall fermions, with either the
Shamir (DWF) [19,20] or Möbius (MDWF) [21–23] kernel.
Finally, on ensembles marked “-G” we use G-parity boun-
dary conditions in one or more of the spatial directions.

The 16I ensemble was first generated and used to study
light meson spectroscopy with domain wall fermions in
Ref. [24]. The 16I-G ensemble is identical to the 16I
ensemble except for the boundary conditions along the
x-direction, which have been changed from periodic to
G-parity. Likewise, the parameters of the 16ID-G ensemble
have been chosen based on a series of β ¼ 1.75 DSDR
ensembles generated in Ref. [27], but have G-parity
boundary conditions in all three spatial directions.
Collectively, these three lattices are used as inexpensive,
small-volume test ensembles with unphysical, heavy pion
masses to perform cross-checks of the EOFA algorithm and
its implementation in the BFM and CPS code libraries. The
larger 24ID [26] and 32ID-G [28] ensembles have physical
pion masses and are currently being generated as part of
production RBC/UKQCD calculations.

IV. HYBRID MONTE CARLO WITH EOFA

In latticeQCDcorrelation functions are computed in terms
of a discretized Euclidean path integral

hO1 � � �Oni ¼
1

Z

Z
DU

�Y
f

DψfDψ̄f

�
× ðO1½U� � � �On½U�Þe−S½U;ψ̄f;ψf �: ð11Þ

HereU is thegauge field,ψf is thequark field associatedwith
flavor f, and S½U; ψ̄f;ψf� is the action, which decomposes
into a sum of contributions from the gauge field, fermions,
and possibly other terms (e.g. the dislocation suppressing
determinant ratio). To avoid having to deal with anticommut-
ing Grassman variables in a computer, dynamical fermion
flavors are integrated out and then reintroduced in terms of
bosonic “pseudofermion” fields ϕ as

1

Z

Z
DψDψ̄e−ψ̄Mψ ¼ detðMÞ ¼ 1

detðM−1Þ
¼ 1

Z

Z
DϕDϕ†e−ϕ

†M−1ϕ; ð12Þ

TABLE II. Summary of ensembles and input parameters used in this work. Here β is the gauge coupling, L3 × T × Ls is the lattice
volume decomposed into the length of the spatial (L), temporal (T), and fifth ðLs) dimensions, and aml and amh are the bare, input light
and heavy quark masses. On the 16I-G, 16ID-G, and 32ID-G ensembles G-parity boundary conditions are applied to the fermion fields
at one or more of the spatial boundaries of the lattice; otherwise periodic boundary conditions are applied, and in all cases antiperiodic
boundary conditions are used along the temporal direction.

Ensemble Action β L3 × T × Ls Möbius Scale G-Parity B.C. aml amh

16I DWFþ I 2.13 163 × 32 × 16 ... ... 0.01 0.032
16I-G DWFþ I 2.13 163 × 32 × 16 ... x 0.01 0.032
16ID-G MDWFþ ID 1.75 163 × 32 × 8 2.00 x; y; z 0.01 0.045
24ID MDWFþ ID 1.633 243 × 64 × 24 4.00 ... 0.007 89 0.085
32ID-G MDWFþ ID 1.75 323 × 64 × 12 2.67 x; y; z 0.0001 0.045

TABLE III. Summary of spatial volumes, lattice cutoffs, and
pion masses in physical units for the ensembles used in this work.
All values for the 16I and 32ID-G ensembles are from
Refs. [7,24], respectively. On the 16I-G (16ID-G) ensemble
we assume the lattice cutoff is the same as the 16I (32ID-G)
ensemble since the same action and value of β has been used. The
pion masses on the 16I-G and 16ID-G ensembles have been
extracted using the fitted value of the lowest energy pion states
from Table VIII and the continuum dispersion relation. Finally,
the determination of the lattice scale for the 24ID ensemble was
performed in Ref. [25], and the determination of the pion mass in
Ref. [26].

Ensemble L (fm) a−1 (GeV) mπ (MeV) mK (MeV)

16I 1.95(5) 1.62(4) 400(11) 527(13)
16I-G 1.95(5) 1.62(4) 388(14) 530(14)
16ID-G 2.29(1) 1.378(7) 429.8(5.0) 603.8(4.5)
24ID 4.82(19) 0.981(39) 137.1(5.5) 495(20)
32ID-G 4.57(2) 1.378(7) 143.1(2.0) 490.6(2.4)
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provided M is positive-definite. While pseudofermions can
be represented straightforwardly in a computer, they come at
the cost of applications of M−1 rather than M, which is not
typically available in an explicit form. Even after discretiza-
tion the integration in Eq. (11) is far too expensive to perform
directly due to the enormous number of degrees of freedom
on a typical lattice. Instead, Monte Carlo techniques are used
to ergodically sample a sequence of representative configu-
rations of the gauge field fUig, for which

hO1 � � �Oni ≈
1

N

XN
i¼1

O1ðUiÞ � � �OnðUiÞ: ð13Þ

The standard Monte Carlo technique used in modern lattice
QCD calculations is known as the hybrid Monte Carlo
(HMC) algorithm.
HMC generates a Markov chain of gauge field configu-

rations fUig by evolving a Hamiltonian system in
unphysical molecular dynamics (MD) “time.” This
Hamiltonian system is constructed by treating UμðxÞ as
a generalized coordinate, introducing an suð3Þ-valued
conjugate momentum πμðxÞ, and forming the standard
Hamiltonian

H ¼ 1

2
π2 þ SðUÞ: ð14Þ

The associated equations of motion( ∂τUμðxÞ ¼ πμðxÞ
UμðxÞ∂τπμðxÞ ¼ −Ta∂a

x;μSðUÞ ð15Þ

can then be integrated using numerical integration tech-
niques. The integration is performed over intervals of
length Δτ—referred to as a single MD trajectory—as a
sequence of N small steps δτ, with N ¼ Δτ/δτ. Finite
precision integration errors are corrected stochastically
with a Metropolis accept/reject step: after every N inte-
gration steps by δτ the total change in the Hamiltonian ΔH
is computed, and the current gauge field U0

μðxÞ is accepted
as the next configuration in the Markov chain with
probability

Paccept ¼ min ð1; e−ΔHÞ: ð16Þ

One can show that the resulting algorithm satisfies detailed
balance provided the scheme used to numerically integrate
Eq. (15) is reversible [29]. Ergodicity is achieved by
performing a heatbath step each time the integration is
restarted to pick a new conjugate momentum πμðxÞ, and
thus a new trajectory in the phase space fðU; πÞg. HMC
generates a sequence of gauge field configurations whose
statistical independence is governed by the length of each
MD trajectory, Δτ. The number of MD trajectories sepa-
rating statistically independent gauge field configurations is

typically determined ex post facto by examining the
integrated autocorrelation times of representative physical
observables.
The fermionic contribution to the Hamiltonian in

Eq. (14) introduces a technical obstacle for the HMC
algorithm since, generically, the lattice Dirac operator D
has a complex spectrum. Replacing D with the Hermitian
fermion matrix M ¼ D†D in Eq. (12) has a number of
advantages. Most importantly, it allows M−1 to be applied
to pseudofermion vectors using the conjugate gradient
algorithm, and it allows for a straightforward pseudofer-
mion heatbath step: at the beginning of each MD trajectory
a random Gaussian vector η is drawn according to PðηÞ ∝
expð−η†η/2Þ and the initial pseudofermion field is seeded
as ϕ ¼ Dη, ensuring that ϕ is correctly sampled as
PðϕÞ ∝ expð−ϕ†M−1ϕ/2Þ. However, the fermion matrix
M ¼ D†D describes two degenerate quark flavors with the
same mass. Single flavor simulations are typically per-
formed by taking an overall square root of the fermion
determinant,

detðDÞ ¼ ½det ðD†DÞ�1/2: ð17Þ
In the pseudofermion formalism applications of the oper-
ator ðD†DÞ−1/2 are approximated by a matrix-valued
function fðD†DÞ,

½det ðD†DÞ�1/2 ¼ 1

Z

Z
DϕDϕ†e−ϕ

†ðD†DÞ−1/2ϕ

≃
1

Z

Z
DϕDϕ†e−ϕ

†fðD†DÞϕ ð18Þ

where fðxÞ is a suitably constructed approximation to the
inverse square root, valid over the spectral range of D†D.
Variants of the HMC algorithm which construct f from
different classes of functions have been proposed and used
in the literature; the most common is the rational HMC
(RHMC) algorithm [30], where

fðxÞ ¼ α0 þ
XN
k¼1

αk
βk þ x

ð19Þ

is a rational function. While rational functions are in many
ways a good choice—they are economical in the sense that
the inverse square root can usually be well-approximated
by a modest number of terms, and the multishift CG
algorithm can be used to efficiently invert ðD†Dþ βkÞ for
all k simultaneously—the additional complexity of evalu-
ating fðD†DÞ and the associated molecular dynamics
pseudofermion force makes single flavor RHMC simula-
tions significantly more costly than degenerate two
flavor HMC simulations at the same bare quark mass.
This additional cost can be largely attributed to the
significant linear algebra overhead associated with multi-
shift CG.
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EOFA provides an alternative construction of a single-
flavor pseudofermion action through Eq. (2): a ratio of
fermion determinants can be factorized as a product of two
determinants, each of which involves an operator which is
Hermitian and positive-definite. This product can then be
represented as a path integral over a bosonic pseudofermion
field with a two-term action [Eq. (10)]

det

�
DEOFAðm1Þ
DEOFAðm2Þ

�
¼ 1

Z

Z
DϕDϕ†e−ϕ

†MEOFAϕ; ð20Þ

leading to an algorithm which is “exact” in the sense that it
avoids the numerical approximations required to imple-
ment the square root in RHMC [Eq. (18)] and related HMC
variants. EOFA is also expected to be somewhat faster than
RHMC, since there is no rational approximation entering
into evaluations of the Hamiltonian or the pseudofermion
force, eliminating the overhead associated with multishift
CG. In the remainder of this section we elaborate on the
details of the action, heatbath step, and pseudofermion
force entering into the Hamiltonian equations of motion
[Eq. (15)] for HMC with EOFA.

A. Action

The EOFA action [Eq. (10)] computes a ratio of
determinants of DEOFA upon integrating out the pseudo-
fermion fields [Eq. (20)]. This ratio can be related to
the conventional determinant ratio computed by the
RHMC algorithm through Eqs. (6) and (8), leading to
the relationship

det

�
DDWFðm1Þ
DDWFðm2Þ

�
¼
�ðcþ dÞLs þm1ðc − dÞLs

ðcþ dÞLs þm2ðc − dÞLs

�
12V

× det

�
DEOFAðm1Þ
DEOFAðm2Þ

�
: ð21Þ

We use this relationship as a test of the equivalence of
RHMC and EOFA, as well as our implementation of the
EOFA action, by stochastically computing the left side of
Eq. (21) with the RHMC action

MRHMC ¼ ½D†
DWFDDWFðm2Þ�1/4½D†

DWFDDWFðm1Þ�−1/2

× ½D†
DWFDDWFðm2Þ�1/4 ð22Þ

and the right side with the EOFA action [Eq. (10)] on the
same gauge field configuration. Observing that we can, in
general, rewrite a determinant as

detðM−1Þ ¼ 1

Z

Z
DϕDϕ†e−ϕ

†Mϕ

¼ 1

Z

Z
DϕDϕ†e−

1
2
ϕ†Σ−1ϕeϕ

†ð1
2
Σ−1−MÞϕ ð23Þ

suggests the following simple Monte Carlo integration
scheme: we draw random pseudofermion vectors by

independently sampling the real and imaginary parts of
each component from the standard normal distribution
N ðμ ¼ 0; σ ¼ 1Þ, and compute the expectation value

−logdetðM−1Þ ≈
�
ϕ†
i

�
M −

1

2
Σ−1
�
ϕi

�
i
; ð24Þ

where the average is computed using the jackknife resam-
pling technique. This will accurately approximate the true
log determinant for finite, realistically calculable values of
N provided m1 and m2 are sufficiently close that the
integrand is well-approximated by a Gaussian with unit
variance. To address this latter systematic, we consider
splitting Eq. (21) as a product of determinants

det

�
Dðm1Þ
Dðm2Þ

�
¼ det

�
Dðm1Þ
Dðm0

1Þ
��YNm

i¼1

det

�
Dðm0

iÞ
Dðm0

iþ1Þ
��

× det

�
DðmNm

0Þ
Dðm2Þ

�
ð25Þ

with equally-spaced intermediate masses

m0
i ¼ m1 þ

m2 −m1

Nm þ 1
i; i ¼ 1;…; Nm; ð26Þ

and study the dependence of the result on Nm (this
procedure is identical to the method introduced in
Ref. [31] for computing quark mass reweighting factors).
In the upper panel of Fig. 1 we plot the log determinants of
M−1

RHMC and M−1
EOFA as a function of Nm, with N ¼ 10

stochastic evaluations, computed using a single thermalized
trajectory of the 16I, 16I-G, and 16ID-G ensembles. For the
case of the 16ID-G ensemble, which uses the Möbius DWF
fermion action, we also include the overall constant
multiplying the right side of Eq. (21) so that in all cases
we are computing the same determinant ratio of DDWF
using either action.
We observe, as expected, that both formalisms agree for

sufficiently large Nm. Likewise, we observe that at suffi-
ciently small Nm the calculation generally becomes unre-
liable since we do not attempt to account for the systematic
error associated with approximating the integrand of the
path integral by a Gaussian with unit variance [i.e., setting
Σ ¼ 1 in Eqs. (23) and (24)]. In both cases “sufficiently”
small or large Nm is controlled by the size of the splitting
between m1 and m2. We also observe that, for a given
choice of Nm and N, both the statistical and systematic
errors of the determinant ratio computed via EOFA are
suppressed relative to the errors of the determinant ratio
computed via RHMC. We argue that the observed error
suppression can be explained by comparing the spectrum of
MRHMC to the spectrum of MEOFA, which we plot in the
lower panels of Fig. 1 for a very small lattice volume (45)
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where the complete spectrum can be computed directly.
While both operators have similar condition numbers,
we find that most of the spectrum of the EOFA action
is concentrated into a small interval ½1; 1þ Δ� with
Δ ∼Oð0.1Þ, leading to an action which is easier to estimate
stochastically.
We propose that TWQCD’s EOFA construction can be

thought of as a kind of preconditioning which computes the
same determinant ratio as RHMC but modifies the operator
inside the determinant (MRHMC), mapping its spectrum
onto a more compact interval. This suggests an additional
application of the EOFA formalism: quark mass reweight-
ing factors can be computed substantially more cheaply
using the EOFA action than using the RHMC action,
especially at light quark masses, even if the ensemble was
generated using RHMC. This could be useful, for example,
to include the dynamical effects of isospin breaking in

ensembles generated with isospin-symmetric up and down
quarks.

B. Heatbath

At the beginning of each HMC trajectory we wish to
draw a random pseudofermion field ϕ according to the
distribution PðϕÞ ∝ expð−ϕ†MEOFAϕÞ. To do this, we first
draw a random vector η by independently sampling the real
and imaginary parts of each component from the normal
distribution with μ ¼ 0 and σ2 ¼ 1/2, and then compute
ϕ ¼ M−1/2

EOFAη. As with the RHMC algorithm we approxi-
mate the inverse square root by an appropriately con-
structed rational function, but we stress that in the context
of EOFA this rational approximation enters only into the
heatbath and is not necessary to compute the EOFA action
itself or the associated pseudofermion force. Naively

FIG. 1. Top: log determinants of the EOFA and RHMC actions as a function of the number of intermediate masses (Nm) used to
compute Eq. (25), computed on a single, thermalized configuration of the 16I, 16I-G, and 16ID-G ensembles. We set ðam1; am2Þ to
(0.032, 0.042), (0.032,0.042), and (0.045,0.055) on the 16I, 16I-G, and 16ID-G ensemble, respectively. We note that the error bars are
purely statistical; for smallNm there is a large, unaccounted systematic error associated with setting Σ ¼ 1 in Eqs. (23) and (24). Bottom:
eigenvalue spectra ofMEOFA andMRHMC on a 45 lattice with am1 ¼ 0.01, am2 ¼ 1.0, and aM5 ¼ 1.8. In the bottom left plot all of the
gauge links are set to UμðxÞ ¼ 1 (i.e., the free field limit); in the bottom right plot each gauge link is set to an independent, random
SUð3Þ matrix.
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applying a rational approximation with the form of Eq. (19)
to the operator MEOFA results in

M−1/2
EOFA≃α0þ

XNp

k¼1

αl

�
1

γl
−kP−Ω†

−½Hðm1Þ�−1Ω−P−

þkPþΩ
†
þ½Hðm2Þ−Δþðm1;m2ÞPþ�−1ΩþPþ

�
−1
;

ð27Þ
where we have defined γl ≡ ð1þ βlÞ−1. In this form, the
nested inversions required to seed the heatbath would make

EOFA prohibitively expensive. However, the Woodbury
matrix identity

ðAþBCDÞ−1¼A−1−A−1BðC−1þDA−1BÞ−1DA−1 ð28Þ

and the cancellation between cross-terms involving
products of the chiral projection operators can be used
to manipulate this expression into the equivalent
form

M−1/2
EOFA ≃ α0 þ

XNp

k¼1

αlγlf1þ kγlP−Ω†
−½Hðm1Þ − γlΔ−ðm1; m2ÞP−�−1Ω−P−

− kγlPþΩ
†
þ½Hðm2Þ − βlγlΔþðm1; m2ÞPþ�−1ΩþPþg: ð29Þ

With this expression the EOFA heatbath step can be
performed at the cost of 2Np CG inversions using a rational
approximation with Np poles. Unlike the case of RHMC,
multishift CG algorithms are not applicable to the EOFA
heatbath since each of the 2Np operators in Eq. (29)
generates a different Krylov space. Furthermore, since
the operators Δ�P� have a large number of zero modes
and are therefore not invertible, there is no simple trans-
formation by which this system can be recast into a form
amenable to multishift CG.
In the left panel of Fig. 2 we test Eq. (29) on a single

thermalized configuration of the 16I ensemble by comput-
ing the quantity

ε≡ jη†η − ϕ†MEOFAϕj
η†η

ð30Þ

after seeding the pseudofermion field ϕ with a random
Gaussian vector η. In exact arithmetic ε ¼ 0; in practice it
measures the relative error in the heatbath step arising from
the choice of CG stopping conditions and rational approxi-
mation to the inverse square root. We repeat this calcu-
lation, varying the number of poles in the rational
approximation but keeping the stopping conditions fixed,
and observe that ε reaches the limits of double-precision
arithmetic even with a relatively modest number of
poles compared to what is typically required to compute

FIG. 2. Left: relative error—ε, defined by Eq. (30)—in seeding the pseudofermion heatbath as a function of the number of poles in the
rational approximation to the inverse square root (Np), with am1 ¼ 0.032 set to the dynamical heavy quark mass, and a stopping

residual of 10−10 for all CG inversions. Right: condition numbers ofMEOFA and D†
DWFDDWF as a function of the bare input quark mass

(amq); for MEOFA this is the numerator mass (am1 ¼ amq), while the denominator mass is fixed at am2 ≡ 1. Both calculations were
performed on a single, thermalized configuration of the 16I ensemble.
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non-integer powers of D†D accurately in the context of
RHMC. In the right panel of Fig. 2 we demonstrate this
explicitly by computing the condition numbers κ ¼
λmax/λmin of both operators as a function of the bare input
quark mass. In Sec. VI we show how aggressive tuning of
the rational approximation and stopping conditions,
together with forecasting techniques for the initial CG
guesses, can be combined to ameliorate the cost of the 2Np

inversions required to apply M−1/2
EOFA.

C. Pseudofermion force

The pseudofermion force

Ta∂a
x;μSfðUÞ≡ Ta d

ds
SfðesTa

UμðxÞÞ
����
s¼0

ð31Þ

measures the back-reaction of the pseudofermions on the
HMC system [Eq. (15)] under an infinitesimal variation of
the gauge field. In our notation fTag is a basis for the Lie
algebra suð3Þ, with the CPS normalization convention

TrðTaTbÞ ¼ −
1

2
δab: ð32Þ

The EOFA pseudofermion force can be worked out
explicitly by differentiating the EOFA action [Eq. (10)]
and applying the matrix identity

∂xM−1 ¼ −M−1ð∂xMÞM−1; ð33Þ

resulting in

Ta∂a
x;μSðUÞ ¼ kTaðγ5R5χ1Þ†ð∂a

x;μDWÞχ1
− kTaðγ5R5χ2Þ†ð∂a

x;μDWÞχ2; ð34Þ

with

χ1 ≡ ½Hðm1Þ�−1Ω−P−ϕ ð35Þ

and

χ2 ≡ ½Hðm2Þ − Δþðm1; m2ÞPþ�−1ΩþPþϕ: ð36Þ

Standard manipulations can be used to write a more general
Dirac bilinear as

a†ð∂a
x;μDWÞb

¼ −
k
2

X
x;s;μ

½a†ðx; sÞTaUμðxÞð1 − γμÞbðxþ μ̂; sÞ

− a†ðxþ μ̂; sÞU†
μðxÞTað1þ γμÞbðxÞ�

¼ −
k
2

X
x;s;μ

½UμðxÞðTr
spin

½ð1þ γμÞaðxþ μ̂; sÞb†ðx; sÞ�

þ Tr
spin

½ð1 − γμÞbðxþ μ̂; sÞa†ðx; sÞ�Þ�; ð37Þ

allowing Eq. (34) to be efficiently computed locally in
terms of a trace over spinor indices, at the cost of the two
inversions required to form χ1 and χ2. Since Dirac bilinears
of the form a†ð∂a

x;μDWÞb enter into the pseudofermion
forces associated with many of the standard pseudofermion
actions for Wilson and domain wall fermions—including
the RHMC action—implementing the EOFA pseudofer-
mion force requires little new code beyond what is required
to implement the EOFA Hamiltonian.

V. SMALL VOLUME REPRODUCTION TESTS

To further test our implementation of EOFA we have
reproduced the 16I (16I-G, 16ID-G) ensemble using EOFA
for the strange quark (light quarks) in place of RHMC. For
these tests we have made no serious effort to tune EOFA for
performance; we have simply checked that replacing
RHMC with EOFA, but leaving all other details of the
simulation fixed, has no discernible impact on physical
observables such as the average plaquette, topological
susceptibility, and low energy spectrum.

A. Ensemble generation

The details of the integrator parameters and nesting are
summarized in Tables IV and V, respectively. We use the
abbreviations

Quoðm1; m2Þ≡ det

�
D†

DWFDDWFðm1Þ
D†

DWFDDWFðm2Þ

�
ð38Þ

and

TABLE IV. Basic integrator and HMC details for the generation
of the 16I, 16I-G, and 16ID-G ensembles. We use nested Sexton-
Weingarten integration schemes, detailed in Table V, with δτ the
coarsest time step used to evolve the outermost level. We denote
the CG stopping tolerances used for the force gradient forecast-
ing, molecular dynamics, and Monte Carlo steps by rFG, rMD, and
rMC, respectively.

Ensemble Integrator δτ rFG rMD rMC

16I Force Gradient QPQPQ 0.1000 10−7 10−8 10−10

16I-G Omelyan (λ ¼ 0.2) 0.2000 ... 10−8 10−10

16ID-G Force Gradient QPQPQ 0.1667 10−6 10−7 10−10
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RatQuo1/nðm1; m2Þ≡
�
det

�
D†

DWFDDWFðm1Þ
D†

DWFDDWFðm2Þ

��1/n
ð39Þ

to denote the quotient and rational quotient actions, and on
the EOFA reproduction ensembles replace each instance of
RatQuo1/2ðm1; m2Þ with the EOFA action [Eq. (10)] using
the same mass parameters. The 16I and 16I-G EOFA
reproduction runs were seeded with an ordered start—i.e.,
all gauge links were initially set to the unit matrix—and
evolved for 1500 and 2500MD time units, respectively. For
the 16ID-G ensemble the last RHMC configuration (MD
trajectory 908) was used to seed the start of the EOFA
reproduction run, and then evolved for an additional 500
MD time units.

B. Basic observables

In Table VI we summarize results for the average
plaquette hPi, light quark and strange quark chiral hψ̄ψi
and pseudoscalar hψ̄γ5ψi condensates, and the topological
susceptibility χt ≡ hQ2i/V, computed on each ensemble; we
observe statistically consistent results between the RHMC
and EOFA ensembles in each case. Accompanying plots of

the time evolution can be found in Appendix C. The
topological charge Q has been measured using the 5Li
discretization introduced in Ref. [32] after cooling the gauge
fields with 20 steps of APE smearing [33] using a smearing
coefficient of 0.45. The ensemble averages were computed
after binning over 50 (25) successive MD time units on the
16I and 16I-G (16ID-G) ensembles, where the bin size has
been conservatively chosen based on the integrated auto-
correlation times measured in Ref. [24] for the 16I ensemble
and Ref. [27] for a series of β ¼ 1.75 DSDR ensembles.

C. Low energy spectra

In Table VII we list results for the pion, kaon, Omega
baryon, and residual masses, computed on the 16I ensem-
ble. These calculations were performed using a measure-
ment package previously introduced in Ref. [13], and based
on the all-mode averaging (AMA) technique of Ref. [34].
Five exact light quark propagators were computed per
trajectory using a deflated, mixed-precision CG solver with
600 low-mode deflation vectors and a tight stopping
residual r ¼ 10−8, while sloppy propagators were com-
puted for all time slices using a reduced stopping residual

TABLE V. Integrator layouts for the original RHMC runs. Here “Quo” is an abbreviation for the quotient action [Eq. (38)] and
“RatQuo1/n” is an abbreviation for the rational quotient action [Eq. (39)], with a rational function approximation used to apply ðD†DÞ1/n
and its inverse. For the EOFA reproduction runs each instance of RatQuo1/2 is replaced by an EOFA determinant with the same masses
[Eq. (10)], while all other ensemble and integrator details are left fixed. The notation A:B for the update scheme denotes the number of
steps of the next innermost integrator level (A) per step of the current level (B).

Ensemble Level Action Update

16I
1 Quoð0.01; 0.2Þ þ Quoð0.2; 1.0Þ þ RatQuo1/2ð0.032; 1.0Þ 4∶1
2 Gauge 1∶1

16I-G
1 RatQuo1/2ð0.01; 0.032Þ 1∶1
2 RatQuo1/4ð0.032; 1.0Þ þ RatQuo1/4ð0.032; 1.0Þ þ RatQuo1/4ð0.032; 1.0Þ 8∶1
3 Gauge 1∶1

16ID-G
1 RatQuo1/2ð0.01; 0.05Þ þ RatQuo1/2ð0.05; 1.0Þ þ RatQuo1/4ð0.045; 1.0Þ 1∶1
2 DSDR 8∶1
3 Gauge 1∶1

TABLE VI. Average plaquettes, quark condensates, and topological susceptibilities (χt) computed on the 16I, 16I-G and 16ID-G
lattices and their corresponding EOFA reproduction ensembles. The ensemble averages on the 16I (16I-G) lattices were computed using
MD trajectories 500–1500 (500–2500) after binning over 50 successive MD time units. The ensemble averages on the 16ID-G lattices
were computed using MD trajectories 500∶900 for the RHMC ensemble, and MD trajectories 960∶1360 for the EOFA ensemble, after
binning over 25 successive MD time units. We do not compute χt on the 16ID-G ensemble since the short 400 MD time unit
measurement runs are insufficient to adequately sample the topological charge, as evidenced by the time evolutions plotted in
Appendix C.

16I 16I-G 16ID-G

Observable RHMC EOFA RHMC EOFA RHMC EOFA

hPi 0.588 087(22) 0.588 106(26) 0.588 033(24) 0.588 039(16) 0.514 251(43) 0.514 200(48)
hψ̄ lψ li 0.001 697(5) 0.001 698(11) 0.001 715 1(72) 0.001 713 0(52) 0.005 543(11) 0.005 563(8)
hψ̄ sψ si 0.003 745 0(31) 0.003 743 5(74) 0.003 754 1(51) 0.003 752 9(34) 0.008 572 9(82) 0.008 589 5(69)
hψ̄ lγ5ψ li −0.000 015ð14Þ −0.000 012ð19Þ −0.000 003ð15Þ −0.000 006ð12Þ 0.000 033(13) −0.000 001ð11Þ
hψ̄ sγ5ψsi −0.000 001ð8Þ −0.000 007ð12Þ −0.000 000 4ð92Þ −0.000 003 4ð81Þ 0.000 017(10) −0.000 002ð8Þ
χt 1.03ð19Þ × 10−5 1.81ð42Þ × 10−5 2.16ð47Þ × 10−5 1.53ð27Þ × 10−5 ... ...
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r ¼ 10−4. Strange quark propagators were computed with
the tight residual r ¼ 10−8 for all time slices using ordinary
CG with no deflation. AMA correlation functions were
then computed by time-translational averaging of the
sloppy propagators, using the available exact propagators
to correct for bias. The light quark propagators were
computed using Coulomb gauge-fixed wall (W) sources,
with either local (L) or wall sinks; the strange quark
propagators were computed using Coulomb gauge-fixed
wall or Z3 box (Z3B) sources, and in both cases local sinks.
The pion and kaon masses were extracted by fitting to

the asymptotic, large Euclidean time limit of the respective
two-point correlation function,

h0jŌðtÞOð0Þj0i

≃t→∞ h0jŌðtÞjXihXjOð0Þj0i
2mXV

ðe−mXt � e−mXðT−tÞÞ; ð40Þ

where O denotes the choice of interpolating operator, X ∈
fπ; Kg is the ground state to whichO couples, and V and T
are the spatial volume and temporal extent of the lattice,
respectively. In particular, we performed simultaneous fits
to the hPPLWi, hPPWWi, and hAPLWi correlators, with
PðxÞ ¼ ψ̄ðxÞγ5ψðxÞ and AðxÞ ¼ ψ̄ðxÞγ5γ4ψðxÞ, and the
first (second) superscript denotes the sink (source) type.
The Omega baryon mass was extracted from the two-point
correlation function

Cs1s2
ΩΩ ðtÞ ¼

X3
i¼1

X
x⃗

h0jŌs1
Ω ðx⃗; tÞiOs2

Ω ð0Þij0i ð41Þ

with the interpolating operator

OΩðxÞi ¼ εabcðs†aðxÞCγisbðxÞÞscðxÞ; ð42Þ

s1 ¼ L and s2 ∈ fW;Z3Bg. The correlators were then
projected onto the positive parity component

PþC
s1s2
ΩΩ ¼ 1

4
Tr

�
1

2
ð1þ γ4ÞCs1s2

ΩΩ

�
ð43Þ

and simultaneously fit to double exponential ansätze with
common mass terms

Cs1s2
ΩΩ ðtÞ ¼ ðZ1Þs1s2ΩΩ e−mΩt þ ðZ2Þs1s2ΩΩ e−mΩ

0t: ð44Þ
Finally, the residual mass was determined by fitting the ratio

RðtÞ ¼ h0jPx⃗j
a
5qðx⃗; tÞjπi

h0jPx⃗j
a
5ðx⃗; tÞjπi

ð45Þ

to a constant, where ja5q is the five-dimensional pseudoscalar
density evaluated at the midpoint of the fifth dimension, and
j5a is the physical pseudoscalar density constructed from the
surface fields.
In addition, we have also measured the ground state pion

energy, kaon mass, and residual mass on the 16I-G and
16ID-G ensembles. While the ground state of the kaon is at
rest, the ground state of the pion has nonzero momentum
p⃗100 ¼ ð�π/L; 0; 0Þ on the 16I-G ensemble and p⃗111 ¼
ð�π/L;�π/L;�π/LÞ on the 16ID-G ensemble due to the
boundary conditions. These calculations make use of an
extension of the AMA measurement package described
above to G-parity ensembles; as discussed in Ref. [9], this
requires the inclusion of additional diagrams that are
generated by the mixing of quark flavors at the lattice
boundaries through the G-parity operation. We measure on
51 configurations of the 16I-G ensemble, beginning with
trajectory 500 and with a separation of 40 MD time units,
and use sloppy and exact CG stopping tolerances of 10−4

and 10−10, respectively, with a single exact solve per
trajectory. We likewise measure on 21 configurations of
the 16ID-G ensemble, beginning with trajectory 500 (960)
for the RHMC (EOFA) ensemble and separated by 20 MD
time units, and use the same AMA setup. We perform no
additional binning for either ensemble since the separations
between consecutive measurements are already comparable
to the bin sizes used to compute the plaquette and quark
condensates.

D. Pseudofermion forces on the 16I ensemble

TWQCD has observed that the average EOFA pseudo-
fermion force is roughly half the size of the corresponding
average RHMC pseudofermion force for a particular
dynamical Nf ¼ 1 QCD simulation with domain wall
quarks performed in Ref. [4]. Following this observation,
we examine the forces on the RHMC and EOFAvariants of
the 16I ensemble. We define a norm on the space of suð3Þ-
valued pseudofermion force matrices Fa

μðxÞ≡ ∂a
x;μSðUÞ by

kFμðxÞk≡
�X

a
Fa
μðxÞFa

μðxÞ
�
1/2
; ð46Þ

and consider two measures of the force associated with a
given configuration of the gauge field: the first is the RMS
force

TABLE VII. Low energy spectrum on the 16I ensemble
computed from 100 independent measurements beginning with
MD trajectory 500 and separated by 10 MD time units. Prior to
fitting the correlation functions were binned over groups of 5
measurements. Corresponding effective mass plots can be found
in Appendix C.

16I

Observable RHMC EOFA

amπ 0.2424(11) 0.2425(8)
amK 0.3252(11) 0.3253(7)
amΩ 1.003(15) 0.994(11)
am0

resðmlÞ 0.003 055 8(80) 0.003 052 3(78)
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FRMS ≡ 1

4V

�X
x;μ
kFμðxÞk2

�
1/2

ð47Þ

and the second is the maximum force

Fmax ≡max
x;μ

kFμðxÞk; ð48Þ

in both cases taken over all lattice sites and link directions.
While we expect Eq. (48) to be a more pertinent definition
in the context of HMC simulations—we have empirically
found that acceptance is controlled by the size of Fmax—
both FRMS and Fmax are, a priori, reasonable measures of
the pseudofermion force.
In Fig. 3 we compare histograms of FRMS and Fmax

between the RHMC and EOFA 16I ensembles. Each data
point corresponds to a single evaluation of the pseudofer-
mion force falling between MD trajectories 500 and 1500.
We find that comparing the relative sizes of the RHMC and
EOFA forces is highly dependent on whether one chooses
FRMS or Fmax; the mean EOFA FRMS is roughly 30%

smaller than the mean RHMCFRMS, but the distributions of
Fmax are nearly indistinguishable. This observation sug-
gests that while the EOFA force distribution may have a
smaller mean than the RHMC force distribution, the EOFA
distribution also likely has longer tails, such that the largest
forces have similar magnitudes. Since we expect the
magnitude of the largest forces to correlate more strongly
with the efficiency of the integrator than the magnitude of
the average forces, as we have argued above, we interpret
these results as suggesting that the optimal step size for an
EOFA evolution should be similar to that of an RHMC
simulation with the same mass parameters, even if the
average force is somewhat smaller.
TWQCD has also observed a large hierarchy of scales in

the pseudofermion forces associated with each of the two
terms in Eq. (34); in Ref. [5] they find that the average force
associated with the first term—involving the left-handed
component of the pseudofermion field—is more than
an order of magnitude smaller than the average force
associated with the second term—involving the right-
handed component—for two different dynamical QCD

FIG. 3. Histograms of the RMS and maximum pseudofermion forces associated with force evaluations falling between trajectories 500
and 1500 of the 16I HMC evolutions. FRMS and Fmax are defined by Eqs. (47) and (48), respectively. Δt is the step size used to integrate
the pseudofermion force contributions to the HMC evolution.
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simulations. They exploit this observation with a Sexton-
Weingarten integration scheme, integrating the first term
with a larger time step than the second, and find increased
efficiency in their simulations. In Fig. 4 we compare
histograms of the RMS and maximum left-handed and
right-handed forces from 1000 thermalized configurations
of the 16I EOFA ensemble. Our conclusions are analogous
to the comparison between the EOFA and RHMC forces: if
one considers FRMS the left-handed force contribution is
indeed substantially smaller than the right-handed force
contribution, but if one instead considers Fmax the force
distributions are very similar in both magnitude and shape.
Based on the latter observation we leave both terms in
Eq. (34) on the same time step in our large-scale EOFA
simulations.
We also note that in these small volume test runs we have

not considered applying the Hasenbusch mass precondi-
tioning technique [1] to the EOFA formalism. Introducing a
set of Hasenbusch masses fm0

igNi¼1, with m1 < m0
i < m2,

we can write the fermion determinant as

det

�
Dðm1Þ
Dðm2Þ

�
¼ det

�
Dðm1Þ
Dðm0

1Þ
��YN−1

i¼1

det

�
Dðm0

iÞ
Dðm0

iþ1Þ
��

× det

�
Dðm0

NÞ
Dðm2Þ

�
: ð49Þ

While the left-hand side can be simulated using a single
pseudofermion field, the associated forces can be large if
m1 ≪ m2, requiring a small step size to maintain reason-
able acceptance. The right-hand side, in contrast, involves
N þ 1 independent pseudofermion fields, but with possibly
substantially reduced forces, allowing larger step sizes to be
used. For lightm1 one typically observes that the gain from
increasing the step size offsets the cost of simulating extra
heavy flavors, leading to a more efficient simulation. In
Sec. VII we demonstrate that Hasenbusch preconditioning
allows for a substantial speed-up in the context of the 32ID-
G ensemble. We also note that in addition to reducing the
size of the pseudofermion forces, the Hasenbusch technique

FIG. 4. Histograms of the RMS and maximum pseudofermion forces associated with the left-handed and right-handed components of
the pseudofermion field in Eq. (34).
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preconditions the EOFA force in the sense that the size
hierarchy between the left-handed and right-handed force
contributions to a single determinant disappears in the limit
m0

i → m0
iþ1. In practice,we find that themass preconditioned

simulation has comparable left-handed and right-handed
force contributions even in the RMS sense.

E. Autocorrelations on the 16I-G ensemble

While EOFA and RHMC are formally equivalent in the
sense of Eq. (21)—in the limit of infinite statistics they
produce the same quark determinant, and hence the same
ensemble averages for physical observables—it is in
principle possible that the two algorithms approach this
limit at different rates. Tables VI–VIII provide some
evidence against an observable difference in our reproduc-
tion tests, since the error bars computed for the RHMC
ensembles and the error bars computed for the EOFA
ensembles are compatible. To more directly address this
question we have also examined integrated autocorrelation
times

τintðΔcutÞ ¼
1

2
þ
XΔcut

Δ¼1

CðΔÞ ð50Þ

on the 16I-G ensembles [35] for the set of basic physical
observables discussed in Sec. V B, where

CðΔÞ ¼
�ðXðtÞ − X̄ÞðXðtþ ΔÞ − X̄Þ

σ2X

�
ð51Þ

is the autocorrelation function associated with the observ-
able XðtÞ at lag Δ. Our procedure for estimating errors on
τint is identical to the procedure introduced in Ref. [27]: for
each fixed Δ in Eq. (51) we bin the set of measurements
ðXðtÞ − X̄ÞðXðtþ ΔÞ − X̄Þ over neighboring configura-
tions and estimate the error on the mean h� � �i by bootstrap
resampling.
In Fig. 5 we compare 2τint—the separation between

statistically independent molecular dynamics configura-
tions—between the RHMC simulation and the EOFA
simulation. Plots of the same observables as a function

of the molecular dynamics trajectory can be found in
Appendix C. We note that the results for a given observable
are consistent within the measured statistical errors, with
the possible exception of the light quark pseudoscalar
condensate, for which we measure a somewhat longer
autocorrelation time in the RHMC simulation. We conclude
that there is no evidence of a difference in autocorrelation
times between the EOFA and RHMC algorithms in this
work, but we also stress that this is an important issue and
should continue to be addressed in future studies.

VI. OPTIMIZATION AND TUNING

In this section we discuss preconditioning and algorith-
mic techniques which reduce the cost of EOFA simulations.
In some cases these are extensions of well-known lattice
techniques to the EOFA formalism, while in other cases
they are specific to EOFA. We illustrate these techniques
using bechmark tests computed with the physical quark
mass, Möbius DWF 24ID ensemble, and report timing
results for code written in the Columbia Physics System
(CPS) and running on 256-node or 512-node Blue Gene/Q
partitions.

A. Inversions of DEOFA

Since the majority of the computational effort in an
HMC simulation is associated with repeatedly inverting the
Dirac operator, techniques to more efficiently apply the
Dirac operator or to otherwise accelerate these inversions
can have a dramatic impact on the overall efficiency of the
integrator. To address the former, we make use of the
BAGEL assembler generation library [36] to produce
highly optimized kernels and fermion solvers for the
Blue Gene/Q hardware. To address the latter, we make
use of multiple preconditioning techniques, as well as a
mixed precision defect correction CG solver.
The first preconditioning technique we apply—“even-

odd” or “red-black” preconditioning—is well-known in the
lattice QCD community. Lattice sites are labeled as even if
ðxþ yþ zþ tÞ≡ 0 ðmod 2Þ, or odd if ðxþ yþ zþ tÞ≡
1 ðmod 2Þ, inducing a 2 × 2 block structure on fermion
operators

TABLE VIII. Low energy spectra on the 16I-G and 16ID-G ensembles computed from 51 and 21 measurements,
respectively. On the 16I-G ensemble we also predict the ground state pion energy using the fitted amπ on the 16I
ensemble and the continuum dispersion relation aEpred

π ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðamπÞ2 þ ðaπ/LÞ2

p
. Corresponding effective mass plots

can be found in Appendix C.

16I-G 16ID-G

Observable RHMC EOFA RHMC EOFA

aEπ 0.3175(43) 0.3097(48) 0.4457(101) 0.4614(72)
aEpred

π 0.311 97(4) 0.312 07(4) ... ...
amK 0.3271(22) 0.3272(28) 0.4343(34) 0.4382(24)
am0

resðmlÞ 0.003 140(90) 0.003 054(86) 0.009 19(14) 0.009 52(13)
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M ¼
�
Mee Meo

Moe Moo

�
: ð52Þ

Standard tricks can then be used to relate the linear system
Mψ ¼ ϕ to a better conditioned linear system involving
only the odd sub-lattice; this preconditioned system is
substantially cheaper to invert since the size of the problem
has been halved. After inverting on the odd sub-lattice, the
even component of ψ can also be recovered at modest cost,
without ever needing to explicitly invert on the even sub-
lattice. The details of this construction, and its extension to
EOFA, are described in Appendix B.
The second preconditioning technique we apply—

Cayley-form preconditioning—is unique to EOFA, and
was introduced in Ref. [6]. The generic linear system one
needs to solve in the context of EOFA has the form

ðHðm1Þ þ βΔ�ðm2; m3ÞP�Þψ ¼ ϕ; ð53Þ

where H ¼ γ5R5DEOFA. For Möbius domain wall fermions
DEOFA is dense in ss0, and thus considerably more
expensive to invert than DDWF, which has a tridiagonal
ss0 stencil, in terms of wall clock time. However, Eq. (6)
suggests that Eq. (53) can be related to an equivalent system
in terms of DDWF by using D̃−1 as a preconditioner. We
elaborate on the mathematical details in Appendix B 2, and,
in particular, demonstrate that Δ�D̃ has a relatively simple,
rank-one form, allowing for substantially more efficient
EOFA inversions—even when β ≠ 0—by working with the
preconditioned system. This technique also has the advan-
tage that it allows for EOFA simulations which re-use
existing high-performance code for applying DDWF with
little modification.

Finally, we use a restarted, mixed precision defect
correction solver to perform the conjugate gradient inver-
sions of the fully preconditioned EOFA system. For
memory bandwidth-limited calculations—such as applying
the Dirac operator—single precision computations can
be performed at approximately half the cost of full
double precision computations. In the defect correction
approach to mixed precision CG, the following algorithm
is used:
(1) Solve the Dirac equation in single precision arith-

metic using a reduced stopping tolerance (typically
10−4 or 10−5).

(2) Compute the current residual using the (single pre-
cision) solution in full double precision arithmetic.

(3) If the desired final tolerance (typically 10−8 or
smaller) has been reached, stop. Otherwise, return
to step 1, using the residual vector computed in step
2 as the new CG source.

We observe that this algorithm outperforms straight double
precision CG by approximately a factor of 2—as one would
expect if the calculation is truly memory bandwidth-
limited—provided the local lattice volume on each node
is sufficiently large to avoid communications bottlenecks.
In Fig. 6 we plot the CG residual as a function of the wall

clock running time of the inverter for a series of benchmark
inversions of Eq. (53) on the 24ID ensemble. These
benchmarks show the inverter performance as we sequen-
tially introduce even-odd preconditioning, Cayley-form
preconditioning, and finally, mixed precision CG. We also
plot the time required to solve the family of linear systems

ðD†
DWFDDWF þ βkÞψ ¼ ϕ ð54Þ

FIG. 5. Integrated autocorrelation times for the average plaquette, for the light and strange quark chiral and pseudoscalar condensates,
and for the square of the topological charge, measured using 2500 thermalized molecular dynamics trajectories of the RHMC (left) and
EOFA (right) 16I-G ensembles.
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using multishift CG for the same set of poles fβkg used in
the rational approximation to x−1/2 in the RHMC evolution
that generated the 24ID ensemble. This allows a baseline
estimate of the cost of evaluating the EOFA Hamiltonian or
pseudofermion force against the cost of evaluating the
RHMC Hamiltonian or pseudofermion force at the same
quark mass. We observe a factor of 3.9 speed-up for fully
preconditioned EOFA over the even-odd preconditioned
RHMC system. In both cases the underlying operator being
inverted is DDWF; the slower RHMC benchmark demon-
strates the overhead associated with multishift CG relative to
solving a single system with standard CG, both due to the
inability to fully utilize mixed precision methods and due to
the additional linear algebra required at each iteration.

B. Heatbath

Achieving the full performance improvement suggested
by the inversion benchmarks in Sec. VI A is complicated by
the form of the EOFA heatbath, which is expected to be
more expensive than the RHMC heatbath, even with
efficient EOFA code. Applying M−1/2

EOFA [Eq. (29)] requires
two independent CG inversions per pole used in the rational
approximation to x−1/2, since multishift CG is not appli-
cable: we use two algorithmic techniques to reduce this
cost. The first is a forecasting technique initially proposed
by Brower et al. [37] in the context of more general HMC
simulations, and later used successfully by TWQCD in the
context of the EOFA heatbath [4]. The idea is the following:
given a set of solutions fψkgNk¼1 to Eq. (53) for N different
poles fβkgNk¼1, one can use the linear combination

ψNþ1 ¼
XN
k¼1

ckψk ð55Þ

minimizing the functional

Φ½ψ � ¼ ψ†ðH þ βNþ1Δ�P�Þψ − ϕ†ψ − ψ†ϕ ð56Þ

as the initial CG guess for the next inversion with pole
βNþ1. The coefficients ck satisfy

XN
k¼1

ckψ
†
l ðH þ βNþ1Δ�P�Þψk ¼ ψ†

lϕ; ð57Þ

and can be computed explicitly using e.g. Gauss-Jordan
elimination. Since Eq. (56) is the same functional mini-
mized by the conjugate gradient algorithm itself, accurate
initial guesses can be computed for modest N provided the
fβkgNþ1

k¼1 are similar in magnitude. In Fig. 7 we test this
forecasting technique using the 24ID ensemble and a
rational approximation with 8 poles, and find that the
iteration count required to solve Eq. (53) to a tolerance of
10−10 is more than halved for the last few poles.
The second technique we have used to accelerate the

heatbath is motivated by observing that the coefficients
entering into Eq. (29) span several orders of magnitude for
a typical rational approximation to x−1/2. We find typical
values kαlγ2l /α0 ∼Oð10−3–10−5Þ, suggesting that the inver-
sions can be performed with reduced stopping tolerances
relative to the desired accuracy of M−1/2

EOFAψ , since the
solution vectors are ultimately multiplied by small coef-
ficients when the result is formed. We have explored the
following simple optimization scheme to relax the stopping
conditions for each pole:
(1) Choose a desired tolerance for the heatbath, εtol,

where ε is defined by Eq. (30).

FIG. 6. Wall clock time required to solve Eq. (53) to a stopping tolerance of 10−10 at the physical strange quark mass on the 24ID
ensemble, as the preconditioning and algorithmic refinements discussed in the text are introduced sequentially. The dashed vertical line
corresponds to the time required to apply ðD†

DWFDDWFÞ−1/2 by solving Eq. (54) using the high-performance implementations of even-
odd preconditioned DDWF and multishift CG in the BAGEL library.
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(2) Choose one of the inversions required to compute
M−1/2

EOFA according to Eq. (29), and relax the stopping
tolerance until the overall error in the heatbath ε
reaches εtol.

(3) Iterate over each inversion until all stopping con-
ditions have been tuned.

We report results for the 24ID ensemble in Table IX. Using
a rational approximation with 6 poles, and εtol ¼ 10−10, we
observe that the total heatbath time is more than halved
while only slightly increasing the error. We have also
checked that the final error and heatbath running time after
tuning is insensitive to the exact order in which the stopping
tolerances are tuned.

VII. LARGE-SCALE EOFA CALCULATIONS

In this section we turn to two ongoing ensemble
generation calculations currently being performed by the

RBC/UKQCD Collaboration. The first is a strong-coupling
Nf ¼ 2þ 1 243 × 64 × 24 Iwasakiþ DSDR lattice (24ID)
intended for exploratory studies and calculations requiring
high statistics [26]. The second (32ID) has been used for a
first-principles calculation of the ratio of standard model
CP-violation parameters ϵ0/ϵ from ΔI ¼ 1/2 K → ππ
decays in Ref. [7]. RBC/UKQCD is currently generating
more gauge field configurations to reduce the statistical
errors in the ΔI ¼ 1/2 decay amplitudes. Both ensembles
have physical quark masses and large volumes, allowing
for tests of the performance of EOFA in the context of state-
of-the-art domain wall fermion calculations.
Tables X and XI summarize the details of the integrator

parameters and nesting for these evolutions. The ensembles
labeled RHMC correspond to the evolutions of Ref. [26]
(24ID) and Ref. [7] (32ID-G). For the ensembles marked
EOFA, we have changed the strange quark (light quark)
action to EOFA for the 24ID (32ID-G) ensemble and
retuned the details of the integrator as described in the
remainder of the section. For the 32ID-G ensemble—
where, due to the G-parity flavor doubling, the EOFA
action naturally describes the degenerate light quark pair—
we have also switched from an Omelyan integrator
to a force gradient integrator, and inserted additional
Hasenbusch preconditioning determinants.

A. 24ID ensemble

We use the 24ID ensemble as a straightforward bench-
mark of RHMC against an equivalent EOFA simulation to
describe a physical heavy quark flavor. Here this is the
strange quark, but Nf ¼ 2þ 1þ 1 simulations with
dynamical strange and charm quarks are another obvious
target of EOFA. We make no serious attempt to retune the

TABLE IX. The relative error (ε) and total running time for the
EOFA heatbath on the 24ID ensemble before and after applying
the tuning algorithm discussed in the text.

ε Total Heatbath Time

Untuned 1.52 × 10−11 129.5 s
Tuned 7.79 × 10−11 68.9 s

TABLE X. Basic integrator and HMC details for the generation of the 24ID and 32ID-G ensembles. We denote the
coarsest time step used to evolve the outermost level by δτ, and the CG stopping tolerances used for the force
gradient forecasting, molecular dynamics, and Monte Carlo steps by rFG, rMD, and rMC, respectively. We elaborate
on the details of the integrator nesting in Table XI.

Ensemble Integrator δτ rFG rMD rMC

24ID (RHMC) Force Gradient QPQPQ 0.0833 10−5 10−7 10−10

24ID (EOFA) Force Gradient QPQPQ 0.0833 10−5 10−7 10−10

32ID-G (RHMC) Omelyan (λ ¼ 0.22Þ 0.0625 ... 10−7 10−10

32ID-G (EOFA) Force Gradient QPQPQ 0.1667 10−5 10−7 10−10

FIG. 7. CG iterations required to invert Eq. (53) for each of the
16 values of β entering into a rational approximation of M−1/2

EOFA
with 8 poles on the 24ID ensemble. The first 8 poles (β ¼ −γl)
are associated with the first (LH) term in Eq. (29), while the
second 8 poles (β ¼ −βlγl) are associated with the second (RH)
term. We find no improvement from using solutions to the LH
system to forecast solutions to the RH system and vice-versa,
since the Dirac operator being inverted in either case is evaluated
with a different quark mass.
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integrator after switching to EOFA beyond tuning the
heatbath step with the following procedure:
(1) Compute the largest and smallest eigenvalues of

MEOFA [Eq. (10)] for a few thermalized configura-
tions of the gauge field, and use these measurements
to inform the bounds of the rational approximations
to x−1/2 constructed via the Remez algorithm.

(2) Add poles to the rational approximation, with all CG
stopping tolerances set to rMC, until ε < rMC
[Eq. (30)] is reached.

(3) With the rational approximation now fixed from step
2, tune the CG stopping tolerances corresponding to
each pole, following the procedure described in
Sec. VI B, and keeping ε < rMC.

After tuning the heatbath, we then ran a single trajectory of
the RHMC evolution and the EOFA evolution on a 256-node
Blue Gene/Q partition. For the EOFA ensemble, we compare
two schemes. The first (“dense”) is a straightforward
implementation of Möbius DWF as proposed in Ref. [4]:
we invert Eq. (53) directly, where H ¼ γ5R5DEOFA and the

other dense 5D operators appearing in the EOFA action
are listed explicitly in Appendix A 2. We also do not apply
the final step in our heatbath tuning procedure, leaving all
CG stopping tolerances in the heatbath fixed at
rMC ¼ 10−10. In the second EOFA scheme (“precondi-
tioned”) we fully tune the heatbath step and apply the
Cayley-form preconditioning detailed in Appendix B 2
to inversions of Eq. (53). Timing breakdowns for the
strange quark part of the evolution are reported in
Table XII.
We observe that the dense EOFA formalism is actually

somewhat slower than RHMC: the additional complexity of
the EOFA heatbath, together with the more expensive
inversions of the dense 5D operator DEOFA, negate the
expected performance gains from the simpler forms of the
Hamiltonian and force evaluations.We emphasize, however,
that we have made no attempt to retune the integrator details
to optimize for EOFA. After introducing Cayley-
form preconditioning—so that we are inverting the tridiag-
onal operator DDWF rather than DEOFA when we solve

TABLE XI. Integrator layouts for the 24ID and 32ID-G ensembles. The notation A:B for the update scheme denotes the number of
steps of the next innermost integrator level (A) per step of the current level (B).

Ensemble Level Action Update

24ID (RHMC) 1 RatQuo1/2ð0.085; 1.0Þ 1∶1
2 Quoð0.00107; 0.00789Þ þ Quoð0.00789; 0.0291Þ þ Quoð0.0291; 0.095Þ

þQuoð0.095; 0.3Þ þ Quoð0.3; 0.548Þ þ Quoð0.548; 1.0Þ
1∶1

3 Gaugeþ DSDR 1∶1

24ID (EOFA) 1 EOFAð0.085; 1.0Þ 1∶1
2 Quoð0.00107; 0.00789Þ þ Quoð0.00789; 0.0291Þ þ Quoð0.0291; 0.095Þ

þQuoð0.095; 0.3Þ þ Quoð0.3; 0.548Þ þ Quoð0.548; 1.0Þ
1∶1

3 Gaugeþ DSDR 1∶1

32ID-G (RHMC) 1 RatQuo1/2ð0.0001; 0.007Þ 1∶1
2 RatQuo1/2ð0.007; 1.0Þ þ RatQuo1/4ð0.045; 1.0Þ 1∶2
3 DSDR 1∶2
4 Gauge 1∶1

32ID-G (EOFA) 1 EOFAð0.0001; 0.0058Þ þ EOFAð0.0058; 0.0149Þ þ EOFAð0.0149; 0.059Þ
þEOFAð0.059; 0.177Þ þ EOFAð0.177; 0.45Þ þ EOFAð0.45; 1.0Þ

þRatQuo1/4ð0.045; 1.0Þ

5∶1

2 DSDR 1∶2
3 Gauge 1∶1

TABLE XII. Strange quark timings for a single MD trajectory of the 24ID ensemble on a 256-node Blue Gene/Q partition. We
compare RHMC to EOFA with (“preconditioned”) and without (“dense”) Cayley-form preconditioning.

RHMC EOFA (Dense) EOFA (Preconditioned)

Step Time (s) % Time (s) % Time (s) %

Heatbath 42.6 2.7 340.6 15.1 68.9 15.5
Force gradient integration (total) 1485.6 94.8 1840.6 81.8 355.9 80.1
Final Hamiltonian evaluation 39.4 2.5 68.8 3.1 19.8 4.4
Total 1567.6 ... 2250.0 ... 444.6 ...
(Total RHMC)/Total 1.0 ... 0.7 ... 3.5 ...
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Eq. (53)—we find that EOFA outperforms RHMC by a
significant factor of 3.5.

B. 32ID-G ensemble

One particularly promising feature of EOFA in the
context of G-parity ensembles is the potential for aggres-
sive Hasenbusch mass preconditioning of the light quark
determinant; this makes the 32ID-G ensemble a particularly
interesting case study since the EOFA formalism is used to
describe a physical mass light quark pair. In Ref. [7] the
RBC/UKQCD Collaboration observed that mass precon-
ditioning is not particularly effective for the RHMC light
quark determinant, since each molecular dynamics step
requires one multishift inversion of D†D evaluated at the
numerator quark mass and two multishift inversions of
D†D evaluated at the denominator quark mass. The latter
two solves become prohibitively expensive if many inter-
mediate masses are introduced, negating the expected gain
from integrating the preconditioned pseudofermion forces
with larger step sizes. The EOFA force, on the other hand,
is no more expensive to evaluate than the force associated
with the standard quotient action [Eq. (38)], so it is
natural to expect better performance from Hasenbusch
preconditioning.
In Table XIII we list details of the tuning runs we have

used to explore potential schemes for evolving the 32ID-G
ensemble with EOFA light quarks. We started by switching
from an Omelyan integrator, for which the leading errors
are Oðδτ2Þ, to a force gradient integrator, for which the
leading errors are Oðδτ4Þ, and studied the effects of
inserting mass preconditioning determinants one at a time

TABLE XIII. HMC details for the production ensemble generation run (1) of Ref. [7], as well as 13 tuning runs after switching to
EOFA light quarks (2–14). We use the following notation: “O” denotes the Omelyan integrator, “FG” denotes the force gradient
integrator, “Ntraj” is the number of trajectories generated for the timing run, “acceptance” is the fraction of gauge field configurations
which were accepted in the final Monte Carlo step, and “efficiency” is the ratio of the total job time per trajectory for the specified
integration scheme to the total job time per trajectory of the scheme used in run 1. Entries in bold correspond to the original RHMC
scheme (1) and the final, fully tuned EOFA scheme (12).

Run Integrator Type Light Hasenbusch Masses Δτ rMD Ntraj Acceptance Efficiency

O 0.007 0.0625 10−8 850 88% ...
2 O ... 0.0625 10−8 10 40% 1.2
3 FG 0.043 0.0625 10−8 10 100% 2.0
4 FG 0.018, 0.12 0.0625 10−8 10 100% 1.8
5 FG 0.0118, 0.0412, 0.23 0.0625 10−8 10 100% 1.7
6 FG 0.0075, 0.023, 0.11, 0.4 0.0625 10−8 10 100% 1.7
7 FG 0.0058, 0.0149, 0.059, 0.177, 0.45 0.0625 10−8 10 100% 1.5
8 FG 0.0103, 0.029, 0.12, 0.41 0.1000 10−6 15 67% 4.0
9 FG 0.0103, 0.029, 0.12, 0.41 0.1000 10−7 20 95% 3.0
10 FG 0.0103, 0.029, 0.12, 0.41 0.1667 10−7 20 75% 4.5
11 FG 0.0058, 0.0149, 0.059, 0.177, 0.45 0.1000 10−6 40 80% 3.0
12 FG 0.0058; 0.0149; 0.059; 0.177; 0.45 0.1667 10−7 850 93% 4.2
13 FG 0.0058, 0.0149, 0.059, 0.177, 0.45 0.2000 10−7 60 65% 4.5
14 FG 0.0058, 0.0149, 0.059, 0.177, 0.45 0.2000 10−8 25 72% 3.9

TABLE XIV. Measured spectral range of MEOFA, heatbath
relative error (ε), and total time for the heatbath step (ΔtHB), using
NLHSB intermediate mass preconditioning steps and an order
Npoles rational approximation to x−1/2, with all CG stopping
tolerances set to rMC ¼ 10−10. Timings are reported for a 512-
node Blue Gene/Q partition.

NLHSB Mass Ratio λmin λmax Npoles ε ΔtHB (s)

0 0.0001/1.0 1.0 1150 11 6.91 × 10−11 5263.2

1
0.0001/0.043 1.0 33.3 7 3.50 × 10−11

2226.6
0.043/1.0 1.0 22.8 7 6.82 × 10−12

2
0.0001/0.018 1.0 13.5 6 2.13 × 10−11

2043.80.018/0.12 1.0 6.4 5 1.11 × 10−11

0.12/1.0 1.0 8.3 6 6.18 × 10−12

3

0.0001/0.0118 1.0 8.9 6 6.08 × 10−12

2307.8
0.0118/0.0412 1.0 3.3 4 4.09 × 10−11

0.0412/0.23 1.0 5.5 5 1.29 × 10−11

0.23/1.0 1.0 4.3 5 1.11 × 10−11

4

0.0001/0.0075 1.0 5.9 5 9.63 × 10−12

2080.7
0.0075/0.023 1.0 2.8 4 3.55 × 10−11

0.023/0.11 1.0 4.6 5 1.00 × 10−11

0.11/0.4 1.0 3.6 4 1.98 × 10−11

0.4/1.0 1.0 2.5 4 2.34 × 10−11

5

0.0001/0.0058 1.0 4.7 5 1.11 × 10−11

2289.0

0.0058/0.0149 1.0 2.3 4 1.64 × 10−11

0.0149/0.059 1.0 3.7 4 9.65 × 10−11

0.059/0.177 1.0 3.0 4 4.14 × 10−11

0.177/0.45 1.0 2.5 4 2.71 × 10−11

0.45/1.0 1.0 2.2 4 1.64 × 10−11
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(runs 1–7). We then identified two promising mass pre-
conditioning schemes—one with four intermediate masses
(runs 8–10), and the other with five intermediate masses
(runs 11–14)—and continued tuning the step size, CG
stopping conditions, and heatbath, to optimize the job time
per trajectory and Monte Carlo acceptance. The initial
RHMC scheme used in Ref. [7] corresponds to run 1, and
the final EOFA scheme we have adopted for our continuing
ensemble generation corresponds to run 12.
We find, in practice, that Hasenbusch mass precondition-

ing is extremely effective for the EOFA light quark deter-
minant. In addition to reducing the size of the pseudofermion
force, we also observe that the largest eigenvalue of the
EOFA action, Eq. (10), decreases rapidly asm2 → m1. As a

consequence, the heatbath is also less expensive with
Hasenbusch preconditioning, since, as we increase the
number of intermediate masses, we can simultaneously
decrease the range and number of poles entering into the
rational approximation used for each determinant. TableXIV
summarizes the measured spectral range, the heatbath error,
and the total heatbath cost for each of the runs 2–7. For this
ensemble the first Hasenbusch mass reduces the cost of the
heatbath by more than a factor of two, and subsequent
Hasenbusch masses essentially leave the cost fixed.
For each of the runs 2–7 we generated ten trajectories,

beginning from the same seed configuration, and analyzed
the resulting distributions of FRMS and Fmax. In panel (a) of
Fig. 8 we plot distributions of Fmax from 850 trajectories of

FIG. 8. Histograms of the maximum force, defined by Eq. (48), measured between trajectories 500 and 1350 on the 32ID-G RHMC
ensemble and measured between trajectories 1350 and 2200 on the 32ID-G EOFA ensemble. We use the abbreviation “LHSB” in the
legends to denote the various mass ratios entering into our mass preconditioning scheme for the light quark determinant, and “H” to
denote the strange quark determinant.
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the production RHMC ensemble generation calculation
(run 1). Since we are using exactly the same RHMC action
for the strange quark on the RHMC and EOFA ensembles,
we tune by adjusting the number and magnitude of the
intermediate light Hasenbusch masses such that the forces
associated with each of the light quark determinants are
comparable to the strange quark force. This allows us to
simplify the integrator layout to a three-level scheme, with
the light and strange quark determinants updated on the
same level. We find that four intermediate Hasenbusch
masses are sufficient to ensure that the strange quark force
is dominant in the sense of FRMS, and that five intermediate
Hasenbusch masses are sufficient in the sense of Fmax.
Panel (b) shows an analogous force distribution for the
latter mass preconditioning scheme.
In runs 8–10 we explore further tuning of a scheme with

four light Hasenbusch masses, and in runs 11–14 we
explore further tuning of a scheme with five light
Hasenbusch masses. We note that the Monte Carlo accep-
tance is relatively poor in runs 8–10—as we argued in
Sec. V, this is consistent with the view that the acceptance
should be controlled by the largest integration errors
accrued during the trajectory, which are proportional to
Fmax rather than FRMS—and thus have abandoned this
mass preconditioning scheme in favor of the scheme used
in runs 11–14. We have then tuned the step size of the
outermost integrator level (δτ) and the CG stopping
tolerance used in the molecular dynamics evolution
(rMD) to minimize the mean time required to generate an
accepted gauge field configuration, resulting in the scheme
of run 12. In addition, we have applied the heatbath tuning
procedure described in Sec. VI B in all of the runs 8–14,
allowing us to relax CG stopping tolerances for the

individual solves in the heatbath, while keeping the overall
error bounded by rMC ¼ 10−10. For the final scheme (12)
this optimization further reduced the cost of the light quark
heatbath from approximately 2300 s, as reported in
Table XIV, to approximately 850 s after tuning.
Comparing the fully tuned EOFA scheme (12) to the

original RHMC scheme (1) in Table XIII, we find that we
are able to generate EOFA trajectories a factor of 4.2 times
faster than RHMC trajectories, while maintaining a slightly
higher acceptance rate of 93%. We emphasize, however,
that this improved performance is only partially attributable
to the simpler form of the EOFA Hamiltonian and force
evaluations: we have also switched from an Omelyan
integrator to a force gradient integrator, retuned the step
sizes and integrator layout, and, in some cases, applied
optimizations to the EOFA simulation that are not appli-
cable to RHMC simulations (e.g. mixed precision CG).
Figure 9 briefly summarizes the respective techniques used
in the RHMC and EOFA evolution schemes. We have now
adopted the EOFA scheme tested in run 12 for ensemble
generation in our ongoing ΔI ¼ 1/2 K → ππ calculation
[38]. We expect the resulting performance gain to enable up
to four times as many measurements in our current
production run as we would have been able to generate
using the initial RHMC evolution scheme, enabling a
significantly more precise first-principles determination
of the standard model ratio ϵ0/ϵ.

VIII. CONCLUSION

In this work we have explored the viability of the exact
one flavor algorithm (EOFA) as an alternative to the
rational Hybrid Monte Carlo (RHMC) algorithm in

FIG. 9. Comparison of optimizations used in the RHMC 32ID-G simulation to the optimizations used in the EOFA 32ID-G
simulation.
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molecular dynamics simulations of lattice QCD with
domain wall fermions and periodic or G-parity boundary
conditions. We have verified the formal equivalence of
EOFA to RHMC through statistical tests of the EOFA
action (Sec. IV), and checked, using a series of inexpensive,
small volume ensembles with heavy pions, that physical
observables such as the plaquette, quark condensates,
topological susceptibility, and low energy spectrum are
consistent between ensembles generated using EOFA and
ensembles generated using RHMC (Sec. V). We have then
discussed preconditioning and tuning techniques for EOFA
simulations (Sec. VI and Appendix B), and finally, dem-
onstrated that EOFA can substantially outperform RHMC
for state-of-the-art lattice QCD simulations with large
volumes and physical quark masses (Sec. VII). In particu-
lar, we find that we are able to generate gauge field
configurations for the ongoing RBC/UKQCD calculation
of the ΔI ¼ 1/2 K → ππ decay amplitudes a factor of 4.2
times faster with EOFA. The keys to this dramatic speed-up
are a novel preconditioning technique which relates inver-
sions of the EOFA Dirac operator (DEOFA) to cheaper
inversions of the standard domain wall fermion Dirac
operator (DDWF), and the ability to apply mixed precision
defect correction solvers and extensive Hasenbusch mass
preconditioning in the context of EOFA.
Future work will explore further physics applications of

EOFA.We intend to generate variants of the 24ID ensemble
with nondegenerate up and down quark masses in the near
future. These ensembles will enable exploratory studies of
isospin breaking effects in the meson and baryon spectra, as
well as in other precision lattice calculations such as the
extraction of the CKM matrix element Vus from semi-
leptonic kaon decays [39]. Other potential applications
include domain wall QCD simulations with dynamical
charm quarks in the sea, and simulations with light, SUð3Þ-
symmetric quarks. The latter simulations could be used, for
example, to better constrain the strange quark dependence
of our SUð3Þ chiral perturbation theory studies [40], or to
probe the location of the critical point separating the
crossover and first-order phase transition regions in
three-flavor domain wall QCD at finite temperature.
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APPENDIX A: EOFA OPERATORS FOR
SHAMIR AND MÖBIUS DWF

In this Appendix we list the operators which enter into
DEOFA [Eq. (6)] and the EOFA action [Eq. (10)]. The more
general case of DWF with Zolotarev-type domain wall
fermions is constructed implicitly in Ref. [4]; we explicitly
list these operators for the more restrictive cases of Shamir
and Möbius DWF used in our simulations. We use Θs to
denote the discrete Heaviside theta function

Θs ¼


0; s < 0

1; s ≥ 0
ðA1Þ

and assume even Ls. The operators Ω� and Δ� are related
by the identity

Δ� ¼ kΩ�Ω
†
�; ðA2Þ

and the Möbius operators reduce to the corresponding
Shamir operators in the limit c ¼ d ¼ 1/2. We note that the
dense Möbius expressions listed here are not used inside
the inverter; we instead invert the preconditioned system
discussed in Appendix B 2.

1. Shamir kernel

k ¼ m2 −m1 ðA3Þ

½Ωþ�ss0 ¼ δs;Ls−1δs0;0 ðA4Þ

½Ω−�ss0 ¼ δs;0δs0;0 ðA5Þ

½Δþðm1; m2Þ�ss0 ¼ ðm2 −m1Þδs;Ls−1δs0;Ls−1 ðA6Þ

½Δ−ðm1; m2Þ�ss0 ¼ ðm2 −m1Þδs;0δs0;0 ðA7Þ

½MþðmÞ�ss0 ¼ δss0 − δs;s0þ1 þmδs;Ls−1δs0;0 ðA8Þ

½M−ðmÞ�ss0 ¼ δss0 − δs;s0−1 þmδs;0δs0;Ls−1 ðA9Þ

½D̃ðmÞ�ss0 ¼ δss0 ðA10Þ

½D̃ðmÞ−1�ss0 ¼ δss0 ðA11Þ
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2. Möbius kernel

k ¼ 2cðm2 −m1Þðcþ dÞ2Ls

½ðcþ dÞLs þm1ðc − dÞLs�½ðcþ dÞLs þm2ðc − dÞLs� ðA12Þ

ðΩþÞss0 ¼ ð−1Þsþ1
ðc − dÞLs−s−1

ðcþ dÞLs−s
δs0;0 ðA13Þ

ðΩ−Þss0 ¼ ð−1Þs ðc − dÞs
ðcþ dÞsþ1

δs0;0 ðA14Þ

½Δþðm1; m2Þ�ss0 ¼
ð−1Þsþs02cðm2 −m1Þðcþ dÞsþs0 ðc − dÞ2ðLs−1Þ−s−s0

½ðcþ dÞLs þm1ðc − dÞLs�½ðcþ dÞLs þm2ðc − dÞLs� ðA15Þ

½Δ−ðm1; m2Þ�ss0 ¼
ð−1Þsþs02cðm2 −m1Þðcþ dÞ2ðLs−1Þ−s−s0 ðc − dÞsþs0

½ðcþ dÞLs þm1ðc − dÞLs�½ðcþ dÞLs þm2ðc − dÞLs� ðA16Þ

½MþðmÞ�ss0 ¼
ð−1Þs−s02cðcþ dÞLs−sþs0−1ðc − dÞs−s0−1

ðcþ dÞLs þmðc − dÞLs Θs−s0−1

þ ðcþ dÞLs−1 −mðc − dÞLs−1
ðcþ dÞLs þmðc − dÞLs δss0

þ ð−1Þs−s0þ12cmðcþ dÞs0−s−1ðc − dÞLsþs−s0−1

ðcþ dÞLs þmðc − dÞLs Θs0−s−1 ðA17Þ

½M−ðmÞ�ss0 ¼
ð−1Þs0−sþ12cmðcþ dÞs−s0−1ðc − dÞLs−sþs0−1

ðcþ dÞLs þmðc − dÞLs Θs−s0−1

þ ðcþ dÞLs−1 −mðc − dÞLs−1
ðcþ dÞLs þmðc − dÞLs δss0

þ ð−1Þs−s02cðcþ dÞLsþs−s0−1ðc − dÞs0−s−1
ðcþ dÞLs þmðc − dÞLs Θs0−s−1 ðA18Þ

½D̃ðmÞ�ss0 ¼ ðcþ dÞδss0 þ ðc − dÞPþδs;s0þ1 þ ðc − dÞP−δs;s0−1

−mðc − dÞPþδs;0δs0;Ls−1 −mðc − dÞP−δs;Ls−1δs0;0 ðA19Þ

½D̃ðmÞ−1�ss0 ¼
�
mð−1Þs−s0þ1ðcþ dÞs0−s−1ðc − dÞLsþs−s0

ðcþ dÞLs þmðc − dÞLs
þ ð−1Þs−s0 ðc − dÞs−s0

ðcþ dÞs−s0þ1
Θs−s0

�
Pþ

þ
�
mð−1Þs0−sþ1ðcþ dÞs−s0−1ðc − dÞLsþs0−s

ðcþ dÞLs þmðc − dÞLs
þ ð−1Þs0−sðc − dÞs0−s

ðcþ dÞs0−sþ1
Θs0−s

�
P− ðA20Þ

APPENDIX B: FOUR-DIMENSIONAL EVEN-ODD PRECONDITIONING

The inversions required to compute the exact one flavor Hamiltonian can be accelerated using a standard
checkerboarding technique: we label lattice sites as “even” if ðxþ yþ zþ tÞ≡ 0 ðmod 2Þ or “odd” if
ðxþ yþ zþ tÞ≡ 1 ðmod 2Þ. This naturally induces a block structure in the Dirac operator D, which can be LDU
decomposed as
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�
Dee Deo

Doe Doo

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

D

¼
�

1 0

DoeD−1
ee 1

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

L

�
Dee 0

0 Doo −DoeD−1
eeDeo

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D

�
1 D−1

eeDeo

0 1

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

U

: ðB1Þ

Left-multiplying the linear system Dψ ¼ ϕ by

L−1 ¼
�

1 0

−DoeD−1
ee 1

�
ðB2Þ

results in the equivalent system

 
DeeψeþDeoψo

ðDoo−DoeD−1
eeDeoÞψo

!
¼
 

ϕe

ϕo−DoeD−1
eeϕe

!
; ðB3Þ

leading to the following trick: assuming D−1
ee is available in

an explicit form, it suffices to invert

ðDoo −DoeD−1
eeDeoÞψo ¼ ϕ̃o; ðB4Þ

with ϕ̃o ≡ ϕo −DoeD−1
eeϕe. This system only involves the

odd sublattice, and is thus substantially cheaper to invert
than D using an iterative algorithm like CG. The solution
on the even sublattice can then be reconstructed for a trivial
additional cost as

ψe ¼ D−1
ee ðϕe −DeoψoÞ: ðB5Þ

This technique is already well understood in the context of
RHMC with Shamir or Möbius DWF; in this Appendix we
describe how to generalize the method to the exact one
flavor algorithm.
In the context of EOFA, the generic linear system one

needs to invert takes the form

ðHðm1Þ þ βΔ�ðm2; m3ÞP�Þψ ¼ ϕ: ðB6Þ

We choose to multiply by an overall factor of γ5R5,
rewriting the system as

ðDEOFAðm1Þ þ βγ5R5Δ�ðm2; m3ÞP�Þψ ¼ γ5R5ϕ; ðB7Þ

for the following reasons: first, we wish to re-use the
existing high-performance implementation of the WilsonD
kernel in the BAGEL library without modification, and
second, overall factors of γ5R5 will cancel inside the
inverter since we use CG applied to the normal equations
and ðγ5R5Þ†ðγ5R5Þ ¼ 1. Since ðDEOFAÞeo ¼ ðDDWFÞeo and
Δ� ∝ δxx0 in the 4D bulk, only the operators coupling sites
of the same parity need to be modified to implement even-
odd preconditioned EOFA. We take somewhat different
approaches for the Shamir and Möbius cases.

1. Shamir kernel

Recall that for the Shamir kernel DDWF ¼ DEOFA, so the
extension of an inverter for the even-odd preconditioned
DDWF operator to instead solve Eq. (B7) is straightforward.
With D ¼ DDWF, the same parity fermion matrix has the
tridiagonal block structure

ðDDWFÞee¼ðDDWFÞoo
¼ δxx0 fð5−M5Þδss0 −Pþδs;s0þ1−P−δs;s0−1

þm1Pþδs;0δs0;Ls−1þm1P−δs;Ls−1δs0;0g: ðB8Þ

One can check by explicit calculation that the shift
operators have the form

(
βγ5R5Δþðm2; m3ÞPþ ¼ βðm3 −m2ÞPþδxx0δs;0δs0;Ls−1

βγ5R5Δ−ðm2; m3ÞP− ¼ −βðm3 −m2ÞP−δxx0δs;Ls−1δs0;0
;

ðB9Þ

so one can consider the operator appearing in Eq. (B7) as a
slight generalization of Eq. (B8) to

Dee ¼ Doo ¼ δxx0 fð5 −M5Þδss0 − Pþδs;s0þ1 − P−δs;s0−1

þ dþPþδs;0δs0;Ls−1 þ d−P−δs;Ls−1δs0;0g; ðB10Þ

with

d− ¼ m1 − βðm3 −m2Þδi;− ðB11Þ

and

dþ ¼ m1 þ βðm3 −m2Þδi;þ; ðB12Þ

where the index i denotes the chirality of the shift operator.
D−1

ee can be efficiently applied using the LDU decom-
position of Dee, again as a slight generalization of the
standard Shamir DWF case.

2. Möbius kernel and Cayley-form preconditioning

Using Eq. (7) we can write DEOFA in the form

ðDEOFAÞxx0;ss0 ¼ ðDWÞxx0δss0 þ δxx0 ðD⊥Þss0 : ðB13Þ

The action of the operator appearing in Eq. (B7) on lattice
sites of the same parity, then, is given by
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Dee ¼ Doo ¼ δxx0 fð4 −M5Þδss0 þ ðMþðm1ÞÞss0Pþ
þ ðM−ðm1ÞÞss0P− þ βγ5R5ðΔ�ðm2; m3ÞÞss0P�g;

ðB14Þ

withMþ,M−, andΔ� as defined in Eqs. (A15)–(A18). The
matrix elements of D−1

ee ¼ D−1
oo can be found by explicit

numerical inversion as part of the setup cost; this is a trivial
overhead since it suffices to invert only the ss0 subblock of
Dee. In this form, the exact factorization of the fermion
determinant in Eq. (2) comes at the cost of dense Ls × Ls
matrix operations. We argue that it is possible to do
significantly better by introducing an additional precondi-
tioning step.
We note that the system defined by Eq. (B7) can be more

efficiently inverted for the case of Möbius DWF by using
the operator D̃−1 as a right preconditioner, resulting in an
equivalent system in terms of DDWF. For the special case
β ¼ 0 this is straightforward: observing that the relation-
ship between DEOFA and DDWF [Eq. (6)] can be used to
manipulate

DEOFAψ ¼ DEOFA · D̃ · D̃−1ψ|fflffl{zfflffl}
≡ψ 0

¼ DDWFψ
0; ðB15Þ

it suffices to solveDDWFψ
0 ¼ γ5R5ϕ, from which ψ ¼ D̃ψ 0

can be recovered at the cost of a single additional matrix
multiplication. While we observe that D†

DWFDDWF has a
slightly larger condition number thanD†

EOFADEOFA, leading
to a modest increase in the total number of CG iterations
required to invert the system, DDWF also has a tridiagonal
stencil in the fifth dimension, and can thus be applied in
OðLsÞ operations—unlike the OðL2

sÞ operations required
for the dense DEOFA—leading to a substantial reduction in
wall clock time for the inversion.
The β ≠ 0 case is more involved, but can be treated in a

similar manner. Right preconditioning Eq. (B7) with D̃−1

leads to

ðDDWFðm1Þ � βR5Δ�ðm2; m3ÞD̃P�Þψ 0 ¼ γ5R5ϕ; ðB16Þ

where we have used γ5P� ¼ �P�. We define a new,
preconditioned, shift operator Δ̃� by

Δ̃�ðm1; m2Þ≡ R5Δ�ðm1; m2ÞD̃P�; ðB17Þ

and note that since ðΔ̃Þeo ¼ ðΔ̃Þoe ¼ 0, Eq. (B16) can be
inverted efficiently even with β ≠ 0 provided we can apply
the operator ðDDWFÞee � βΔ̃� and its inverse in OðLsÞ
operations. This turns out to be possible after observing that
Δ̃� is rank-one, i.e., it can be written as a vector outer
product

Δ̃� ¼ u� ⊗ v�: ðB18Þ

To see this, we start by decomposing D̃ into its chiral
components—D̃ ¼ D̃þPþ þ D̃−P−—in terms of which we
can also decompose

Δ̃� ¼ R5Δ�D̃�P�: ðB19Þ

The 5D structure of these operators can be worked out by
direct calculation, leading to Eq. (B18), with

8>>>>>><
>>>>>>:

ðuþÞs ¼ ð−1Þs ðc−dÞs
ðcþdÞLsþsþ1 ððcþ dÞLs þm1ðc − dÞLsÞ

ðvþÞs ¼ kδs;Ls−1

ðu−Þs ¼ ð−1Þsþ1 ðc−dÞLs−1−s
ðcþdÞ2Ls−s ððcþ dÞLs þm1ðc − dÞLsÞ

ðv−Þs ¼ kδs;0

:

ðB20Þ

Matrix-vector products involving the preconditioned shift
operator and a pseudofermion field can be computed from
this decomposition as

8<
:

ðΔ̃þψÞs ¼ kðuþÞsPþψLs−1

ðΔ̃†
þψÞs ¼ kδs;Ls−1Pþ

hPLs−1
s0¼0

ðuþÞs0ψ s0
i ðB21Þ

and

8<
:

ðΔ̃−ψÞs ¼ kðu−ÞsP−ψ0

ðΔ̃†
−ψÞs ¼ kδs;0P−

hPLs−1
s0¼0

ðu−Þs0ψ s0
i : ðB22Þ

The inverses can be applied using the Sherman-Morrison
formula:

ððDDWFÞee � βðu� ⊗ v�ÞÞ−1

¼ ðDDWFÞ−1ee ∓ β
ðDDWFÞ−1ee ðu� ⊗ v�ÞðDDWFÞ−1ee

1� βhv�; ðDDWFÞ−1ee u�i
:

ðB23Þ

In terms of

x� ≡ ðDDWFÞ−1ee u�; ðB24Þ

which can be constructed numerically using the tridiagonal
matrix algorithm [43], the necessary factors can be
written as
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8>>>>>><
>>>>>>:

1þ βhvþ; ðDDWFÞ−1ee uþi ¼ 1þ βkðxþÞLs−1

ð½ðDDWFÞ−1ee ðu� ⊗ v�ÞðDDWFÞ−1ee �ψÞs ¼ kðxþÞs
ðcþdÞLsþm1ðc−dÞLs Pþ

�PLs−1
s0¼0

ðcþ dÞs0 ðc − dÞLs−1−s0ψ s0

�

ð½ðDDWFÞ−1ee ðuþ ⊗ vþÞðDDWFÞ−1ee �†ψÞs ¼ kðcþdÞsðc−dÞLs−1−s
ðcþdÞLsþm1ðc−dÞLs Pþ

�PLs−1
s0¼0

ðxþÞs0ψ s0

� ðB25Þ

and

8>>>>>><
>>>>>>:

1 − βhv−; ðDDWFÞ−1ee u−i ¼ 1 − βkðx−Þ0
ð½ðDDWFÞ−1ee ðu− ⊗ v−ÞðDDWFÞ−1ee �ψÞs ¼ kðx−Þs

ðcþdÞLsþm1ðc−dÞLs P−

�PLs−1
s0¼0

ðcþ dÞLs−1−s0 ðc − dÞs0ψ s0

�

ð½ðDDWFÞ−1ee ðu− ⊗ v−ÞðDDWFÞ−1ee �†ψÞs ¼ kðcþdÞLs−1−sðc−dÞs
ðcþdÞLsþm1ðc−dÞLs P−

�PLs−1
s0¼0

ðx−Þs0ψ s0

� ; ðB26Þ

which allow Eq. (B23) to be applied to a pseudofermion vector in OðLsÞ operations.

In Fig. 10 we benchmark representative even-odd
preconditioned inversions of Eq. (B7) on the 24ID ensem-
ble, with and without additional preconditioning by D̃−1, at
the physical strange quark mass. In addition to observing a
substantial improvement in terms of wall clock time for the

inversion, we note that this preconditioning scheme
also has the advantage that it requires little new code—
assuming an existing high-performance implementation of
DDWF—since DEOFA is never applied directly in the
preconditioned formalism.

FIG. 10. Comparison of wall clock inversion times for the two solves required to evaluate the EOFA Hamiltonian or pseudofermion
force with and without Cayley-form preconditioning for the strange quark determinant on the 24ID ensemble. The dashed vertical lines
show the corresponding total cost of the multishift inversions of D†

DWFDDWF needed to evaluate the RHMC Hamiltonian or
pseudofermion force on the same ensemble.
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APPENDIX C: ADDITIONAL PLOTS FOR SMALL VOLUME REPRODUCTION TESTS

1. Evolution of the plaquette, quark condensates, and topological charge

FIG. 11. Molecular dynamics evolution of the average plaquette, topological charge, and quark condensates on the 16I ensembles.
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FIG. 12. Molecular dynamics evolution of the average plaquette, topological charge, and quark condensates on the 16I-G ensembles.
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FIG. 13. Molecular dynamics evolution of the average plaquette, topological charge, and quark condensates on the 16ID-G ensembles.
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2. Effective mass plots

FIG. 14. Effective pion mass from a simultaneous fit to the hPPLWi (top), hPPWWi (middle), and hAPLWi (bottom) correlation
functions, as measured on the EOFA (left) and RHMC (right) 16I ensembles.
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FIG. 15. Effective kaon mass from a simultaneous fit to the hPPLWi (top), hPPWWi (middle), and hAPLWi (bottom) correlation
functions, as measured on the EOFA (left) and RHMC (right) 16I ensembles.
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FIG. 16. Effective Ω baryon mass from a simultaneous two-state fit to wall and Z3 noise sources, as measured on the EOFA (left) and
RHMC (right) 16I ensembles.

FIG. 17. Effective am0
resðmlÞ, as measured on the EOFA (left) and RHMC (right) 16I ensembles.
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FIG. 18. Effective ground state pion energy (top), kaon mass (middle), and am0
resðmlÞ evaluated at the bare light quark mass, as

measured on the EOFA (left) and RHMC (right) 16I-G ensembles.
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FIG. 19. Effective ground state pion energy (top), kaon mass (middle), and amres evaluated at the bare light quark mass, as measured
on the EOFA (left) and RHMC (right) 16ID-G ensembles.
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