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The variational Hamiltonian approach to quantum chromodynamics in Coulomb gauge is investigated
within the framework of the canonical recursive Dyson-Schwinger equations. The dressing of the quark
propagator arising from the variationally determined nonperturbative kernels is expanded and renormalized
at one-loop order, yielding a chiral condensate compatible with the observations.
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I. INTRODUCTION

Confinement and spontaneous chiral symmetry breaking
are the basic features of quantum chromodynamics (QCD)
at ordinary density and temperature. Chiral symmetry
breaking is responsible for almost the entire mass of the
visible matter in the Universe. Both phenomena originate in
the low-energy sector of the theory, where perturbation
theory cannot be applied, and are strongly intertwined:
lattice calculations show evidence that the deconfinement
transition and restoration of chiral symmetry coincide, at
least for fermions in the fundamental representation.
Thanks to intensive studies both on the lattice [1,2] and
in the continuum theory [3–10], we have gained essential
insights into the basic features of the QCD vacuum,
although a rigorous understanding of both phenomena is
still missing. From these studies three pictures have
emerged: the dual Meißner effect [11,12], the center vortex
scenario [13–16], and the Gribov-Zwanziger picture in
Coulomb gauge [17,18]. Both lattice and continuum studies
have also shown that these pictures are related [19–21].
The Gribov-Zwanziger picture emerged in the varia-

tional Hamiltonian approach to QCD in Coulomb gauge
[8,9]: indeed a confining quark potential is found, together
with an infrared diverging ghost form factor and gluon
energy. A simplified variational calculation [22–25] based
on a BCS-type wave functional for the quark sector of
QCD, in which the coupling of the quarks to the transverse
spatial gluons is neglected, shows that the confining
quark potential also triggers chiral symmetry breaking,
although the corresponding order parameter, i.e. the chiral

condensate, turns out to be too small. This model has been
phenomenologically improved by using more general two-
body interactions [26,27].
In Ref. [28] the variational Hamiltonian approach to

Yang-Mills theory in Coulomb gauge [8,9] was extended to
full QCD by including the quark-gluon coupling explicitly
in the vacuum wave functional. The ansatz for the vacuum
wave functional was further extended in Refs. [10,29] by
adding a further Dirac structure to the quark-gluon coupling
in the trial vacuum wave functional. With this additional
Dirac structure the resulting gap equation is free of UV
divergences. In the present paper we show that this addi-
tional Dirac structure is also crucial to ensure multiplicative
renormalizability of the quark propagator. The results of
Refs. [10,29] will be retraced here in the framework of the
canonical recursive Dyson-Schwinger equations (CRDSEs)
[30,31], which, in principle, allows us to go beyond the
approximations used in Refs. [10,29] in a systematic way.
The use of Dyson-Schwinger equations requires us to
formulate the quark sector in terms of Grassmann variables,
which turns out to be advantageous over the operator
formulation of Fock space used in Refs. [10,28]. Besides
reproducing the results of Refs. [10,29] in the framework of
the CRDSEswe also investigate analytically the IR behavior
of the CRDSE for the quark propagator and determine
under which conditions quark confinement is realized.
Approximating the full quark-gluon vertex of the CRDSE
by its bare counterpart we solve the variational equation and
investigate the one-loop renormalization of the quark
propagator. From the renormalized quark propagator we
calculate the quark condensate.
The structure of this paper is as follows: In Sec. II we

reformulate the Hamiltonian approach to QCD within the
CRDSEs [31] with the vacuum wave functional proposed
in Ref. [10]. In Sec. II Awe present the quark vacuum wave
functional while in Sec. II B we derive the corresponding
CRDSEs for the quark propagator and the quark-gluon
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vertex, by means of which the expectation value of the
QCD Hamiltonian is evaluated. In Sec. III we discuss the
infrared behavior of the dressing functions of the quark
propagator required for confinement. As an illustration of
our approach in Sec. IV we keep from the interaction of
the quarks only the non-Abelian Coulomb potential result-
ing in a massive extension of the model considered in
Refs. [22,25]. In Sec. V we show how to recover the results
of Refs. [10,29] in the present approach by a leading-order
skeleton expansion. In Sec. VI we perform a semipertur-
bative expansion of the quark propagator by using the
variational kernels as nonperturbative input and investigate
the renormalizability of the quark propagator. In Sec. VII
we discuss the relation between the mass function defined
in the four-dimensional quark propagator to the mass
function of the three-dimensional (equal-time) propagator.
Some details concerning the coherent-state description of
fermionic states and some explicit expressions are given in
the Appendixes.

II. QCD IN COULOMB GAUGE

In Coulomb gauge the QCD Hamiltonian reads [32]

H ¼ 1

2

Z
d3xJ−1A Πa

i ðxÞJAΠa
i ðxÞ þ

1

2

Z
d3xBa

i ðxÞBa
i ðxÞ

þ
Z

d3xψ†ðxÞ½−iα ·∇ − gα ·AðxÞ þ βm�ψðxÞ

þ g2

2

Z
d3xd3yJ−1A ρaðxÞJAFab

A ðx; yÞρbðyÞ; ð1Þ

whereΠa
i ¼ −iδ=δAa

i is the canonical momentum, Ba
i is the

chromomagnetic field, ψ and ψ† are the fermion field
operators, αi and β are the usual Dirac matrices, m is the
bare current quark mass, andA ¼ Aata are the (transverse)
gauge fields with ta being the Hermitian generators of the
suðNcÞ algebra. The last term in Eq. (1) is the so-called
Coulomb term: it describes the interaction of the color
charge density

ρaðxÞ ¼ ψ†ðxÞtaψðxÞ þ fabcAb
i ðxÞ

δ

iδAc
i ðxÞ

ð2Þ

through the Coulomb kernel

Fab
A ðx; yÞ ¼

Z
d3zGac

A ðx; zÞð−∇2
zÞGcb

A ðz; yÞ; ð3Þ

where

G−1
A ðx; yÞ ¼ ð−δab∇2

x − gfacbAc
i ðxÞ∂x

i Þδðx − yÞ

is the Faddeev-Popov operator of Coulomb gauge with facb

being the structure constants of the suðNcÞ algebra.
Finally, JA ¼ DetG−1

A is the Faddeev-Popov determinant
of Coulomb gauge.

A. The vacuum wave functional

In the coherent-state description of the fermionic Fock
space introduced in Ref. [31] (see Appendix A) a physical
state jΨi is described by a functional

hξ; ξ†; AjΨi ¼ Ψ½ξ†þ; ξ−; A�

of the gauge fields Ai and of the spinor-valued Grassmann
fields

ξ�ð1Þ ¼ Λ�ð1; 2Þξð2Þ; ð4Þ

where

Λ�ð1; 2Þ ¼
Z

d3p
ð2πÞ3 e

ip·ðx1−x2ÞΛ�ðpÞ;

Λ�ðpÞ ¼
1

2
� α · pþ βm

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ð5Þ

are the projectors onto positive/negative energy eigenstates
of the free Dirac operator

h0ðpÞ ¼ α · pþ βm: ð6Þ

In coordinate space we employ a notation where a
numerical index stands collectively for the spatial coor-
dinate as well as for the color and Lorentz indices.
A repeated numerical index like in Eq. (4) implies
integration over the spatial coordinate and summation over
the discrete indices. Matrix elements of an operator O
between physical statesΦ andΨ are given by the functional
integral

hΦjO½A;Π;ψ ;ψ†�jΨi ¼
Z

DξDξ†DAJAe−μΦ�½ξ†þ; ξ−;A�

×O

�
A;−i

δ

δA
; ξ− þ

δ

δξ†þ
; ξ†þ þ δ

δξ−

�

×Ψ½ξ†þ; ξ−;A�; ð7Þ

where

μ ¼ ξ†ð1ÞS0ð1; 2Þξð2Þ ¼
Z

d3p
ð2πÞ3 ξ

†ðpÞS0ðpÞξðpÞ;

is the integration measure of the fermionic coherent states,
which involves the bare quark propagator

S0ðpÞ ¼
h0ðpÞ
2Ep

¼ α · pþ βm
2Ep

; Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
: ð8Þ

For the vacuum wave functional of QCD we take the
ansatz
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Ψ½A; ξ†þ; ξ−� ∝ exp

�
−
1

2
SA½A� − Sf½ξ†þ; ξ−; A�

�
; ð9Þ

where SA and Sf define, respectively, the wave functionals
of pure Yang–Mills theory and of the quarks interacting
with the gluons. We choose the latter in the form

Sf½ξ†þ; ξ−; A� ¼ ξ†þð1Þ½K0ð1; 2Þ þ Kð1; 2; 3ÞAð3Þ�ξ−ð2Þ
¼ ξ†ð10ÞΛþð10; 1Þ½K0ð1; 2Þ þ Kð1; 2; 3ÞAð3Þ�
× Λ−ð2; 20Þξð20Þ ð10Þ

where K0 and K are variational kernels, whose form will be
specified in more detail later.
Once the functional derivatives in Eq. (7) are taken,

expectation values of operators boil down to quantum
averages of functionals of the fields

hf½ξ†; ξ; A�i ¼
Z

Dξ†DξDAJAe−Sf½ξ†; ξ; A�

with an “action”

S ¼ SA þ Sf þ S�f þ μ: ð11Þ

This equivalence between expectation values in the
Hamiltonian approach and quantum averages in the func-
tional integral formulation of a Euclidean field theory in
d ¼ 3 dimensions is the basis for the Dyson-Schwinger
approach [30,31] employed in this work. With the help of
familiar Dyson-Schwinger techniques the various one-
particle irreducible equal-time Green functions of the
Hamiltonian approach can be related to the kernels occur-
ring in the action equation (11), i.e. in the vacuum wave
functional equation (9), by means of an infinite tower of
integral equations. These are named CRDSEs in order to
make clear that, while they look like standard DSEs, their
physical content is somewhat different. (The bare n-point
vertices are not given by the action of the theory but by
variational kernels of the vacuum wave functionals.)
Notice that the variational kernels K0 and Ki in Eq. (10)

enter the action equation (11) (and therefore the CRDSEs)
only in the combinations

γ̄ð1; 2Þ ¼ Λþð1; 10ÞK0ð10; 20ÞΛ−ð20; 2Þ
þ Λ−ð1; 10ÞK†

0ð10; 20ÞΛþð20; 2Þ ð12Þ

and

Γ̄0ð1; 2; 3Þ ¼ Λþð1; 10ÞKð10; 20; 3ÞΛ−ð20; 2Þ
þ Λ−ð1; 10ÞK†ð10; 20; 3ÞΛþð20; 2Þ: ð13Þ

In the following we will refer to γ̄ as the biquark kernel, and
to Γ̄0 as the bare quark-gluon vertex.1

The choice of the variational kernels in Eq. (10) is
subject to a restriction: the vacuumwave functional must be
invariant under global color rotations. These are generated
by the total charge operator

Qa ¼
Z

d3xρaðxÞ;

i.e. the spatial integral of the color charge density
Eq. (2). Invariance under global color rotations gener-
ated by Qa implies that the wave functional equation (9)
(or, equivalently, the quantities SA and Sf occurring in
its exponent) must be annihilated by Qa, which leads to
the condition

QaSf ¼
Z

d3xd3yξ†þðxÞ

×
�
½ta; K0ðx; yÞ� þ

Z
d3zð½ta; Kb

i ðx; y; zÞ�

− ifabcKc
i ðx; y; zÞÞAb

i ðzÞ
�
ξ−ðyÞ ¼! 0:

In order to satisfy this condition the variational kernels
should obey the color structure K0 ∼ 1 and Ka

i ∼ ta.
Furthermore, since the Λ� are orthogonal projectors [see
Eq. (5)] it is obvious from Eq. (12) that the variational
kernel K0 must possess nontrivial Dirac structures.
In principle, K0 could have the general form

K0ðpÞ ¼ βs1ðpÞ þ α · ps2ðpÞ þ βα · ps3ðpÞ ð14Þ

with complex scalar functions s1, s2, s3. The resulting
biquark kernel equation (12) becomes in momentum space

γ̄ðpÞ ¼ βp2 −mα · p
E2
p

ℜfs1ðpÞ −ms2ðpÞ − Eps3ðpÞg

−
iβα · p
Ep

ℑfs1ðpÞ −ms2ðpÞ − Eps3ðpÞg:

As one observes, the complex kernels s1, s2, and s3 enter
the biquark kernel γ̄ (and therefore all vacuum expectation
values of observables as well as the CRDSEs) never
individually but only in the combination

s1ðpÞ −ms2ðpÞ − Eps3ðpÞ:

It is hence sufficient to consider only one of them; more-
over, in the chiral limitm ¼ 0 the scalar kernel s2 drops out.

1The bare quark-gluon vertex Γ̄0 entering the vacuum wave
functional equation (9) should be distinguished from the quark-
gluon coupling in the QCD Hamiltonian equation (1).
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Therefore, the general ansatz equation (14) is not necessary.
Instead the relevant physics can be captured by the much
simpler choice

K0ðpÞ ¼ βsðpÞ; ð15Þ

which leads to the biquark kernel [Eq. (12)]

γ̄ðpÞ ¼ −α · p̂
mjpj
E2
p
ℜsðpÞþ β

p2

E2
p
ℜsðpÞ− iβα · p̂

jpj
Ep

ℑsðpÞ:

ð16Þ

For the vector kernel we choose the ansatz [10]

Kmn;a
i ðp;q;kÞ ¼ gtamn½αiVðp;qÞ þ βαiWðp;qÞ�

× ð2πÞ3δðpþ qþ kÞ; ð17Þ

where V, and W are variational kernels: For simplicity we
write only their dependence on the quark-anti-quark
momenta, as momentum conservation implicitly fixes
the gluon momentum. Note that the vectorial character
of the quark-gluon coupling is entirely given by the Dirac
matrix αi, i.e. the variational kernels V and W are scalar
functions which may depend only on p2, q2, and p · q,
implying e.g. Vð−p;−qÞ ¼ Vðp;qÞ. The bare quark-gluon
vertex equation (13) becomes with Eq. (17) in the chiral
limit

Γ̄mn;a
0;i ðp;q;kÞ
¼ tamn

g
4
½ð1þ α · p̂Þ½Vðp;qÞαi þWðp;qÞβαi�ð1þ α · q̂Þ

þ ð1− α · p̂Þ½V�ðq;pÞαi −W�ðq;pÞβαi�ð1− α · q̂Þ�
× ð2πÞ3δðpþ qþkÞ: ð18Þ

When both vector kernels are omitted, Vðp;qÞ ¼ 0 ¼
Wðp;qÞ, the wave functional equation (9) reduces to the
BCS-type wave functional used in Refs. [22,25,27], while
keeping only V corresponds to the choice of Refs. [28].
The above ansatz for the fermionic wave functional
defined by Eqs. (9), (10), (15), and (17) was also chosen
in Refs. [10,29], where the QCD variational principle
was formulated in the ordinary operator language of
second quantization, avoiding the introduction of
Grassmann fields. As shown in Ref. [29] this ansatz
has the advantage that all UV divergences cancel in the
quark gap equation.

B. Quark propagator and quark-gluon
vertex CRDSEs

As shown in Refs. [30,31] the formal equivalence
between expectation values in the Hamiltonian approach
and quantum averages of a Euclidean field theory can be
used to write down DSE-like equations, referred to as
CRDSEs to express the n-point functions by the variational
kernels of the vacuum wave functional. The CRDSE for the
fermion propagator

Qð1; 2Þ ¼ hξð1Þξ†ð2Þi

reads

Q−1ð1;2Þ¼Q−1
0 ð1;2Þþ γ̄ð1;2Þ

− Γ̄0ð1;3;4ÞQð3;30ÞDð4;40ÞΓ̄ð30;2;40Þ; ð19Þ

where

Q0ð1; 2Þ ¼ Λþð1; 2Þ − Λ−ð1; 2Þ

is the bare fermion propagator,

Dð1; 2Þ ¼ hAð1ÞAð2Þi ð20Þ

is the gluon propagator, and Γ̄ is the full quark-gluon vertex
defined by

hξð1Þξ†ð2ÞAð3Þi ¼ −Qð1; 10ÞΓ̄ð10; 20; 30ÞQð20; 2ÞDð30; 3Þ:
ð21Þ

The latter also obeys a CRDSE, which is represented
diagrammatically together with Eq. (19) in Fig. 1. The
explicit form is not relevant for the present work but the
first term on the right-hand side is given indeed by Γ̄0

[Eq. (18)], thus justifying its interpretation as bare quark-
gluon vertex.
Equation (19) may be conveniently written in momen-

tum space: with the explicit form [Eq. (16)] of the biquark
kernel we obtain

FIG. 1. Diagrammatic representation of the CRDSEs for the
quark propagator [top, Eq. (19)] and for the quark-gluon vertex
(bottom). Full lines and filled dots represent, respectively, dressed
propagators and vertices. The line with an empty square stands
for the biquark kernel γ̄ [Eq. (16)]; the vertex with a square box
represents the bare quark-gluon vertex [Eq. (18)].
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½QmnðpÞ�−1 ¼ δmn α · pþ βm
Ep

þ δmn

�
−α · p

m
E2
p
ℜsðpÞ þ β

p2

E2
p
ℜsðpÞ − iβα · p

1

Ep
ℑsðpÞ

�

−
Z

d3q
ð2πÞ3 Γ̄

mk;a
0;i ðp;−q;q − pÞQðqÞDijðp − qÞΓ̄kn;a

j ðq;−p;p − qÞ: ð22Þ

For the inverse quark propagator, which we assume to be
color diagonal, we must consider in principle the following
Dirac structure:

Q−1ðpÞ¼AðpÞα · p̂þβBðpÞ− iβα · p̂CðpÞþDðpÞ; ð23Þ

which can be inverted to give

QðpÞ ¼ AðpÞα · p̂þ βBðpÞ − iβα · p̂CðpÞ −DðpÞ
A2ðpÞ þ B2ðpÞ þ C2ðpÞ −D2ðpÞ : ð24Þ

From the CRDSE (22) we obtain the following system of
coupled equations for the dressing functions [Eq. (23)] of
the quark propagator

AðpÞ ¼ jpj
Ep

�
1 −

m
Ep

ℜspÞ
�
−

1

4Nc

Z
d3q
ð2πÞ3 tr½α · p̂Γ̄mn;a

0;i ðp;−q;q − pÞQðqÞDijðp − qÞΓ̄nm;a
j ðq;−p;p − qÞ�;

BðpÞ ¼ m
Ep

þ p2

E2
p
ℜsðpÞ − 1

4Nc

Z
d3q
ð2πÞ3 tr½βΓ̄

mn;a
0;i ðp;−q;q − pÞQðqÞDijðp − qÞΓ̄nm;a

j ðq;−p;p − qÞ�;

CðpÞ ¼ jpj
Ep

ℑsðpÞ − 1

4Nc

Z
d3q
ð2πÞ3 tr½−iβα · p̂Γ̄mn;a

0;i ðp;−q;q − pÞQðqÞDijðp − qÞΓ̄nm;a
j ðq;−p;p − qÞ�;

DðpÞ ¼ −
1

4Nc

Z
d3q
ð2πÞ3 tr½Γ̄

mn;a
0;i ðp;−q;q − pÞQðqÞDijðp − qÞΓ̄nm;a

j ðq;−p;p − qÞ�; ð25Þ

where

DijðpÞ≡ tijðpÞ
2ΩðpÞ ; tijðpÞ ¼ δij −

pipj

p2

is the gluon propagator equation (20), conveniently para-
metrized in terms of the quasigluon energy ΩðpÞ.
At this point it should be mentioned that the fermion

propagatorQ is not the physical quark propagator, which in
the Hamiltonian approach is defined by

Sð1; 2Þ ¼ 1

2
h½ψð1Þ;ψ†ð2Þ�i:

The commutator arises from the equal-time limit of the
time-ordered operator product in the full time-dependent
theory. By means of Eq. (7) one can show (for details see
Ref. [31]) that the quark propagator S and the propagatorQ
are related by

SðpÞ ¼ QðpÞ − S0ðpÞ; ð26Þ

with S0ðpÞ being the free quark propagator, Eq. (8).
As long as no confusion is possible we will keep

referring indiscriminately to both SðpÞ and QðpÞ as quark
propagator.

C. The QCD vacuum energy density

The vacuum expectation value of the QCD Hamiltonian
has been evaluated in Ref. [31], to which we refer the
reader for the details of the calculation; here we will merely
quote the relevant contributions to the energy density e≡
hHi=ðV · NcÞ in momentum space. The Dirac Hamiltonian
[second line in Eq. (1)] yields

eD ¼ −
Z

d3q
ð2πÞ3 tr½ðα · qþ βmÞQðqÞ�

− gCF

Z
d3q
ð2πÞ3

d3ℓ
ð2πÞ3

×Dijðqþ ℓ Þtr½αiQðqÞΓ̄jðq; ℓ ÞQð−ℓ Þ�
≡ eð0ÞD þ eð1ÞD ; ð27Þ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ is the quadratic Casimir

invariant of the fundamental representation of the
suðNcÞ algebra. The fermionic contribution to the kinetic
energy of the gluons [first term on the right-hand side of
Eq. (1)] is given by
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eqE ¼ −
CF

8

Z
d3q
ð2πÞ3

d3ℓ
ð2πÞ3 tijðqþ ℓ ÞtrfΓ̄0;iðq;−ℓ ÞQðℓ ÞΓ̄jðℓ ;−qÞQðqÞ

−Q0ðqÞΓ̄0;iðq;−ℓ ÞQðℓ ÞQ0ðℓ ÞΓ̄0;jðℓ ;−qÞQðqÞg: ð28Þ

For simplicity, in Eqs. (27) and (28) we have omitted the
dependence of the vertex functions on the gluon momen-
tum, which follows from the fermionic momenta kept in the
above equations by momentum conservation. Furthermore,
we have assumed that the propagators are color diagonal
and that the color structure of the full quark-gluon vertex is
given by the generator ta as for the bare vertex. Finally, the
Coulomb interaction of the fermionic charges reads

eqqC ≃ −g2
CF

2

Z
d3q
ð2πÞ3

d3ℓ
ð2πÞ3 Fðq − ℓ Þ

× tr

��
Qðℓ Þ − 1

2
Q0ðℓ Þ

��
QðqÞ − 1

2
Q0ðqÞ

�
−
1

4

�
:

ð29Þ
Here, FðpÞ is the expectation value of the Coulomb kernel
equation (3), which in the following calculations will be
approximated by the simple form [9]:

g2FðpÞ ¼ 8πσC
p4

þ g2

p2
; ð30Þ

with σC being the Coulomb string tension. This form nicely
fits the Coulomb potential found from the variational
solution of the Yang-Mills sector [9].

Since the expectation value eð0ÞD of the single-particle
Hamiltonian [first term in Eq. (27)] and the Coulomb
interaction equation (29) do not depend on the full quark-
gluon vertex, the Dirac traces can be worked out explicitly,
yielding respectively

eð0ÞD ¼ −4
Z

d3q
ð2πÞ3

jqjAðqÞ þmBðqÞ
ΔðqÞ ð31Þ

and

eqqC ¼ −g2
CF

2

Z
d3q
ð2πÞ3

d3ℓ
ð2πÞ3

Fðq − ℓ Þ
ΔðqÞΔðℓ Þ

× f4½BðqÞBðℓ Þ þDðqÞDðℓ Þ� − ΔðqÞΔðℓ Þ
þ q̂ · ℓ̂ ½4CðqÞCðℓ Þ
þ ð2AðqÞ − ΔðqÞÞð2Aðℓ Þ − Δðℓ ÞÞ�g; ð32Þ

where we have introduced the abbreviation

ΔðqÞ ¼ A2ðqÞ þ B2ðqÞ þ C2ðqÞ −D2ðqÞ ð33Þ

for the denominator of the quark propagator equation (24).

III. INFRARED BEHAVIOR OF THE
DRESSING FUNCTIONS

Before we proceed to derive the equations of motion of
our variational approach by minimizing the energy density
with respect to the variational kernels, we discuss here
which conditions the dressing functions AðpÞ;…; DðpÞ of
the quark propagator equation (23) must satisfy in order to
guarantee confinement and chiral symmetry breaking. For
given variational kernels of the wave functional these
dressing functions are determined by the quark propagator
CRDSE (25), while the variational kernels themselves are
determined by minimizing the energy density.
For simplicity we assume that the vector kernels Vðp;qÞ

and Wðp;qÞ are real and symmetric, and that the scalar
kernel sðpÞ is real (we can always restrict our variational
ansatz to these class of kernels): then, consistent solutions
withDðpÞ ¼ 0 and CðpÞ ¼ 0 exist, see Eq. (B1) below. We
will furthermore restrict our considerations to chiral
quarks, m ¼ 0.
As we have shown in Sec. II B, the physical quark

propagator S is related to the propagator Q of the
Grassmann fields by Eq. (26) and can be expressed through
the dressing functions A and B as

SðpÞ ¼ QðpÞ − S0ðpÞ

¼ ½Apð2 − ApÞ − B2
p�α · p̂þ 2Bpβ

2ðA2
p þ B2

pÞ
: ð34Þ

In order to prevent the notation from becoming excessively
cluttered we have expressed the momentum dependence of
the dressing functions through a subscript.
Inspired by the form of the bare quark propagator

[Eq. (8)] we define the running mass Mp and the and
the quark dressing function Zp by

SðpÞ ¼ Zp
α · pþ βMp

2Ep
; Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p

q
: ð35Þ

From Eqs. (34) and (35) we obtain

Mp ¼ 2pBp

Apð2 − ApÞ − B2
p
;

Zp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Apð2 − ApÞ − B2

p�2 þ 4B2
p

q
A2
p þ B2

p
; ð36Þ

where p ¼ jpj. These equations can be inverted to express
the dressing functions Ap and Bp in terms ofMp and Zp as
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Ap ¼ 2ðEp þpZpÞ
Epð1þ Z2

pÞ þ 2pZp
; Bp ¼ 2MpZp

Epð1þ Z2
pÞ þ 2pZp

:

ð37Þ

Note that the approximation Ap ¼ 1 is equivalent to
Zp ¼ 1. We will now exploit these relations to investigate
the IR behavior of the dressing functions Ap and Bp.
An IR finite mass function Mðp ¼ 0Þ≡M0 ≠ 0 is an

indicator of chiral symmetry breaking. Therefore we
investigate now which conditions the functions Ap and
Bp must fulfill at vanishing momentum so that M0 ≠ 0.
From Eq. (36) follows immediately that an IR diverging Bp

and an IR finite Ap would give rise to a vanishing (negative)
mass function. The dressing function Bp must therefore
have a finite IR limit B0. Furthermore, from the first
equation in (36) it follows that the dressing function Ap

must also have a finite IR limit A0 satisfying the condition

A0ð2 − A0Þ ¼ B2
0: ð38Þ

Hence for real B0 and A0 we find that A0 ∈ ½0; 2�. From the
second expression in Eq. (36) we find in the limit of
vanishing momentum assuming that Eq. (38) holds

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − A0

A0

s
: ð39Þ

Like Eq. (38), the right-hand side of Eq. (39) is well defined
only for A0 ∈ ½0; 2�. An infrared suppressed propagator
Z0 < 1 requires A0 > 1, and an IR vanishing quark
propagator requires A0 ¼ 2, which in view of Eq. (38)
implies B0 ¼ 0. For the mass function to be still non-
vanishing in the IR, the dressing function A should have
zero slope at vanishing momentum, as it can be seen by
Taylor expanding equation (36).
From this IR analysis there emerges a possible Gribov-

Zwanziger-like scenario which includes both confinement
and chiral symmetry breaking: an IR vanishing dressing
function Bp and a dressing function Ap satisfying Að0Þ ¼ 2

and A0ð0Þ ¼ 0 yield an IR finite running mass (i.e.
spontaneous breaking of chiral symmetry) and an IR
vanishing (i.e. confined) quark propagator. The same
conclusions follow of course from Eq. (37) taken at zero
momentum

A0 ¼
2

1þ Z2
0

; Bp ¼ 2Z0

1þ Z2
0

:

For an infrared vanishing quark propagator, Z0 ¼ 0, we
find immediately A0 ¼ 2 and B0 ¼ 0.
The above results are based in the analysis of the

unrenormalized CRDSEs and may hence change after

renormalization. However, the renormalization affects
mostly the UV behavior.

IV. MASSIVE ADLER-DAVIS MODEL

To make contact with previous work and for the sake of
illustration, in the present section let us neglect the quark-
gluon coupling in the QCD Hamiltonian and consider the
quark sector only. The remaining contributions to the
energy density are therefore Eqs. (31) and (32). If we
neglect the coupling of the quarks to the transverse (spatial)
gluons in the vacuum wave functional equation (9), (10),
i.e. V ¼ 0 ¼ W, the bare quark-gluon vertex equation (18)
vanishes, Γ̄0 ¼ 0. Furthermore, if the scalar kernel sp is real
both dressing functions Cp andDp vanish identically. Then
the energy density reduces to

eAD ¼ −4
Z

d3q
ð2πÞ3

jqjAq þmBq

Δq

− g2
CF

2

Z
d3q
ð2πÞ3

d3ℓ
ð2πÞ3

Fðq − ℓ Þ
ΔqΔℓ

× f4BqBℓ þ q̂ · ℓ̂ ½Aqð2 − AqÞ − B2
q�

× ½Aℓð2 − AℓÞ − B2
ℓ�g; ð40Þ

while the dressing functions Eq. (25) of the quark propa-
gator become

Ap ¼ jpj
Ep

�
1 −

m
Ep

sp

�
; Bp ¼ m

Ep
þ p2

E2
p
sp: ð41Þ

Inserting these expressions into Eq. (40) yields

eAD ¼ −4
Z

d3q
ð2πÞ3

Eq

1þ w2
q

þ g2CF

Z
d3q
ð2πÞ3

d3ℓ
ð2πÞ3

Fðq − ℓ Þ
EqEℓ

×
ðmþ qwqÞðmwℓ − ℓÞðwℓ − q̂ · ℓ̂wqÞ

ð1þ w2
qÞð1þ w2

ℓÞ
;

where we have introduced the abbreviation

wp ¼ jpjsp
Ep

:

Variation of eAD with respect to sp (or, equivalently, with
respect to wp) yields the gap equation

Epwp ¼ g2CF

2

Z
d3q
ð2πÞ3 Fðp − qÞ p

Ep

q
Eq

×
Aðp;qÞ − p̂ · q̂Aðq;pÞ

1þ w2
q

; ð42Þ
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with

Aðp;qÞ ¼
�
wq þ

m
2q

ð1 − w2
qÞ
��

1 − w2
p − 2

m
p
wp

�
: ð43Þ

Putting m ¼ 0 in Eqs. (42) and (43) and approximating the
Coulomb potential FðpÞ [Eq. (30)] by its infrared part
8πσC=p4 yields precisely the gap equation obtained by
Adler and Davis [25]. Equations (42) and (43) give the
extension of their model to finite current quark masses. The
integral on the right-hand side of Eq. (42) appears also in
Ref. [27], where a slightly extended phenomenological
model for the quark-quark interaction was considered.
From the dressing functions [Eq. (41)] we can calculate

the quark propagator Q [Eq. (24)]

QðpÞ ¼ α · p̂ðp −mwpÞ þ βðmþ pwpÞ
Epð1þ w2

pÞ
;

and after elementary but somewhat lengthy algebra the true
quark propagator S [see Eq. (26)] can be cast into the form

SðpÞ ¼ α · pþ βMp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p

q ð44Þ

where the mass function Mp is related to the variational
kernel sp through

Mp ¼ 2pwp þmð1 − w2
pÞ

1 − w2
p − 2 m

p wp
: ð45Þ

Equation (44) gives a quasiparticle approximation to the full
quark propagator: It has the same form as the free-fermion
propagator S0 [Eq. (8)] except that the current quark massm
is replaced by a runningmassMp. Note also that in this case
the quark dressing function becomes Zp ¼ 1.
Equation (45) can be used to trade the kernel sp in the

gap equation (42) for the running mass Mp yielding

MðpÞ ¼ mþ g2CF

2

Z
d3q
ð2πÞ3

Fðp − qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q

q �
Mq −

p · q
p2

Mp

�
:

The same equation has been derived in Ref. [33] from
a truncated system of DSEs in the so-called first order
formalism.

V. THE BARE-VERTEX APPROXIMATION

Let us now return to the full equations of motion of Sec. II
with the quark-gluonvertex included.We are interested here
mainly in recovering the results of Refs. [10,29] within the
present CRDSE approach. For this purpose we replace in
the following the full quark-gluon vertex Γ̄ [Eq. (21)] by the

bare one Γ̄0 [Eq. (13)].We are aware that this approximation
might not yet be entirely sufficient to provide a realistic
description of the mechanism of spontaneous breaking of
chiral symmetry, i.e. to yield realistic values for quark
condensate in agreement with low-energy meson phenom-
enology. Nevertheless, it is certainly worthwhile to inves-
tigate first the bare-vertex approximation in order to get a
better understanding of the structure of the equations of
motion of the present approach. In addition, the use of a bare
quark-gluon vertex is sufficient to carry out the renormali-
zation of these equations, since the leading UV behavior of
the dressed vertex agrees with that of the bare one, due to
asymptotic freedom.

A. The quark CRDSE

After replacing the full vertices in the CRDSE (25) by
bare ones, the Dirac traces can be worked out and the
coupled equations (25) for the dressing functions of the
quark propagator reduce in the chiral limit m ¼ 0 to the set
of equations (B1) given in Appendix B. Equations (B1b)
and (B1c) for the dressing functions Bp and Cp can be
collected into a single equation for the complex quantity
H ¼ Bþ iC

Hp¼spþ
g2CF

2

Z
d3q
ð2πÞ3

H�
q

ΩðpþqÞΔq

× ½X−ðp;qÞVðp;qÞVðq;pÞ−Xþðp;qÞWðp;qÞWðq;pÞ�;

where we have introduced the abbreviations

X�ðp;qÞ ¼ 1� ½p̂ · ðpþ qÞ�½q̂ · ðpþ qÞ�
ðpþ qÞ2 ; ð46Þ

while Δq is given by Eq. (33). Similarly, the
equations (B1a) and (B1d) for Ap and Dp can be added
and subtracted, yielding

Ap þDp ¼ 1þ g2CF

2

Z
d3q
ð2πÞ3

Aq þDq

Ωðpþ qÞΔq

× ½X−ðp;qÞjVðp;qÞj2 þ Xþðp;qÞjWðp;qÞj2�;

Ap −Dp ¼ g2CF

2

Z
d3q
ð2πÞ3

Aq −Dq

Ωðpþ qÞΔq

× ½X−ðp;qÞjVðq;pÞj2 þ Xþðp;qÞjWðq;pÞj2�:

If the variational vector kernels have the symmetry

jVðp;qÞj ¼ jVðq;pÞj; jWðp;qÞj ¼ jWðq;pÞj

then the Eqs. (B1a) and (B1d) for the form factors Ap and
Dp decouple and there exists always the trivial solution
Dp ¼ 0. Finally, notice that for vanishing vector kernels
V ¼ 0 ¼ W these equations reduce to
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Ap ¼ 1; Bp ¼ℜsp; Cp ¼ ℑsp; Dp ¼ 0: ð47Þ

The quark propagator is then entirely determined by the
scalar variational kernel sp, which corresponds to the BCS-
type model considered in Refs. [22,25,27], see Sec. IV.

B. Determination of the variational kernels

From both continuum [33] as well as lattice [34,35]
studies there exists no indication that the quark propagator
in Coulomb gauge contains a term proportional to the Dirac
matrix βαi [see Eq. (24)]. Furthermore, when the energy
variable of the full propagator is integrated out to yield the
equal-time propagator, the term in the quark propagator
proportional to the unit matrix vanishes too. Therefore, we
expect the physical quark propagator equation (24) to be
characterized by Cp ¼ Dp ¼ 0. It is not difficult to see that
the quark CRDSEs (B1) allow for consistent solutions with

Cp ¼ Dp ¼ 0 when the variational kernels s, V and W are
real, and the vector kernels V and W are symmetric in the
quark momenta. Under these assumptions the quark propa-
gator CRDSEs (B1) reduce to

Ap ¼ 1þ g2
CF

2

Z
d3q
ð2πÞ3

Aq

ΔqΩðpþ qÞ
× ½X−ðp;qÞV2ðp;qÞ þ Xþðp;qÞW2ðp;qÞ�; ð48aÞ

Bp ¼ sp þ g2
CF

2

Z
d3q
ð2πÞ3

Bq

ΔqΩðpþ qÞ
× ½X−ðp;qÞV2ðp;qÞ − Xþðp;qÞW2ðp;qÞ�; ð48bÞ

while the contributions to the energy density [see Eqs. (27),
(28), and (32)] become

eD ¼ −4
Z

d3q
ð2πÞ3

jqjAq

Δq

þ 2g2CF

Z
d3q
ð2πÞ3

d3ℓ
ð2πÞ3

X−ðq; ℓ ÞVðq; ℓ ÞðAqAℓ þ BqBℓÞ þ Xþðq; ℓ ÞWðq; ℓ ÞðAqBℓ þ BqAℓÞ
ΔqΔℓΩðqþ ℓ Þ ; ð49aÞ

eqE ¼ g2CF

Z
d3q
ð2πÞ3

d3ℓ
ð2πÞ3

AqAℓ

ΔqΔl
½X−ðq; ℓ ÞV2ðq; ℓ Þ þ Xþðq; ℓ ÞW2ðq; ℓ Þ�; ð49bÞ

eqqC ¼ −g2
CF

2

Z
d3q
ð2πÞ3

d3ℓ
ð2πÞ3 Fðq − ℓ Þ 4BqBℓ þ q̂ · ℓ̂ ½Aqð2 − AqÞ − B2

q�½Aℓð2 − AℓÞ − B2
ℓ�

ΔqΔℓ

; ð49cÞ

with Δ [Eq. (33)] reducing to

Δp ¼ A2
p þ B2

p: ð50Þ

The energy density contributions (49) contain the scalar kernel sp only implicitly through the dressing functions Ap and Bp,
while the vector kernels V andW enter both explicitly and implicitly. From Eq. (48a) we find the derivatives of the dressing
function Ap with respect to the vector kernels

δAk

δVðp;qÞ ¼ g2
CF

2

X−ðp;qÞ
Ωðpþ qÞVðp;qÞ

�
ð2πÞ3δðk − pÞ Aq

Δq
þ ð2πÞ3δðk − qÞ Ap

Δp

�
þ � � � ð51Þ

δAk

δWðp;qÞ ¼ g2
CF

2

Xþðp;qÞ
Ωðpþ qÞWðp;qÞ

�
ð2πÞ3δðk − pÞ Aq

Δq
þ ð2πÞ3δðk − qÞ Ap

Δp

�
þ � � � ð52Þ

and similarly the derivatives of Bp

δBk

δVðp;qÞ ¼ g2
CF

2

X−ðp;qÞ
Ωðpþ qÞVðp;qÞ

�
ð2πÞ3δðk − pÞ Bq

Δq
þ ð2πÞ3δðk − qÞBp

Δp

�
þ � � � ð53Þ

δBk

δWðp;qÞ ¼ −g2
CF

2

Xþðp;qÞ
Ωðpþ qÞWðp;qÞ

�
ð2πÞ3δðk − pÞ Bq

Δq
þ ð2πÞ3δðk − qÞBp

Δp

�
þ � � � ð54Þ
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The ellipsis on the right-hand side of these equations stand for the one-loop terms, which we will usually neglect since they
would give rise to more than one loop in the equations of motion of the vector kernels.
In the same way we can evaluate the functional derivatives of the dressing functions Ap and Bp with respect to the scalar

kernel sp

δAk

δsp
¼ −g2

CF

2

Z
d3q
ð2πÞ3

X−ðk;qÞV2ðk;qÞ þ Xþðk;qÞW2ðk;qÞ
Δ2

qΩðkþ qÞ
�
ðA2

q − B2
qÞ
δAq

δsp
þ 2AqBq

δBq

δsp

�
;

δBk

δsp
¼ ð2πÞ3δðp − kÞ þ g2

CF

2

Z
d3q
ð2πÞ3

X−ðk;qÞV2ðk;qÞ − Xþðk;qÞW2ðk;qÞ
Δ2

qΩðkþ qÞ
�
ðA2

q − B2
qÞ
δBq

δsp
− 2AqBq

δAq

δsp

�
:

At one-loop order the previous equations reduce to

δAk

δsp
¼ −g2CF

ApBp

Δ2
pΩðkþ pÞ ½X−ðk;pÞV2ðk;pÞ þ Xþðk;pÞW2ðk;pÞ� þ � � �

δBk

δsp
¼ ð2πÞ3δðp − kÞ þ g2

CF

2

A2
p − B2

p

Δ2
pΩðkþ pÞ ½X−ðk;pÞV2ðk;pÞ − Xþðk;pÞW2ðk;pÞ� þ � � � ð55Þ

In a diagrammatic language, differentiating with respect
to the vector kernel implies removing one quark-gluon
vertex from the diagram. Since the energy contributions
contain at most two loops, the variational equations for V
and W are free of loops. To this order, we can ignore the
Coulomb energy equation (49c) and include only the
explicit dependence on V and W in the second term of
Eq. (49a) and in Eq. (49b), yielding

δðeð1ÞD þ eqEÞ
δVðp;qÞ ¼ 2g2CF

X−ðp;qÞ
ΔpΔq

×

�
ApAq þ BpBq

Ωðpþ qÞ þ ApAqVðp;qÞ
�

ð56Þ

as well as

δðeð1ÞD þ eqEÞ
δWðp;qÞ ¼ 2g2CF

Xþðp;qÞ
ΔpΔq

×

�
ApBq þ BpAq

Ωðpþ qÞ þ ApAqWðp;qÞ
�
:

In the first term of Eq. (49a), however, we must take into
account also the dependence of the dressing functions Ap

and Bp on the kernels V and W. This yields

δeð0ÞD

δVðp;qÞ ¼ 4

Z
d3ℓ
ð2πÞ3

jℓ j
Δ2

ℓ

×

�
ðA2

ℓ − B2
ℓÞ

δAℓ

δVðp;qÞ þ 2AℓBℓ

δBℓ

δVðp;qÞ
�

and by using Eqs. (51) and (53) we find

δeð0ÞD

δVðp;qÞ ¼ 2g2CF
X−ðp;qÞ
Ωðpþ qÞVðp;qÞ

×
�jpj
Δ2

p

�
ðA2

p − B2
pÞ

Aq

Δq
þ 2ApBp

Bq

Δq

�

þ jqj
Δ2

q

�
ðA2

q − B2
qÞ

Ap

Δp
þ 2AqBq

Bp

Δp

��
: ð57Þ

Requiring that the sum of Eqs. (56) and (57) vanishes fixes
the vector kernel V to

Vðp;qÞ ¼ −
ApAq þ BpBq

ApAqΩðpþ qÞ þ jpj AqðA2
p−B2

pÞþ2ApBpBq

Δp
þ jqj ApðA2

q−B2
qÞþ2AqBpBq

Δp

: ð58Þ

To simplify this and the following expressions we introduce
the ratio

bp ≡ Bp

Ap
ð59Þ

and cast Eq. (58) into the form

Vðp;qÞ¼−
1þbpbq

ΩðpþqÞþjpj
Ap

1−b2pþ2bpbq
1þb2p

þjqj
Aq

1−b2qþ2bpbq
1þb2q

: ð60Þ
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At leading order we find from Eq. (48) Ap ¼ 1 and
bp ¼ sp, and Eq. (60) reduces to the kernel found in
Ref. [10]. Furthermore, at large momenta we recover the
leading-order perturbative result [36].
The variation of the energy with respect to W is carried

out in an analogous way by using Eqs. (52) and (54). This
yields the equation of motion

Wðp;qÞ¼−
bpþbq

ΩðpþqÞþ jpj
Ap

1−b2p−2bpbq
1þb2p

þjqj
Aq

1−b2q−2bpbq
1þb2q

: ð61Þ

Also this kernel reduces to the one found in Ref. [10] at
leading order. Both kernels V andW turn out to be real and

negative, as we might have expected from eð1ÞD [Eq. (C1)]:
this is the only energy contribution involving the variational

vector kernels linearly. This energy contribution vanishes if
the quark-gluon coupling is neglected in the vacuum wave
functional, i.e. for V ¼ 0 ¼ W. Negative vector kernels V

and W are energetically favored since they make eð1ÞD
negative.
The variation of the energy density with respect to the

scalar kernel sp is slightly more involved than the varia-
tional derivative with respect to the vector kernels. For the
second term in the single-particle energy density equa-
tion (49a), as well as for the contributions of the gluonic
kinetic term equation (49b) and of the Coulomb interaction
equation (49c) it is sufficient to keep only the leading order
of Eq. (55), while for the first term in Eq. (49a) we need
also the one-loop contributions. Then the variation with
respect to sp yields

bpjpj
A2
pð1þ b2pÞ2

¼ g2CF

2A2
pð1þ b2pÞ2

Z
d3q
ð2πÞ3

1

Aqð1þ b2qÞ
�
bp½X−ðp;qÞV2ðp;qÞ þ Xþðp;qÞW2ðp;qÞ�

−
jqj

Aqð1þ b2qÞΩðpþ qÞ
h
X−ðp;qÞV2ðp;qÞ½ð1 − b2pÞbq − bpð1 − b2qÞ�

− Xþðp;qÞW2ðp;qÞ½ð1 − b2pÞbq þ bpð1 − b2qÞ�
i

−
1

Ωðpþ qÞ
h
X−ðp;qÞVðp;qÞ½ð1 − b2pÞbq − 2bpÞ� þ Xþðp;qÞWðp;qÞ½1 − b2p − 2bpbq�

i

þ Fðp − qÞ½bqð1 − b2pÞ − p̂ · q̂ð2 − Aqð1þ b2pÞÞ�
�
; ð62Þ

where we have expressed the resulting equations in terms of bp [Eq. (59)] instead of sp. In order to reproduce the loop
expansion of Ref. [10]2 on the right-hand side of Eq. (62) it is sufficient to replace bp → sp and Ap → 1, while on the left-
hand side the factor

bp
A2
pð1þ b2pÞ2

¼ ApBp

ðA2
p þ B2

pÞ2

has to be expanded up to one-loop order by means of Eq. (48), yielding

bp
A2
pð1þ b2pÞ2

¼ sp
ð1þ s2pÞ2

þ 1

ð1þ s2pÞ3
g2CF

2

Z
d3q
ð2πÞ3

1

ð1þ s2qÞΩðpþ qÞ
× fX−ðp;qÞV2ðp;qÞ½spðs2p − 3Þ þ sqð1 − 3s2pÞ� þ Xþðp;qÞW2ðp;qÞ½spðs2p − 3Þ − sqð1 − 3s2pÞ�g:

With these replacements Eq. (62) reduces precisely
to the gap equation found in Refs. [10,29], which is
explicitly given in our notation in Appendix D. In fact,
the same result may be obtained by expanding the
dressing functions (48) at one-loop order in the energy
density contributions (49) and taking the variation
afterwards.

VI. RENORMALIZED QUARK PROPAGATOR
AND CHIRAL CONDENSATE

The gap equation (D1) has been solved numerically for
the variational kernel sp in Ref. [29]. The renormalization
of the quark propagator equation (34) was ignored and the
quark condensate was evaluated from the leading-order (in
the number of quark loops) propagator

SðpÞ ¼ ð1 − s2pÞα · p̂þ 2spβ

2ð1þ s2pÞ
; ð63Þ2The present approach allows one to go beyond this loop

expansion.
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which arises from the full propagator equation (34) by putting
Ap ¼ 1 and Bp ¼ sp, which are the zero-loop expressions
[see Eq. (47)]. The coupling g was then chosen to reproduce
the phenomenological value of the quark condensate

hq̄qi ¼ −
Z

d3p
ð2πÞ3 tr½βSðpÞ� ¼ −

2Nc

π2

Z
dpp2

sp
1þ s2p

:

Here we go beyond Ref. [29] and consistently calculate
the quark propagator up to including one-loop order. This
should be sufficient to investigate the renormalization
properties of the quark propagator.
To one-loop order we can replace the denominator Δp

[Eq. (50)] in Eq. (48) by its leading-order expression
Ap ¼ 1, Bp ¼ sp. Then Eq. (48) becomes

Ap ¼ 1þ g2
CF

2

Z
d3q
ð2πÞ3

X−ðp;qÞV2ðp;qÞ þ Xþðp;qÞW2ðp;qÞ
ð1þ s2qÞΩðpþ qÞ ≡ 1þ IAðp;ΛÞ;

Bp ¼ sp þ g2
CF

2

Z
d3q
ð2πÞ3 sq

X−ðp;qÞV2ðp;qÞ − Xþðp;qÞW2ðp;qÞ
ð1þ s2qÞΩðpþ qÞ ≡ sp þ IBðp;ΛÞ;

where V andW are given by Eqs. (60) and (61) with bp replaced by sp and Ap replaced by 1; furthermore,Λ is a momentum
cutoff. A quick calculation shows that the loop integral IB is convergent while IA is logarithmically divergent

IAðp;ΛÞ ¼
g2CF

ð4πÞ2 ð1þ s2pÞ lnΛþ finite terms: ð64Þ

At first sight, the appearance of a momentum-dependent divergence seems to spoil multiplicative renormalizability.
However, this is not the case, as we will show now. Expanding the quark propagator Eq. (34) at one-loop order we obtain

Sðp;ΛÞ ¼ 1

1þ s2p

�
α · p̂
2

�
ð1 − s2pÞ

�
1 −

2IAðp;ΛÞ
1þ s2p

�
−
4spIBðp;ΛÞ

1þ s2p

�
þ β

�
sp

�
1 −

2IAðp;ΛÞ
1þ s2p

�
þ 1 − s2p
1þ s2p

IBðp;ΛÞ
��

:

Inserting here Eq. (64) one finds that the momentum-
dependent part of the logarithmic divergence cancels. The
remaining part of the UV divergence can be removed by the
perturbative one-loop renormalization constant, which in
the MS scheme reads [36,37]

Z2ðΛ;μÞ ¼ 1−
g2CF

ð4πÞ2
�
ln
Λ2

μ2
þ ln4π − γE

�
≡ 1− δz2ðΛ;μÞ:

ð65Þ
With this expression we can define a renormalized
propagator

Sðp; μÞ ¼ fαðp; μÞα · p̂þ fβðp; μÞβ ð66Þ
where

fαðp; μÞ ¼
1

2

1 − s2p
1þ s2p

�
1 −

2IAðp;ΛÞ
1þ s2p

þ δz2ðΛ; μÞ
�

−
2sp

ð1þ s2pÞ2
IBðpÞ;

fβðp; μÞ ¼
sp

1þ s2p

�
1 −

2IAðp;ΛÞ
1þ s2p

þ δz2ðΛ; μÞ
�

þ 1 − s2p
ð1þ s2pÞ2

IBðpÞ: ð67Þ

By means of Eqs. (64) and (65) one finds that Eq. (67) is
indeed finite when the cutoff Λ is removed.
It is important to note that without the vector kernel W,

i.e. without the Dirac structure βαi in the bare quark-gluon
vertex of the quark wave functional, the term 1þ s2p in
Eq. (64) would reduce to 1 and the physical quark
propagator would no longer be multiplicatively renorma-
lizable [cf. Eq. (67)]. Although the vector kernel W
[Eq. (61)] is purely nonperturbative in nature, its presence
in the quark wave functional [Eqs. (9), (10), (17)] is
necessary to ensure multiplicative renormalizability of
the propagator.
The renormalization point dependent quark condensate

in the MS scheme is usually quoted at the renormalization
scale μ ¼ 2 GeV. At this scale the running strong coupling
constant has the value αsð2 GeVÞ ¼ 0.30ð1Þ [38]. Solving
the gap equation (D1) with this value of αs yields the
dressing functions [Eq. (67)] shown in Fig. 2. The resulting
chiral condensate is

hq̄qi ≃ ð−0.31 ffiffiffiffiffiffi
σC

p Þ3:

The scale in our calculations is fixed by the Coulomb string
tension σC occurring in the color Coulomb potential
Eq. (30). Lattice and continuum calculations [39–41] quote
values of the Coulomb string tension from 2.5 to as large as
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4 times the Wilson string tension σ ¼ ð440 MeVÞ2, which
gives us

ffiffiffiffiffiffi
σC

p
in the range from 696 to 880MeV. This yields

a (renormalization point dependent) chiral condensate in
the range between ð−216 MeVÞ3 and ð−270 MeVÞ3.
Lattice simulations and chiral perturbation theory calcu-
lations yield for the chiral condensate values in a similar
range [1,2,42–44].
The renormalized quark propagator Eq. (66) can be cast

into the form Eq. (35)

Sðp; μÞ ¼ Zp
α · pþ βMp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p

q ð68Þ

where the mass function Mp and the dressing function Zp

are related to fα and fβ [Eq. (67)] by

Mp ¼
jpjfβðp;μÞ
fαðp;μÞ

; Zp¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2αðp;μÞþf2βðp;μÞ

q
: ð69Þ

From the definition of the mass function [Eq. (69)] it is
clear that if fα does not vanish for p ¼ 0 the mass function
is bound to vanish in the deep infrared. Our numerical
results show that while sð0Þ ¼ 1, IBð0Þ is very small but
not vanishing. The reason for this behavior is the fact that
the denominators of the vector kernels V [Eq. (60)] and W
[Eq. (61)] are not the same. We believe that this is an
artifact of the one-loop expansion. The mass function
equation (69) stays however constant over almost 3 orders
of magnitude before slowly bending over (see Fig. 2).
Furthermore, the integral IBðpÞ is rather small in compari-
son to the (renormalized) integral IA. While the latter has an
important effect on the chiral condensate, the mass function
equation (69) is, apart from the deep IR, almost indistin-
guishable from the mass function of Ref. [29] extracted
from the unrenormalized quark propagator equation (63)

Mð0ÞðpÞ ¼ 2psp
1 − s2p

ð70Þ

as shown in Fig. 2. While our mass function vanishes in the
deep infrared, the plateau value reads

MIR ≃ 0.19
ffiffiffiffiffiffi
σC

p
;

which, due to the uncertainty in the Coulomb string
tension, is in the range between 135 and 170 MeV.

VII. MASS FUNCTION IN THE FULL
AND STATIC PROPAGATOR

As mentioned before, in Ref. [29] the renormalization of
the propagator was ignored and the value of the quark-
gluon coupling constant was chosen to reproduce the
phenomenological value of the chiral condensate. The
mass function, however, was not significantly enhanced
in comparison to the Adler-Davis model [25] (see Sec. IV),
showing an infrared value of 135 MeV (for σC ¼ 2.5σ).
Similar results have been obtained also in the previous
section: although our rough one-loop calculation is capable
of reproducing the correct value of the chiral condensate,
the mass function is not significantly influenced by the
coupling to the transverse gluons. This seems at odds with
the common lore that the infrared value of the mass
function should be around the value of the constituent
quark mass, i.e. roughly 300 MeV. Here we show that this
apparent contradiction might result from comparing the
mass functions of the full and equal-time propagators.
Before discussing this issue in Coulomb gauge we address
the question in Landau gauge, for which we have solutions
of the Dyson-Schwinger equations at our disposal.3

Suppressing color indices, the quark propagator in
Landau gauge is usually written as

FIG. 2. (left) Dressing functions fα and fβ of the renormalized quark propagator. (right) Mass function of the renormalized [Eq. (69),
continuous line] and unrenormalized [Eq. (70), dashed line] quark propagator.

3We are aware of the fact that the quark propagator itself
and hence also the extracted effective quark mass is gauge
dependent. Here we show that besides the gauge dependence the
effective mass extracted from a static (time-independent) propa-
gator differs drastically from the mass extracted from the full
(time-dependent) propagator.
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SðpÞ ¼ 1

−i=pAðp2Þ þ Bðp2Þ ¼
1

Aðp2Þ
i=pþMðp2Þ
p2 þM2ðp2Þ ;

where the quark mass function M is defined as
Mðp2Þ ¼ Bðp2Þ=Aðp2Þ. At tree level we have A ¼ 1 and
B ¼ M ¼ m, with m being the bare current quark mass.
The equal-time propagator S3ðpÞ is obtained from the full
one SðpÞ by integrating out the energy component p4 of the
four-momentum

S3ðpÞ ¼
Z

dp4

2π
SðpÞ:

For symmetry reasons the contribution proportional to γ4p4

vanishes and we are left with

S3ðpÞ ¼ iγ · p
Z

dp4

2π

1

Aðp2
4 þ p2Þ

1

p2
4 þ p2 þM2ðp2

4 þ p2Þ

þ
Z

dp4

2π

1

Aðp2
4 þ p2Þ

Mðp2
4 þ p2Þ

p2
4 þ p2 þM2ðp2

4 þ p2Þ :

ð71Þ

Analogously to the definition of the quark mass functionM
we can introduce the equal-time mass function M3ðp2Þ as
ratio of the coefficients of the 1 and γi terms of the equal-
time propagator, yielding

M3ðp2Þ ¼
R
0
∞dp4

1
Aðp2

4
þp2Þ

Mðp2
4
þp2Þ

p2
4
þp2þM2ðp2

4
þp2ÞR

0
∞dp4

1
Aðp2

4
þp2Þ

1
p2
4
þp2þM2ðp2

4
þp2Þ

: ð72Þ

Numerical solutions for the mass function always show a
monotonically decreasing function of the four-momentum.

Therefore, since Mðp2Þ ≤ Mð0Þ we see from Eq. (72) that
M3ð0Þ < Mð0Þ. For typical results for the Landau gauge
quark propagator we find thatM3ð0Þ lies between 50% and
60% of Mð0Þ, see Fig. 3(a). Furthermore, the equal-time
quark propagator Eq. (71) can be brought into the form (68)

S3ðpÞ ¼ Zðp2Þ iγ · pþM3ðp2Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

3ðp2Þ
p :

Figure 3(b) shows both Z and A−1.
The situation might be similar in Coulomb gauge.

Being noncovariant, the propagator depends separately
on p4 and p and has therefore four Dirac components
instead of two

S−1ðpÞ ¼ −iγ4p4Atðp4;pÞ − iγ · pAsðp4;pÞ
− iγ4p4γ · pAdðp4;pÞ þ Bðp4;pÞ:

The mixed structure γ4γi does not arise at one-loop level in
perturbation theory [37] and is not found in lattice
calculations [34,35] either; therefore we will set Ad ¼ 0
in the following. The propagator in Coulomb gauge takes
therefore the form

SðpÞ ¼ iγ4p4Atðp4;pÞ þ iγ · pAsðp4;pÞ þ Bðp4;pÞ
p2
4A

2
t ðp4;pÞ þ p2A2

sðp4;pÞ þ B2ðp4;pÞ
:

Analogously to Eq. (72) the equal-time mass function in
Coulomb gauge is given by

M3ðpÞ ¼
R
0
∞dp4

Bðp4;pÞ
p2
4
A2
t ðp4;pÞþp2A2

sðp4;pÞþB2ðp4;pÞR
0
∞dp4

Asðp4;pÞ
p2
4
A2
t ðp4;pÞþp2A2

sðp4;pÞþB2ðp4;pÞ
:

(a) (b)

FIG. 3. (a) Comparison between the full mass function Mðp2Þ in Landau gauge (continuous line) and the mass function
M3ðp2Þ of the equal-time propagator (dashed line). (b) Dressing function of the full (continuous line) and equal-time propagator
(dashed line).
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As for the quark propagator in Landau gauge we expect
also in Coulomb gauge that the effective quark mass
extracted from the static propagator is considerably smaller
than the one extracted from the four-dimensional
propagator.

VIII. CONCLUSIONS

The gap equation of Ref. [29] has been rederived within
the framework of the canonical recursive Dyson-Schwinger
equations. We have shown that the additional Dirac
structure in the bare quark-gluon vertex of the vacuum
wave functional not only eliminates the UV divergences
from the gap equation (as shown already in Refs. [10,29])
but is also crucial to ensure multiplicative renormalizability
of the quark propagator. We have performed a quenched
semiperturbative calculation assuming a bare quark-gluon
vertex. Unlike the covariant functional approaches in
Landau gauge, where the dressing of the (four-dimen-
sional) quark-gluon vertex is crucial for obtaining sponta-
neous breaking of chiral symmetry, in the present
Hamiltonian approach the bare quark-gluon vertex in the
vacuum wave functional is sufficient to reproduce the
phenomenological value of the quark condensate. In the
present approach the dominant IR contribution, which
triggers the spontaneous breaking of chiral symmetry,
comes from the confining Coulomb potential. We have
also shown that, depending on the details of the momentum
dependence, the effective quark mass obtained in the
Hamiltonian approach cannot be compared with the (con-
stituent) mass extracted from the corresponding four-
dimensional propagator and is expected to be considerably
smaller than the latter. The results obtained in the present
paper are quite encouraging for a fully self-consistent
solution of the coupled variational and CRDSEs. In a first
step towards this goal we will solve the CRDSE for the
quark-gluon vertex.
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APPENDIX A: COHERENT-STATE
REPRESENTATION OF FERMION FIELDS

The coherent-state representation of the fermionic Fock
space has been introduced in Ref. [31] in coordinate space.
For the sake of completeness we collect here the relevant
results in momentum space. The Dirac field ψ is expanded
in the usual way

ψðxÞ¼
Z

d3p
ð2πÞ3 e

ip·xψðpÞ;

ψðpÞ¼ 1ffiffiffiffiffiffiffiffi
2Ep

p ½uðp;sÞbðp;sÞþvð−p;sÞd†ð−p;sÞ� ðA1Þ

in terms of the eigenspinors uðp; sÞ, vðp; sÞ of the free
Dirac Hamiltonian h0ðpÞ [Eq. (6)] satisfying the eigenvalue
equations

h0ðpÞuðp;sÞ¼Epuðp;sÞ; h0ðpÞvð−p;sÞ¼−Epvð−p;sÞ;

where s ¼ �1 accounts for the two spin degrees of free-
dom. With the usual normalization the Dirac eigenspinors
satisfy the orthonormality relations

u†ðp; sÞuðp; s0Þ ¼ 2Epδss0 ¼ v†ðp; sÞvðp; s0Þ;
u†ðp; sÞβuðp; s0Þ ¼ 2mδss0 ¼ −v†ðp; sÞβvðp; s0Þ;
u†ðp; sÞvð−p; s0Þ ¼ 0: ðA2Þ

The expansion coefficients bðp; sÞ, d†ðp; sÞ are annihila-
tion and creation operators satisfying the usual anticom-
mutation relations

fbðp;sÞ;b†ðq; tÞg¼ δstð2πÞ3δðp−qÞ¼ fdðp;sÞ;d†ðq; tÞg;

which, with the normalization (A2), ensure that the Fermi
field in coordinate space has the canonical anticommutation
relation

fψðxÞ;ψ†ðyÞg ¼ δðx − yÞ:

Furthermore, the operators bðp; sÞ and dðp; sÞ annihilate
the filled Dirac sea of the free fermions denoted by j0i, i.e.

bðp; sÞj0i ¼ 0 ¼ dðp; sÞj0i:

The eigenspinors u and v are also eigenvalues of the
projectors [Eq. (5)]

ΛþðpÞuðp; sÞ ¼ uðp; sÞ; ΛþðpÞvð−p; sÞ ¼ 0;

Λ−ðpÞvð−p; sÞ ¼ vð−p; sÞ; Λ−ðpÞuðp; sÞ ¼ 0:

Furthermore, the projectors Λ� are related to the Dirac
spinors by the following completeness relations:

X
s

uðp; sÞ ⊗ u†ðp; sÞ
2Ep

¼ ΛþðpÞ;

X
s

vð−p; sÞ ⊗ v†ð−p; sÞ
2Ep

¼ Λ−ðpÞ:

Since we have two sets of fermion operators b, b† and d, d†,
corresponding to particles and antiparticles, we need also
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two different sets of Grassmann variables. Given the
decomposition [Eq. (A1)] of the Dirac field it is convenient
to define the coherent fermion states jξþ; ξ�−i of the Dirac
fermions by

bðp; sÞjξþ; ξ�−i ¼ ξþðp; sÞjξþ; ξ�−i;
dðp; sÞjξþ; ξ�−i ¼ ξ�−ðp; sÞjξþ; ξ�−i;

and to introduce the Grassmann-valued Dirac spinor
fields

ξþðpÞ ≔
1ffiffiffiffiffiffiffiffi
2Ep

p X
s

uðp; sÞξþðp; sÞ;

ξ†−ðpÞ ≔
1ffiffiffiffiffiffiffiffi
2Ep

p X
s

v†ð−p; sÞξ�−ð−p; sÞ; ðA3Þ

which satisfy

Λ�ðpÞξ�ðpÞ ¼ ξ�ðpÞ:

From Eq. (A2) follow the inverse relations to Eq. (A3)

ξþðp; sÞ ¼
1ffiffiffiffiffiffiffiffi
2Ep

p u†ðp; sÞξþðpÞ;

ξ�−ðp; sÞ ¼
1ffiffiffiffiffiffiffiffi
2Ep

p ξ†−ðpÞv†ð−p; sÞ:

For simplicity we will simply write jξi instead of jξþ; ξ�−i.
With these definitions we find

u†ðp; sÞffiffiffiffiffiffiffiffi
2Ep

p hξjbm†ðp; sÞ ¼ ξm†
þ ðpÞhξj

uðp; sÞffiffiffiffiffiffiffiffi
2Ep

p hξjbmðp; sÞ ¼ δ

δξm†
þ ðpÞ hξj

vð−p; sÞffiffiffiffiffiffiffiffi
2Ep

p hξjdm†ð−p; sÞ ¼ ξm−ðpÞhξj

v†ð−p; sÞffiffiffiffiffiffiffiffi
2Ep

p hξjdmð−p; sÞ ¼ δ

δξm−ðpÞ
hξj: ðA4Þ

Furthermore, the coherent-state representation of a Fock
state jΦi of the Dirac fermions is given by

Φ½ξ†þ; ξ−� ¼ hξjΦi; Φ�½ξþ; ξ†−� ¼ hΦjξi:

In the following it will be also convenient to assemble the
independent fields ξþ and ξ− in a single Grassmann-valued
spinor

ξðpÞ ¼ ξþðpÞ þ ξ−ðpÞ; ξ�ðpÞ ¼ Λ�ðpÞξðpÞ:

In analogy to the Fourier decomposition (A1) of the
Fermi field we also introduce the Grassmann fields in the
coordinate representation

ξ�ðxÞ ¼
Z

d3p
ð2πÞ3 e

ip·xξ�ðpÞ;

which implies

ξðxÞ ¼ ξþðxÞ þ ξ−ðxÞ

and

δ

δξ�ðxÞ
¼

Z
d3p
ð2πÞ3 e

−ip·x δ

δξ�ðpÞ
:

From Eq. (A4) then follows that the action of the Fermi
field ψðxÞ [Eq. (A1)] on the coherent state jξi≡ jξþ; ξ�−i is
given by

hξjψðxÞ ¼
�
ξ−ðxÞ þ

δ

δξ†þðxÞ

�
hξj;

hξjψ†ðxÞ ¼
�
ξ†þðxÞ þ

δ

δξ−ðxÞ
�
hξj:

APPENDIX B: THE QUARK CRDSE

In the bare-vertex approximation the CRDSE (25) for the
quark propagator Eq. (24) reduces in the chiral limit to the
following set of equations for the dressing functions:

Ap ¼ 1þ g2CF

2

Z
d3q
ð2πÞ3

1

Ωðpþ qÞΔq

�
Aq

�
X−ðp;qÞ

jVðp;qÞj2 þ jVðq;pÞj2
2

þ Xþðp;qÞ
jWðp;qÞj2 þ jWðq;pÞj2

2

�

þDq

�
X−ðp;qÞ

jVðp;qÞj2 − jVðq;pÞj2
2

þ Xþðp;qÞ
jWðp;qÞj2 − jWðq;pÞj2

2

��
ðB1aÞ

Bp ¼ ℜsp þ
g2CF

2

Z
d3q
ð2πÞ3

1

Ωðpþ qÞΔq
fBq½X−ðp;qÞℜ½Vðp;qÞVðq;pÞ� − Xþðp;qÞℜ½Wðp;qÞWðq;pÞ��

þ Cq½X−ðp;qÞℑ½Vðp;qÞVðq;pÞ� − Xþðp;qÞℑ½Wðp;qÞWðq;pÞ��g; ðB1bÞ
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Cp ¼ ℑsp þ
g2CF

2

Z
d3q
ð2πÞ3

1

Ωðpþ qÞΔq
f−Cq½X−ðp;qÞℜ½Vðp;qÞVðq;pÞ� − Xþðp;qÞℜ½Wðp;qÞWðq;pÞ��

þ Bq½X−ðp;qÞℑ½Vðp;qÞVðq;pÞ� − Xþðp;qÞℑ½Wðp;qÞWðq;pÞ��g; ðB1cÞ

Dp ¼ g2CF

2

Z
d3q
ð2πÞ3

1

Ωðpþ qÞΔq

�
Dq

�
X−ðp;qÞ

jVðp;qÞj2 þ jVðq;pÞj2
2

þ Xþðp;qÞ
jWðp;qÞj2 þ jWðq;pÞj2

2

�

þ Aq

�
X−ðp;qÞ

jVðp;qÞj2 − jVðq;pÞj2
2

þ Xþðp;qÞ
jWðp;qÞj2 − jWðq;pÞj2

2

��
; ðB1dÞ

where Δq is given by Eq. (33) and X�ðp;qÞ by Eq. (46).

APPENDIX C: THE VACUUM ENERGY DENSITY

When the full quark-gluon vertex Γ̄ [Eq. (21)] is replaced by the bare one Γ̄0 [Eq. (13), (18)], the remaining traces in the
energy density contributions [Eqs. (27) and (28)] can be worked out explicitly. One finds for the second piece of the single-
particle Hamiltonian equation (27)

eð1ÞD ¼ g2CF

Z
d3q
ð2πÞ3

d3ℓ
ð2πÞ3

X−ðq; ℓ Þ
ΔqΔℓΩðqþ ℓ Þ f½ðAq −DqÞðAℓ þDℓÞ þ BqBℓ −CqCℓ�ℜVðq;ℓ Þ þ ½BqCℓ þCqBℓ�ℑVðq; ℓ Þg

þ g2CF

Z
d3q
ð2πÞ3

d3ℓ
ð2πÞ3

Xþðq; ℓ Þ
ΔqΔℓΩðqþ ℓ Þ f½ðAq −DqÞBℓ þ ðAℓ þDℓÞBq�ℜWðq; ℓ Þ

þ ½ðAq −DqÞCℓ þ ðAℓ þDℓÞCq�ℑWðq; ℓ Þg ðC1Þ

with X�ðq; ℓ Þ given in Eq. (46). Furthermore, the contribution equation (28) from the kinetic energy of the gluons
reduces to

eqE ¼ g2CF

Z
d3q
ð2πÞ3

d3ℓ
ð2πÞ3

Aq þDq

Δq

Aℓ þDℓ

Δℓ

fX−ðq; ℓ ÞjVðq; ℓ Þj2 þ Xþðq; ℓ ÞjWðq; ℓ Þj2g:

APPENDIX D: THE QUARK GAP EQUATION

In the bare-vertex approximation one finds from the minimization of the energy density for the scalar kernel sp the
following equation:

jpjsp ¼ g2CF

2

Z
d3q
ð2πÞ3

1

ð1þ s2qÞΩðpþ qÞ
�
X−ðp;qÞVðp;qÞ½ð1 − s2pÞsq − 2spÞ� þ Xþðp;qÞWðp;qÞ½1 − s2p − 2spsq�

−
jpj

1þ s2p
½X−ðp;qÞV2ðp;qÞ½spðs2p − 3Þ þ sqð1 − 3s2pÞ� þ Xþðp;qÞW2ðp;qÞ½spðs2p − 3Þ − sqð1 − 3s2pÞ��

−
jqj

1þ s2q
½X−ðp;qÞV2ðp;qÞ½ð1 − s2pÞsq − spð1 − s2qÞ� − Xþðp;qÞW2ðp;qÞ½ð1 − s2pÞsq þ spð1 − s2qÞ��

�

þ g2CF

2

Z
d3q
ð2πÞ3

sp
1þ s2q

½X−ðp;qÞV2ðp;qÞ þ Xþðp;qÞW2ðp;qÞ�

þ g2CF

2

Z
d3q
ð2πÞ3

Fðp − qÞ
1þ s2q

½sqð1 − s2pÞ − p̂ · q̂ð1 − s2pÞ� ðD1Þ
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