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We present results of a lattice QCD calculation of B → D� and Bs → D�
s axial vector matrix elements

with both states at rest. These zero recoil matrix elements provide the normalization necessary to infer a
value for the CKM matrix element jVcbj from experimental measurements of B̄0 → D�þl−ν̄ and B̄0

s →
D�þ

s l−ν̄ decay. Results are derived from correlation functions computed with highly improved staggered
quarks (HISQ) for light, strange, and charm quark propagators, and nonrelativistic QCD for the bottom
quark propagator. The calculation of correlation functions employs MILC Collaboration ensembles over a
range of three lattice spacings. These gauge field configurations include sea quark effects of charm, strange,
and equal-mass up and down quarks. We use ensembles with physically light up and down quarks, as well
as heavier values. Our main results are FB→D� ð1Þ ¼ 0.895� 0.010stat � 0.024sys and FBs→D�

s ð1Þ ¼
0.883� 0.012stat � 0.028sys. We discuss the consequences for jVcbj in light of recent investigations into the
extrapolation of experimental data to zero recoil.

DOI: 10.1103/PhysRevD.97.054502

I. INTRODUCTION

Precise measurements of quark flavor-changing inter-
actions offer one way to uncover physics beyond the
standard model. As successful as the standard model
appears to be so far, there will continue to be progress
reducing experimental and theoretical uncertainties, as well
as making new measurements. Existing tensions in the
global fits to the Cabibbo-Kobyashi-Maskawa (CKM)
parameters may become outright inconsistencies, or new
measurements of rare decays may differ significantly from
standard model predictions.
Measurements of the exclusive semileptonic decay B̄0 →

D�þl−ν̄ provided the first estimations of the magnitude of
CKMmatrix elementVcb [1–16]. This channel still provides
one of three precisemethods of determining jVcbj. Measure-
ments for the differential branching fraction are fit to a
function of q2, the lepton invariant mass-squared, and

extrapolated to the zero-recoil point (maximum q2). Then
lattice QCD results for the relevant hadronic matrix element
are used to infer jVcbj. The most recent HFLAVexperimental
average [17] combined with the Fermilab/MILC lattice result
[18] gives jVcbj ¼ ð38.71� 0.47exp � 0.59thÞ × 10−3.
Measurements of the inclusive b → c decays B → Xclν,

combined with an operator product expansion offer a com-
plementary method. The latest estimate is jVcbj ¼ ð42.21�
0.78Þ × 10−3 [19,20]. The discrepancy between the inclusive
and exclusive result described above is at the 3σ level.
Recently it has been suggested that the inclusive/

exclusive difference could be due to model-dependence
implicit in extrapolating experimental data forB → D�lν to
the zero recoil point. TheCLNparametrization [21] has been
used in recent analyses since it takes advantage of heavy
quark symmetries to improve unitarity constraints in the
form factor shape function. This had several advantages for
some time, but with increased precision in the experimental
data, it is possible that uncertainties arising from these
constraints are no longer negligible. In fact, recent work
[22–27] has shown that replacing the CLN parametrization
by the BGL parametrization [28] yields a determination of
jVcbj which is as much as 10% higher, in much better
agreement with the jVcbj from inclusive decays.
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One can also use the exclusive decay B → Dlν to
estimate jVcbj. Historically this has not given as precise
a determination due to having to contend with back-
ground from B → D�lν. Recent progress has come from
new measurements and joint fits to experimental and
lattice [29,30] data over a range of q2 using so-called
z-parametrizations [31,32]. The latest result using
B → Dlν results is jVcbj ¼ ð40.85� 0.98Þ × 10−3 [33],
in acceptable agreement with either the B → D�lν or
B → Xclν determinations.
It is worth noting that a determination of jVcbj is

important beyond semileptonic b → c decays. Due to
insufficient direct knowledge of the top-strange coupling,
standard model predictions which depend on Vts rely on
CKM unitarity, and therefore on Vcb. For example the K0 −
K̄0 mixing parameter ϵK depends sensitively on Vcb; taking
sin 2β as an input, then ϵK ∝ jVcbj4 at leading order [34].
In this article we present the details and results of a lattice

calculation of the zero-recoil form factor needed to extract
jVcbj from experimental measurements of the B → D�lν
and Bs → D�

slν decay rates. This work differs from the
Fermilab/MILC calculation [18] in the following respects:
(1) the gauge field configurations are the next generation
MILC ensembles [35–37] which include effects of 2þ1þ1
flavors of sea quarks using the highly improved staggered
quark (HISQ) action [38]; (2) the fully relativistic HISQ
action is used for valence light, strange, and charm quarks;
(3) the nonrelativistic QCD (NRQCD) action [39] is used
for the bottom quark. Therefore, this work represents a
statistically independent, complementary calculation to
Ref. [18], with different formulations in many respects.
The two main advantages of using the HISQ action is that
discretization errors are reduced and that the MILC HISQ
ensembles include configurations with physically light u/d
quark effects. We reported preliminary results in recent
proceedings [40].
Other groups are applying different methods to calculate

BðsÞ → Dð�Þ
ðsÞ form factors. Two-flavor twisted-mass con-

figurations have been used to estimate the Bs → Ds form
factors near zero recoil [41]; however the uncertainties with
this formulation are quite large. Work has also recently
begun using the domain wall action for light, strange, and
charm quarks [42]. Having results for the form factors from
several groups, each using different approaches, would be
very helpful and could lead to a further reduction in
uncertainties by allowing global fits to uncorrelated
numerical and experimental data.

This paper is structured as follows. Section II briefly
introduces the hadronic matrix elements of interest and sets
some notation. InSec. IIIwe list the inputs to our computation
and summarize the correlation functions calculated. The
matching between lattice and continuumcurrents is discussed
in Sec. IV. Section V is the most important section for the ex-
pert reader; there we discuss the fits to the correlation fun-
ctions, the treatment of discretization and quark mass errors,
and estimates of other systematic uncertainties. We summa-
rize the result of the lattice calculation in Sec. VI. In Sec. VII
we investigate the implications of the new lattice result in the
context of renewed scrutiny of the extrapolation of exper-
imental data to zero recoil; there we propose a simplified
series expansion as the one least likely to introduce hidden
theoretical uncertainties into a form factor parametrization.
We offer brief conclusions in Sec. VIII. Several appendices
are provided which contain further definitions and details in
hopes ofmaking themanuscript as self-contained as possible.
These are noted at appropriate places in the body of the paper.
A reader more interested in the results and consequences

than the details of our calculation can safely focus a first
reading on Secs. II, VI, VII, and VIII, possibly referring to
Appendix G.

II. FORM FACTORS

This section simply summarizes standard notation relating
the differential decay rate, the relevant hadronic matrix
elements, and the corresponding form factors. Throughout
the section we refer to B̄0 → D�þl−ν̄ decay, but the expres-
sions for B̄0

s → D�þ
s l−ν̄ are the same, mutatis mutandis.

The differential decay rate, integrated over angular
variables, is given in the standard model by

dΓ
dw

ðB̄0 →D�þl−ν̄lÞ ¼
G2

FM
3
D� jη̄EWVcbj2
4π3

× ðMB −MD� Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 −1

p
χðwÞjF ðwÞj2

ð1Þ
where w ¼ v · v0 is the scalar product of the B and D�
4-velocities, and χðwÞ is a known kinematic function nor-
malized so that χð1Þ ¼ 1 (see Appendix G). The coefficient
η̄EW accounts for electroweakcorrectionsdue toboxdiagrams
in which a photon orZ boson is exchanged in addition to aW
boson as well as the Coulomb attraction of the final-state
charged particles [43–45]. The form factor F ðwÞ is a linear
combination of hadronic form factors parametrizing the
matrix elements of the V − A weak current, i.e.

hD�ðp0; ϵÞjc̄γμbjBðpÞi ¼ 2iVðq2Þ
MB þMD�

ϵμνρσϵ�νp0
ρpσ

hD�ðp0; ϵÞjc̄γμγ5bjBðpÞi ¼ 2MD�A0ðq2Þ
ϵ� · q
q2

qμ þ ðMB þMD� ÞA1ðq2Þ
�
ϵ�μ −

ϵ� · q
q2

qμ
�

− A2ðq2Þ
ϵ� · q

MB þMD�

�
pμ þ p0μ −

M2
B −M2

D�

q2
qμ
�
: ð2Þ
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The only contribution to F ðwÞ at zero recoil, w ¼ 1, is
from the matrix element of the axial vector current; this
reduces to

hD�ðp; ϵÞjc̄γjγ5bjBðpÞi ¼ ðMB þMD� ÞA1ðq2maxÞϵ�j ð3Þ

for j ¼ 1, 2, 3. It is sometimes conventional to work with
form factors defined within heavy quark effective theory
(HQET). Of relevance to this work, we write

hA1
ðwÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD�

p
MB þMD�

A1ðq2Þ
1 − q2

ðMBþMD� Þ2
: ð4Þ

At zero recoil, where w ¼ 1 and q2 ¼ q2max,

F ð1Þ ¼ hA1
ð1Þ ¼ MB þMD�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD�

p A1ðq2maxÞ: ð5Þ

For brevity throughout the paper we will usually use the hA1

notation. When we wish to specifically refer to the Bs →
D�

s form factor, we write hsA1
, so

FB→D�ð1Þ ¼ hA1
ð1Þ and FBs→D�

s ð1Þ ¼ hsA1
ð1Þ: ð6Þ

These are the quantities we calculate here.

III. LATTICE PARAMETERS AND
METHODOLOGY

Here we give specific details about the lattice calculation.
Once again many of the expressions will refer to B → D�
matrix elements, but they apply for any spectator quark
mass.
The gluon field configurations that we use were gen-

erated by the MILC Collaboration and include 2þ 1þ 1
flavors of dynamical HISQ quarks in the sea and include 3
different lattice spacings [35–37]. The u and d quarks have
equal mass, mu ¼ md ≡ml, and in our calculations we use
the values ml/ms ¼ 0.2, 0.1 and the physical value 1/27.4
[46]. The s and c quarks in the sea are also well-tuned [47]
and included using the HISQ action. The gauge action is
the Symanzik improved gluon action with coefficients
correct to Oðαsa2; nfαsa2Þ [48]. Table I gives numerical
values for the lattice spacings, quark masses, and other
parameters describing the ensembles we used.
In calculating correlation functions, we slightly tune

the valence s and c masses closer to their physical values.
The d, s, and c quark propagators were computed using the
MILC code [50]. The b quark is simulated using perturba-
tively improved nonrelativistic QCD [49,51], which takes
advantage of the nonrelativistic nature of the b quark
dynamics in B mesons and produces very good control
over discretization uncertainties. Details of the gauge,
NRQCD, and HISQ actions used are given in
Appendices A, B, and C, respectively. In Table II we

record the parameters used in calculating quark
propagators.
In order to extract the form factor from lattice calcu-

lations we must compute the set of Euclidean correlation
functions

CB2ptðtÞij ¼ hOðtÞBiO†ð0ÞBji
Cμν
D�2ptðtÞij ¼ hOμðtÞD�iO

†νð0ÞD�ji
Cμκ
3ptðT; t; 0Þij ¼ hOμðTÞD�iJ

κðtÞO†ð0ÞBji ð7Þ

where each interpolating operator Oi is projected onto zero
spatial momentum by summing over spatial lattice points

TABLE I. Details of the gauge configurations used in this work.
We refer to sets 1, 2 and 3 as “very coarse,” sets 4, 5 and 6 as
“coarse” and sets 7 and 8 as “fine.” The lattice spacings were
determined from the ϒð2S − 1SÞ splitting in [49]. Sets 3, 6 and 8
use light quarks with their physical masses. u0 is the tadpole
improvement factor, here we use the Landau gauge mean link.
The final column specifies the total number of configurations
multiplied by the number of different start times used for sources
on each. In order to improve statistical precision we use random
wall sources.

Set aðfmÞ L/a × T/a aml ams amc u0 ncfg × nt

1 0.1474 16 × 48 0.013 0.065 0.838 0.8195 960 × 16
2 0.1463 24 × 48 0.0064 0.064 0.828 0.8202 960 × 4
3 0.1450 32 × 48 0.00235 0.0647 0.831 0.8195 960 × 4

4 0.1219 24 × 64 0.0102 0.0509 0.635 0.8341 960 × 4
5 0.1195 32 × 64 0.00507 0.0507 0.628 0.8349 960 × 4
6 0.1189 48 × 64 0.00184 0.0507 0.628 0.8341 960 × 4

7 0.0884 32 × 96 0.0074 0.037 0.440 0.8525 960 × 4
8 0.08787 64 × 96 0.00120 0.0363 0.432 0.8518 540 × 4

TABLE II. Valence quark masses and parameters used to
calculate propagators. The s and c valence masses were tuned
using results from [47] and the b mass was taken from [49].
(1þ ϵNaik) is the coefficient of the charm Naik term and ci are the
perturbatively improved coefficients appearing in the NRQCD
action correct through Oðαsv4Þ [49]. The last column gives the T
values used in three point functions. These have changed from
those presented in [40] on the very coarse ensembles as it was
found that T ¼ 10, 11, 12, 13 resulted in excessive noise on Set 3,
which resulted in poor fit stability and the relatively low value of
F ð1Þ on this ensemble.

Set amval
s amval

c amb ϵNaik c1,c6 c5 c4 T

1 0.0641 0.826 3.297 −0.345 1.36 1.21 1.22 6,7,8,9
2 0.0636 0.828 3.263 −0.340 1.36 1.21 1.22 6,7,8,9
3 0.0628 0.827 3.25 −0.345 1.36 1.21 1.22 6,7,8,9

4 0.0522 0.645 2.66 −0.235 1.31 1.16 1.20 10,11,12,13
5 0.0505 0.627 2.62 −0.224 1.31 1.16 1.20 10,11,12,13
6 0.0507 0.631 2.62 −0.226 1.31 1.16 1.20 10,11,12,13

7 0.0364 0.434 1.91 −0.117 1.21 1.12 1.16 15,18,21,24
8 0.0360 0.4305 1.89 −0.115 1.21 1.12 1.16 10,13,16,19
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and the current Jκ is one of several lattice currents (see
Sec. IV). The indices i and j label different smearing
functions. We use three different smearing operators on
each of the B and D� interpolating operators.
In implementingOμðtÞD�i we use an unsmeared operator

and two gauge covariant Gaussian smearings, implemented

by applying
�
1 − r2

D�∇2

n

�
n
to the field. Here the derivative is

stride-2 in order not to mix the staggered-taste meson
multiplets. rD� is the radius (in lattice units) chosen to give
good overlap with the ground state, and n is chosen to give
a good approximation to a Gaussian while maintaining
numerical stability. For the Bwe use a local operator as well
as two Gaussian smearings, implemented as 1

N e
−ðx−yÞ2/r2B ,

where again rB is a radius in lattice units andN is an overall
normalization. Since the B smearings are not gauge
invariant, the gauge fields are fixed to Coulomb gauge.
We refer to the local operator as l and the Gaussian
smearings as g2 and g4 corresponding to radii of 2a and
4a respectively. We use the same choices of radii for both
B and D� smearings. The smearing parameters are given in
Table III.
The interpolating operators themselves are

OBðxÞ ¼
X
y

ψ̄uðxÞγ5Δðx; yÞΨbðyÞ

Oi
D�ðxÞ ¼

X
y

ψ̄uðxÞγiΔðx; yÞψcðyþ aîÞ ð8Þ

where Δðx; yÞ is the appropriate smearing function dis-
cussed above. In distinction to the continuum quark fields
b, c, s, and u of Sec. II, here we denote the NRQCD b field
by Ψb and the staggered fields, written as 4-component
Dirac spinors (see Appendix C), by ψ with the appropriate
flavor subscript.
We checked both the point-split and local D� interpolat-

ing operators on the very coarse, physical point ensemble
(Set 3) and found no significant difference in statistical
noise or central value of either the D� mass or the matrix
element. We primarily used the point-split current as it was
simpler to implement in our framework. The results quoted
below for the B → D� fits use the point-split vector current,
except for Set 3 where results are given for the local vector

current. The results below for Bs → D�
s form factors were

obtained using the local vector current.
In order to improve statistics we multiply our smeared

sources with random walls to produce, on average, the
effect of multiple sources. Taking the all-to-all 2-point
function as an example we have

C2ptðt; 0Þij ¼
X
xy;δ

hψ̄1ðx; tÞΓψ2ðxþ δsin k; tÞ

× ψ̄2ðy; 0ÞΓψ1ðyþ δsrc; 0ÞiΔiðδsin kÞΔjðδsrcÞ
¼

X
xy;δ

tr½ΓG2ðx; t; y; 0ÞΓΔjðδsrcÞ

×G1ðyþ δsrc; 0; x − δsin k; tÞΔiðδsin kÞ�: ð9Þ
Exact computation requires an inversion for each value of y
being summed over. Instead we generate a random vector ξ
satisfying

lim
N→∞

XN
l

ξalðxÞξblðyÞ� ¼ δðx; yÞδab: ð10Þ

N here is the number of random vector wall sources. The
average over configurations further suppresses violations of
this relation; in practice a single random wall per color,
setting N ¼ Nc ¼ 3, is sufficient. Inserting the above
relation into the 2-point function

C2ptðt;0Þij ¼
X
xyz;δ;l

tr½ΓG2ðx; t;z;0ÞξðzÞΓΔjðδsrcÞξ†ðy− δsrcÞ

×G1ðy;0;x− δsink; tÞΔiðδsinkÞ�
¼

X
xyz;δ;l

tr½ΓG2ðx; t;z;0ÞξðzÞΓ

× γ5½ΔiðδsinkÞG1ðx− δsink; t;y;0Þ
×ΔjðδsrcÞξðy− δsrcÞ�†γ5� ð11Þ

where we have used γ5 hermiticity. The naive propagators
G are built from staggered quarks and the full form of the
correlation function contractions in terms of NRQCD and
staggered propagators is given in Appendix D.
These correlation functions can be expressed in terms of

amplitudes and decaying exponentials by inserting a
complete basis of states. Projecting onto zero momentum
and setting q ¼ ðMB −MD� ; 0; 0; 0Þ this gives

CB2ptðtÞij ¼
X

n;a¼0;1

ð−1ÞatBn
aiB

n
aje

−MBna
t

CD�2ptðtÞij ¼
X

n;a¼0;1

ð−1ÞatAn
aiA

n
aje

−MD�n
a
t

C3ptðT; t; 0Þij ¼
X

ab¼0;1

X
nm

ð−1ÞaðT−tÞþbtAn
aiB

m
bj

× Vnm
ab e

−MD�m
a

ðT−tÞ−MBn
b
t ð12Þ

TABLE III. Values of r, taken to be the same, for the BðsÞ and
D�

ðsÞ Gaussian smearings on each set and the accompanying n

values for the D�
ðsÞ smearings. We chose to fix the radii in lattice

units rather than physical units as this seemed to result in more
consistent numerical stability of the covariant Gaussian smearing
operator when moving between lattices.

Set rg2/a rg4/a ng2 ng4

1,2,3 2 4 30 30
4,5,6 2 4 30 30
7,8 2 4 30 40
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where

Bn
ai ¼

hΩjOi
BjBn

aiffiffiffiffiffiffiffiffiffiffiffi
2MBn

a

p
An
ai ¼

hΩjOi
D� jD�n

aiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MD�n

a

p
Vnm
ab ¼ hD�n

ajJjBm
b iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MD�n
a
2MBm

b

q : ð13Þ

Note that we have included contributions from opposite-
parity states, which depend on imaginary time like ð−1Þt
and arise from using staggered quarks [38], by introducing
the sum over a and b. When either a or b is nonzero the
corresponding term in the sum is multiplied by a sign factor
which oscillates between 1 and −1 in time. We are only
interested in the terms with a ¼ b ¼ 0 here; however in
order to extract these, the oscillating terms must be fit away.
For our choice of operators the A, B and V parameters are
real [52]. We discuss our fits to these correlation functions
in Sec. VA.

IV. ONE-LOOP MATCHING

We require a lattice current with the same matrix
elements as the continuum current to a given order. The
matching of lattice and continuum currents is done in [53]
through Oðαs; αs/amb;ΛQCD/mbÞ,where ΛQCD is a typical
QCD scale of a few hundred MeV, following the method
used in [54]. Using power counting in powers of ΛQCD/mb

a set of lattice currents is selected. At the order to which we
work in this paper only the following currents contribute

Jð0Þilatt ðxÞ ¼ ψ̄cγ
iγ5Ψb

Jð1Þilatt ðxÞ ¼ −
1

2amb
ψ̄cγ

iγ5γ · ΔΨb: ð14Þ

It is convenient for us to also compute the matrix elements
of operators entering at OðαsΛQCD/mbÞ

Jð2Þilatt ðxÞ ¼ −
1

2amb
ψ̄cγ · Δ⃖γ0γiγ5Ψb

Jð3Þilatt ðxÞ ¼ −
1

2amb
ψ̄cγ

0γ5ΔiΨb: ð15Þ

This allows for a configuration-by-configuration check of
the code: namely that at zero recoil, the three-point
correlation functions satisfy the relation C3ptJð1Þ þ C3ptJð2Þ−
2C3ptJð3Þ ¼ 0. This identity is derived using integration by
parts and the fact that γ0ΨQ ¼ ΨQ.
The full matching is a double expansion in ΛQCD/mb and

in αs. The matched current is given by

J i ¼ Z½ð1þαsðη− τÞÞJð0Þilatt þ Jð1Þilatt � þO

�
αsΛQCD

mb

�
ð16Þ

where Z is a multiplicative factor from the tree-level
massive-HISQ wave function renormalization for the
HISQ c quark. The one-loop coefficients η and τ respec-

tively account for the renormalization of Jð0Þilatt and for the

mixing of Jð1Þilatt into Jð0Þilatt . Numerical values for the pertur-
bative coefficients relevant for the ensembles used are given
in Table IV [53].
Matrix elements of currents of order αnsΛQCD/mb vanish

to all orders in αs according to Luke’s theorem [56]. We
will denote by V the matrix elements of the currents Jlatt
divided by meson mass factors, as in (13) with a ¼ b ¼ 0
and n ¼ m ¼ 0. Luke’s theorem implies the combination

Vð1Þi
sub ¼ Vð1Þi − αsτVð0Þi; ð17Þ

which represents the physical, subleading matrix element,
should be very small, only different from zero due to
systematic uncertainties.

V. ANALYSIS OF NUMERICAL DATA

In this section we discuss the two main aspects of
numerical analysis. First we present fits to the correlation
functions, allowing us to determine hA1

ð1Þ on each of the
8 ensembles. Second, we discuss how we infer a physical
value for hA1

ð1Þ with an error estimate for uncertainties
associated with current matching, discretization, and
dependence on quark masses.

A. Fits to correlation functions

We fit the three correlation functions defined in (12)
simultaneously using the corrfitter package devel-
oped by Lepage [57,58]. This minimizes

TABLE IV. Tree-level Z factors and one-loop matching co-
efficients, used in (16), calculated at lattice quark masses
appropriate to each of our gauge-field ensembles [55]. We also
give values on each ensemble for the strong coupling constant in
the V scheme at a scale of 2/a (from results in [53]).

Set Z −η τ αVð2/aÞ
1 0.9930 0.260(3) 0.0163(1) 0.346
2 0.9933 0.260(3) 0.0165(1) 0.344
3 0.9930 0.260(3) 0.0165(1) 0.343
4 0.9972 0.191(3) 0.0216(1) 0.311
5 0.9974 0.185(3) 0.0221(1) 0.308
6 0.9974 0.185(3) 0.0221(1) 0.307
7 0.9994 0.091(3) 0.0330(1) 0.267
8 0.9994 0.091(3) 0.0330(1) 0.267
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χ2ðpÞ ¼
X
t;t0

ΔCðt; pÞσ−2t;t0ΔCðt0; pÞ þ
X
i

ðpi − pi
priorÞ2

σ2pi
prior

ð18Þ

with respect to p, where ΔCðt; pÞ ¼ C̄ðtÞ − CTHðt; pÞ and
pi is the ith parameter in the theory, pi

prior is its prior value
with error σpi

prior
. The correlation matrix σt;t0 includes all

correlations between data points. Fitting correlators from
all smeared sources and sinks simultaneously requires the
use of as SVD cut on the eigenvalues when determining
the inverse of σ2. We also exclude points close in time to the

source and sink to suppress excited state contributions and
speed up the fit.
We look at the effectiveness of the various smearings by

fitting each smearing diagonal, i.e. equal radii, set of two
and three point correlator functions independently and
comparing the result to the full fit. Figure 1 shows an
example of this; plots for the full data set appear in Fig. 9 in
Appendix E. In these plots we only include the results of
fits with χ2/dof < 1.2. We give the ground state and
oscillating state two point fit parameters for our full
simultaneous fits in Table V. The CB2ptðtÞ fit amplitudes,
the energies and Bn

ai parameters of (12), are in good
agreement with those in Ref. [59].
Table VI gives results for matrix elements corresponding

to the currents Jð1Þlatt and Jð2Þlatt. One can see that Luke’s

theorem holds, in that Vð1Þ
sub is very small. Results are also

given for Vð2Þ as well as numerical values for αsΛQCD/mb.
While it is important to remember that there are absent
mixing down factors from the current Jð0Þ contributing at
OðαsΛQCD/mbÞ it is encouraging to see that Vð2Þ is small
compared to its expected order.
On each ensemble, we obtain a value for the zero-recoil

form factors hðsÞA1
ð1Þ. As in the continuum expressions (3)

and (5) we have

hA1
ð1Þjlatt ¼ VJ ≡ hD�jJ jBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MD�2MB
p ð19Þ

and similarly for hsA1
ð1Þjlatt. We write VJ here to make clear

that we fit combinations of three point correlators that
correspond to the insertion of the current given by (16).
Results for hA1

ð1Þ on each ensemble are presented in
Table VII. We computed hsA1

ð1Þ on the physical-point
lattices only since chiral perturbation theory predicts this

FIG. 1. Fractional hA1
ð1Þ variation with the number of ex-

ponentials used in the fit function on Set 6, showing fits done
using each individual source/sink smearing (local l, or Gaussian
with 2 radii, g2 and g4) as well as the full 3 × 3 matrix fit.

TABLE V. Ground state and oscillating state local amplitudes and masses from our fits. Note that on Set 3 and for all the D�
s data we

use the local vector operator, otherwise we use the point-split operator; therefore, the amplitudes A are not comparable between different
operators. Also note that the tabulated B “masses” are the NRQCD “simulation energies” aEsim, representing the nonperturbative
contribution to the B meson binding energy. The B parameters are in good agreement with those in [59].

Set A0
0l A0

1l aMD�0
0

aMD�0
1

B0
0l B0

1l aMB0
0

aMB0
1

1 0.1420(12) 0.110(10) 1.5465(19) 1.815(22) 0.2287(17) 0.232(14) 0.5667(14) 0.815(13)
2 0.1338(17) 0.087(12) 1.5304(28) 1.742(26) 0.2171(20) 0.200(24) 0.5534(18) 0.770(18)
3 0.1710(14) 0.092(13) 1.5226(18) 1.675(25) 0.2099(17) 0.214(14) 0.5433(15) 0.761(14)
4 0.1006(23) 0.081(20) 1.2599(31) 1.499(30) 0.1700(23) 0.104(54) 0.4825(21) 0.638(46)
5 0.0951(14) 0.081(10) 1.2289(23) 1.459(18) 0.1611(24) 0.095(54) 0.4745(22) 0.621(42)
6 0.09636(52) 0.0479(87) 1.23244(99) 1.354(22) 0.157 39(69) 0.1674(58) 0.46809(80) 0.6523(58)
7 0.06466(40) 0.0520(35) 0.91551(88) 1.0838(82) 0.107 62(64) 0.1241(35) 0.37950(76) 0.5437(40)
8 0.05912(40) 0.0502(23) 0.89583(99) 1.0477(71) 0.098 84(69) 0.1131(26) 0.36473(98) 0.5042(32)

As0
0l As0

1l aMD�0
s0

aMD�0
s1

Bs0
0l Bs0

1l aMB0
s0

aMB0
s1

3 0.1987(13) 0.136(14) 1.58655(79) 1.868(14) 0.25554(42) 0.2460(75) 0.60639(28) 0.8862(50)
6 0.13689(81) 0.0918(75) 1.28341(45) 1.5094(94) 0.188 22(14) 0.1669(58) 0.51657(11) 0.7277(36)
8 0.08233(40) 0.0618(23) 0.93657(49) 1.1142(50) 0.118 67(55) 0.1212(17) 0.40136(48) 0.5698(15)
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quantity to be much less sensitive to the sea quark mass
than the spectator quark mass. (In fact we will see that the
spectator quark mass dependence is also small).

B. Chiral-continuum extrapolation

By carrying out the calculation using 8 ensembles,
spanning 3 values of lattice spacing and 3 values of the
light quark mass, we can quantify many of the systematic
uncertainties by performing a least-squares fit to a function
which accounts for unphysical parameters or truncation
errors. Below we describe how the fits address each of these
sources of uncertainty then present results of the fits.
There are two types of systematic error for which we

must account. The first type are truncation errors about
which the numerical data contain no information. In this
class are the higher-order (in ΛQCD/mb) current corrections
truncated in the perturbative matching described in Sec. IV.
The numerical data contain no information about Λ2

QCD/m
2
b

or αsΛQCD/mb corrections, so we add to each data point
nuisance terms

hA1
ð1Þjfit ¼ hA1

ð1Þjlatt þ e4
Λ2
QCD

m2
b

½1þ e5Δamb
þ e6Δ2

amb
�

þ e7
αsΛQCD

mb
½1þ e8Δamb

þ e9Δ2
amb

� ð20Þ

where

Δamb
¼ ðamb − 2.5Þ/2.5

and e4, e5, e6, e7, e8, and e9 are Gaussian distributed
variables, with mean and standard deviation μðσÞ, with
e4 ¼ 0ð0.5Þ, e7 ¼ 0ð0.3Þ and e5;6;8;9 ¼ 0ð1Þ, 100% corre-
lated between each data point. The e5, e6, e8 and e9 terms
reflect the fact that the coefficients of the truncated
Λ2
QCD/m

2
b and αsΛQCD/mb terms will be slowly varying

functions of amb. Our choice of e7 is motivated by the
magnitude of Vð2Þ and the expectation that Luke’s theorem
will hold at this order.
The second type of systematic uncertainties arise from

truncation, discretization, or tuning errors about which we
can draw inferences from our Monte Carlo calculation.
Consider the unknown α2s corrections to the current
normalization. In contrast to the truncation of the
ΛQCD/mb expansion, the numerical data is, at least in
principle, sensitive to Oðα2sÞ corrections through the run-
ning of the coupling on the different lattice spacings. In
addition the results have dependence on the lattice spacing
and the light quark mass that can be mapped out using
theoretical expectations. For the light quark mass depend-
ence this is based on chiral perturbation theory. Therefore
we fit the data points to the functional form

hA1
ð1Þjfit ¼ ð1þ BÞδBa þ C

M2
π

Λ2
χ
þ δga

g2

48π2f2
× chiral logs

þ γ1α
2
s

�
1þ γ5

2
ðamb − 2Þ þ γ6

4
ðamb − 2Þ2

�
VJ :

ð21Þ

The first term accounts for the deviation of the physical
hA1

ð1Þ from the static quark limit value of 1. The fit
parameter B is given a prior of 0(1). We take as priors
γ1 ¼ 0ð0.5Þ, γ5;6 ¼ 0ð1Þ. Discretization and quark mass
tuning errors are included in δBa , to be described fur-
ther below.
The second and third terms in (21) give the leading

dependence on the light quark mass, parametrized by M2
π

divided by the chiral scale Λχ , which we set to be 1 GeV.
The coefficient of the chiral logs depends on the D�Dπ
coupling g, which we take as 0.53(8) following [18], and on
the pion decay constant in the physical pion mass limit
f ¼ 130 MeV. The D� −D mass splitting, Δmc

, appearing
in the chiral logs is taken as 142 MeV. The uncertainties
from f and Δmc

are negligible compared to the error on g
and are not included. Further details about the staggered
chiral perturbation theory [60] input to (21) are given in
Appendix F. We will return to discuss δga shortly.
The fourth term in (21) is present in the fit since the

current matching has truncation errors of Oðα2sÞ. The
truncated term would have some mild dependence on
amb, which is reflected in the ansatz for this term.

TABLE VI. Matrix elements, with meson factors defined in
(13), of currents contributing at OðαsΛQCD/MBÞ for B → D�.
Note the approximate cancellation between the mixing down

term αsτVð0Þ and Vð1Þ to give a small Vð1Þ
sub as we would expect

from Luke’s theorem. Note Vð2Þ is numerically smaller than its
parametric estimate αsΛQCD/mb ≈ 0.03.

Set Vð1Þ
sub Vð2Þ

3 −0.0050ð8Þ 0.0138(8)
6 −0.0044ð5Þ 0.0101(4)
8 −0.0031ð7Þ 0.0060(8)

TABLE VII. Fit results for the zero-recoil form factor
hA1

ð1Þlatt ¼ VJ for both B → D� and Bs → D�
s .

Set hA1
ð1Þlatt hsA1

ð1Þlatt
1 0.8606(91)
2 0.871(13)
3 0.8819(96) 0.8667(42)
4 0.8498(94)
5 0.8570(84)
6 0.8855(50) 0.8662(61)
7 0.8709(75)
8 0.8886(63) 0.8715(44)
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The δBa and δga in (21) parametrize how discretization and
quark mass tuning errors could enter the fit form. These
originate from the gauge action, the NRQCD action and the
HISQ action. In all three actions discretization errors appear
as even powers of a, hencewe include multiplicative factors

δa ¼ ðb0 þ b1ðaΛQCDÞ2 þ b2ðaΛQCDÞ4 þ b3ðaΛQCDÞ6Þ:
ð22Þ

Each factor bi contains a distinct sea quark tuning error
dependence

bi ¼ κiδ
i
bδ

i
cδ

i
sea ð23Þ

where the κi are given a Gaussian prior 0(0.5). Note that we
do not include a κ0 term for the Oða0Þ piece as such a term
would not represent a mistuning error or discretization
effect. The product on the right-hand side allows for effects
of small mistunings in the sea quark masses and the valence
charm and bottom quark masses. For the sea u/d and s
quarks we include a multiplicative factor

δsea ¼ 1þ c1ðδxsea/mphys
sea Þ þ c2ðδxsea/mphys

sea Þ2 ð24Þ

where msea ¼ 2ml þms and δxsea ¼ msea −mphys
sea . The

physical masses are taken from [61] and are computed
using the ηs mass.We takemphys

l /mphys
s ¼ 27.4 [46].We also

include the multiplicative factor

δc ¼ 1þ d1ðδmc/m
phys
c Þ þ d2ðδmc/m

phys
c Þ2 ð25Þ

where δmc ¼ mc −mphys
c , with physical mass taken from

[47], and the factor

δb ¼ 1þ f1ðδmb/m
phys
b Þ þ f2ðδmb/m

phys
b Þ2 ð26Þ

with δmb ¼ mb −mphys
b wheremphys

b is determined from the
spin-averaged kineticmass of theϒ and ηb [49]. ci,di, andfi
are given prior values of 0(0.5). We neglect the effects of the
very small mistuning of the light quark masses from their
physical value which we expect to be small.
Finite volume corrections to the staggered chiral pertur-

bation theory are given in [60]. Evaluating these expres-
sions on our lattices, we have found that finite volume
effects are at least an order of magnitude smaller than the
leading Oðα2sÞ error on the unphysical lattices. On sets 3, 6
and 8 the finite volume effects are larger, around half a
percent in size. This is significant at the order to which we
work. To account for these effects we subtract the finite
volume correction to hA1

ð1Þ from our data for these
ensembles. We further discuss finite volume effects in
Appendix F.
The calculation on each ensemble of the form factor for

Bs → D�
s decay is equivalent to the B → D� calculation,

with the light quark propagator replaced with a strange
quark propagator. The analysis is substantially more

straightforward, both because the data is less noisy and
because no chiral extrapolation is required. Before fitting
the lattice data, we include a term to account for the absence
of OðΛ2

QCD/m
2
bÞ and OðαsΛQCD/mbÞ effects, as in (20),

using the same Gaussian variables e4, e5, e6, e7, e8, and e9.
For the continuum-chiral fit to the hsA1

ð1Þ we take the
functional form to be the following, where δsBa Bs has the
same form and priors as the term included for the B → D�:

hsA1
ð1Þj

fit
¼ ð1þBsÞδsBa
þ γ1α

2
s

�
1þ γ5

2
ðamb − 2Þ þ γ6

4
ðamb − 2Þ2

�
Vð0Þ

ð27Þ

FIG. 2. Fit to our data using staggered chiral perturbation
theory. Finite volume corrections are included in the data points,
visible only for the physical pion mass points. The blue line and
grey band are the continuum chiral perturbation theory result and
error extrapolated from our lattice data. The error band includes
systematic errors coming from matching uncertainties and hence
has a much larger error than any of the data points, which are only
shown with their statistical error.

TABLE VIII. Results for parameters in the chiral-continuum
fits, Eqs. (21) and (27). Higher order terms retain their prior
values and are not shown while κB2 ¼ −0.17ð25Þ and κB2 ¼
−0.05ð42Þ for hA1

ð1Þ and hsA1
ð1Þ respectively.

c1 c2 d1 d2 f1 f2
hA1

ð1Þ δBa0 −0.15ð12Þ 0.27(29) 0.24(40) 0.0(5) 0.24(40) 0.0(5)

hsA1
ð1Þ δBa0 −0.03ð22Þ 0.05(35) 0.0(5) 0.0(5) 0.0(5) 0.0(5)

B C g γ1 γ5 γ6

hA1
ð1Þ −0.091ð27Þ −0.02ð24Þ 0.521(78) −0.14ð44Þ 0(1) −0.15ð97Þ

hsA1
ð1Þ −0.117ð31Þ � � � � � � −0.14ð44Þ 0(1) −0.15ð97Þ

HARRISON, DAVIES, and WINGATE PHYS. REV. D 97, 054502 (2018)

054502-8



where γ1, γ5 and γ6 are the same as in (21) because these
terms represent the same higher order matching corrections.
We run the Bs → D�

s fit simultaneously with the
B → D� fit.
The NRQCD and HISQ systematics are the same as

before, and we expect negligible isospin breaking and finite
volume effects. In Fig. 2 we show the M2

π dependence
of our B → D� data and the extrapolated continuum chiral
form.
We present results for the hA1

ð1Þ and hsA1
ð1Þ fit param-

eters B, γi, κi, ci, di, fi in Table VIII. Plots showing the a2

dependence of our B → D� and Bs → D�
s data are shown in

Figs. 3 and 4 respectively, together with the result of our fit.
The Oða4Þ and Oða6Þ parameters default to their prior
values, while the Oða2Þ parameters are consistent with
zero. We tried various modifications to our fit, the results of
which we present in Appendix F. Table IX presents a
summary and combination of the uncertainties in our
results for hA1

ð1Þ and hsA1
ð1Þ.

C. Isospin breaking effects

The effects of electromagnetic interactions and mu ≠ md
on hA1

ð1Þ are negligible compared to the dominant uncer-
tainties quoted in Table IX. We find only a variation of
0.25% in the chiral-continuum fits to hA1

ð1Þwhether the π0
or πþ mass is used as the input value for the physical limit.
Electroweak and Coulomb effects in the decay rate (1) are
presently accounted for at leading order by a single
multiplicative factor η̄EW to be discussed below in
Sec. VII. As lattice QCD uncertainties are reduced in
the future, it will be desirable to more directly calculate the
effects of electromagnetism in a lattice QCDþ QED
calculation, where mu ≠ md can also be implemented.

VI. RESULTS AND DISCUSSION

We have calculated the zero recoil form factor for B →
D�lν decay using the most physically realistic gluon field
configurations currently available along with quark dis-
cretizations that are highly improved. Our final result for
the form factor, including all sources of uncertainty, is

FB→D�ð1Þ ¼ hA1
ð1Þ ¼ 0.895ð10Þstatð24Þsys: ð28Þ

It is clear from this treatment that the dominant source of
uncertainty is the Oðα2sÞ uncertainty coming from the
perturbative matching calculation. In principle this could
be reduced by a two-loop matching calculation; however,

FIG. 3. Plot showing the a2 dependence of our B → D� data.
Finite volume corrections are included in the data points, visible
only for the physical pion mass points. The blue line with grey
error band shows the physical result for the form factor
determined by the fit described in the text.

FIG. 4. Lattice spacing dependence of our results for the Bs →
D�

s zero recoil form factor. The blue line with grey error band
shows the physical result for the form factor determined by the fit
described in the text.

TABLE IX. Partial errors (in percentages) for hðsÞA1
ð1Þ. A full

accounting of the breakdown of systematic errors is made
difficult by the fact that smaller priors not well constrained by
the data are mixed in a correlated way by the fitter; these are
reflected in the total systematic uncertainty. Note that the
uncertainty from missing α2s terms in the matching for hA1

ð1Þ
and hsA1

ð1Þ is constrained somewhat by the fit; a naive estimate
would give 3.5% on the fine lattices.

Uncertainty hA1
ð1Þ hsA1

ð1Þ hA1
ð1Þ/hsA1

ð1Þ
α2s 2.1 2.5 0.4
αsΛQCD/mb 0.9 0.9 0.0
ðΛQCD/mbÞ2 0.8 0.8 0.0
a2 0.7 1.4 1.4
gD�Dπ 0.2 0.03 0.2
Total systematic 2.7 3.2 1.7

Data 1.1 1.4 1.4
Total 2.9 3.5 2.2
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such calculations in lattice NRQCD have not been done
before. It is worth noting that for our calculation this
uncertainty is somewhat constrained by the fit, as is
reflected in Table IX. It has also been suggested [62] that
it could be estimated using heavy-HISQ b quarks on
“ultrafine” lattices with a ¼ 0.045 fm and mba < 1.
There we can use the nonperturbative PCAC relation
and the absolute normalization of the pseudoscalar current
to normalize Jð0Þ, using ðmb þmcÞP̂ ¼ Z∂μÂ

μ to find the
matching coefficient Z and then comparing matrix elements
of this normalized current to the result using perturbation
theory.
Within errors, our result agrees with the result from

the Fermilab Lattice and MILC Collaborations [18],
hA1

ð1Þ ¼ 0.906ð4Þð12Þ. The higher precision achieved in
this work is due to the use of the same lattice discretization
for the b and c quarks. This enabled them to avoid the
larger current-matching uncertainties present in our
NRQCD-b, HISQ-c work. Nevertheless, the value of
providing a completely independent lattice QCD result
using different formalisms is self-evident.
After combining the statistical and systematic errors in

quadrature, a weighted average of the two lattice results
yields hA1

ð1Þ ¼ 0.904ð12Þ. We use this value in our
discussion in Sec. VII.
Our result for the Bs → D�

s zero-recoil form factor is

FBs→D�
s ð1Þ ¼ hsA1

ð1Þ ¼ 0.883ð12Þstatð28Þsys: ð29Þ

This is the first lattice QCD calculations of this quantity.
We see no significant difference between the result for
B → D� and Bs → D�

s showing that spectator quark mass
effects are very small. Correlated systematic uncertainties
cancel in the ratio, which we find to be

FB→D�ð1Þ
FBs→D�

s ð1Þ ¼
hA1

ð1Þ
hsA1

ð1Þ ¼ 1.013ð14Þstatð17Þsys: ð30Þ

We find there to be no significant U-spin (d ↔ s) breaking
effect at the few percent level.

VII. IMPLICATIONS FOR jVcbj
Until recently, onewould simply combine aworld average

of lattice data for hA1
ð1Þwith the latest HFLAV result for the

B̄0 → D�þl−ν differential branching fraction extrapolated
to zero recoil: η̄EWF ð1ÞjVcbj ¼ 35.61ð11Þð44Þ × 10−3 [17].
Doing so with the weighted average of the Fermilab/MILC
result and ours yields

jVcbjHFLAV ¼ ð38.9� 0.7Þ × 10−3; ð31Þ

where we have used the estimated charge-averaged value of
η̄EW ¼ 1.015ð5Þ [18]. The uncertainty in jVcbjHFLAV is due in
equal parts to lattice and experimental error.

Recent work analyzing unfolded Belle data [16] has
called into question the accuracy of what has become the
standard method of extrapolating experimental data to zero
recoil [22–27]. In order to understand our new result for
hA1

ð1Þ, as well as to prepare for future lattice calculations
and experimental measurements, we carry out a similar
analysis here. We generally agree with conclusions already
in the literature, but we present a few of our own
suggestions for how one could proceed in the future.
The method used by experiments to date is due to

Caprini, Lellouch, and Neubert (CLN) [21]. Their para-
matrization of the form factors entering the differential
decay rate and angular observables is an expansion about
zero-recoil, i.e. about w ¼ 1. (See Appendix G for expres-
sions relating experimental observables to form factors.) In
the case of the hA1

ðwÞ form factor it was found that the
kinematic variable z gives a more convergent series. Given
a specific choice of t0, z depends on the t ¼ q2 as

zðt; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p ð32Þ

with t� ¼ ðMB �MD� Þ2. Usually one takes t0 ¼ t−, and
this is the choice assumed throughout this paper.1

The CLN form factors are given as follows

hA1
ðwÞ ¼ hA1

ð1Þ½1 − 8ρ2zþ ðrh2rρ2 þ rh2Þz2
þ ðrh3rρ2 þ rh3Þz3�

R1ðwÞ ¼ R1ð1Þ þ r11ðw − 1Þ þ r12ðw − 1Þ2
R2ðwÞ ¼ R2ð1Þ þ r21ðw − 1Þ þ r22ðw − 1Þ2 ð33Þ

with the coefficients computed to be [21]

rh2r ¼ 53; rh2 ¼ −15;

rh3r ¼ −231; rh3 ¼ 91;

r11 ¼ −0.12; r12 ¼ 0.05;

r21 ¼ 0.11; r22 ¼ −0.06: ð34Þ

These numbers are the result of a calculation in HQET,
using QCD sum rules and neglecting contributions of
αsΛQCD/mc and ðΛQCD/mcÞ2, as well as smaller effects.
Until recently effects of neglecting these terms have not
been included in fitting the experimental data.
Reference [21] claims an accuracy of 2%; however this is

based on comparing an expansions in z against some full
expressions. While this tests the convergence of the

1One can express zðt; t−Þ as a function of w as

zðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p
−

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p þ ffiffiffi
2

p :
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expansions, it does not test the accuracy of numerical
factors computed in truncated HQET. In fact the data do not
require any higher order terms in z or w − 1. We found no
effect when including a z4 term or ðw − 1Þ3 terms in (33)
with Gaussian priors allowing the coefficient rh4 to be up to
Oð103Þ and r13, r23 to be up to Oð1Þ.
Nevertheless none of this accounts for higher order terms

in the HQET. We can get some idea of how the fit is
affected by allowing the r coefficients (34) to be fit
parameters with Gaussian priors, with means equal to
the CLN values but with widths which we vary. Table X
shows the results of fitting to the CLN parametrization. We
present six variations, which we describe below. In order to
infer jVcbj from the lattice hA1

ð1Þ and the fit to data, the
main output is the combination

I ¼ jη̄EWVcbjhA1
ð1Þ: ð35Þ

In the first fit, we treat the r-coefficients (34) as pure
numbers; this has been the standard treatment until recently.
The value of I we obtain agrees with the unfolded fit result
of Belle [16], I ¼ 34.9ð1.5Þ.
It would be better to include estimates of HQET

truncation errors in the fits. We implement this by treating
the r-coefficients as fit parameters, adding Gaussian priors
with central values as in (34) and with widths equal to our
uncertainty. Unfortunately it is not clear how accurately
these are known at this order in HQET. We note both
αsΛQCD/mc and ðΛQCD/mcÞ2 are roughly 0.1, so one
approach is to suggest truncated terms could vary each
of the r’s by 10%. However, some linear algebra has been
done after truncating HQET expressions to arrive at the
form factors (33). This could enhance (or suppress) the
truncation error in some terms, and the opposite in others.
The fit does not change much if the uncertainties are 20%,
but 100% uncertainties in (34) do affect the fit result. Most
notably, the value of I increases by 5%, i.e. one standard
deviation.

The smallness of the coefficients in the expansions of R1

and R2 is likely due to cancellations in the expansions when
ratios are taken. Therefore, assuming a relative error on the
rij (i, j ¼ 1, 2) is probably not correct. We present two fits
where these coefficients are given Gaussian priors equal to
0� 1, while the coefficients in the expansion of hA1

ðwÞ are
given 10% or 20% uncertainties. The resulting values for I
lie in between the tightly constrained fits and the 100%
uncertainty fit.
Note that the HQET predicts R1ð1Þ ¼ 1.27 and

R2ð1Þ ¼ 0.80, but in most fits in the literature (as here) these
are treated as free fit parameters. In fact the world average fit
values differ from the HQET estimates: Belle’s world
averages are R1ð1Þ¼1.40ð3Þ and R2ð1Þ¼0.85ð2Þ [16].
The fact that the tightly constrained CLN fits describe the

data well, with good χ2 for example, is a success for HQET.
It shows that the important physics has been captured
within the accuracy of the theory. However, now that we are
in the high precision era of flavour physics, we ought to be
wary about the accuracy of the assumptions which go into
fitting the data. The observation that I increases under a
relaxation of assumptions about the r-coefficients agrees
with other authors’ findings [22–27].
Analternative parametrization for thehadronic formfactors

is the one proposed by Boyd, Grinstein, and Lebed (BGL)
[28]. In their conventions the three form factors entering
(assuming the lepton mass can be neglected) are fðq2Þ,
F1ðq2Þ, and gðq2Þ. Two of the form factors are kinematically
constrained at q2 ¼ 0: F1ð0Þ ¼ ðMB −MD� Þfð0Þ. Each of
these is expanded in aTaylor series about z ¼ 0 after factoring
out a function intended to account for nearby resonances.
Abbreviating t ¼ q2, form factors are parametrized by

FðtÞ ¼ QFðtÞ
XKF−1

k¼0

aðFÞk zkðt; t0Þ: ð36Þ

Throughout this paper we take t0 ¼ t−. With appropriately
chosen QF,

QFðtÞ ¼
1

BnðzÞϕFðzÞ
; ð37Þ

the magnitudes of the coefficients aðFÞn are bounded by
unitarity constraints.

SfF ¼
XKf−1

k¼0

½ðaðfÞk Þ2 þ ðaðF1Þ
k Þ2� ≤ 1

Sg ¼
XKg−1

k¼0

ðaðgÞk Þ2 ≤ 1: ð38Þ

Even stronger bounds can be imposed if one is able to include
all the Bð�Þ → Dð�Þ matrix elements, with (pseudo)scalar and

TABLE X. Fits to the unfolded Belle data using the CLN
parametrization. The first fit does not account for any uncertain-
ties in the r coefficients (34). The next three include the r
coefficients as Gaussian priors with widths of 10%, 20% or 100%
uncertainties, respectively. The final two fits assign 10% or 20%
uncertainty to the coefficients in hA1

ðwÞ and allow the coefficients
of R1ðwÞ and R2ðwÞ to be Oð1Þ.
Fit I ρ2 R1ð1Þ R2ð1Þ
0% 0.0348(12) 1.17(15) 1.386(88) 0.912(76)
10% 0.0349(13) 1.19(16) 1.387(88) 0.914(76)
20% 0.0352(13) 1.24(19) 1.390(88) 0.922(78)
100% 0.0367(16) 1.64(31) 1.397(94) 0.941(96)
h:10%, R:0(1) 0.0359(14) 1.29(17) 1.19(22) 1.05(18)
h:20%, R:0(1) 0.0359(14) 1.31(19) 1.19(22) 1.04(19)
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(axial)vector initial and final states [25], but this is outside the
scope of our analysis here.
The two functions in (37) are the outer functions ϕFðzÞ,

which can be found in the literature e.g. in Refs. [23,24,28],
and the Blaschke factor

BnðzÞ ¼
Yn
i¼1

z − zPi

1 − zzPi

; zPi
¼ zðM2

Pi
; t−Þ: ð39Þ

The product is over a set of applicable resonances, the
vector B�

c states for g and the axial vector Bc states for f and
F1. The resonances included in the Blaschke factor should
be those with the appropriate quantum numbers and below
scattering threshold. There are 4 Bc vector and 4 axial-
vector states conjectured to be below BD� threshold.
Table XI lists calculations of the vector and axial vector
Bc resonances. The model estimate for the mass of the
heaviest vector state is very close to threshold, so has been
left out of several analyses, including here. The magnitude
of the Blaschke factors can be very sensitive to n, so leaving
states out reduces the strength of unitarity constraints. This
is illustrated in Fig. 5 for the QFðq2Þ for F ¼ f, F1, and g.
Table XII shows the results of BGL fits to the unfolded

Belle data [16], varying the number of states included in the
Blaschke factor and the number of terms kept in the
z-expansion. The fits enforce the q2 ¼ 0 constraint on
F1ð0Þ and fð0Þ at the 1% level. Priors for the coefficients

aðFÞk are Gaussians with mean 0 and standard deviation 1.
Only the k ¼ 0 and 1 coefficients are tabulated; the others
are not constrained by the data and remain statistically
consistent with 0. As discussed above, the magnitude of
these coefficients depends on the number of states in the
Blaschke factor. Nevertheless, the results for I are insensi-
tive to this. On the other hand, I does increase by about
0.001, or approximately 0.7σ, when switching from K ¼ 2
to higher order polynomials in z. (Results remain the same
for K > 4.)
The fits presented in Table XII do not enforce the

unitarity bounds (38), but these bounds are not close to
being saturated unless only two resonances are included in
the Blaschke factors. Performing the fits with the bounds
enforced did not significantly affect results. Considering
the nB > 2, K ¼ 4 fits, increasing the standard deviation of

the Gaussian priors for the series coefficients aðFÞk by
a factor of 2 or 4 had very little effect on the parameters

well-determined by the data, i.e. I, aðfÞ0 , and aðF1Þ
0 , while the

uncertainties in aðfÞ1 , aðF1Þ
1 , aðgÞ0 , aðgÞ1 , SfF, Sg, increased by

factors of 1.5–2. For most of the aðFÞk with k ≥ 2, the
posterior distribution is the same as the prior, the exception

being that aðF1Þ
2 ≲ 0.5 seems preferred by the fit, even with

wide prior widths.
To the extent that unitarity constraints do not affect the

BGL fits, then a simpler approach would be to represent
QFðtÞ by a simple pole, as in the simplified series

TABLE XI. Bc vector and axial vector masses below BD�
threshold (7.290 GeV) used in the Blaschke factors. Mass
differences [63] are combined with MBc

¼ 6.2749ð8Þ [64]. We
adopt the model estimates of Ref. [23], up to 3 digits.

M1− /GeV Method Reference M1þ /GeV Method Reference

6.335(6) Lattice [63] 6.745(14) Lattice [63]
6.926(19) Lattice [63] 6.75 Model [65,66]
7.02 Model [65] 7.15 Model [65,66]
7.28 Model [67] 7.15 Model [65,66]

FIG. 5. Comparison of the prefactor QFðq2Þ for the BGL and
BCL series expansions of form factor F ¼ f, F1, and g, from top
to bottom. Curves are normalized byQFð0Þ, which is given in the
legend.
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expansion (BCL) [32]. That is, one can parametrize the
form factors by (36) with

QFðtÞ ¼
NF

1 − t/M2
P
; ð40Þ

with MP being the mass of the lightest resonance with the
appropriate quantum numbers. The normalization NF can
be chosen so that the series coefficients are of the same
order of magnitude as in a particular BGL expansion. With
Fig. 5 as a guide, we take Nf ¼ 300, NF1

¼ 7000, and

Ng ¼ 5. Once again we fit with priors for aðFÞk equal to
0� 1. The results for I show the same behavior for the
BCL fits as for the BGL fits.
The virtue of the BCL fit is in its simplicity. The BGL fit

requires theory input for the outer functions ϕF: perturba-
tively calculated derivatives of two-point functions at
q2 ¼ 0 and nI , the number of spectator quarks adjusted
to account for SUð3ÞF breaking. (In the BGL fits here we
take the values given in Table 2 of Ref. [23].) The Blaschke
factor requires as input model estimates for the excited Bc
resonances to include in the Blaschke factor. If unitarity
bounds become tight enough to have an effect on the fits to
data, then the effects of theoretical assumptions needs to be
carefully included in the error analysis. On the other hand,
the BCL fits only take as additional input the mass of a
single resonance, available to very good precision from
lattice QCD. In the future, fits to the BCL simplified
z-expansion could provide a clean, benchmark fit.
Figure 6 summarizes the consequences to I of different

fitting choices selected from Tables X and XII. The top two
points show results from CLN fits including no uncertain-
ties on the coefficients (34), or 10% errors on the rh
coefficients and allowing the coefficients in the expansions
of R1;2ðwÞ to be 0� 1. The bottom two points are
respectively BGL and BCL fits with K ¼ 4, and nþB ¼ 4,
n−B ¼ 3 for the BGL fit.

In Fig. 7 we compare the fit results, integrated over the
experimental bins, of the tightly constrained CLN fit and
the BGL and BCL fits (with K ¼ 4) to the Belle data [16].
The agreement is generally good, with the notable excep-
tion of the dΓ/dw in the smallest w bin, where the CLN
result is in greater tension with the data than the BGL and
BCL results.
For the time being, with only one experimental data set

available to carry out these investigations, determinations
of jVcbj from B → D�lν are less certain than has been
thought. The BGL and BCL fits to Belle data indicate
I ¼ 0.038ð2Þ. Reference [18] cites a private communica-
tion with C. Schwanda giving η̄EW ¼ ηEWηCoulomb ¼
1.0182ð16Þ as the product of the electroweak factor
ηEW ¼ 1.0066ð16Þ and a term accounting for electromag-
netic interactions between the charged D� and lepton in the

TABLE XII. Results of z-expansion fits (36), either using the BGL (37) or BCL (40) parametrization. Unitarity constraints are not
enforced in the fit, but the sums Sg and SfF (38) are given for reference (see text). The number of 1þ/1− resonances included in the
Blaschke factor is nþB /n

−
B. Terms up to OðzK−1Þ are included in the fits. Coefficients of higher order terms are consistent with zero.

Fit nþB n−B K I aðfÞ0 aðfÞ1 aðF1Þ
0 aðF1Þ

1 aðgÞ0 aðgÞ1 SfF Sg

BGL 2 2 2 0.0366(14) 0.030 05(39) −0.120ð51Þ 0.005 031(65) −0.0146ð40Þ 0.032(15) 0.88(50) 0.015(12) 0.78(89)
BGL 2 2 3 0.0376(16) 0.030 04(39) −0.148ð62Þ 0.005 031(65) −0.030ð13Þ 0.029(14) 0.99(50) 0.13(32) 0.98(98)
BGL 2 2 4 0.0376(16) 0.030 04(39) −0.148ð62Þ 0.005 031(65) −0.030ð13Þ 0.029(14) 0.99(50) 0.13(33) 0.98(98)
BGL 3 3 2 0.0368(15) 0.019 13(25) −0.069ð36Þ 0.003 204(41) −0.0073ð27Þ 0.0138(85) 0.63(30) 0.0052(49) 0.40(38)
BGL 3 3 3 0.0379(17) 0.019 13(25) −0.088ð47Þ 0.003 204(41) −0.0181ð86Þ 0.0125(82) 0.68(31) 0.06(21) 0.46(41)
BGL 3 3 4 0.0379(17) 0.019 13(25) −0.088ð47Þ 0.003 204(41) −0.0181ð87Þ 0.0125(82) 0.68(31) 0.06(22) 0.46(42)
BGL 4 3 2 0.0369(15) 0.0122 8(16) −0.035ð24Þ 0.002 057(26) −0.0032ð18Þ 0.0138(84) 0.63(30) 0.0014(17) 0.39(38)
BGL 4 3 3 0.0380(17) 0.012 28(16) −0.049ð36Þ 0.002 057(26) −0.0102ð57Þ 0.0129(86) 0.66(33) 0.04(25) 0.44(43)
BGL 4 3 4 0.0380(17) 0.012 28(16) −0.049ð36Þ 0.002 057(26) −0.0102ð59Þ 0.0129(85) 0.66(33) 0.04(25) 0.44(42)
BCL � � � � � � 2 0.0367(15) 0.015 02(19) −0.047ð27Þ 0.002 946(38) −0.0029ð27Þ 0.028(13) 0.78(44) 0.0025(26) 0.60(69)
BCL � � � � � � 3 0.0378(17) 0.015 02(19) −0.066ð40Þ 0.002 946(38) −0.0136ð82Þ 0.026(13) 0.82(46) 0.08(38) 0.67(75)
BCL � � � � � � 4 0.0382(18) 0.015 02(19) −0.311ð42Þ 0.002 946(38) −0.0152ð83Þ 0.109(16) −0.29ð38Þ 0.144(67) 0.10(22)
BCL � � � � � � 5 0.0382(18) 0.015 02(19) −0.311ð42Þ 0.002 946(38) −0.0152ð83Þ 0.109(16) −0.29ð38Þ 0.144(67) 0.10(22)

FIG. 6. Values of I ¼ jη̄EWVcbjhA1
ð1Þ obtained from different

fit ansätze (see text).
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final state. Combining this with the weighted average
for hA1

ð1Þ from Fermilab/MILC [18] and this work, we
arrive at

jVcbj ¼ ð41.3� 2.2Þ × 10−3 ð41Þ

where the error is dominated by the experimental and
related fitting uncertainty. This determination agrees well
with both those from inclusive and exclusive B → Dlν
decays as shown in Fig. 8.

One may ultimately obtain a more precise determination
of jVcbj by including all relevant information, from HQET,
by imposing stronger unitarity bounds [25], and including
light cone sum rule calculations of form factors at large
recoil [68]. Comparison of the different approaches would
be helpful to highlight the impact of including different
ingredients.

VIII. CONCLUSIONS

We present new unquenched lattice QCD determinations
of the zero-recoil form factors hA1

ð1Þ and hsA1
ð1Þ, some-

times denoted FB→D� ð1Þ and FBs→D�
s ð1Þ, respectively. We

have used 8 ensembles spanning 3 lattice spacings and
3 values of light-to-strange quark mass ratios, including the
physical point. Our results are

FB→D� ð1Þ ¼ hA!
ð1Þ ¼ 0.895ð10Þstatð24Þsys

FBs→D�
s ð1Þ ¼ hsA!

ð1Þ ¼ 0.883ð12Þstatð28Þsys
FB→D�ð1Þ
FBs→D�

s ð1Þ ¼
hA1

ð1Þ
hsA1

ð1Þ ¼ 1.013ð14Þstatð17Þsys: ð42Þ

This result for hA1
ð1Þ provides a valuable, independent

check of the Fermilab/MILC result [18]. We have used
completely independent sets of gauge field configurations

FIG. 7. Comparison of fit results to experimental data [16]. The binned fit results are slightly offset from the bin midpoints for clarity.
See Appendix G and Ref. [16] for definitions.

FIG. 8. Comparison of the jVcbj from (41) with the latest
determinations from B → Xclν [19,20] and B → Dlν [33].
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and different formulations for the charm and bottom
quarks. The two results are in good agreement.
While the determination of jVcbj using these results is

complicated by the need to investigate assumptions used in
extrapolating experimental data to zero recoil, series
expansion fits to the unfolded Belle data yield

jVcbj ¼ ð41.3� 2.2Þ × 10−3: ð43Þ

This is consistent with recent determinations using exclu-
sive B → Dlν and inclusive decays (Fig 8).
A reanalysis of BABAR data for the differential decay

rate would complement the unfolded Belle data used here.
We can also look forward to new data from Belle II, after
which the precision of jVcbj from B → D�lν is likely to be
much improved. Lattice QCD data away from zero recoil
will also help reduce the uncertainties. Preliminary results
from the Fermilab/MILC Collaboration were presented at
the Lattice 2017 conference [69].
Our result for the Bs → D�

s form factor is the first
complete calculation of hsA1

ð1Þ. In the future, measurements
of the exclusive decays with a strange spectator,

Bs → Dð�Þ
s lν, could also provide a constraint on jVcbj.

LHCb has reconstructed B0
s → D�−

s μþνμ decays [70].
Eventually, with properly normalized branching fractions,
these will also provide a method of constraining jVcbj.
Spectator quark mass effects are bounded by our

calculation of the ratio hsA1
ð1Þ/hA1

ð1Þ and its consistency
with unity. We find deviations from d ↔ s symmetry in the
zero recoil BðsÞ → D�

ðsÞ form factors to be no more than

2–3%.
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APPENDIX A: GAUGE ACTION

The gauge action used to generate the configurations is
the Symanzik and tadpole improved action of [48], which
contains additional rectangle and parallelogram loops to
cancel radiative Oða2Þ errors:

S ¼
X
x

½a0P0ðxÞ þ a1P1ðxÞ þ a2P2ðxÞ�

P0ðxÞ ¼
X
μ<ν

UμνðxÞ

P1ðxÞ ¼
X
μ<ν

UμμνðxÞ þ UμννðxÞ

P2ðxÞ ¼
X
μ<ν<ρ

UμνρðxÞ þUμρνðxÞ þ UρμνðxÞ þUρ−μνðxÞ

ðA1Þ
Where −μ indicates a Hermitian conjugated gauge link. a1
and a2 are calculated in terms of a0 using lattice perturba-
tion theory. The perturbative coefficients are specified
in Ref. [48].

APPENDIX B: b-QUARKS USING NRQCD

In order to efficiently simulate the bottom quark we
employ nonrelativistic QCD (NRQCD) [51]. This formu-
lation has been used for many calculations done by the
HPQCD Collaboration [30,47,49,59,61]. The action is
given in [51], which we repeat here for clarity:

S¼ a3
X
x

�
ψ†ðxÞψðxÞ−ψðxþat̂Þ

�
1−

aH0

2n

�
n
�
1−

aδH
2

�

×U†
t ðxÞ

�
1−

aδH
2

��
1−

aH0

2n

�
n
ψðxÞ

�
: ðB1Þ

The heavy quark propagator then satisfies the simple
evolution equation

Gðxþ at̂; zÞ ¼ δðxþ at̂; zÞ þ
�
1 −

aH0

2n

�
n
�
1 −

aδH
2

�

×U†
t ðxÞ

�
1 −

aδH
2

��
1 −

aH0

2n

�
n
Gðx; zÞ

ðB2Þ

withGðx; yÞ ¼ 0 forxt < yt, since the quarkpart of the action
is first order inD0 the propagator has no pole at−EðpÞ and so
is only the retarded part of the full propagator. This allows the
bottom quark propagator to be computed by applying the
evolution equation iteratively, allowing for faster, less
memory intensive calculations and greater statistics.
The NRQCD quark action is tadpole improved [71] and

Symanzik improved, with
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aH0 ¼ −Δð2Þ/2am

aδH ¼ −c1
ðΔð2ÞÞ2
8ðamÞ3 þ c2

ig
8ðamÞ2 ðΔ · Ẽ − Ẽ · ΔÞ

− c3
g

8ðamÞ2 σ · ðΔ × Ẽ − Ẽ × ΔÞ

− c4
g

2am
σ · B̃þ c5

a2Δð4Þ

24am
− c6

aðΔð2ÞÞ2
16nðamÞ2 ðB3Þ

where the tilded quantities are the tadpole improved
versions. In our simulations here we take the stability
parameter n ¼ 4. The coefficients c1−c6 were computed
perturbatively in [49,72] and are given in Table II of [59].

APPENDIX C: HISQ QUARKS

For the u/d and c valence quarks in our calculation we
use the same HISQ action as for the sea quarks [38]. The
advantage of using HISQ is that amq discretization errors
are under sufficient control that it can be used both for light
and for c quarks [38,73,74]. The HISQ action is also
numerically inexpensive as a result of the staggering which
means we are able to attain better statistics. The valence u/d
masses are the same as those in the sea. The masses are
given in Table I. Below we summarize a few relevant facts.
The naive Dirac action has a discrete, space time

dependent symmetry

ψðxÞ → BξðxÞψðxÞ
ψ̄ðxÞ → ψ̄ðxÞB†

ξðxÞ ðC1Þ

where

BξðxÞ ¼ γξ̄ð−1Þξ·x ðC2Þ

and following [38]

γm ¼
Y3
i¼0

ðγiÞmi

m̄μ ¼
X
η≠μ

mη mod 2: ðC3Þ

The conventions for γξ̄ are specified in the appendices. In
momentum space this then gives the relation for the naive
quark propagator:

SFðp; qÞ ¼ Bξð0ÞSFðpþ ξπ; qþ ξπÞBξð0Þ: ðC4Þ

One can diagonalize the naive action in spin indices using a
position dependent transformation of the fields. There are
several choices for such a transformation, here we use:

ψðxÞ → ΩðxÞχðxÞ
ψ̄ðxÞ → χ̄ðxÞΩ†ðxÞ ðC5Þ

with ΩðxÞ ¼ γx this yields the action

S ¼
X
x;i

χ̄iðxÞðαðxÞ · ΔðUÞ þm0ÞχiðxÞ ðC6Þ

with propagator

hχκðxÞχ̄δðyÞi ¼ sðx; yÞδκδ: ðC7Þ

We then need only do the inversion for a single component
of χ and the full naive propagator can be reconstructed
trivially by inserting Ω matrices:

SFðx; yÞαβ ¼ hψαðxÞψ̄βðyÞi ¼ ΩακðxÞhχκðxÞχ̄δðyÞiΩ†
δβðyÞ

¼ ΩαδðxÞΩ†
δβðyÞsðx; yÞ: ðC8Þ

In order to remove discretization errors and taste exchange
violations the operator ΔμðUÞ used in simulations is more
elaborate. It retains the feature that ΔμðUÞψðxÞ only
contains fields ψðx0Þ located an odd number of lattice sites
away from x in the μ direction, ensuring that the spin-
diagonalization (12) still works. The full, highly improved
staggered SUð3Þ-covariant derivative operator is [38]:

DHISQ
μ ¼ ΔμðWÞ − a2

6
ð1þ ϵÞΔ3

μðXÞ ðC9Þ

with

Wμ ¼ FHISQ
μ Uμ

Xμ ¼ UF μUμ

FHISQ
μ ¼

�
F μ −

X
ρ≠μ

a2δ2ρ
2

�
UF μ

F μ ¼
Y
ρ≠μ

�
1þ a2δð2Þρ

4

�
symm

: ðC10Þ

Where “symm” indicates that the product ordering is
symmetrized in ρ, δρ approximates a covariant first deriva-

tive on the gauge links and δð2Þρ approximates a second
covariant derivative.
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δρUμðxÞ ¼
1

a
ðUρðxÞUμðxþ aρ̂ÞU†

ρðxþ aμ̂Þ
−U†

ρðx − aρ̂ÞUμðx − aρ̂ÞUρðx − aρ̂þ aμ̂ÞÞ

δð2Þρ UμðxÞ ¼
1

a2
ðUρðxÞUμðxþ aρ̂ÞU†

ρðxþ aμ̂Þ
þU†

ρðx − aρ̂ÞUμðx − aρ̂ÞUρðx − aρ̂þ aμ̂Þ
− 2UμðxÞÞ: ðC11Þ

The third covariant derivative term removes order a3

discretization errors coming from the approximation of
the derivative. Without the epsilon term, tree level discre-
tization errors appear going as ðapμÞ4. For the mesons we
are interested in quarks are typically nonrelativistic, and so
the error is dominated by the energy, and ultimately the
mass contribution going as ðamÞ4. For light quarks this is
negligible, but for charm physics this must be included
since current lattice spacings have amc ≈ 0.5. ϵ can
be calculated straightforwardly as an expansion in ðamÞ2
by requiring the tree level dispersion relation limp→0

ðE2ðpÞ −m2Þ/p2 to have its correct value, 1, to a given
order OðamÞ. The expansion is [38]:

ϵ ¼ −
27

40
ðamÞ2 þ 327

1120
ðamÞ4 − 5843

53760
ðamÞ6 þOððamÞ8Þ:

ðC12Þ

The smearingsF μ remove taste changing interactions, since

δð2Þρ ≈ −4/a2 when applied to a link carrying momentum
qρ ≈ π/a The μ direction need not be smeared as the original
interaction vanishes in this case anyway. The smearing F μ,
known as “Fat7” smearing [75], introduces new Oða2Þ
errors. These are removed by replacing F μ with [76]

FASQTAD
μ ¼ F μ −

X
ρ≠μ

a2δ2ρ
4

: ðC13Þ

WhereFASQTAD
μ is the gauge link smearing employed in the

widely used a-squared tadpole improved action. Similar
errors originating from the smearing on the third derivative
term need not be corrected as they go as Oða4Þ. A single
smearing introduces perpendicular gauge links which are
themselves unsmeared. To further suppress taste exchange
we use multiple smearings. Once such smearing is

FASQTAD
μ UFASQTAD

μ ðC14Þ

where U is a reunitarization. This combination ensures that
each smearing does not introduce any additional Oða2Þ
errors, and ensures no growth in the size of two gluon
vertices, since the unitarization ensures it is bounded by
unity. In the HISQ operator defined in (17) we have moved
the entirety of the Oða2Þ corrections to the outermost
smearing.
In order to check the taste exchange violations in HISQ

one can check for taste-splittings of the pion masses.
However since there are more allowed effective taste
exchange vertices that there are degenerate pion multiplets
this does not guarantee the theory is free of taste exchange.
A better check is the explicit calculation of the couplings to
taste exchange currents required to remove taste exchange.
These are given in [38] in which it is clear that the
HISQ action is a significant improvement over the older
ASQTAD action.

APPENDIX D: 3-POINT FUNCTION

For real, symmetric, stride-2 smearings Δ, suppressing
Dirac indices for the moment, and summing over repeated
indices and spatial coordinates for zero recoil:

C3ptðx0; y0; z0Þ ¼ hūaðxÞMstcaðxþ σ1 þ δstÞc̄bðyÞΓbbðyÞb̄cðzþ σ2ÞγucðzÞiΔ1ðσ1ÞΔ2ðσ2Þ
¼ tr½Ω†ðxÞMstΩðxþ δstÞScabðxþ σ1 þ δst; yÞΩ†ðyÞΓ�
× ½Gb

bcðy; zþ σ2ÞγΩðzÞSlcaðz; xÞ�Δ1ðσ1ÞΔ2ðσ2Þ
¼ tr½ξ�eaðxÞΩ†ðxÞMstΩðxþ δstÞScebðxþ σ1 þ δst; yÞΩ†ðyÞΓ�
× ½Gb

bcðy; zþ σ2ÞγΩðzÞSlcdðz; x0Þξdaðx0Þ�Δ1ðσ1ÞΔ2ðσ2Þ ðD1Þ

where it is understood that when we add δst it is modulo the hypercube. We have used the noise condition:

ξ�abðzÞξcbðyÞ ¼ δacδxy ðD2Þ

to insert the random walls. Setting

ExtbaðyÞ ¼ Gb
bcðy; zþ σ2ÞγΩðzÞSlcdðz; x0Þξdaðx0ÞΔ2ðσ2Þ ðD3Þ
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FIG. 9. Plots of Nexp fit behavior on all 8 ensembles (see Table I). In each plot 4 sets of data points are shown: the full fit including
all 3 × 3 source-sink combinations, and, for comparison, separate “diagonal” fits where only one type of source-sink smearing is used.
(The notation is defined in Sec. III.) A significant improvement is seen in the full fit. All diagonal fits show good agreement forNexp ≥ 4,
but with the increased precision, sometimes 5 or 6 exponentials are needed to get a good 3 × 3 matrix fit.
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this becomes

C3ptðx0; y0; z0Þ ¼ tr½ξ�eaðxÞΩ†ðxÞMstΩðxþ δstÞScebðxþ σ1 þ δst; yÞΩ†ðyÞΓExtbaðyÞ�Δ1ðσ1Þ
¼ tr½ξ�eaðx − σ1ÞΩ†ðxÞMstΩðxþ δstÞScebðxþ δst; yÞΩ†ðyÞΓExtbaðyÞ�Δ1ðσ1Þ: ðD4Þ

Now, we do not have Scabðx; yÞ, we have Scabðy; xÞ so we can use:

S�baðx; yÞ ¼ ð−1ÞySabðy; xÞð−1Þx ðD5Þ

where ð−1Þx is shorthand for ð−1Þx0þx1þx2þx3. Now

C3ptðx0; y0; z0Þ ¼ tr½Ω†ðyÞð−1ÞySc�bcðy; xþ δstÞð−1ÞxþδstβMðxÞξ�caðx − σ1ÞΓExtbaðyÞ�Δ1ðσ1Þ ðD6Þ

where βMðxÞ ¼ Ω†ðxÞMstΩðxþ δstÞ is the local spin-taste phase. Inserting Dirac indices:

C3ptðx0; y0; z0Þ ¼ Ω†
αβðyÞð−1ÞySc�bcðy; xÞð−1ÞxβMðxþ δstÞξ�caðx − σ1 þ δstÞΔ1ðσ1ÞΓβκExtba;καðyÞ

¼ �½ΩβαðyÞð−1ÞyScbcðy; xÞð−1ÞxβMðxÞξcaðx − σ1 þ δstÞΔ1ðσ1Þ��ΓβκExtba;καðyÞ: ðD7Þ

We recognize Scbcðy;xÞð−1ÞxβMðxÞξcaðx−σ1þδstÞΔ1ðσ1Þ
as the MILC KS propagator. The naive active quark that
gets made in NRQCD is then:

Activeab;αβðyÞ ¼ ΩαβðyÞð−1ÞyScacðy; xÞð−1ÞxβMðxÞξcb
× ðx − σ1 þ δstÞΔ1ðσ1Þ

ðD8Þ

and the contractions to do are

Currentab;αβðyÞ ¼ Active�ba;καðyÞΓκβ

C3pt ¼ Currentab;αβðyÞExtba;βαðyÞ: ðD9Þ

APPENDIX E: CORRELATOR FITS

Figure 9 shows comparison of the fit results for hA1
ð1Þ

when varying numbers of exponentials; the points are
normalized by the value of taken hA1

ð1Þ as our result for
that ensemble. Plots are shown for all 8 ensembles as listed in
Table I. In each plot, we show the full fit results to the 3 × 3
matrix of source/sink combinations (local l, or Gaussian
with 2 radii, g2 and g4), as well as “diagonal” fits where only
one source/sink is used. The statistical improvement of using
all the data is apparent. The flatness of the curves and the
constancy of the error bars shows that, for large enoughNexp,
the Bayesian fits are insensitive to adding further exponen-
tial terms, i.e. effects of excited states are accounted for. Our
final results typically come from theNexp ¼ 5 fits to the full
3 × 3matrix of correlators; however, on ensembles 3 and 7,
we had to include another exponential.

APPENDIX F: CHIRAL CONTINUUM
FIT FUNCTION

The full expression for the form factor derived in
staggered chiral perturbation theory is given by [60]

hA1
ð1Þ ¼ 1þXðΛχÞ

m2
c

þ g2π
48π2f2

�
1

16

X
δ

ð2F̄πδ þ F̄Kδ
Þ− 1

2
F̄πI

þ 1

6
F̄ηI þa2δ0V

�
m2

SV
−m2

πV

ðm2
ηV −m2

πV Þðm2
πV −m2

η0V
Þ F̄πV

þ m2
ηV −m2

SV

ðm2
ηV −m2

η0V
Þðm2

ηV −m2
πV Þ

F̄ηV

þ
m2

SV
−m2

η0V

ðm2
ηV −m2

η0V
Þðm2

η0V
−m2

πV Þ
F̄η0V

�
þðV → AÞ

�

ðF1Þ

where F̄X ¼ F½mX;−Δmc
/mX� and

F½m;x� ¼m2

x

	
x3 ln

m2

Λ2
χ
þ 1

3
x3 −4xþ 2π−

ffiffiffiffiffiffiffiffiffiffiffiffi
x2− 1

p
ðx2þ 2Þ

× ðln½1− 2xðx−
ffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
Þ�− iπÞ



: ðF2Þ

The masses of the η and η0 are given in [77] as
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m2
ηV ¼ 1

2

�
m2

πV þm2
SV

þ 3

4
a2δ0V − Z

�

m2
η0V

¼ 1

2

�
m2

πV þm2
SV

þ 3

4
a2δ0V þ Z

�

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

SV
−m2

πV Þ2 −
a2δ0V
2

ðm2
SV

−m2
πV Þ þ

9ða2δ0VÞ2
16

r

¼ ðm2
SV

−m2
πV Þ −

a2δ0V
4

þOðða2δ0VÞ2Þ
m2

ηI ¼ m2
πI /3þ 2m2

SI
/3: ðF3Þ

We take the ss̄ pseudoscalar taste splittings equal to the
pion taste splittings. This is a good approximation in the
case of HISQ [36]. We can then write [to orderOðða2δ0VÞ2Þ]

m2
η0V
−m2

πV ¼ m2
SG

−m2
πG þ a2δ0V /4

m2
ηV −m2

πV ¼ a2δ0V /2

m2
SV

−m2
πV ¼ m2

SG
−m2

πG ðF4Þ

from which we find

m2
SV
−m2

η0V

ðm2
ηV −m2

η0V
Þðm2

η0V
−m2

πV Þ
¼ a2δ0V /4
ðm2

SG
−m2

πGÞ2− ða2δ0V /4Þ2

m2
ηV −m2

SV

ðm2
ηV −m2

η0V
Þðm2

ηV −m2
πV Þ

¼ a2δ0V /2− ðm2
SG
−m2

πGÞ
ða2δ0V /4− ðm2

SG
−m2

πGÞÞa2δ0V /2
m2

SV
−m2

πV

ðm2
ηV −m2

πV Þðm2
πV −m2

η0V
Þ ¼

−ðm2
SG
−m2

πGÞ
ððm2

SG
−m2

πGÞ−a2δ0V /4Þa2δ0V /2
:

ðF5Þ
The expression for hA1

ð1Þ then reduces to

hA1
ð1Þ¼1þXðΛχÞ

m2
c

þ g2π
48π2f2

�
1

16

X
δ

2F̄πδ−
1

2
F̄πI

þ
�
2−

a2δ0V
2ðm2

SG
−m2

πGÞ
�
F̄ηVþ

�
2−

a2δ0A
2ðm2

SG
−m2

πGÞ
�
F̄ηA

−
�
2þ a2δ0V

2ðm2
SG
−m2

πGÞ
�
F̄πV

−
�
2þ a2δ0A

2ðm2
SG
−m2

πGÞ
�
F̄πA

�
þOðða2δ0VÞ2Þ ðF6Þ

where we have ignored terms expected to produce normal
discretization errors and pion mass dependence, as these
are included elsewhere in the fit. Following [78] we take
δA0 ≈ δV 0 ≈ −δt, which we implement by including δA0 ¼
δV0 ¼ −δt × 1.0ð5Þ as priors. We use the pion masses
computed in [78] together with the taste splittings for the
pion, δt, given in [36].
Finite volume effects can be accounted for in

heavy meson chiral perturbation theory [79] including

taste-splitting effects in the staggered pions [60]. The
functions F̄X in (F6) receive a correction term corresponding
to the difference between infinite volume loop integrals and
finite volume discrete sums. Taste-splitting effects in the
pions at nonzero lattice spacing moderate the size of
the finite volume corrections because some of the pions
in the loops have heavier masses than the Goldstone pion.
Consequently, some of the finite volume effect appears as a
lattice-spacing effect, which is dealt with by our chiral-
continuum fit.
We incorporated the finite volume corrections into our fit

by subtracting from our data δFVhA1
ð1Þ, found by adding

δF̄X to each F̄X appearing in (F6). In Fig. 10 we show
δFVhA1

ð1Þ as a function of pion mass for the parameters
appropriate for the physical pionmass lattices, Sets 3, 6, and
8 (seeTable I). For the other lattices, jδFVhA1

ð1Þj ≈Oð0.1%Þ
over theMπ rangewherewe have data and is not significant.
In Table XIII we give fit results for plausible variations on

our chosen fit function as a demonstration of stability under
such nontrivial choices.Neglecting different powers ofa2we
see that our result is only sensitive to leading Oða2Þ errors.
TheM2

π dependence we included does not affect the central
value if removed, nor do changes in the assumed correlations
between NRQCD systematics between ensembles.
Removing taste splitting terms in the chiral perturbation
theory result down to the continuum formula results in only a
small change to the central value. Adding αsΛQCD/MB,
which we have excluded from our fit due to Luke’s theorem,
results in a slight increase in the central value as well as the
expected increase in error. Our result is also only mildly

FIG. 10. Pion mass dependence of the finite volume corrections
to hA1

ð1Þ, as determined from staggered chiral perturbation
theory [60], with parameters corresponding to the physical-mass
lattices used here. The curves for the heavier-mass lattices used
here show much smaller finite volume corrections, of Oð0.1%Þ.
The vertical blue line is the physical pion mass and the solid point
at the end of each curve is at the measured value of the pion mass
on each lattice.
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sensitive to different choices of ΛQCD which we vary by
�50%. Taken collectively we note that no tested variations
result in more than a 0.25σ change to the central value.

APPENDIX G: FITS TO EXPERIMENTAL DATA

The fully differential decay rate is given by [16,80]

dΓðB̄→D�lν̄lÞ
dwdcosθvdcosθldχ

¼ 3G2
Fjη̄EWVcbj2
1024π4

M2
D�

MB
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2− 1

p
× ½ð1− cosθlÞ2sin2θvH2þ þð1þ cosθlÞ2sin2θvH2

−

þ 4sin2θlcos2θvH2
0 − 2sin2θlsin2θv cos2χHþH−

− 4sinθlð1− cosθlÞ sinθv cosθv cosχHþH0

þ 4sinθlð1þ cosθlÞ sinθv cosθv cosχH−H0� ðG1Þ
where HþðwÞ, H−ðwÞ, and H0ðwÞ are helicity amplitudes.
In principle these amplitudes could be determined from
lattice QCD, but presently these must be parametrized and
fit to experiment, with a lattice calculation of the zero recoil
form factor providing the normalization. Integrating (G1)
over the angular variables gives Eq. (1), with

χðwÞjF ðwÞj2 ¼ rð1 − 2wrþ r2Þ
12M2

Bð1 − rÞ2
X
i¼�;0

jHij2: ðG2Þ

with r ¼ MD� /MB. Although not necessary in this work, it
is conventional to factor out the kinematic function

χðwÞ ¼ ðwþ 1Þ2
12

�
1þ 4w

wþ 1

1 − 2wrþ r2

ð1 − rÞ2
�
: ðG3Þ

Note that χð1Þ ¼ 1 here, although different normalizations
appear in the literature.
The CLN parametrization expresses the helicity ampli-

tudes as follows [21,81]. The reduced helicity amplitudes
H̃i are defined by

HiðwÞ ¼ ðMB −MD�Þð1þ wÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD�

q2

s
hA1

ðwÞH̃iðwÞ:

ðG4Þ

Then

H̃�ðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2wrþ r2

p

1 − r

�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffi
w − 1

wþ 1

r
R1ðwÞ

�

H̃0ðwÞ ¼ 1þ w − 1

1 − r
½1 − R2ðwÞ� ðG5Þ

where r ¼ MD� /MB. The hA1
ðwÞ, R1ðwÞ, R2ðwÞ then

expanded in z or w − 1, as given in (33).
In the BGL parametrization [28] (and in the simplified

BCL parametrization we employ) the helicity amplitudes
are written in terms of the f, F1, and g form factors as
follows

H�ðwÞ ¼ fðzÞ ∓ MBMD�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
gðzÞ

H0ðwÞ ¼
F1ðzÞffiffiffiffiffi

q2
p : ðG6Þ

These form factors are then expressed as in (36).
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