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We present results of a lattice QCD calculation of B — D* and By — Dj axial vector matrix elements
with both states at rest. These zero recoil matrix elements provide the normalization necessary to infer a
value for the CKM matrix element |V ;| from experimental measurements of B — D**¢#~p and BY —
D¢~ b decay. Results are derived from correlation functions computed with highly improved staggered
quarks (HISQ) for light, strange, and charm quark propagators, and nonrelativistic QCD for the bottom
quark propagator. The calculation of correlation functions employs MILC Collaboration ensembles over a
range of three lattice spacings. These gauge field configurations include sea quark effects of charm, strange,
and equal-mass up and down quarks. We use ensembles with physically light up and down quarks, as well

as heavier values. Our main results are F57P"(1) = 0.895 + 0.010, & 0.024, and F5=Di(1) =

0.883 £ 0.012, & 0.028,y,.
extrapolation of experimental data to zero recoil.
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I. INTRODUCTION

Precise measurements of quark flavor-changing inter-
actions offer one way to uncover physics beyond the
standard model. As successful as the standard model
appears to be so far, there will continue to be progress
reducing experimental and theoretical uncertainties, as well
as making new measurements. Existing tensions in the
global fits to the Cabibbo-Kobyashi-Maskawa (CKM)
parameters may become outright inconsistencies, or new
measurements of rare decays may differ significantly from
standard model predictions.

Measurements of the exclusive semileptonic decay B® —
D**¢~p provided the first estimations of the magnitude of
CKM matrix element V., [1-16]. This channel still provides
one of three precise methods of determining |V .,,|. Measure-
ments for the differential branching fraction are fit to a
function of ¢?, the lepton invariant mass-squared, and
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We discuss the consequences for |V, | in light of recent investigations into the

extrapolated to the zero-recoil point (maximum ¢?). Then
lattice QCD results for the relevant hadronic matrix element
are used to infer |V ., |. The most recent HFLAV experimental
average [17] combined with the Fermilab/MILC lattice result
[18] gives |V | = (38.71 £ 0475, £ 0.594) x 1072
Measurements of the inclusive b — ¢ decays B — X .£v,
combined with an operator product expansion offer a com-
plementary method. The latest estimate is |V, | = (42.21 £
0.78) x 1072 [19,20]. The discrepancy between the inclusive
and exclusive result described above is at the 3o level.
Recently it has been suggested that the inclusive/
exclusive difference could be due to model-dependence
implicit in extrapolating experimental data for B - D*£v to
the zero recoil point. The CLN parametrization [21] has been
used in recent analyses since it takes advantage of heavy
quark symmetries to improve unitarity constraints in the
form factor shape function. This had several advantages for
some time, but with increased precision in the experimental
data, it is possible that uncertainties arising from these
constraints are no longer negligible. In fact, recent work
[22-27] has shown that replacing the CLN parametrization
by the BGL parametrization [28] yields a determination of
|V.p| which is as much as 10% higher, in much better
agreement with the |V,| from inclusive decays.
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One can also use the exclusive decay B — Dfv to
estimate |V,|. Historically this has not given as precise
a determination due to having to contend with back-
ground from B — D*/v. Recent progress has come from
new measurements and joint fits to experimental and
lattice [29,30] data over a range of g> using so-called
z-parametrizations [31,32]. The latest result using
B — Dfv results is |V,,| = (40.85 4 0.98) x 1073 [33],
in acceptable agreement with either the B — D*/v or
B — X /v determinations.

It is worth noting that a determination of |V_,| is
important beyond semileptonic b — ¢ decays. Due to
insufficient direct knowledge of the top-strange coupling,
standard model predictions which depend on V,, rely on
CKM unitarity, and therefore on V,,. For example the K° —
K° mixing parameter ¢ depends sensitively on V,,; taking
sin 2/ as an input, then ex o |V ,|* at leading order [34].

In this article we present the details and results of a lattice
calculation of the zero-recoil form factor needed to extract
|V.| from experimental measurements of the B — D*/v
and B, —» D}/v decay rates. This work differs from the
Fermilab/MILC calculation [18] in the following respects:
(1) the gauge field configurations are the next generation
MILC ensembles [35-37] which include effects of 2+1+1
flavors of sea quarks using the highly improved staggered
quark (HISQ) action [38]; (2) the fully relativistic HISQ
action is used for valence light, strange, and charm quarks;
(3) the nonrelativistic QCD (NRQCD) action [39] is used
for the bottom quark. Therefore, this work represents a
statistically independent, complementary calculation to
Ref. [18], with different formulations in many respects.
The two main advantages of using the HISQ action is that
discretization errors are reduced and that the MILC HISQ
ensembles include configurations with physically light u/d
quark effects. We reported preliminary results in recent
proceedings [40].

Other groups are applying different methods to calculate
By — Dg?; form factors. Two-flavor twisted-mass con-

figurations have been used to estimate the B; — D, form
factors near zero recoil [41]; however the uncertainties with
this formulation are quite large. Work has also recently
begun using the domain wall action for light, strange, and
charm quarks [42]. Having results for the form factors from
several groups, each using different approaches, would be
very helpful and could lead to a further reduction in
uncertainties by allowing global fits to uncorrelated

numerical and experimental data.
|

This paper is structured as follows. Section II briefly
introduces the hadronic matrix elements of interest and sets
some notation. In Sec. III we list the inputs to our computation
and summarize the correlation functions calculated. The
matching between lattice and continuum currents is discussed
in Sec. I'V. Section V is the most important section for the ex-
pert reader; there we discuss the fits to the correlation fun-
ctions, the treatment of discretization and quark mass errors,
and estimates of other systematic uncertainties. We summa-
rize the result of the lattice calculation in Sec. VI. In Sec. VII
we investigate the implications of the new lattice result in the
context of renewed scrutiny of the extrapolation of exper-
imental data to zero recoil; there we propose a simplified
series expansion as the one least likely to introduce hidden
theoretical uncertainties into a form factor parametrization.
We offer brief conclusions in Sec. VIII. Several appendices
are provided which contain further definitions and details in
hopes of making the manuscript as self-contained as possible.
These are noted at appropriate places in the body of the paper.

A reader more interested in the results and consequences
than the details of our calculation can safely focus a first
reading on Secs. II, VI, VII, and VIII, possibly referring to
Appendix G.

II. FORM FACTORS

This section simply summarizes standard notation relating
the differential decay rate, the relevant hadronic matrix
elements, and the corresponding form factors. Throughout
the section we refer to B — D**#~ decay, but the expres-
sions for BY — D** ¢~ are the same, mutatis mutandis.

The differential decay rate, integrated over angular
variables, is given in the standard model by

dar - v GEM)|iiewV e
aw B = DR ==
x (M = Mp: Vw2 = Ly (w) | F (w)

(1)

where w = v -0’ is the scalar product of the B and D*
4-velocities, and y(w) is a known kinematic function nor-
malized so that y(1) = 1 (see Appendix G). The coefficient
fiew accounts for electroweak corrections due to box diagrams
in which a photon or Z boson is exchanged in addition toa W
boson as well as the Coulomb attraction of the final-state
charged particles [43—45]. The form factor F(w) is a linear
combination of hadronic form factors parametrizing the
matrix elements of the V — A weak current, i.e.

. ~ 2iV(q? s
(D0 €N blB(p) = ot L,
* - " % € - q
(D (5. er s BIB(p) = M o) L+ (4 Mo )| =
“oq M3 — M3,
—-A 6]2 s P”"“P/ﬂ_iqﬂ . (2
) 3, vty 7 )
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The only contribution to F(w) at zero recoil, w =1, is
from the matrix element of the axial vector current; this
reduces to

(D*(p.e)|er'r’blB(p)) = (Mp + Mp)Ai (qra )€ (3)

for j =1, 2, 3. It is sometimes conventional to work with
form factors defined within heavy quark effective theory
(HQET). Of relevance to this work, we write

hA (W) _ZVMBMD* Al(qz) (4)
1 - 2
M+ Mp 1 — s
At zero recoil, where w = 1 and ¢> = ¢2,x»
Mg+ Mp-
F(1) = hy (1) = ——2 A (R 5
0= () =2y () 9

For brevity throughout the paper we will usually use the /4,
notation. When we wish to specifically refer to the B, —
D7 form factor, we write hih’ SO

FB=D(1) = hs (1) and FB:=Di(1) = hﬁ‘](l). (6)
These are the quantities we calculate here.

III. LATTICE PARAMETERS AND
METHODOLOGY

Here we give specific details about the lattice calculation.
Once again many of the expressions will refer to B — D*
matrix elements, but they apply for any spectator quark
mass.

The gluon field configurations that we use were gen-
erated by the MILC Collaboration and include 2 + 1 41
flavors of dynamical HISQ quarks in the sea and include 3
different lattice spacings [35-37]. The u and d quarks have
equal mass, m,, = m; = my, and in our calculations we use
the values m;/m; = 0.2, 0.1 and the physical value 1/27.4
[46]. The s and ¢ quarks in the sea are also well-tuned [47]
and included using the HISQ action. The gauge action is
the Symanzik improved gluon action with coefficients
correct to O(a,a*, nsaa”) [48]. Table I gives numerical
values for the lattice spacings, quark masses, and other
parameters describing the ensembles we used.

In calculating correlation functions, we slightly tune
the valence s and ¢ masses closer to their physical values.
The d, s, and ¢ quark propagators were computed using the
MILC code [50]. The b quark is simulated using perturba-
tively improved nonrelativistic QCD [49,51], which takes
advantage of the nonrelativistic nature of the b quark
dynamics in B mesons and produces very good control
over discretization uncertainties. Details of the gauge,
NRQCD, and HISQ actions used are given in
Appendices A, B, and C, respectively. In Table II we

TABLE L. Details of the gauge configurations used in this work.
We refer to sets 1, 2 and 3 as “very coarse,” sets 4, 5 and 6 as
“coarse” and sets 7 and 8 as “fine.” The lattice spacings were
determined from the Y'(2S — 15) splitting in [49]. Sets 3, 6 and 8
use light quarks with their physical masses. i is the tadpole
improvement factor, here we use the Landau gauge mean link.
The final column specifies the total number of configurations
multiplied by the number of different start times used for sources
on each. In order to improve statistical precision we use random
wall sources.

Set a(fm) LlaxTla am amg amg Uy Negg X 1y
1 0.1474 16x48 0.013 0.065 0.838 0.8195 960 x 16
2 0.1463 24 x48 0.0064 0.064 0.828 0.8202 960 x 4
3 0.1450 32 x48 0.00235 0.0647 0.831 0.8195 960 x 4
4 0.1219 24 x64 0.0102 0.0509 0.635 0.8341 960 x 4
5 0.1195 32x64 0.00507 0.0507 0.628 0.8349 960 x 4
6 0.1189 48 x64 0.00184 0.0507 0.628 0.8341 960 x 4
7 0.0884 32x96 0.0074 0.037 0.440 0.8525 960 x 4
8 0.08787 64 x96 0.00120 0.0363 0.432 0.8518 540 x 4
record the parameters used in calculating quark
propagators.

In order to extract the form factor from lattice calcu-
lations we must compute the set of Euclidean correlation
functions

Cpapi(t);; = <O<I)Bi0+(0)3j>
Clll)y*th(t)ij = <OM([)D*1'OTU(O)D*]>
(T, 0);; = <O”(T)D*ijk<t)o+(0)3j> (7)

3pt

where each interpolating operator O; is projected onto zero
spatial momentum by summing over spatial lattice points

TABLE II. Valence quark masses and parameters used to
calculate propagators. The s and ¢ valence masses were tuned
using results from [47] and the b mass was taken from [49].
(1 + enair) 1s the coefficient of the charm Naik term and c; are the
perturbatively improved coefficients appearing in the NRQCD
action correct through O(a,v*) [49]. The last column gives the T
values used in three point functions. These have changed from
those presented in [40] on the very coarse ensembles as it was
found that 7 = 10, 11, 12, 13 resulted in excessive noise on Set 3,
which resulted in poor fit stability and the relatively low value of
F(1) on this ensemble.

Set am¥™ am'™ am, engx Ci1.C6 Cs5 C4 T
0.0641 0.826 3.297 —0.345 1.36 1.21 1.22 6,7,8,9
0.0636 0.828 3.263 —0.340 1.36 1.21 1.22 6,7,8,9
0.0628 0.827 3.25 —0.345 1.36 1.21 1.22 6,7,8,9

0.0522 0.645 2.66
0.0505 0.627 2.62
0.0507 0.631 2.62

0.0364 0.434 191
0.0360 0.4305 1.89

-0.235 1.31 1.16 1.20 10,11,12,13
-0.224 1.31 1.16 1.20 10,11,12,13
-0.226 1.31 1.16 1.20 10,11,12,13

-0.117 1.21 1.12 1.16 15,18,21,24
-0.115 1.21 1.12 1.16 10,13,16,19

0N NN R W~
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and the current J* is one of several lattice currents (see
Sec. 1V). The indices i and j label different smearing
functions. We use three different smearing operators on
each of the B and D* interpolating operators.

In implementing O¥ () ,-; we use an unsmeared operator
and two gauge covariant Gaussian smearings, implemented

. .V
by applying (1 -
stride-2 in order not to mix the staggered-taste meson
multiplets. rp- is the radius (in lattice units) chosen to give
good overlap with the ground state, and 7 is chosen to give
a good approximation to a Gaussian while maintaining
numerical stability. For the B we use a local operator as well
as two Gaussian smearings, implemented as %e‘(’“‘”z/rﬁ,
where again rp is a radius in lattice units and N is an overall
normalization. Since the B smearings are not gauge
invariant, the gauge fields are fixed to Coulomb gauge.
We refer to the local operator as [/ and the Gaussian
smearings as g2 and g4 corresponding to radii of 2a and
4a respectively. We use the same choices of radii for both
B and D* smearings. The smearing parameters are given in
Table III.

The interpolating operators themselves are

Zwu

Oy (x Zwu YA Yy +ai)  (8)

2
)n to the field. Here the derivative is

)P Ax, Y)¥,(y)

where A(x,y) is the appropriate smearing function dis-
cussed above. In distinction to the continuum quark fields
b, ¢, s, and u of Sec. II, here we denote the NRQCD b field
by ¥, and the staggered fields, written as 4-component
Dirac spinors (see Appendix C), by y with the appropriate
flavor subscript.

We checked both the point-split and local D* interpolat-
ing operators on the very coarse, physical point ensemble
(Set 3) and found no significant difference in statistical
noise or central value of either the D* mass or the matrix
element. We primarily used the point-split current as it was
simpler to implement in our framework. The results quoted
below for the B — D* fits use the point-split vector current,
except for Set 3 where results are given for the local vector

TABLE III.  Values of r, taken to be the same, for the B,y and
Dy, Gaussian smearings on each set and the accompanylng n

values for the D, smearings. We chose to fix the radii in lattice

units rather than physical units as this seemed to result in more
consistent numerical stability of the covariant Gaussian smearing
operator when moving between lattices.

Set rpla rela ng g4
1,23 2 4 30 30
45,6 2 4 30 30
7.8 2 4 30 40

current. The results below for B, — D} form factors were
obtained using the local vector current.

In order to improve statistics we multiply our smeared
sources with random walls to produce, on average, the
effect of multiple sources. Taking the all-to-all 2-point
function as an example we have

Z(l/_/l ()C, I)Fl//2(x + 6sinkv t)

xy,0

S 1/72(})7 O)FWI (y + 5src7 O)>A (5sm k)A (55rc)
= w[[Gy(x.1;y,00TA;(8,)

xy,0
X Gl(y + 5srch;x - 5sink7 t)A

Copi(t, O)ij =

i(ésin k)] (9)

Exact computation requires an inversion for each value of y
being summed over. Instead we generate a random vector &
satisfying

= 6(x.y)Bap- (10)

hm Z Eat(x)Epi(y

N here is the number of random vector wall sources. The
average over configurations further suppresses violations of
this relation; in practice a single random wall per color,
setting N = N, = 3, is sufficient. Inserting the above
relation into the 2-point function

C2pl(t? O)ij - Z tr[FGZ (x’ Lz, 0)€(Z)FAj(65rc)£T (y - 5src)

xyz,6,1

X Gl (yv O;x - 5sinka t)Ai<5sink)]
=Y t[[G,(x.£:2.0)&(z)T

xyz,0,1
X 7/5 [Ai(ésink)Gl ()C - 5sinka Ly, O)
X Aj((ssrc)é(y_(ssrc)]-;-ys] (11)

where we have used y° hermiticity. The naive propagators
G are built from staggered quarks and the full form of the
correlation function contractions in terms of NRQCD and
staggered propagators is given in Appendix D.

These correlation functions can be expressed in terms of
amplitudes and decaying exponentials by inserting a
complete basis of states. Projecting onto zero momentum
and setting ¢ = (Mg — Mp-,0,0,0) this gives

Connlty = ¥ ()3
n,a=0,1
CD*zpt(t),'j: Z( l)atAZlAZ] ~Mpnt
n,a=0,1
100y = 3 Sy
ab=0,1 nm
% Vgge—Mpzm (T—t)—MBV (12)
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where

. _(©l0}By)

ai /—2 MBZ

. _ (R0, 1DG)

@ 2Mpy

DB
\/2M s 2M gy

Note that we have included contributions from opposite-
parity states, which depend on imaginary time like (—1)"
and arise from using staggered quarks [38], by introducing
the sum over a and b. When either a or b is nonzero the
corresponding term in the sum is multiplied by a sign factor
which oscillates between 1 and —1 in time. We are only
interested in the terms with ¢ = b = 0 here; however in
order to extract these, the oscillating terms must be fit away.
For our choice of operators the A, B and V parameters are
real [52]. We discuss our fits to these correlation functions
in Sec. VA.

(13)

IV. ONE-LOOP MATCHING

We require a lattice current with the same matrix
elements as the continuum current to a given order. The
matching of lattice and continuum currents is done in [53]
through O(ay, a;/am,,, Aqcp/my,),where Aqcp is a typical
QCD scale of a few hundred MeV, following the method
used in [54]. Using power counting in powers of Aqgcp/my,
a set of lattice currents is selected. At the order to which we
work in this paper only the following currents contribute

Jl(e(l)t)ti (xX) = 'Y,
(1)i _ [ i5

J = - -AY,. 14
latt (x) 2amb weyrv b ( )

It is convenient for us to also compute the matrix elements
of operators entering at O(aSAQCD/mb)

2)i 1 _ - i
Jr(x) = - TR AYY Y,
3)i 1 _ i
Tt () = = 3o 0 1A, (15)

This allows for a configuration-by-configuration check of
the code: namely that at zero recoil, the three-point
correlation functions satisfy the relation C5 ;o) + C; ;0=
2G5, = 0. This identity is derived using integration by
parts and the fact that y°%, = ¥,.

The full matching is a double expansion in Agcp/m;, and
in @,. The matched current is given by

TABLE IV. Tree-level Z factors and one-loop matching co-
efficients, used in (16), calculated at lattice quark masses
appropriate to each of our gauge-field ensembles [55]. We also
give values on each ensemble for the strong coupling constant in
the V scheme at a scale of 2/a (from results in [53]).

Set Z -n T ay(2/a)
1 0.9930 0.260(3) 0.0163(1) 0.346
2 0.9933 0.260(3) 0.0165(1) 0.344
3 0.9930 0.260(3) 0.0165(1) 0.343
4 0.9972 0.191(3) 0.0216(1) 0.311
5 0.9974 0.185(3) 0.0221(1) 0.308
6 0.9974 0.185(3) 0.0221(1) 0.307
7 0.9994 0.091(3) 0.0330(1) 0.267
8 0.9994 0.091(3) 0.0330(1) 0.267

i i i as A
7' =2((1+an=I + 1+ 0(*02) (1

where Z is a multiplicative factor from the tree-level
massive-HISQ wave function renormalization for the
HISQ c¢ quark. The one-loop coefficients # and 7 respec-

(0)i and for the

tively account for the renormalization of Jj,,

mixing of Jl(;&i into Jl(f&i. Numerical values for the pertur-

bative coefficients relevant for the ensembles used are given
in Table IV [53].

Matrix elements of currents of order af Agcp/m;, vanish
to all orders in a, according to Luke’s theorem [56]. We
will denote by V the matrix elements of the currents Jj,
divided by meson mass factors, as in (13) witha =5 =10
and n = m = 0. Luke’s theorem implies the combination

v — vy _ g gy (O, (17)

which represents the physical, subleading matrix element,
should be very small, only different from zero due to
systematic uncertainties.

V. ANALYSIS OF NUMERICAL DATA

In this section we discuss the two main aspects of
numerical analysis. First we present fits to the correlation
functions, allowing us to determine /4 (1) on each of the
8 ensembles. Second, we discuss how we infer a physical
value for i, (1) with an error estimate for uncertainties
associated with current matching, discretization, and
dependence on quark masses.

A. Fits to correlation functions

We fit the three correlation functions defined in (12)
simultaneously using the corrfitter package devel-
oped by Lepage [57,58]. This minimizes

054502-5
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1.20

—++ 48 x64 1 -+ 48 x64 g4

115 L - 48 %64 g2 T+ 48 x64 1+g2+g4 |/
< 110t
=
= 105t
T e =
3 1.00 | "] —
o
= 095 |
=
=
< 090

0.85

0.80 ‘ ‘ ‘ ‘

2 4 6 8 10 12 14
N,

exp

FIG. 1. Fractional i, (1) variation with the number of ex-
ponentials used in the fit function on Set 6, showing fits done
using each individual source/sink smearing (local /, or Gaussian
with 2 radii, g2 and g4) as well as the full 3 x 3 matrix fit.

(pi - piri r)2
7 (p) = Y_AC(L P 3AC( . p) + Y T
l.t/ : p;)rinr

(18)

with respect to p, where AC(¢, p) = C(t) — Cru(t, p) and
p' is the ith parameter in the theory, p{mr is its prior value

with error ¢, . The correlation matrix o,, includes all

Prvior
correlations between data points. Fitting correlators from
all smeared sources and sinks simultaneously requires the
use of as SVD cut on the eigenvalues when determining
the inverse of 2. We also exclude points close in time to the

source and sink to suppress excited state contributions and
speed up the fit.

We look at the effectiveness of the various smearings by
fitting each smearing diagonal, i.e. equal radii, set of two
and three point correlator functions independently and
comparing the result to the full fit. Figure 1 shows an
example of this; plots for the full data set appear in Fig. 9 in
Appendix E. In these plots we only include the results of
fits with y?/dof < 1.2. We give the ground state and
oscillating state two point fit parameters for our full
simultaneous fits in Table V. The Cg, () fit amplitudes,
the energies and B, parameters of (12), are in good
agreement with those in Ref. [59].

Table VI gives results for matrix elements corresponding

to the currents Jl(;)t and Jlf& One can see that Luke’s

theorem holds, in that Vgllﬂ), is very small. Results are also
given for V(?) as well as numerical values for asAgep/my,.
While it is important to remember that there are absent
mixing down factors from the current J(© contributing at
O(a;Aqcp/my,) it is encouraging to see that V@ is small
compared to its expected order.

On each ensemble, we obtain a value for the zero-recoil
form factors h/(;l)(l). As in the continuum expressions (3)

and (5) we have

(D*|J|B)
V2Mp 2M
and similarly for A} (1)l We write V7 here to make clear

that we fit combinations of three point correlators that
correspond to the insertion of the current given by (16).
Results for /14 (1) on each ensemble are presented in
Table VII. We computed 73 (1) on the physical-point

hA1(1)|latt =Vv/= (19)

lattices only since chiral perturbation theory predicts this

TABLE V. Ground state and oscillating state local amplitudes and masses from our fits. Note that on Set 3 and for all the D} data we
use the local vector operator, otherwise we use the point-split operator; therefore, the amplitudes A are not comparable between different
operators. Also note that the tabulated B “masses” are the NRQCD “simulation energies” aE*™, representing the nonperturbative
contribution to the B meson binding energy. The B parameters are in good agreement with those in [59].

Set A, AY, aM po aM o BY, BY, aM g aM g
1 0.1420(12) 0.110(10) 1.5465(19) 1.815(22) 0.2287(17) 0.232(14) 0.5667(14) 0.815(13)
2 0.1338(17) 0.087(12) 1.5304(28) 1.742(26) 0.2171(20) 0.200(24) 0.5534(18) 0.770(18)
3 0.1710(14) 0.092(13) 1.5226(18) 1.675(25) 0.2099(17) 0.214(14) 0.5433(15) 0.761(14)
4 0.1006(23) 0.081(20) 1.2599(31) 1.499(30) 0.1700(23) 0.104(54) 0.4825(21) 0.638(46)
5 0.0951(14) 0.081(10) 1.2289(23) 1.459(18) 0.1611(24) 0.095(54) 0.4745(22) 0.621(42)
6 0.09636(52)  0.0479(87)  1.23244(99)  1.354(22) 0.15739(69)  0.1674(58)  0.46809(80)  0.6523(58)
7 0.06466(40)  0.0520(35)  0.91551(88)  1.0838(82)  0.10762(64)  0.1241(35)  0.37950(76)  0.5437(40)
8 0.05912(40)  0.0502(23)  0.89583(99)  1.0477(71)  0.09884(69)  0.1131(26)  0.36473(98)  0.5042(32)
AY A aM aMpo By B aM g aMp
3 0.1987(13) 0.136(14) 1.58655(79)  1.868(14) 0.25554(42)  0.2460(75)  0.60639(28)  0.8862(50)
6 0.1368981)  0.0918(75)  1.28341(45)  1.5094(94)  0.18822(14)  0.1669(58)  0.51657(11)  0.7277(36)
8  0.08233(40)  0.0618(23)  0.93657(49)  1.1142(50)  0.11867(55)  0.1212(17)  0.40136(48)  0.5698(15)
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TABLE VI. Matrix elements, with meson factors defined in
(13), of currents contributing at O(a;Aqcp/Mp) for B — D*.
Note the approximate cancellation between the mixing down
term a,zV(®) and V() to give a small Vglf) as we would expect

from Luke’s theorem. Note V() is numerically smaller than its
parametric estimate a,Aqcp/m;, = 0.03.

Set vl Ve

3 —0.0050(8) 0.0138(8)
6 —0.0044(5) 0.0101(4)
8 —0.0031(7) 0.0060(8)
TABLE VII. Fit results for the zero-recoil form factor
hy, (1)1 = V¥ for both B - D* and B, — D;.

Set hA. (l)latt h;\I (1)1att
1 0.8606(91)

2 0.871(13)

3 0.8819(96) 0.8667(42)
4 0.8498(94)

5 0.8570(84)

6 0.8855(50) 0.8662(61)
7 0.8709(75)

8 0.8886(63) 0.8715(44)

quantity to be much less sensitive to the sea quark mass
than the spectator quark mass. (In fact we will see that the
spectator quark mass dependence is also small).

B. Chiral-continuum extrapolation

By carrying out the calculation using 8 ensembles,
spanning 3 values of lattice spacing and 3 values of the
light quark mass, we can quantify many of the systematic
uncertainties by performing a least-squares fit to a function
which accounts for unphysical parameters or truncation
errors. Below we describe how the fits address each of these
sources of uncertainty then present results of the fits.

There are two types of systematic error for which we
must account. The first type are truncation errors about
which the numerical data contain no information. In this
class are the higher-order (in Agcp/m;,) current corrections
truncated in the perturbative matching described in Sec. I'V.
The numerical data contain no information about Agp,/mj,
or a;Agcp/my, corrections, so we add to each data point
nuisance terms

A2CD
B (Dl = o, (Dl + 4= 2 11+ €5, + €6
asAQCD[
myp

+ €7 1+ eSAam,7 =+ eQAgmb] (20)

where

A, = (amy, —2.5)12.5
and ey, es, €4, €7, €3, and ey are Gaussian distributed
variables, with mean and standard deviation p(c), with
e, = 0(0.5), e; =0(0.3) and e5659 = 0(1), 100% corre-
lated between each data point. The es, ¢4, €g and eq terms
reflect the fact that the coefficients of the truncated
Agep/my, and a;Aqep/my, terms will be slowly varying
functions of am,. Our choice of e; is motivated by the
magnitude of V() and the expectation that Luke’s theorem
will hold at this order.

The second type of systematic uncertainties arise from
truncation, discretization, or tuning errors about which we
can draw inferences from our Monte Carlo calculation.
Consider the unknown a2 corrections to the current
normalization. In contrast to the truncation of the
Aqcp/m;, expansion, the numerical data is, at least in
principle, sensitive to O(a?) corrections through the run-
ning of the coupling on the different lattice spacings. In
addition the results have dependence on the lattice spacing
and the light quark mass that can be mapped out using
theoretical expectations. For the light quark mass depend-
ence this is based on chiral perturbation theory. Therefore
we fit the data points to the functional form

2 2

M
hA1(1)|ﬁt:(1+B)6aB+C_”+5g g

u———= X chiral 1
A)Q( 1822 x chiral logs

+ 7102 1+}/2—5(amb—2)+2—6(amb—2)2 v,

(21)

The first term accounts for the deviation of the physical
hs (1) from the static quark limit value of 1. The fit
parameter B is given a prior of 0(1). We take as priors
y1 = 0(0.5), 756 = 0(1). Discretization and quark mass
tuning errors are included in 82, to be described fur-
ther below.

The second and third terms in (21) give the leading
dependence on the light quark mass, parametrized by M2
divided by the chiral scale A, which we set to be 1 GeV.
The coefficient of the chiral logs depends on the D*Dx
coupling g, which we take as 0.53(8) following [18], and on
the pion decay constant in the physical pion mass limit
S =130 MeV. The D* — D mass splitting, A,, , appearing
in the chiral logs is taken as 142 MeV. The uncertainties
from f and A,, are negligible compared to the error on g
and are not included. Further details about the staggered
chiral perturbation theory [60] input to (21) are given in
Appendix F. We will return to discuss & shortly.

The fourth term in (21) is present in the fit since the
current matching has truncation errors of O(a?). The
truncated term would have some mild dependence on
amy, which is reflected in the ansatz for this term.
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The 62 and & in (21) parametrize how discretization and
quark mass tuning errors could enter the fit form. These
originate from the gauge action, the NRQCD action and the
HISQ action. In all three actions discretization errors appear
as even powers of a, hence we include multiplicative factors

84 = (bg + bi(aMqcp)? + by(ahgep )t + b3(algep)®).
(22)

Each factor b; contains a distinct sea quark tuning error
dependence

b; = K;8}5i8ic, (23)

where the «; are given a Gaussian prior 0(0.5). Note that we
do not include a k, term for the O(a®) piece as such a term
would not represent a mistuning error or discretization
effect. The product on the right-hand side allows for effects
of small mistunings in the sea quark masses and the valence
charm and bottom quark masses. For the sea u/d and s
quarks we include a multiplicative factor

5sea =1+ Cl(éxsea/mggays> + e (5xsea/m£ggs)2 (24)

where my, = 2m; +m, and Oxy, = My — moS®. The
physical masses are taken from [61] and are computed

using the 77, mass. We take m?"™*/m™* = 27.4 [46]. We also
include the multiplicative factor

8¢ = 1+ dy (5m/mE™) + dy(5m JmE™)2 (25)
phys

where om, = m, — me
[47], and the factor

, with physical mass taken from

8y = 14 f1(8my/mD™) + fo(my/mi™)?  (26)
with 6m, = m, — m?"™* where m2"™" is determined from the
spin-averaged kinetic mass of the Y and 7, [49]. ¢;, d;, and f;
are given prior values of 0(0.5). We neglect the effects of the
very small mistuning of the light quark masses from their
physical value which we expect to be small.

Finite volume corrections to the staggered chiral pertur-
bation theory are given in [60]. Evaluating these expres-
sions on our lattices, we have found that finite volume
effects are at least an order of magnitude smaller than the
leading O(a?) error on the unphysical lattices. On sets 3, 6
and 8 the finite volume effects are larger, around half a
percent in size. This is significant at the order to which we
work. To account for these effects we subtract the finite
volume correction to /i, (1) from our data for these
ensembles. We further discuss finite volume effects in
Appendix F.

The calculation on each ensemble of the form factor for
B, — Dj decay is equivalent to the B — D* calculation,
with the light quark propagator replaced with a strange
quark propagator. The analysis is substantially more

1.00 T T T
- Very Coarse ¢ Fit result
& Coarse ¢ D] Phys
= Fine
0.95 +
=
\:F 0.90 +
< ¥
o ;ﬂ +
085 | T ,>+
080 L L L L L
0.00 0.02 0.04 0.06 0.08 0.10

M? /GeV ?

FIG. 2. Fit to our data using staggered chiral perturbation
theory. Finite volume corrections are included in the data points,
visible only for the physical pion mass points. The blue line and
grey band are the continuum chiral perturbation theory result and
error extrapolated from our lattice data. The error band includes
systematic errors coming from matching uncertainties and hence
has a much larger error than any of the data points, which are only
shown with their statistical error.

straightforward, both because the data is less noisy and
because no chiral extrapolation is required. Before fitting
the lattice data, we include a term to account for the absence
of O(A§cp/my) and O(a;Aqep/my,) effects, as in (20),
using the same Gaussian variables ey, es, g4, €7, €g, and eq.

For the continuum-chiral fit to the 4} (1) we take the

functional form to be the following, where §:2B* has the
same form and priors as the term included for the B — D*:

B (D)l = (14 B°)628
+ra2 |1 +y—25(amb -2) +};—6(amb —2)2|v©

(27)

TABLE VIII. Results for parameters in the chiral-continuum
fits, Eqs. (21) and (27). Higher order terms retain their prior
values and are not shown while ¥ = —0.17(25) and 5 =
—0.05(42) for hy, (1) and A (1) respectively.

Cy (%] d, d, 1 g
hAl(l) 550 —0.15(12) 0.27(29) 0.24(40) 0.0(5) 0.24(40) 0.0(5)
hjh(l) 5’:0 —0.03(22) 0.05(35) 0.0(5) 0.0(5) 0.0(5) 0.0(5)

B C g 71 7s Y6
ha, (1) —0.091(27) —0.02(24) 0.521(78) —0.14(44) 0(1) —0.15(97)
hy (1) =0.117(31) —0.14(44) 0(1) —0.15(97)
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1.00 : .
— Fit > my/my, =0.1
& omy/my, =0.2 = Physical
0.95 |
=
090}
< 1

.| at +

0.80 : : ‘ ‘
0.000 0.005 0.010 0.015 0.020 0.025
a® /fm?
FIG. 3. Plot showing the @ dependence of our B — D* data.

Finite volume corrections are included in the data points, visible
only for the physical pion mass points. The blue line with grey
error band shows the physical result for the form factor
determined by the fit described in the text.

where ¥y, 75 and y4 are the same as in (21) because these
terms represent the same higher order matching corrections.
We run the B; — D fit simultaneously with the
B — D* fit.

The NRQCD and HISQ systematics are the same as
before, and we expect negligible isospin breaking and finite
volume effects. In Fig. 2 we show the M2 dependence
of our B — D* data and the extrapolated continuum chiral
form.

We present results for the /24 (1) and 7z (1) fit param-

eters B, y;, k;, ¢;, d;, f; in Table VIIL Plots showing the a?
dependence of our B — D* and B, — D7 data are shown in

1.00
0.95
j=—
~.0.90 | l
@<
<=
: 3
4
0.85
080 L L L L L
0.000 0.005 0.010 0.015 0.020 0.025
a? /fm?

FIG. 4. Lattice spacing dependence of our results for the B; —
D7 zero recoil form factor. The blue line with grey error band
shows the physical result for the form factor determined by the fit
described in the text.

TABLE IX. Partial errors (in percentages) for hﬁfl)(l). A full
accounting of the breakdown of systematic errors is made
difficult by the fact that smaller priors not well constrained by
the data are mixed in a correlated way by the fitter; these are
reflected in the total systematic uncertainty. Note that the
uncertainty from missing @ terms in the matching for A, (1)
and I (1) is constrained somewhat by the fit; a naive estimate

would give 3.5% on the fine lattices.

Uncertainty hy, (1) hy, (1) hy, (1)/hj\l (1)
a2 2.1 2.5 0.4
aXAQCD/mh 0.9 0.9 0.0
(AQCD/m,,)z 08 08 00
a? 0.7 1.4 1.4
9D D 0.2 0.03 0.2
Total systematic 2.7 32 1.7
Data 1.1 1.4 1.4
Total 29 3.5 2.2

Figs. 3 and 4 respectively, together with the result of our fit.
The O(a*) and O(a®) parameters default to their prior
values, while the O(a?) parameters are consistent with
zero. We tried various modifications to our fit, the results of
which we present in Appendix F. Table IX presents a

summary and combination of the uncertainties in our
results for A, (1) and 73 (1).

C. Isospin breaking effects

The effects of electromagnetic interactions and m,, # my
on hy (1) are negligible compared to the dominant uncer-
tainties quoted in Table IX. We find only a variation of
0.25% in the chiral-continuum fits to /2, (1) whether the z°
or #* mass is used as the input value for the physical limit.
Electroweak and Coulomb effects in the decay rate (1) are
presently accounted for at leading order by a single
multiplicative factor 7jgw to be discussed below in
Sec. VII. As lattice QCD uncertainties are reduced in
the future, it will be desirable to more directly calculate the
effects of electromagnetism in a lattice QCD + QED
calculation, where m, # m, can also be implemented.

VI. RESULTS AND DISCUSSION

We have calculated the zero recoil form factor for B —
D*?v decay using the most physically realistic gluon field
configurations currently available along with quark dis-
cretizations that are highly improved. Our final result for
the form factor, including all sources of uncertainty, is

FED' (1) = hy (1) = 0.895(10) 3 (24) 5. (28)

sys*
It is clear from this treatment that the dominant source of
uncertainty is the O(a?) uncertainty coming from the
perturbative matching calculation. In principle this could
be reduced by a two-loop matching calculation; however,

054502-9



HARRISON, DAVIES, and WINGATE

PHYS. REV. D 97, 054502 (2018)

such calculations in lattice NRQCD have not been done
before. It is worth noting that for our calculation this
uncertainty is somewhat constrained by the fit, as is
reflected in Table IX. It has also been suggested [62] that
it could be estimated using heavy-HISQ b quarks on
“ultrafine” lattices with a =0.045 fm and m,a < 1.
There we can use the nonperturbative PCAC relation
and the absolute normalization of the pseudoscalar current
to normalize J), using (m,, + m,)P = Z9,A" to find the
matching coefficient Z and then comparing matrix elements
of this normalized current to the result using perturbation
theory.

Within errors, our result agrees with the result from
the Fermilab Lattice and MILC Collaborations [18],
hs, (1) = 0.906(4)(12). The higher precision achieved in
this work is due to the use of the same lattice discretization
for the b and ¢ quarks. This enabled them to avoid the
larger current-matching uncertainties present in our
NRQCD-b, HISQ-c¢ work. Nevertheless, the value of
providing a completely independent lattice QCD result
using different formalisms is self-evident.

After combining the statistical and systematic errors in
quadrature, a weighted average of the two lattice results
yields 74 (1) =0.904(12). We use this value in our
discussion in Sec. VIL

Our result for the B, — D} zero-recoil form factor is

FBP(1) =y (1) = 0.883(12) 4 (28).  (29)

Sys*
This is the first lattice QCD calculations of this quantity.
We see no significant difference between the result for
B — D* and B, — Dj showing that spectator quark mass
effects are very small. Correlated systematic uncertainties
cancel in the ratio, which we find to be

f‘B—»D* ( 1 )

hy,
]:'BX—>D§(1) = =1 013(14>stat(

Vs (30)

We find there to be no significant U-spin (d <> s) breaking
effect at the few percent level.

VII. IMPLICATIONS FOR |V |

Until recently, one would simply combine a world average
of lattice data for /1, (1) with the latest HFLAV result for the
B — D**¢v differential branching fraction extrapolated
to zero recoil: fipw F (1)|Vep| = 35.61(11)(44) x 1073 [17].
Doing so with the weighted average of the Fermilab/MILC
result and ours yields

where we have used the estimated charge-averaged value of

fiew = 1.015(5) [18]. The uncertainty in |V ., |iypr av i due in
equal parts to lattice and experimental error.

Recent work analyzing unfolded Belle data [16] has
called into question the accuracy of what has become the
standard method of extrapolating experimental data to zero
recoil [22-27]. In order to understand our new result for
ha, (1), as well as to prepare for future lattice calculations
and experimental measurements, we carry out a similar
analysis here. We generally agree with conclusions already
in the literature, but we present a few of our own
suggestions for how one could proceed in the future.

The method used by experiments to date is due to
Caprini, Lellouch, and Neubert (CLN) [21]. Their para-
matrization of the form factors entering the differential
decay rate and angular observables is an expansion about
zero-recoil, i.e. about w = 1. (See Appendix G for expres-
sions relating experimental observables to form factors.) In
the case of the /4 (w) form factor it was found that the
kinematic variable z gives a more convergent series. Given
a specific choice of t,, z depends on the t = ¢* as

N Y )

2tsto) = Vi =1+ = to

with 7, = (Mg & Mp-)?. Usually one takes #, = r_, and
this is the choice assumed throughout this paper.1
The CLN form factors are given as follows

ha, (W) = hp, (D1 = 8%z + (rya,p” + 112)2°
+ (rizep® + 13) 2]
Ri(w) =Ry (1) +ry(w=1) +rp(w—1)
Ry(w) = Ry(1) 4 ryy(w = 1) + rpp(w = 1)? (33)

with the coefficients computed to be [21]

Ty = 53, rp = —15,

rp3y = =231, rpz =91,

ry = —0.12, rip = 0.05,

ry = 0.11, ryp = —0.06. (34)

These numbers are the result of a calculation in HQET,
using QCD sum rules and neglecting contributions of
agAgep/m,. and (Agep/m,)?, as well as smaller effects.
Until recently effects of neglecting these terms have not
been included in fitting the experimental data.

Reference [21] claims an accuracy of 2%; however this is
based on comparing an expansions in z against some full
expressions. While this tests the convergence of the

'One can express z(f,7_) as a function of w as

Z(W):4Vw+_\/§
Vw142
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expansions, it does not test the accuracy of numerical
factors computed in truncated HQET. In fact the data do not
require any higher order terms in z or w — 1. We found no
effect when including a z* term or (w — 1)3 terms in (33)
with Gaussian priors allowing the coefficient r;,4 to be up to
O(10°%) and ry3, 753 to be up to O(1).

Nevertheless none of this accounts for higher order terms
in the HQET. We can get some idea of how the fit is
affected by allowing the r coefficients (34) to be fit
parameters with Gaussian priors, with means equal to
the CLN values but with widths which we vary. Table X
shows the results of fitting to the CLN parametrization. We
present six variations, which we describe below. In order to
infer |V | from the lattice 71, (1) and the fit to data, the
main output is the combination

I = |itgwVeplha, (1). (35)

In the first fit, we treat the r-coefficients (34) as pure
numbers; this has been the standard treatment until recently.
The value of 7 we obtain agrees with the unfolded fit result
of Belle [16], I = 34.9(1.5).

It would be better to include estimates of HQET
truncation errors in the fits. We implement this by treating
the r-coefficients as fit parameters, adding Gaussian priors
with central values as in (34) and with widths equal to our
uncertainty. Unfortunately it is not clear how accurately
these are known at this order in HQET. We note both
asAgep/m,. and (Agep/m,)? are roughly 0.1, so one
approach is to suggest truncated terms could vary each
of the r’s by 10%. However, some linear algebra has been
done after truncating HQET expressions to arrive at the
form factors (33). This could enhance (or suppress) the
truncation error in some terms, and the opposite in others.
The fit does not change much if the uncertainties are 20%,
but 100% uncertainties in (34) do affect the fit result. Most
notably, the value of I increases by 5%, i.e. one standard
deviation.

TABLE X. Fits to the unfolded Belle data using the CLN
parametrization. The first fit does not account for any uncertain-
ties in the r coefficients (34). The next three include the r
coefficients as Gaussian priors with widths of 10%, 20% or 100%
uncertainties, respectively. The final two fits assign 10% or 20%
uncertainty to the coefficients in /24, (w) and allow the coefficients
of R;(w) and R,(w) to be O(1).

Fit I P’ R (1) R,(1)
0% 0.0348(12) 1.17(15) 1.386(88) 0.912(76)
10% 0.0349(13)  1.19(16) 1.387(88) 0.914(76)
20% 0.0352(13)  1.24(19) 1.390(88) 0.922(78)
100% 0.0367(16) 1.64(31) 1.397(94) 0.941(96)
h:10%, R:0(1) 0.0359(14) 1.29(17) 1.19(22)  1.05(18)
h:20%, R:0(1) 0.0359(14) 1.31(19) 1.19(22)  1.04(19)

The smallness of the coefficients in the expansions of R
and R, is likely due to cancellations in the expansions when
ratios are taken. Therefore, assuming a relative error on the
rij (i, j = 1, 2) is probably not correct. We present two fits
where these coefficients are given Gaussian priors equal to
0 & 1, while the coefficients in the expansion of /14 (w) are
given 10% or 20% uncertainties. The resulting values for 7
lie in between the tightly constrained fits and the 100%
uncertainty fit.

Note that the HQET predicts R;(1) =1.27 and
R, (1) = 0.80, but in most fits in the literature (as here) these
are treated as free fit parameters. In fact the world average fit
values differ from the HQET estimates: Belle’s world
averages are R;(1)=1.40(3) and R,(1)=0.85(2) [16].

The fact that the tightly constrained CLN fits describe the
data well, with good y? for example, is a success for HQET.
It shows that the important physics has been captured
within the accuracy of the theory. However, now that we are
in the high precision era of flavour physics, we ought to be
wary about the accuracy of the assumptions which go into
fitting the data. The observation that / increases under a
relaxation of assumptions about the r-coefficients agrees
with other authors’ findings [22-27].

An alternative parametrization for the hadronic form factors
is the one proposed by Boyd, Grinstein, and Lebed (BGL)
[28]. In their conventions the three form factors entering
(assuming the lepton mass can be neglected) are f(g?),
F1(g?), and g(q?). Two of the form factors are kinematically
constrained at g> = 0: F{(0) = (M — My, )f(0). Each of
these is expanded in a Taylor series about 7 = 0 after factoring
out a function intended to account for nearby resonances.
Abbreviating ¢ = g2, form factors are parametrized by

F) = 06 S a2 (1 10). (36)
k=0

Throughout this paper we take #, = r_. With appropriately
chosen O,

1
Or(t) = B,)r(0)’ (37)

the magnitudes of the coefficients aff)

unitarity constraints.

are bounded by

Ky—1
Sir = la P+ ()] <1
k=0
K,~1
S,= > (@)P<1. (38)
k=0

Even stronger bounds can be imposed if one is able to include
all the B®¥) — D) matrix elements, with (pseudo)scalar and
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TABLE XI. B, vector and axial vector masses below BD*
threshold (7.290 GeV) used in the Blaschke factors. Mass
differences [63] are combined with M = 6.2749(8) [64]. We

adopt the model estimates of Ref. [23], up to 3 digits.

M,-/GeV Method Reference M;+/GeV Method Reference

6.335(6) Lattice  [63]  6.745(14) Lattice  [63]
6.926(19) Lattice  [63] 675  Model  [65,66]
7.02 Model  [65] 715  Model  [65,66]
7.28 Model  [67] 715  Model  [65,66]

(axial)vector initial and final states [25], but this is outside the
scope of our analysis here.

The two functions in (37) are the outer functions ¢x(z),
which can be found in the literature e.g. in Refs. [23,24,28],
and the Blaschke factor

o T 2p,

Ll —zzp

=

B,(2) = e, = oM 1), (39)
The product is over a set of applicable resonances, the
vector B states for g and the axial vector B, states for f and
F,. The resonances included in the Blaschke factor should
be those with the appropriate quantum numbers and below
scattering threshold. There are 4 B, vector and 4 axial-
vector states conjectured to be below BD* threshold.
Table XI lists calculations of the vector and axial vector
B, resonances. The model estimate for the mass of the
heaviest vector state is very close to threshold, so has been
left out of several analyses, including here. The magnitude
of the Blaschke factors can be very sensitive to n, so leaving
states out reduces the strength of unitarity constraints. This
is illustrated in Fig. 5 for the Qp(q?) for F = f, Fy, and g.

Table XII shows the results of BGL fits to the unfolded
Belle data [16], varying the number of states included in the
Blaschke factor and the number of terms kept in the
z-expansion. The fits enforce the ¢*> =0 constraint on
F(0) and f(0) at the 1% level. Priors for the coefficients
a,((F> are Gaussians with mean 0 and standard deviation 1.
Only the k = 0 and 1 coefficients are tabulated; the others
are not constrained by the data and remain statistically
consistent with 0. As discussed above, the magnitude of
these coefficients depends on the number of states in the
Blaschke factor. Nevertheless, the results for / are insensi-
tive to this. On the other hand, I does increase by about
0.001, or approximately 0.7¢, when switching from K = 2
to higher order polynomials in z. (Results remain the same
for K > 4.)

The fits presented in Table XII do not enforce the
unitarity bounds (38), but these bounds are not close to
being saturated unless only two resonances are included in
the Blaschke factors. Performing the fits with the bounds
enforced did not significantly affect results. Considering
the ng > 2, K = 4 fits, increasing the standard deviation of

the Gaussian priors for the series coefficients a,(c” by
a factor of 2 or 4 had very little effect on the parameters

1.35 : '
—— single pole //
1304 = - B]:Q/(O)%73
—- B5,Qr(0) ~ 161
1254 —= B3=QI'<0)%241
s Ba,Qy(0) ~ 358 g
S 1204 —= B, 0;(0)~ -
< .
i@/ 1.15 1
<
S 1.0
S R
100 T
0 2 ' ; 8 10
qZ/Ge\/2
1.30 1 — single pole
- B1,Qr(0) = 1502
1.25 { —- B2, Qr(0) ~ 3325 g
— J— B:s,QF](O) ~ 4970
= 5
. 1.20 { == B1.Qr (0) = 7377 g B
LL‘ ”
e g
= 115 ’ ’
. -
f=] g
~ g
& 1.10 A
@
1.05
100 | A T e
0 2 ' ‘ 8 10
2 2
q*/GeV
164 __ single pole g
L - B,Q,(0) =2 //
.5 — DBy, Qg(()) ~ 4 // )
— —— B3Q,0) =7 ) P
S 144 3,Qg(0) ) g
=
<
~ 1.3
o™
=
d? 1.2
1.1
1.0
FIG. 5. Comparison of the prefactor Qr(g?) for the BGL and

BCL series expansions of form factor F = f, F, and g, from top
to bottom. Curves are normalized by Q(0), which is given in the
legend.

well-determined by the data, i.e. /, a(()f ) and aéF‘)

uncertainties in a(lf ), a(lF‘), aéy), a(lg), ¢k, S, increased by

factors of 1.5-2. For most of the aip) with k> 2, the

posterior distribution is the same as the prior, the exception

being that aéF‘) < 0.5 seems preferred by the fit, even with

wide prior widths.

To the extent that unitarity constraints do not affect the
BGL fits, then a simpler approach would be to represent
Qr(t) by a simple pole, as in the simplified series

, while the
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TABLE XIL

Results of z-expansion fits (36), either using the BGL (37) or BCL (40) parametrization. Unitarity constraints are not

enforced in the fit, but the sums S, and § fF (38) are given for reference (see text). The number of 17/1~ resonances included in the

Blaschke factor is nj/ng. Terms up to O(zX

~1) are included in the fits. Coefficients of higher order terms are consistent with zero.

Fit n} nyz K 1 a(()f) a(1f> a(F') a(lF‘> affn aﬁg) Sir S,

BGL 2 2 2 0.0366(14) 0.03005(39) —0.120(51) 0.005031(65) —0.0146(40) 0.032(15) 0.88(50) 0.015(12) 0.78(89)
BGL 2 2 3 0.0376(16) 0.03004(39) —0.148(62) 0.005031(65) —0.030(13) 0.029(14) 0.99(50) 0.13(32)  0.98(98)
BGL 2 2 4 0.0376(16) 0.03004(39) —0.148(62) 0.005031(65) —0.030(13) 0.029(14) 0.99(50) 0.13(33)  0.98(98)
BGL 3 3 2 0.0368(15) 0.01913(25) —0.069(36) 0.003 204(41) —0.0073(27) 0.0138(85) 0.63(30) 0.0052(49) 0.40(38)
BGL 3 3 3 0.0379(17) 0.019 13(25) —0.088(47) 0.003204(41) —0.0181(86) 0.0125(82) 0.68(31) 0.06(21)  0.46(41)
BGL 3 3 4 0.0379(17) 0.01913(25) —0.088(47) 0.003204(41) —0.0181(87) 0.0125(82) 0.68(31) 0.06(22)  0.46(42)
BGL 4 3 2 0.0369(15) 0.01228(16) —0.035(24) 0.002 057(26) —0.0032(18) 0.0138(84) 0.63(30) 0.0014(17) 0.39(38)
BGL 4 3 3 0.0380(17) 0.01228(16) —0.049(36) 0.002057(26) —0.0102(57) 0.0129(86)  0.66(33) 0.04(25)  0.44(43)
BGL 4 3 4 0.0380(17) 0.01228(16) —0.049(36) 0.002057(26) —0.0102(59) 0.0129(85) 0.66(33) 0.04(25) 0.44(42)
BCL --- --- 2 0.0367(15) 0.01502(19) —0.047(27) 0.002946(38) —0.0029(27) 0.028(13) 0.78(44) 0.0025(26) 0.60(69)
BCL --- ... 3 0.0378(17) 0.01502(19) —0.066(40) 0.002946(38) —0.0136(82) 0.026(13) 0.82(46) 0.08(38)  0.67(75)
BCL --- --- 4 0.0382(18) 0.01502(19) —0.311(42) 0.002946(38) —0.0152(83) 0.109(16) —0.29(38) 0.144(67) 0.10(22)
BCL --- --- 5 0.0382(18) 0.01502(19) —0.311(42) 0.002946(38) —0.0152(83) 0.109(16) —0.29(38) 0.144(67) 0.10(22)

expansion (BCL) [32]. That is, one can parametrize the
form factors by (36) with

Qr(t) = Nr

1 —t/M3’
with Mp being the mass of the lightest resonance with the
appropriate quantum numbers. The normalization N can
be chosen so that the series coefficients are of the same
order of magnitude as in a particular BGL expansion. With
Fig. 5 as a guide, we take Ny = 300, Ny, = 7000, and

N, = 5. Once again we fit with priors for a,iF) equal to

0 £ 1. The results for / show the same behavior for the
BCL fits as for the BGL fits.

The virtue of the BCL fit is in its simplicity. The BGL fit
requires theory input for the outer functions ¢: perturba-
tively calculated derivatives of two-point functions at
g*> =0 and n;, the number of spectator quarks adjusted
to account for SU(3) breaking. (In the BGL fits here we
take the values given in Table 2 of Ref. [23].) The Blaschke
factor requires as input model estimates for the excited B,
resonances to include in the Blaschke factor. If unitarity
bounds become tight enough to have an effect on the fits to
data, then the effects of theoretical assumptions needs to be
carefully included in the error analysis. On the other hand,
the BCL fits only take as additional input the mass of a
single resonance, available to very good precision from
lattice QCD. In the future, fits to the BCL simplified
z-expansion could provide a clean, benchmark fit.

Figure 6 summarizes the consequences to / of different
fitting choices selected from Tables X and XII. The top two
points show results from CLN fits including no uncertain-
ties on the coefficients (34), or 10% errors on the r,
coefficients and allowing the coefficients in the expansions
of Ri»(w) to be 0+ 1. The bottom two points are
respectively BGL and BCL fits with K = 4, and nj = 4,
ny = 3 for the BGL fit.

(40)

In Fig. 7 we compare the fit results, integrated over the
experimental bins, of the tightly constrained CLN fit and
the BGL and BCL fits (with K = 4) to the Belle data [16].
The agreement is generally good, with the notable excep-
tion of the dI'/dw in the smallest w bin, where the CLN
result is in greater tension with the data than the BGL and
BCL results.

For the time being, with only one experimental data set
available to carry out these investigations, determinations
of |V,| from B — D*/v are less certain than has been
thought. The BGL and BCL fits to Belle data indicate
I =0.038(2). Reference [18] cites a private communica-
tion with C. Schwanda giving #gw = #Ew/Coulomb =
1.0182(16) as the product of the electroweak factor
new = 1.0066(16) and a term accounting for electromag-
netic interactions between the charged D* and lepton in the

- CLN 0%
e e CLN h : 10%, R : 0(1)
N BGL4+3
e BCL

0032 0034 0036 0038 0040  0.042  0.044
I

FIG. 6. Values of I = |fgwV|ha, (1) obtained from different
fit ansitze (see text).
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FIG.7. Comparison of fit results to experimental data [16]. The binned fit results are slightly offset from the bin midpoints for clarity.

See Appendix G and Ref. [16] for definitions.

final state. Combining this with the weighted average
for hy (1) from Fermilab/MILC [18] and this work, we
arrive at

V| = (41.3422) x 1073 (41)
where the error is dominated by the experimental and
related fitting uncertainty. This determination agrees well
with both those from inclusive and exclusive B — D¢v
decays as shown in Fig. 8.

Inclusive

—
—.— B — Dlv
- eo—— B — D*{v, this work

0.0350  0.0375  0.0400 0.0425 0.0450  0.0475

H/(:b|

0.0500  0.0525  0.0550

FIG. 8. Comparison of the |V,,| from (41) with the latest
determinations from B — X_.Zv [19,20] and B — D¢v [33].

One may ultimately obtain a more precise determination
of |V,,| by including all relevant information, from HQET,
by imposing stronger unitarity bounds [25], and including
light cone sum rule calculations of form factors at large
recoil [68]. Comparison of the different approaches would
be helpful to highlight the impact of including different
ingredients.

VIII. CONCLUSIONS

We present new unquenched lattice QCD determinations
of the zero-recoil form factors 4, (1) and £} (1), some-
times denoted F5~P"(1) and FB~P5 (1), respectively. We
have used 8 ensembles spanning 3 lattice spacings and
3 values of light-to-strange quark mass ratios, including the
physical point. Our results are

f‘B_)D*(l) = hAv(l) = 0'895(10)stat(24)sys
FE=PH(1) = hy (1) = 0.883(12) 4, (28)
FB=DT(1)  hy (1)

— = = 1.013(14) ., (17)gys- 42
}"Bs—’Ds(l) hfl (1) ( )smt( )sys ( )

This result for A, (1) provides a valuable, independent
check of the Fermilab/MILC result [18]. We have used
completely independent sets of gauge field configurations
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and different formulations for the charm and bottom
quarks. The two results are in good agreement.

While the determination of |V ;| using these results is
complicated by the need to investigate assumptions used in

extrapolating experimental data to zero recoil, series
expansion fits to the unfolded Belle data yield
[Vep| = (41.34£2.2) x 1073, (43)

This is consistent with recent determinations using exclu-
sive B — D¢v and inclusive decays (Fig 8).

A reanalysis of BABAR data for the differential decay
rate would complement the unfolded Belle data used here.
We can also look forward to new data from Belle II, after
which the precision of |V, | from B — D*#v is likely to be
much improved. Lattice QCD data away from zero recoil
will also help reduce the uncertainties. Preliminary results
from the Fermilab/MILC Collaboration were presented at
the Lattice 2017 conference [69].

Our result for the B; — D} form factor is the first
complete calculation of 7}, (1). In the future, measurements

of the exclusive decays with a strange spectator,

B, — DY ¢v, could also provide a constraint on |V|.
LHCb has reconstructed B — Di~ “v, decays [70].
Eventually, with properly normalized branching fractions,
these will also provide a method of constraining |V, |.
Spectator quark mass effects are bounded by our
calculation of the ratio hj (1)/h4, (1) and its consistency
with unity. We find deviations from d <> s symmetry in the
zero recoil B, — Dz‘s> form factors to be no more than

2-3%.
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APPENDIX A: GAUGE ACTION

The gauge action used to generate the configurations is
the Symanzik and tadpole improved action of [48], which
contains additional rectangle and parallelogram loops to
cancel radiative O(a?) errors:

S = ZaOPO
= ZU/, X)

u<v

E: mw

u<v

Z U/wﬂ

H<U<p

Py(x) + ay P (x)]

+'Lhwv( )
+ Uppo (%) + Uy (%) + Uy (x)

(A1)

Where —p indicates a Hermitian conjugated gauge link. a,
and a, are calculated in terms of a using lattice perturba-
tion theory. The perturbative coefficients are specified
in Ref. [48].

APPENDIX B: b-QUARKS USING NRQCD

In order to efficiently simulate the bottom quark we
employ nonrelativistic QCD (NRQCD) [51]. This formu-
lation has been used for many calculations done by the
HPQCD Collaboration [30,47,49,59,61]. The action is
given in [51], which we repeat here for clarity:

=o'} {w ()w (x) =y (x +ad) (1 wi) (1 ‘$>

< Ul (x) (1 —“"STH> (1 —“2—’?)"1,/(36)].

The heavy quark propagator then satisfies the simple
evolution equation

A ~ 0}10 aoH
G t,z) =6 f, j [— 1=
(x+at,z) =6(x+at, z) + ( 2n> ( > )

x U (x) <1 _aéTH) (1 —az—l_io>nG(x, 2)
(82)

(B1)

with G(x,y) = Oforx, < y,, since the quark part of the action
is first order in Dy, the propagator has no pole at —E(p) and so
is only the retarded part of the full propagator. This allows the
bottom quark propagator to be computed by applying the
evolution equation iteratively, allowing for faster, less
memory intensive calculations and greater statistics.

The NRQCD quark action is tadpole improved [71] and
Symanzik improved, with
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aHy = —A®2am

(AR)? ig L
OH = — A-E-E-A
“ “ 8(am)? te 8(am)? ( )
—c3 J 6-(AXxE—-ExA)

a(A(Z))Z
— 66 5
24am 16n(am)

g ~
—C4%G'B+C5 <B3)

where the tilded quantities are the tadpole improved
versions. In our simulations here we take the stability
parameter n = 4. The coefficients ¢;—cq were computed
perturbatively in [49,72] and are given in Table II of [59].

APPENDIX C: HISQ QUARKS

For the u/d and c valence quarks in our calculation we
use the same HISQ action as for the sea quarks [38]. The
advantage of using HISQ is that am, discretization errors
are under sufficient control that it can be used both for light
and for ¢ quarks [38,73,74]. The HISQ action is also
numerically inexpensive as a result of the staggering which
means we are able to attain better statistics. The valence u/d
masses are the same as those in the sea. The masses are
given in Table I. Below we summarize a few relevant facts.

The naive Dirac action has a discrete, space time
dependent symmetry

w(x) = Be(x)y(x)

¥ (x) — (x)B(x) (C1)
where
B:(x) = yi(=1)&* (C2)
and following [38]
3 .
r =TI
i=0
m, =Y m, mod2. (C3)
n#p

The conventions for yé are specified in the appendices. In
momentum space this then gives the relation for the naive
quark propagator:

Se(p.q) = Be(0)Sr(p + ¢n. q + &n)B:(0).  (C4)
One can diagonalize the naive action in spin indices using a

position dependent transformation of the fields. There are
several choices for such a transformation, here we use:

y(x) = Qx)x(x)
(%) = 7(x)Q" (x) (C5)
with Q(x) = 7* this yields the action
S= ;)?i(X)(a(X) “A(U) +mo)yi(x)  (C6)
with propagator
(e ()X5()) = s(x, ¥)0cs- (C7)

We then need only do the inversion for a single component
of y and the full naive propagator can be reconstructed
trivially by inserting €2 matrices:

SE(E Vg = WalTp(3)) = Quel) (e (X)70)) 2Ly )
= Qus(0)2 (1) (x.). (c8)

In order to remove discretization errors and taste exchange
violations the operator A, (U) used in simulations is more
elaborate. It retains the feature that A,(U)y(x) only
contains fields y(x’) located an odd number of lattice sites
away from x in the u direction, ensuring that the spin-
diagonalization (12) still works. The full, highly improved
staggered SU(3)-covariant derivative operator is [38]:

2

a
DI =A,(W) - (1 +oMX) ()
with
_ ~HISQ
w, = Fi™U,
X, =UF,U,
HISQ a25%
FiB = <]—',,—Z—2 )uf,,
PFU
25(2)
]—'”:H<1+a4"> . (C10)
PFEU symm

Where “symm” indicates that the product ordering is
symmetrized in p, 6, approximates a covariant first deriva-

tive on the gauge links and 6,(,2> approximates a second
covariant derivative.
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1 . .
6,U,(x) = - (U,(x)U,(x+ ap)UZ(x + ap)
— Uj(x = ap)U,(x — ap)U,,(x — ap + ajr))
2 1 AN 7T A
8PU,(x) = — (U, (U, (x + ap)Uj (x + af)

+ Uj(x — ap)U,(x —ap)U ,(x — ap + aji)

- 2U,(x)). (C11)
The third covariant derivative term removes order a’
discretization errors coming from the approximation of
the derivative. Without the epsilon term, tree level discre-
tization errors appear going as (a pﬂ)“. For the mesons we
are interested in quarks are typically nonrelativistic, and so
the error is dominated by the energy, and ultimately the
mass contribution going as (am)*. For light quarks this is
negligible, but for charm physics this must be included
since current lattice spacings have am,.=0.5. ¢ can
be calculated straightforwardly as an expansion in (am)?
by requiring the tree level dispersion relation lim,_,
(E*(p) — m?)/p? to have its correct value, 1, to a given
order O(am). The expansion is [38]:

27 327

5843
€= —— (am)2 + m

53760

4

(am)
(C12)

The smearings F, remove taste changing interactions, since
5,(,2) ~ —4/a®> when applied to a link carrying momentum
4, ~ n/a The u direction need not be smeared as the original
interaction vanishes in this case anyway. The smearing F ,,

known as “Fat7” smearing [75], introduces new O(a?)
errors. These are removed by replacing F, with [76]

252
a-s;

]:-;JASQTAD _ ]:-” _ Z

PFH

(C13)

(am)® + O((am)®).

Where F ,/,\SQTAD is the gauge link smearing employed in the
widely used a-squared tadpole improved action. Similar
errors originating from the smearing on the third derivative
term need not be corrected as they go as O(a*). A single
smearing introduces perpendicular gauge links which are
themselves unsmeared. To further suppress taste exchange
we use multiple smearings. Once such smearing is

f;“SQTADu]:-;\SQTAD (C 14)

where {/ is a reunitarization. This combination ensures that
each smearing does not introduce any additional O(a?)
errors, and ensures no growth in the size of two gluon
vertices, since the unitarization ensures it is bounded by
unity. In the HISQ operator defined in (17) we have moved
the entirety of the O(a?) corrections to the outermost
smearing.

In order to check the taste exchange violations in HISQ
one can check for taste-splittings of the pion masses.
However since there are more allowed effective taste
exchange vertices that there are degenerate pion multiplets
this does not guarantee the theory is free of taste exchange.
A better check is the explicit calculation of the couplings to
taste exchange currents required to remove taste exchange.
These are given in [38] in which it is clear that the
HISQ action is a significant improvement over the older
ASQTAD action.

APPENDIX D: 3-POINT FUNCTION

For real, symmetric, stride-2 smearings A, suppressing
Dirac indices for the moment, and summing over repeated
indices and spatial coordinates for zero recoil:

Cipi(X0. Y0, 20) = (g (X)Myc4(x + 01 + 8,)8(Y)Tby ()b (2 + 62)yuc(2)) At (01) A (07)
= tr[QF (x) M, Q(x + 8,,) S, (x + 0 + 8, ¥)QF (¥)T]
x (G} (v, 2+ 02)rQ2) St (2. )] A1 (01) s (05)
= tr[&5, (1) QT () M Q(x + 84,) S5, (x + 01 + 85, ) Q7 ()T

X [G).(y, 2+ 02)yQ(2)SL (2, X)Eqa ()] A (1) As(02)

where it is understood that when we add §,, it is modulo the hypercube. We have used the noise condition:

be (Z)gcb (y) = 5(1(‘6)6}/

to insert the random walls. Setting

Etha (y) = Glb)c (y’ Z+ 62)7Q(Z)Séd(z7 x,>§da (x,>A2 (62>

(D3)
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FIG. 9. Plots of N, fit behavior on all 8 ensembles (see Table I). In each plot 4 sets of data points are shown: the full fit including
all 3 x 3 source-sink combinations, and, for comparison, separate “diagonal” fits where only one type of source-sink smearing is used.
(The notation is defined in Sec. I11.) A significant improvement is seen in the full fit. All diagonal fits show good agreement for N, > 4,
but with the increased precision, sometimes 5 or 6 exponentials are needed to get a good 3 x 3 matrix fit.
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this becomes

C3pt(-x07 Yo, ZO) = tr[f:a(x)gz1L (X)MSIQ(X + 5&!)‘551; ()C + g + 5st’ y)‘Q'T (y)FEtha (y)}Al (Gl)

Now, we do not have S¢,(x,y), we have S, (y,x) so we can use:

where (—1)* is shorthand for (—1)%**1+2+% Now

where fy;(x) = QF (x)M,Q(x + &) is the local spin-taste phase. Inserting Dirac indices:

= tE2, (¢ — 01) Q21 (V)M Q(x + 5,)5, (x + 8,1 Y)X () TExty ()] (01). (D4)

h(5.3) = (<178, (. 3)(=1)" (Ds)

Capn(x0. 0. 70) = Q2 (1) (=S5 + 8,) (= 1)y (1) (x = 01 T Exty ()]s (o) (D6)
Capr(x0.0-70) = Ly () (=1 S5 (o) (=1 Bug (¢ )8 (x = 01 + 84) A1 (01 et a(y)

— [0 (3) (1) S5 (3 0) (= 1) By (6)Eva (= 01 + 84) A1 (0] Tty uy): (D7)

We recognize Sj.(y.x)(—1)"Bu(x)éca(x —01+6,) A1 (01)
as the MILC KS propagator. The naive active quark that
gets made in NRQCD is then:

Active,p 45(y) = Qup(¥) (1) S5 (v, X) (=1)*Brr (X)E ey
X (x =0 +8,)A (o)

(D8)
and the contractions to do are
Current,, ,3(y) = Active},, ., (V)T 's
C3pt = Currentab.a/} (y)EXthu.[)’a (y) (D9)

APPENDIX E: CORRELATOR FITS

Figure 9 shows comparison of the fit results for /14 (1)
when varying numbers of exponentials; the points are
normalized by the value of taken %, (1) as our result for
thatensemble. Plots are shown for all 8 ensembles as listed in
Table I. In each plot, we show the full fit results to the 3 x 3
matrix of source/sink combinations (local /, or Gaussian
with 2 radii, g2 and ¢g4), as well as “diagonal” fits where only
one source/sink is used. The statistical improvement of using
all the data is apparent. The flatness of the curves and the
constancy of the error bars shows that, for large enough Ny,
the Bayesian fits are insensitive to adding further exponen-
tial terms, i.e. effects of excited states are accounted for. Our
final results typically come from the N, = 5 fits to the full
3 x 3 matrix of correlators; however, on ensembles 3 and 7,
we had to include another exponential.

APPENDIX F: CHIRAL CONTINUUM
FIT FUNCTION

The full expression for the form factor derived in
staggered chiral perturbation theory is given by [60]

(A), g 1 - -
ha (1) =1 E 48ﬂ§f2 EZ(ZF,,&—FFK R
¢ 5
1. mi —m?2 _
—|——F + 025/ ( v v
6 O\l = Y, =)
2 2
N my, —mg, F
<m%v mi’v (m%v - mfzfv) "
m% - mz/
+ v U F’, ) + (V - A):|
(m3 — mi,v)(mi, -mz) "

where Fy = F[my,—A,, /my] and

2 2
1
F[m,x] :m—{x3ln%+§x3—4x+2ﬂ—\/x2— 1(x*+2)
x
7

X (In[1 =2x(x = Vx> = 1)] - iﬂ')}. (F2)

The masses of the # and #’ are given in [77] as
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1 3
mi = 5 (m,z,v + m%v -+ Zazé’v - Z)

1 3
m? =— (m,zrv +m5 + a5y, + Z)

o2 4
a25/ 9(&25/ )2
7 = \/(m§V -m? ) - 2V (mg, —mz,) +176V
a’s,
— (md, =) =2 ()
my, = mz /3 +2mg /3. (F3)

We take the ss pseudoscalar taste splittings equal to the
pion taste splittings. This is a good approximation in the
case of HISQ [36]. We can then write [to order O((a?5,)?)]

2 2 _ 2 2 251
My = M, = Mg, = M, + aoy/4
2 _ 2 2
my, —mz, = a-oyl2
2 2 2 2

mg — Mg, =mg_ — My,

from which we find

mgv - mi’v _ a26lv/4
(g, —my, )(my, —mz,)  (m5, —m3,)* = (a*5,/4)*
My, —m3, - a*8y/2— (m}_ —m2))
o, Yok, =)~ o, )P
mg, —mz, B —(mg_ —mz,)
(i, —mz,)(mz, —my ) ((m§, —mz,) = a*6y/4)a>6, 12"

(F5)

The expression for A, (1) then reduces to

XA) @ [Ine 1
ha (1) =1+ o T R;ZF’%_EF”'

_ azéﬁ4 _
2—————— |F 2————"—5—|F
(g o) o (o ) P

—(24=——2>5—|F O((a?s8),)? F6
( e %G)) | o) Fo
where we have ignored terms expected to produce normal
discretization errors and pion mass dependence, as these
are included elsewhere in the fit. Following [78] we take
S6A’ ~ 6V’ ~ —6t, which we implement by including §A" =
V' = =6t x 1.0(5) as priors. We use the pion masses
computed in [78] together with the taste splittings for the
pion, &t, given in [36].

Finite volume effects can be accounted for in
heavy meson chiral perturbation theory [79] including

0.010 :
—— Set3
\ —— Set6
—— Set8
0.005 | X
=
< 0.000 |
<
&
-0.005 |
N
_0010 I I L L
0.00 0.02 0.04 0.06 0.08 0.10 0.12

M? /GeV?

FIG. 10. Pion mass dependence of the finite volume corrections
to 74 (1), as determined from staggered chiral perturbation
theory [60], with parameters corresponding to the physical-mass
lattices used here. The curves for the heavier-mass lattices used
here show much smaller finite volume corrections, of 0(0.1%).
The vertical blue line is the physical pion mass and the solid point
at the end of each curve is at the measured value of the pion mass
on each lattice.

taste-splitting effects in the staggered pions [60]. The
functions F'y in (F6) receive a correction term corresponding
to the difference between infinite volume loop integrals and
finite volume discrete sums. Taste-splitting effects in the
pions at nonzero lattice spacing moderate the size of
the finite volume corrections because some of the pions
in the loops have heavier masses than the Goldstone pion.
Consequently, some of the finite volume effect appears as a
lattice-spacing effect, which is dealt with by our chiral-
continuum fit.

We incorporated the finite volume corrections into our fit
by subtracting from our data &gy /4, (1), found by adding
6Fy to each Fy appearing in (F6). In Fig. 10 we show
Spvhy, (1) as a function of pion mass for the parameters
appropriate for the physical pion mass lattices, Sets 3, 6, and
8 (see TableI). For the other lattices, |5y 714, (1) & O(0.1%)
over the M, range where we have data and is not significant.

In Table XIII we give fit results for plausible variations on
our chosen fit function as a demonstration of stability under
such nontrivial choices. Neglecting different powers of a*> we
see that our result is only sensitive to leading O(a?) errors.
The M2 dependence we included does not affect the central
value if removed, nor do changes in the assumed correlations
between NRQCD systematics between ensembles.
Removing taste splitting terms in the chiral perturbation
theory result down to the continuum formula results in only a
small change to the central value. Adding a;Agcp/Mp,
which we have excluded from our fit due to Luke’s theorem,
results in a slight increase in the central value as well as the
expected increase in error. Our result is also only mildly
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TABLE XIII. Fit results for £, (1) for different chiral-
continuum fit functions.

Fit function hy, (1) hy (1)
Eq. (F6) 0.895(26) 0.883(31)
Excluding hairpin terms 0.895(26) 0.883(31)
Continuum yPT formula 0.897(25) 0.882(31)
Aqep = 750 MeV 0.900(35) 0.882(38)
Agep = 250 MeV 0.897(24) 0.890(23)
Excluding polynomial O(a®) terms 0.895(26) 0.883(31)
Excluding polynomial O(a*) terms 0.895(26) 0.883(31)
Excluding polynomial O(a?) terms 0.898(26) 0.891(25)
Excluding polynomial M2 dependence 0.895(27) 0.883(31)
Excluding (A/Mg)? uncertainty 0.895(25) 0.883(31)
Totally correlated (Aqcp/Mp)* errors  0.895(27)  0.883(31)

sensitive to different choices of Agcp which we vary by
+50%. Taken collectively we note that no tested variations
result in more than a 0.25¢ change to the central value.

APPENDIX G: FITS TO EXPERIMENTAL DATA
The fully differential decay rate is given by [16,80]
dU(B — D*¢uy)

dwdcos8,dcosO,dy
_ 3GElew Ve My 5

10247% M,
x [(1—=cos8,)*sin’0,H% + (1 + cos0,)sin’0, H>
+ 4sin®0cos’0,H3 — 2sin®0,sin*0, cos 2y H , H _

w?—1

—4sinf,(1 —cosb,)sind,cosd,cosyH H,,

+4sinf,(1 4 cosf,)sind,cosd,cosyH_H,|  (G1)

where H, (w), H_(w), and Hy(w) are helicity amplitudes.
In principle these amplitudes could be determined from
lattice QCD, but presently these must be parametrized and
fit to experiment, with a lattice calculation of the zero recoil
form factor providing the normalization. Integrating (G1)
over the angular variables gives Eq. (1), with

r(l =2wr + 12
AIFOIP =" ) Y . (@2)

i=+,0

with r = M p-/Mp. Although not necessary in this work, it
is conventional to factor out the kinematic function

(w+1)? 4w 1 =2wr+r?
1 . G3
2 | Twil (=02 (G3)

x(w) =

Note that y(1) = 1 here, although different normalizations
appear in the literature.

The CLN parametrization expresses the helicity ampli-
tudes as follows [21,81]. The reduced helicity amplitudes
H, are defined by

Hi(w) = (M= My ) (1 4+)) [ 2220y )1, 0)
(G4)
Then
V1=2wr+r? w—
ﬁgm:—L%:i—Px ;:%mﬂ

-1

Hy(w) = 1+ T [1 = Ro(w) (Gs)

where r = Mp./Mg. The hy (w), Ri(w), Ry(w) then
expanded in z or w — 1, as given in (33).

In the BGL parametrization [28] (and in the simplified
BCL parametrization we employ) the helicity amplitudes
are written in terms of the f, F;, and g form factors as
follows

H.(w) = f(2) F MpMp Vw* — 19(2)

Hy(w) = 1)

N

These form factors are then expressed as in (36).
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