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The mechanism of confinement in Yang-Mills theories remains a challenge to our understanding of
nonperturbative gauge dynamics. While it is widely perceived that confinement may arise from
chromomagnetically charged gauge configurations with nontrivial topology, it is not clear what types
of configurations could do that and how, in pure Yang-Mills and QCD-like (nonsupersymmetric) theories.
Recently, a promising approach has emerged, based on statistical ensembles of dyons/anti-dyons that are
constituents of instanton/anti-instanton solutions with nontrivial holonomy where the holonomy plays a
vital role as an effective “Higgsing” mechanism. We report a thorough numerical investigation of the
confinement dynamics in SUð2Þ Yang-Mills theory by constructing such a statistical ensemble of
correlated instanton-dyons.
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I. INTRODUCTION

The quantum chromodynamics, or QCD, is established
as the fundamental quantum field theory of strong nuclear
force underlying all of nuclear physics. Despite its great
success in describing an impressive variety of nuclear
phenomena in nature, a key aspect of QCD remains
mysterious and poses a great challenge to our under-
standing. While the theory has quarks and gluons as its
basic degrees of freedom in the Lagrangian, the colored
quarks and gluons are absent from the observed physical
spectrum in which the various color-singlet hadronic states
emerge instead. This phenomenon, often referred to with
the broad term “confinement” (see recent review in, e.g.,
[1]), occurs also in a wide variety of QCD-like theories and
notably in pure Yang-Mills theories. The latter fact makes it
obvious that confinement arises from the nonperturbative
gauge dynamics in the gluonic sector. It was suggested long
ago [2–4], based on analogy with superconductivity, that
the confinement may arise from chromomagnetically
charged and topologically nontrivial gauge configurations,
with the vacuum being a “dual superconductor” of such
magnetic objects (see review in, e.g., [5,6]). This scenario is

highly appealing and widely perceived to be a likely
mechanism for confinement. The idea was extensively
explored via lattice simulations as well as has been
concretely shown to work in certain supersymmetric
theories [7,8]. More recently, the idea of “dual super-
conductor” vacuum has been further advanced into a
“magnetic scenario” for the hot plasma phase in the
temperature regime above but near the transition temper-
ature Tc [9]: indeed, if there is a magnetic superconductor
below Tc, there should be a “precursor,” i.e., the normal
phase of thermal magnetic plasma just above Tc. There are
strong evidences from lattice simulations [10–12] for this
scenario and most interestingly such a magnetic component
is found to be crucial for explaining a number of key
transport properties of the near-Tc QCD plasma as mea-
sured from heavy ion collision experiments [13–15] (see,
e.g., [16] for a recent review). Despite the various progress
so far along this line of thought, it is nevertheless still
unclear what types of configurations could drive confine-
ment and how, in pure Yang-Mills and QCD-like (non-
supersymmetric) theories. It shall be mentioned in passing
that there exist a variety of interesting alternative ideas
about possible mechanism and possible topological objects
that may drive the confinement [17–21].
Let us elaborate a bit on the difficulty to identify the

relevant topological configurations for confinement in
these theories. Conventional instantons (as well as their
finite-temperature counterpart, the calorons) [22,23] are
well known topological objects and studied in detail (see
reviews in, e.g., [24,25]). However, these conventional
instantons/calorons only have trivial holonomy, that is,
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trivial Polyakov loop at spatial infinity jx⃗j → ∞ (see
Secs. A and B for a detailed discussion about holonomy),
which is in sharp contrast to the confining vacuum where
the holonomy is maximally nontrivial. Furthermore they
are color neutral with no chromomagnetic charge.
Therefore, such conventional instantons/calorons can not
be responsible for confinement. Another natural candidate
would be ’t Hoof-Polyakov type of magnetic monopole
(see, e.g., review in [26]). However, a crucial difference of
pure Yang-Mills or QCD (as compared with, e.g., George-
Glashow model or Seiberg-Witten therory) is that they do
not have adjoint scalar fields which would provide the
natural “Higgsing” on the spatial boundary, thus allowing
the construction of magnetic monopole solutions. Because
of this difficulty, one usually has to rely upon certain gauge-
fixing procedure to manifest the monopoles in the pure
Yang-Mills or QCD cases.
As it turns out, both difficulties are resolved recently in a

crucial new development: the construction of caloron
solutions with nontrivial holonomy and nontrivial topology
to the classical Yang-Mills equations, known as the KvBLL
calorons [27–29] (see Sec. C for a detailed discussion).
First of all, such new calorons by construction acquire the
necessary sensitivity to holonomy and thus are able to play
a role in the confinement dynamics. Even more non-
trivially, such a caloron is made of Nc different constituent
dyons (for SUðNcÞ theory) which are chrome-magnetically
charged and whose properties critically depend upon the
holonomy. In these solutions, the nontrivial holonomy
provides the needed nontrivial boundary constraints (which
would have to come from the adjoint scalar fields in
“Higgsed” theories). Owing to such important new fea-
tures, the KvBLL calorons with their dyon constituents
provide the unique topological configurations that could
potentially account for the nonperturbative dynamics
underlying confinement.
Based on the KvBLL solutions, a promising approach

has emerged for understanding confinement in a statistical
ensemble of dyons/anti-dyons arising from the constituents
of the KvBLL calorons. Early works on an uncorrelated
ensemble of these objects—to be called instanton-dyons
(following recent literature) from now on in the present
paper—already indicated that their contributions (alone) to
the holonomy potential tends to push the system toward
confining holonomy [30–32]. However it was later found
that such contributions would not be enough to overcome
the one-loop perturbative contributions to the holonomy
potential (which favors the trivial holonomy—see detailed
discussions in Sec. B). It was later found by Shuryak and
collaborators [33–37] that an effective dyon–antidyon
interaction with a short-range repulsive core (or in a
broader term, a strong dyon–antidyon short-range correla-
tion) appears necessary to enforce the confining holonomy
at low temperature. Effective model for a Coulomb plasma
of such dyons/antidyons was also constructed and shown to

give a reasonable qualitative description of the low temper-
ature T < Tc properties of Yang-Mills theories [38,39].
In this paper, we report a thorough numerical investigation

of the confinement dynamics in SUð2ÞYang-Mills theory by
constructing such a statistical ensemble of correlated instan-
ton-dyons. We present high precision results for the temper-
ature dependence of the holonomy potential, the order
parameter for confinement transition, the dyon ensembe
properties (densities and density-density correlations), as
well as the temporal and spatial Wilson loops. In particular,
we study the influence of the finite volume effect, the dyon–
antidyon correlations as well as the screening mass on the
confinement dynamics. Some of these results are consid-
erably improved as compared with previous studies and
many new results have not been previously reported.
The rest of the paper is organized as follows. In Sec. II,

we present the detailed construction of the correlated
instanton-dyon ensemble as well as the numerical proce-
dures. Our main results about the confinement dynamics in
such an ensemble are reported in Sec. III. Section IV then
focuses on examining the consequences of the key param-
eters in the ensemble construction. Finally, we conclude the
study in Sec. V. In addition a few Appendices are included
to explain some “background” information in detail and to
make the paper more self-contained for the convenience of
readers.

II. CONSTRUCTION OF CORRELATED
INSTANTON-DYON ENSEMBLE

A. The partition function

The construction of the partition function of the dyon
ensemble begins with rewriting the one-loop quantum
weight of a single KvBLL caloron in the limit of large
dyon separation Eq. (D7) (see Appendices C and D for
more details), namely the contribution of a pair of L andM
dyons, in the following way:

Z ¼ e−VPðνÞ=T
Z

ðd3rLfLÞðd3rMfMÞT6 detðĜÞ: ð1Þ

Here, the fugacities per dyon species are introduced as
fM ¼ ΓS2e−νSν8ν

3
−1 and fL ¼ ΓS2e−ν̄Sν̄8ν̄

3
−1. The PðνÞ is

the famous Gross-Pisarski-Yaffe result for perturbative
contributions while the det Ĝ is the contribution of one-
loop quantum fluctuation around one KvBLL caloron.
Extending this result to arbitrary number of L and M
dyons requires the inclusion of the appropriate metric of the
moduli space which, as of today, its explicit form has not
yet been found. Nevertheless, Diakonov and Petrov [30]
proposed an approximate metric by merging that of a
neutral cluster of dyons of different kind, namely, an L-M
pair, with that of dyons of the same kind (originally
proposed in [40]). Therefore, the full measure is approxi-
mated by the square of the determinant of a symmetric
matrix G like

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞp

≈ detðGÞ. Despite not being an
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exact solution, it possesses the interesting property that in
the limit of K well separated L-M pairs, the measure
factorizes into detðGÞ ¼ detðĜÞK , i.e., as the product of K
individual KvBLL caloron measures. It is thus straightfor-
ward to see that for a single L-M pair, the G matrix reduces
to Ĝ (Eq. (D5). In the SUð2Þ case, when the number of L
andM dyons are NL and NM respectively, the dimension of
this matrix G is ðNL þ NMÞ × ðNL þ NMÞ and its compo-
nents are given by:

Gmi;nj ¼ δmnδij

�
4πνm −

X
k≠i

2

Tjr⃗mi
− r⃗mk

j

þ
X
k

2

Tjr⃗mi
− r⃗lk j

����
m≠l

�
þ 2δmn

Tjr⃗mi
− r⃗nj j

����
i≠j

−
2

Tjr⃗mi
− r⃗nj j

����
m≠n

; ð2Þ

where r⃗mi
is the position vector of the ith dyon of kind m

(either L orM). Furthermore, it should be clear that similar
results can be obtained for antidyons.
As pointed out in [31], dyon–antidyon configurations are

not saddle points of the Yang-Mills action. The inclusion of
antiself-dual fields in the ensemble is done by factorizing
the measure into uncorrelated parts detðGDÞ detðGD̄Þ (D for
dyons and D̄ for antidyons) times a correlated contribution
e−VDD̄ , where VDD̄ is the action corresponding to dyon–
antidyon interactions. Classical interactions between dyon–
antidyon of the same kind was recently introduced in a
gradient flow study in [35]. Using the parametrization
found in [36], the potential takes the following form

VLL̄ ¼ −2ν̄S
�
1

ζL
− 1.632e−0.704ζL

�
;

VMM̄ ¼ −2νS
�

1

ζM
− 1.632e−0.704ζM

�
;

ζj ¼ 2πνjTrjj̄; ð3Þ

for ζj > ζcj and rjj̄ ¼ jr⃗j − r⃗j̄j. Below the limit ζj < ζcj , the
interaction is repulsive and the proposed core potential for
this region is given by

VC
jj̄ ¼

νjVc

1þ eðζj−ζ
c
j Þ
; ð4Þ

where Vc and ζcj are the two key parameters that quantify
the strength and range of the repulsive correlations between
dyon–antidyon pairs.
Other interactions that have to be accounted for include

the long-range forces due to the Abelian electric and
magnetic charges and the nonlinear terms in the field
strength tensor Fμν, given by

Vij ¼
S

2πTrij
ðeiej þmimj − 2hihjÞ; ð5Þ

where ej and mj are the electric and magnetic charges (see
Table II) and hj ¼ 1 for theM-type (anti)dyons while hj ¼
−1 for the L-type ones. As expected, this gives exactly
cancelled classical interaction between the L and M dyons
(as well as L̄ and M̄) that together make a KvBLL caloron
(owing to their BPS nature). On the other hand, there is
repulsive interaction for the LM̄ and ML̄ pairs, while
attractive interaction for the LL̄ and MM̄ pairs.
In the construction of the ensemble, one has to sum

over different number of (anti)dyons and also take into
account the many-body screening effect which is intro-
duced by means of a Debye screening mass MD. In doing
so, all Coulomb terms appearing in the partition function
(including those in the G matrices) are modified into
r−1 → r−1e−MDr. Combining Eqs. (3) to (5), the contribu-
tion from the interparticle interactions to the action in the
partition function is given by:

VDD̄ ¼

8>>>>>>>>><
>>>>>>>>>:

−
P
j;j̄
2νjS

�
1
ζj
− 1.632e−0.704ζj

�
e−MDrjj̄ if ζj > ζcj ; for LL̄;MM̄

P
i>j
j;j̄

VC
ij if ζj < ζcj ; for LL; L̄ L̄;MM; M̄ M̄; LL̄;MM̄

P
i;j̄

S
πTrij̄

e−MDrij̄ for M̄L; L̄M

0 for LM; L̄ M̄ :

ð6Þ

With all the above elements, one finally writes down the following form for the full partition function of the dyon–antidyon
ensemble:
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Z ¼ e−VPðνÞ=T
X
NM;NL;
NL̄;NM̄

1

NL!NM!NL̄!NM̄!

Z YNL

l¼1

fLT3d3rLl

YNM

m¼1

fMT3d3rMm

×
YNL̄

l̄¼1

fL̄T
3d3rL̄l̄

YNM̄

m̄¼1

fM̄T
3d3rM̄m̄

detðGDÞ detðGD̄Þe−VDD̄ ; ð7Þ

where the factorial terms are needed to avoid duplicate
counting of identical configurations with given numbers of
dyons and antidyons. By requiring neutrality condition, i.e.,
equal number of dyons and antidyons of the same kind, the
above expression can be further simplified into:

Z ¼ e−VPðνÞ=T
X
NL;NM

�ðfLVT3ÞNL

NL!

ðfMVT3ÞNM

NM!

	
2

× e−VT
3F ðT;νÞ; ð8Þ

where V is the 3D volume available and

e−VT
3F ðT;νÞ ≡

Z YNL;NM

l;m;l̄;m̄

d3rLl

V

d3rMm

V

d3rL̄l̄

V

d3rM̄m̄

V

× exp flog ½detðGDÞ detðGD̄Þ� − VDD̄g ð9Þ

is obtained after performing integrals over all dyon posi-
tions. Finally, using Stirling’s approximation logN! ≈
N logN − N þ log

ffiffiffiffiffiffiffiffiffi
2πN

p
and defining the dimensionless

dyon densities as nD ¼ ND=VT3, we rewrite Z as a sum of
weights running over number of dyons as

Z ¼
X
NL;NM

exp

�
−VT3

�
4π2

3
νν̄þ 2nL log

�
nL
fL

�

þ 2nM log

�
nM
fM

�
þ 2ðnL þ nMÞ þ

log ð4π2NLNMÞ
VT3

þF ðT; νÞÞ
	

≡ X
NL;NM

ZLM: ð10Þ

In this framework, there are three key parameters as
theoretical inputs: the screening mass MD, as well as the
strength parameter VC and range parameter ζcj for the
dyon–antidyon interaction potential. In principle these
parameters could be constrained by comparing relevant
observables from the dyon ensemble with lattice simula-
tions. Such quantitative comparison will be the goal of a
forthcoming study, while the present paper focuses on
qualitative question of demonstrating how the confinement
is driven to occur in the correlated dyon ensemble.

B. The Monte Carlo simulations

Let us now discuss the details of the Monte Carlo
simulations to be used for evaluating the dyon ensemble
partition function. Different from the implementation in
[34,36,37], in our simulation we used a flat geometry,
namely a box with periodic boundary conditions which
shall be a more “realistic” approach and a more direct way
to compare the results with, e.g., lattice simulations.
From Eq. (10), it can be seen that all explicit dependence

on the temperature T can be absorbed by rescaling rT → r,
VT3 → V, MD=T → MD and the free energy F=T ≡
− logZ → F. Since this simplifies the calculations, all
the simulations are done using such scaled dimensionless
variables. In doing so, the temperature T superficially
disappears from the explicit simulations. However, the
temperature dependence implicitly affects the system
properties through the running coupling constant in the
caloron action S, which at one loop level is given by (see
Appendix D)

SðTÞ ¼ 8π2

g2ðTÞ ¼
22

3
log

�
T
Λ

�
; ð11Þ

where Λ is the scale parameter in the regularization.
Therefore, by varying S as a parameter in the simulation,
one is essentially varying the system temperature. It is
straightforward to convert S into T=Λ. To further put
temperature in e.g. MeV unit, one would then have to
make a physical choice for the value ofΛ. For example, one
may choose Λ such that the critical temperature Tc matches
the lattice obtained value for SUð2Þ Yang-Mills theory.
Once Tc is fixed, one can then measure temperature T in
terms of T=Tc (note this is equivalent to specifying the
ratio Tc=Λ).
The computation of all the observables are performed

through Monte Carlo simulations using the well known
Metropolis-Hastings algorithm. Each configuration is gen-
erated by first randomly varying the 3D positions of a
single dyon or antidyon of each kind (and accounting for
the periodic boundary conditions), then applying the
acceptance algorithm, and moving to the next set of
dyons/antidyons by repeating the same procedure. Once
all positions have been swept, we then move to compute
the observables with this new configuration and repeat all
over again until the ensemble has been thermalized with
enough statistics. It has been found that after about 2000
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Monte Carlo configurations, the system is typically stabi-
lized, after which the ensemble average would be calcu-
lated with the 10000 subsequent new configurations. The
determined autocorrelation time was close to 5 configura-
tions; therefore, the observables are averaged over 2000
configurations. On Fig. 1 we compare the free energy
density calculated with a smaller number of Monte Carlo
configurations for both confined and deconfined phases.
The results are obviously consistent with each other and the
small discrepancy between the two data sets is merely at a
level of approximately 0.54% in the order parameter
calculation hL∞i. This comparison clearly demonstrates
that with 12000 configurations one obtains very reliable
results with rather small statistical uncertainty.
One technical issue in the Monte Carlo sampling process

is about the measure factors detðGÞ. As it is an approxi-
mation to the actual moduli space metric, it may happen
that some of the eigenvalues of the G matrices become
negative thus violating the positive definiteness of the
metric. This issue has been addressed in detail by
[31,38,41]. To avoid configurations with negative eigen-
values in the simulations, the approach taken was to use the
Metropolis-Hastings algorithm to reject such “wrong”
configurations by assigning them a small statistical weight,
i.e., if either GD or GD̄ has at least one negative eigenvalue,
then the weight expðlog detðGÞÞ is substituted by e−100,
which was found to be enough to suppress these and to
ensure an ensemble of sufficient configurations with all
positive eigenvalues. It may be noted that this procedure
effectively introduces a modification of the action, the
impact of which is currently not well controlled and
requires further investigation in the future.
One of the most important quantities to be calculated

from the simulations is the holonomy potential or free
energy density F=V at a given temperature. Due to the way
it is defined, the calculation through Monte Carlo is not
straightforward. However, there is a common method to
evaluate it [35] which wewill adopt here. Note that the only
term that needs to be evaluated from the Monte Carlo

configurations is e−VF since it is the only one depending
upon spatial positions of the dyons/antidyons, while all
other terms do not have such dependence. In the calcu-
lation, according to the standard thermodynamic integra-
tion, one introduces an auxiliary parameter λ as

e−VF λðλÞ ¼
R
Dre−λSr

V2ðNLþNMÞ ; ð12Þ

where

Sr ≡ VDD̄ − log ½detðGDÞ detðGD̄Þ�; ð13Þ

and Dr is just the integration measure over all dyons’ and
antidyons’ positions (for a total of 2ðNL þ NMÞ of these
particles in the simulation). It should be emphasized that for
λ ¼ 1, the above Eq. (12) is exactly equal to Eq. (9). The
normalization factor V2ðNLþNMÞ in the denominator above,
is not introduced arbitrarily but rather comes directly from
the construction of the partition function by correctly
counting the “1=V” factors in the Eq. (9). This proper
normalization factor also automatically gives F λð0Þ ¼ 0.
Then, via standard Monte Carlo simulation procedure, one
can compute the ensemble average of the following
quantity:

hSriðλÞ≡
R
DrSre−λSrR
Dre−λSr

¼ V
∂F λ

∂λ : ð14Þ

Lastly, by integrating out the λ dependence of the above,
one arrives at the desired free energy:

F ¼ 1

V

Z
1

0

dλhSriðλÞ ¼ F λð1Þ; ð15Þ

given that F λð0Þ ¼ 0 by definition. We emphasize again
that for λ ¼ 1, Eq. (12) reduces to Eq. (9), where the
denominator V2ðNLþNMÞ appears naturally from the con-
struction of the partition function [Eqs. (7) to (9)], allowing

-1.2

-1

-0.8

-0.6

-0.4

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

(F
/V

)T
-4

ν

T/Tc= 0.738
T/Tc= 0.846

T/Tc= 0.970
T/Tc= 1.112

-0.4

-0.2

 0

 0.2

 0.4

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

(F
/V

)T
-4

ν

T/Tc= 1.274
T/Tc= 1.460
T/Tc= 1.674
T/Tc= 1.918
T/Tc= 2.199

FIG. 1. Free energy density F=V as a function of holonomy ν at various values of temperature. The corresponding action parameters,
from bottom top, are S ¼ 5, 6, 7, 8 (left) and S ¼ 9, 10, 11, 12, 13 (right).
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to set F λð0Þ ¼ 0 unambiguously, regardless of the dyon
numbers NL and NM.
Finally, we discuss the choice of the parameters in this

framework. For most of the results to be presented, we use a
(dimensionless) spatial volume of the box to be V ¼ 43.37.
After several tests, it was determined that the optimal range
of (anti)dyon density of each kind was nD ∈ ½0; 0.5�
(corresponding to ND ∈ ½0; 22� number of (anti)dyons).
Configurations with larger nD were found to have a rather
small contribution to the partition function; therefore,
discarded in the simulations (see Sec. IVA). We choose
the three key parameters as Debye mass MD ¼ 2, the core
potential strength Vc ¼ 20 and size ζcj ¼ 2; however, in
Secs. IVA to IV C, we will vary these quantities to explore
the finite volume effects as well as the influence of the three
key parameters.

III. CONFINEMENT-DECONFINEMENT
TRANSITION

A. The holonomy potential

It is known from lattice simulations that the SUð2Þ pure
gauge theory has a certain critical temperature Tc, with a
confined phase at T < Tc, a deconfined phase at T > Tc,
and a 2nd order phase transition connecting the two phases
at T ¼ Tc. The relevant order parameter is the expectation
value of the Polyakov loop at spatial infinity L∞ (—see
Section B) which is related to holonomy parameter ν by
hL∞i ¼ cosðπνÞ. An expectation value of L∞ ¼ 0 or
ν ¼ 1=2 would correspond to the low temperature Z2

center-symmetric, confined phase.
A first important check is to examine whether such

expected phase transition indeed occurs in the dyon
ensemble. In order to see that, one needs to compute the
holonomy potential, that is, the free energy density as a
function of the holonomy FðνÞ ¼ −T logZ at varied
temperature. Such holonomy potential determines the
Polyakov loop dynamics and is a crucial input for a class
of chiral models to incorporate confinement dynamics
[42–45]. For any given temperature, the minimum of the
holonomy potential determines the thermodynamically
realized expectation value of the holonomy value which
as order parameter thus tells us about the different phases of
the theory. As mentioned earlier, the temperature depend-
ence of all the observables in the ensemble comes from the
instanton action S [Eq. (11)] which is an input parameter in
the simulation. Figure 2 shows the free energy density for
S ¼ 5; 6;…; 13. It is found that for S ¼ 5 ∼ 7, the mini-
mum of the free energy density lies at νmin ¼ 0.5, namely
maximal non-trivial holonomy corresponding to the con-
fined phase. For S > 7, the shape of F=V becomes that of a
symmetric double well potential with two minima located
at νmin < 0.5 and νmin > 0.5 in a symmetric way. It shall be
mentioned that as expected for an SUð2Þ pure gauge theory,
F=V is symmetric under the interchange ν → ν̄ ¼ 1 − ν,

and this feature has indeed been validated explicitly in the
numerical calculations. So the results clearly reveal a
confined phase at low temperature while a deconfined
phase at high temperature.
To more accurately locate the critical action (or equiv-

alently the critical temperature Tc), we further run the
simulation for S ¼ 7.25, 7.5 and 7.75. As shown on Fig. 3,
for S ≥ 7.5 the Z2 symmetry is clearly broken and the
minimum of the free energy density is shifted away from
the ν ¼ ν̄ ¼ 0.5. For S ¼ 7.25, more points were necessary
to examine the minimum, and despite the potential on
Fig. 2 exhibits a very flat dependence around ν ¼ 0.5, the
minimum was actually found around νmin ≈ 0.453. Thus, at
the present numerical precision, we determine the critical
temperature at Sc ¼ 7.22, which fixes our scale parameter
from Eq. (11) at Λ ¼ 0.373Tc and allows us to express all
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FIG. 2. Free energy density F=V as a function of holonomy ν at
several values of temperature near the phase transition point, with
the corresponding action parameters S ¼ 7.00, 7.25, 7.50, 7.75,
from bottom to top.
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temperature dependent quantities in terms of the
ratio T=Tc.
We next come to the expectation value hL∞i ¼ cosðπνÞ,

which can be determined from the position of the minimum
of the holonomy potential. This is done by fitting the free
energy density near the minima to a quadratic function with
9 to 15 points and then, through a derivative test on the fit,
finding its minimum accurately.
As an important and insightful check of the role of L∞ as

an order parameter for the expected 2nd order phase
transition, we quantitatively examine whether its depend-
ence on temperature near the transition point follows the
proper universality class. The well known Svetitsky-Yaffe
conjecture [46], relates SUð2Þ pure gauge theory in (3þ 1)
dimensions to the 3D Ising model of ferromagnetism by
categorizing both in the same universality class, which has
been proven several times in different numerical studies
such as [47–52]. In this sense, L∞ becomes the analog of
the magnetization, thus its critical behavior must follow the
same universal power law

hL∞i ¼ bðT=Tc − 1Þβ½1þ dðT=Tc − 1ÞΔ�; ð16Þ

with b and d the fitting parameters.
Using the well established values of the critical expo-

nents of the 3D Ising model β ≈ 0.3265ð3Þ and Δ ≈
0.530ð16Þ [53], on Fig. 4 we show the fitted curve obtained
from the numerical results of the dyon ensemble in the
near-Tc region, namely 1 ≤ T=Tc ≤ 1.274. The very low
value of χ2 ¼ 1.44 × 10−4 of the fit (which is partly due to
the sizable error bar because of limited statistics) suggests
an almost perfect agreement between the confinement/
deconifnemnt phase transition behavior with the antici-
pated critical behavior of the 3D Ising model’s 2nd order
phase transition. It also demonstrates qualitative agreement
with the lattice results from [54,55]. For completeness and
comparison, we also show the fit using the mean-field

critical exponent βmf ¼ 1=2, which shows a qualitatively
similar trend but a significantly larger value of χ2 ¼ 0.13.
The comparison favors the former fitting and implies that
the transition from the dyon ensembles captures the
beyond-mean-field critical behavior of a 2nd order phase
transition.
We now report the results for the expectation values of

dyon densities, shown in Fig. 5. One can see that at T < Tc,
the L and M type densities are equal as expected. In the
confined phase, the preferred holonomy corresponds to the
maximally nontrivial one where both dyon types have
the same core radius as well as equal action share and
therefore equal weight in the partition function. For
T > Tc, the prefered holonomy starts to shift away from
the symmetric point towards the trivial holonomy (ν → 0 in
this case) and the M dyons become larger and larger.
Recalling from the KvBLL caloron solution (see
Appendix C), in the limit of trivial holonomy, the L dyon
disappears and the field becomes that of the Harrington-
Shepard caloron. A similar situation is observed in the
ensemble as temperature is increased, with the L dyon
density decreasing much faster than M type. The total
density of all these magnetically charged objects demon-
strates a strong temperature dependence with very rapid
increase from high temperature toward near Tc regime, in
consistency with the magnetic scenario.

B. The dyon and antidyon spatial correlations

The interactions between dyons and antidyons are essen-
tial for the properties of the ensemble and in particular for
driving the system toward confinement at high dyon density
(i.e., low temperature) regime. The effect of such interactions
can be illustrated by examining the spatial density correla-
tions among various pairs of dyons/antidyons, as defined in
the following:

GDD0 ðjx⃗jÞ ¼
1
V h
PND

i¼1

PND0
j¼1Θδxðrij − jx⃗jÞi

nDnD0 4π
3
½ðjx⃗j þ δxÞ3 − jx⃗j3� ; ð17Þ
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which is normalized to that of an uncorrelated ideal gas and
where the step function ΘδxðξÞ ¼ 1 for 0 < ξ < δx and 0
otherwise. A value of unity for the GDD0 would indicate a
situation without correlations as is characteristic for a free
gas ensemble. The numerical results are shown in Figs. 6

and 7 for all different (anti)dyon pairs combinations, each
computed at one temperature value below Tc and another
one above Tc. These results are obtained under equilibrium
conditions for given temperature, i.e., with holonomy
parameter ν being the one at minimal free energy and the
number of dyons ND fixed at the ensemble averaged values.
The presence of the repulsive core is clearly observed for

all the dyon pairs, besides the LM for which there is none.
At distances right above the core size ζcj=2πνj the corre-
lation functions seem to have a small bump that rapidly
goes to unity at larger distance, indicating at a short-range
correlation pattern arising from the repulsive core.

C. The Polyakov loop correlator

Besides the Polyakov loop expectation value itself,
another important “indicator” of the confinement/
deconfinement transition is the static (quark-antiquark)
potential which essentially is evaluated from a temporal
Wilson loop or equivalently the spatial correlator of the
Polyakov loop. In particular the so-obtained static potential
is expected, at large spatial separation, to exhibit a linearly
rising behavior in the confined phase while to level off in
the deconfined phase. It is important to evaluate this
observable in the dyon ensemble.
The computation is however technically tricky in the

present framework. In the large distance limit (jx⃗j → ∞),
the A4 component of the dyon fields becomes Abelian
(see Appendix C). However, the total A4 of the ensemble
(far away from their individual cores) cannot be given
by a superposition of the individual fields of all dyons yet.
Since the asymptotic condition A4jjx⃗j→∞ ¼ πντ3 must be
satisfied, one has to eliminate the holonomy parameter
term in the gauge field associated with individual dyon
by means of the time dependent gauge transformation
U ¼ expð−iπνx4τ3Þ, after which one can then superimpose
all dyonic fields and finally restore the asymptotic term
with the inverse gauge transformation U† [35]. This
procedure leads to

A4ðx⃗Þ ¼
τ3

2
½2πνþ lðx⃗Þ�; ð18Þ

where lðx⃗Þ is the sum of all Coulomb terms of dyons and
antidyons

lðx⃗Þ≡ XNL;NM

l;m

�
1

jx⃗ − r⃗Ll
j −

1

jx⃗ − r⃗Mm
j

þ 1

jx⃗ − r⃗L̄l
j −

1

jx⃗ − r⃗M̄m
j
�
: ð19Þ

At finite temperature, the color averaged heavy quark-
antiquark free energy Favg

qq̄ is defined through the expect-
ation value of traced Polyakov loop correlators (see
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FIG. 6. 2-particle spatial correlations for dyon–dyon and dyon–
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Appendix B). For quarks in the fundamental representation,
from Eqs. (18) and (19) and the definition of the Polyakov
loop, it is straightforward to see that

1

2
TrLfðx⃗Þ ¼ cos

�
πνþ 1

2
lðx⃗Þ

	
: ð20Þ

Thus, the color averaged static quark-antiquark potential in
the dyon ensemble is given by

e−F
avg
qq̄ ≡ 1

4
hTrL†fðx⃗ÞTrLfðy⃗Þi

¼


cos

�
πνþ 1

2
lðx⃗Þ

	
cos

�
πνþ 1

2
lðy⃗Þ

	�
: ð21Þ

The above static potential, though, is different from a
color-singlet static potential which is the one relevant for
linear behavior at large separation. According to the color
decomposition 2 ⊗ 2̄ ¼ 1 ⊕ 3, an SUð2Þ quark-antiquark
pair can interact through a singlet and a triplet channel [56],
meaning that Favg

qq̄ is decomposed into

eF
avg
qq̄ ¼ 1

4
e−F

1
qq̄ þ 3

4
e−F

3
qq̄ ; ð22Þ

where the singlet free energy is obtained from the
following:

e−F
1
qq̄ ≡ 1

2
hTr½L†fðx⃗ÞLfðy⃗Þ�i

¼


cos

�
lðx⃗Þ − lðy⃗Þ

2

	�
ð23Þ

and the triplet contribution follows trivially from Eq. (22).
Due to the periodic boundary conditions imposed in our

geometry, the maximum allowed distance is jx⃗ − y⃗j ≤ R=2,
where R ≈ 3.51 is the size of the box of volume V ¼ 43.37.
To compute these observables, a total of 3000 Monte Carlo
configurations are used for each combination of number of
dyons (NL, NM ¼ 0;…; 22). To account for isotropy, for
each interquark separation we averaged the contribution to
the Polyakov loop correlator from 13 different orientations.
At each temperature, the holonomy parameter ν is fixed to
be the equilibrium value that the one which minimizes the
ensemble free energy. In Figs. 8 and 9, we show the color
averaged potential and its singlet and triplet contributions
for the confined and deconfined phases at T=Tc ¼ 0.970
and T=Tc ¼ 1.674 respectively. In Fig. 10 we show the
singlet channel free energy alone as a function of interquark
separation jx⃗ − y⃗j for several temperatures below and above
Tc. It may be noted that the color-averaged static potential
above Tc appears not fully saturated at large distance, due
to two factors. The first is the finite volume effect (as will
be discussed later in Sec. IV. A) which would limit the
largest possible distance we could explore. The second is
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that in the high temperature deconfined phase, the pertur-
bative thermal gluons (which are absent in the current
framework) would contribute more and more importantly
with increasing temperature to the screening of the static
potentials.
An interesting comparison is with the static potential of

quarks and antiquarks in the adjoint representation, in
which case no linear rising at large distance is expected as
the gluons (themselves being adjoint) can screen out the
potential. Following [44], one can obtain the adjoint static
potential via the following relation with the fundamental
one Lf:

La
ij ¼

1

2
TrðτiLfτjL†fÞ; ð24Þ

where τi are the Pauli matrices. Given that L ∈ SUð2Þ, the
fundamental representation is generally defined as

Lf ¼ a01þ iajτj; ð25Þ

with aμaμ ¼ 1. Thus Eq. (24) can be rewritten as

La
ij ¼ 2

�
a0akεijk þ aiaj þ δij

�
a20 −

1

2

�	
; ð26Þ

and it is easy to see that its trace is expressed in terms of the
fundamental one as

TrLaðx⃗Þ ¼ jTrLfðx⃗Þj2 − 1: ð27Þ

Therefore the adjoint static quark-antiquark free energy is
then given by

e−F
a
qq̄ ¼ hTrL†aðx⃗ÞTrLaðy⃗Þi

hjTrLað0Þj2i : ð28Þ

Noticewe have included a normalization factor hjTrLað0Þj2i
in the correlator such that Fa

qq̄ ¼ 0 at jx⃗ − y⃗j ¼ 0. The
resulting potentials are shown in Fig. 11 for different
temperatures.
As pointed out already, at large separation in the

confined phase, one expects the (fundamental representa-
tion) singlet static potential to have a linear rising behavior
of the following form:

Fqq̄jjx⃗−y⃗j→∞ ≈ σjx⃗ − y⃗j; ð29Þ

where σ is the so called string tension. This is clearly
observed in the fundamental representation (Fig. 10) at
T=Tc < 1. However, at temperatures above Tc, the slope σ
drops toward zero, as expected. In Fig. 12, we show the
extracted string tensions for the singlet potential for several
temperatures. In extracting the slope, we use linear fits for
the large distance part but ignore the “curved” tails

observed at the largest distances, which are most likely
due to finite volume effects (see Sec. IVA for an extended
discussion). It may also be mentioned that our results show
a relatively slow decrease of σ above Tc, an effect which
may also be due to finite volume issues. In contrast, the
adjoint static potential does not show any linear rising at
large separation. In short, our results from the dyon
ensemble for the static quark-antiquark potentials in both
representations are consistent with the expected behavior of
an SUð2Þ pure gauge theory.

D. The spatial Wilson loop

Another interesting quantity to explore is the spatial
Wilson loop. It is known that the spatial Wilson loop at
finite temperature shows area law behavior with a finite
spatial string tension σs both below and above Tc and thus
by itself does not serve as an “indicator” of confinement
transition [57–60]. Nonetheless, the restoration of Lorentz
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symmetry [Euclidean Oð4Þ] at T → 0 suggests that in this
limit, σs should coincide with the string tension of the static
potential Eq. (29) extracted from Polyakov loop correlators.
The SUð2Þ traced spatial Wilson loop is defined as

WC ≡ 1

2
TrP exp

�
i
I
C
dxiAiðxÞ

	
: ð30Þ

In the gauge where A4ðxÞ is diagonal (see Appendix C),
the only nonvanishing spatial component of the dyon fields,
in the asymptotic limit, is

Aj
ϕðx⃗Þ ¼ mj

tan θ
2

r
τ3

2
; ð31Þ

where mj ¼ �1 is the corresponding magnetic charge
(Table II) and r ¼ ffiffiffiffiffiffiffiffi

xixi
p

. The Dirac string singularity
along the negative x3-axis, although a gauge artifact, might
be an inconvenience for the numerical simulations.
Therefore, for computing WC it is more suitable to use
the corresponding magnetic field (instead of the gauge
potential). For this, the Abelian Stokes theorem can be used
to rewrite the spatial Wilson loop in the so called “Abelian
dominance” approximation [61]

WC ≈
1

2
Tr exp

�
i
Z
AC

daiBiðxÞ
	
; ð32Þ

where Bi ≡ 1
2
εijkFjk and AC is the area enclosed by a

rectangular contour C. Therefore, the corresponding mag-
netic field to Eq. (31) is

Bj
r ¼ mj

r2
τ3

2
; ð33Þ

and Bϕ ¼ Bθ ¼ 0. The total field strength from the whole
ensemble will thus be

Biðx⃗Þ ¼
τ3

2

XNL;NM

l;m

�ðx⃗ − r⃗Ll
Þi

jx⃗ − r⃗Ll
j3 −

ðx⃗ − r⃗Mm
Þi

jx⃗ − r⃗Mm
j3

−
ðx⃗ − r⃗L̄l

Þi
jx⃗ − r⃗L̄l

j3 þ
ðx⃗ − r⃗M̄m

Þi
jx⃗ − r⃗M̄m

j3
	
: ð34Þ

It is interesting to examine whether the spatial Wilson
loop computed from the dyon ensemble will follow the area
law in both confining and deconfined phases, i.e.,

hWCi ∝ e−σsAC : ð35Þ

In Fig. 13, the negative logarithm of hWCi in the funda-
mental representation is plotted as a function of the spatial
loop area AC, which indeed demonstrates an almost linear
rising behavior at large contour areas.

Recalling the units used in this work, the string tension
obtained here is dimensionless after rescaling all quantities
by temperature. To restore physical units, one makes the
change σs → σs=T2. As has been established before [59],
σs increases with increasing T, however, σs=T2 should
decrease with increasing temperature. Such a trend is
consistent with our results from dyon ensemble. Finally,
we have also examined the spatial Wilson loop for the
adjoint representation, shown in Fig. 14. It is observed that
the curve rises rapidly with loop area and reaches a plateau
much faster than that of Fa

qq̄, again an indication of the
screening effects for adjoint sources.

IV. DISCUSSIONS

A. Finite volume effects

A rigorous study of all thermodynamic quantities in
principle requires an infinite volume limit, which is
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obviously impossible for any realistic numerical simula-
tions. In the case of the present study on the dyon ensemble,
using a larger volume requires an increased number of
dyons/antidyons in the simulations thus costing signifi-
cantly more computing power. A practical approach would
be to examine the finite size effect by perform tests with
increasing volume of the box. In this subsection we
compare results obtained with two and three times the
originally used volume, denoted as V0 ¼ 43.37.
One important feature to check is the (relative) contri-

bution from various terms ZLM in the partition function Z
Eq. (10). Note that for different volumes, each term with
fixed number of dyons/antidyons NL;M would have differ-
ent density. The better way to compare results computed
with different volume would be to examine the contribution
from given dyon/antidyon densities. In Figs. 15 and 16, we
show how the contribution to partition function (from
individual fixed-density terms in the ensemble sum) is
changed with the increased volume. As expected, the
maximum peak of the distribution becomes sharper around

the most probable densities. Most importantly the location
of the maximum does not change much with increased
volume. Table I summarizes and compares numerical
values of ensemble averages of the dyon densities at
different temperatures as well as the free energy density
for νmin obtained at the three different volumes. It can be
seen that going from V0 up to 3V0, there is a small shift

TABLE I. Volume dependence of the free energy density and
ensemble averages of dyon densities at several temperatures, for
V ¼ V0, 2V0 and 3V0 (with V0 ¼ 43.37) respectively.

T=Tc V0 2V0 3V0

F
VT4 0.970 −0.7077ð7Þ −0.7782ð6Þ −0.8271ð7Þ

1.274 −0.3713ð10Þ −0.3977ð8Þ −0.4227ð9Þ
hnLi 0.970 0.253(11) 0.260(19) 0.289(35)

1.274 0.063(4) 0.066(7) 0.069(12)
hnMi 0.970 0.253(11) 0.264(19) 0.259(31)

1.274 0.165(10) 0.165(16) 0.172(29)
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(at few percent level) of the free energy density while small
changes in the dyon densities. Such comparison clearly
demonstrates that our thermodynamic results are quite
stable with increasing system volume, which is an indica-
tion that our results shall be a very good approximation to
the thermodynamic limit.
The finite volume also bears influence on the evaluation

of spatial correlation observables, in particular the static
quark-antiquark potential. As mentioned in the previous
section, it exhibits unnatural behavior near the largest
distances that are allowed by the finite volume. To test if
this could indeed be a consequence of the finite volume,
we’ve computed these observables with enlarged volume
for comparison. In Fig. 17 we show the results of the singlet
channel potential calculated in a box twice the volume of
the original volume V0. For comparison, we also include
the results from the original volume. One can see that
indeed, the curved tails only appear at the edge of the box
and at intermediate distances both potentials match sub-
stantially well. This comparison justifies our previous
extraction of string tension via linear fit in intermediate
distance regime and do suggest that for such spatial
correlations, a significantly larger volume may be needed
for their accurate evaluation.

B. The influence of dyon–antidyon
short-range correlation

A key ingredient in the confinement mechanism of dyon
ensemble is the repulsive core potential VC

jj̄. As defined in
Eq. (4), there are two parameters which quantify such
interaction: Vc is the strength and ζcj the size of the core. It
is important to understand the influence of these parameters
on the various observables. In Figs. 18 and 19 we show the
free energy density as a function of ν for different values of
Vc at both low and high temperatures. A general observa-
tion is that a larger core strength Vc always favors more the
confining holonomy ν ¼ ν̄ ¼ 1=2. A smaller Vc, on the

other hand, weakens the correlation and makes confine-
ment harder to occur. Indeed for the Vc ¼ 10 case, even
with the lowest temperature we explore, the system is still
in the deconfined phase. These results also imply that the
critical action Sc needed for the confinement transition will
shift toward larger values with increasing Vc.
In a similar fashion, a change in the core size parameter

ζcj , will also result in considerable effect on the behavior of
the free energy density.
To investigate the influence of this parameter, we have

computed the ν dependence of the free energy density for
ζcj ¼ 1.5, 1.75 and 2.5 (in comparison with the standard
choice of ζcj ¼ 2) with the results shown in Figs. 20 and 21
for both low and high temperatures. (Due to the finite
volume limitation, it is technically difficult to explore even
larger core size values.)
As can be seen, when the core size is decreased, the free

energy density’s minimum shifts further and further away
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from the confining holonomy value ν ¼ ν̄ ¼ 1=2. If the
core size is too small then the system would be in
deconfined phase even at the low temperature value
computed here. With a large core size, the system could
maintain a holonomy value near the confining one even at
high temperature. The comparison clearly demonstrates the
importance of the repulsive core. It is a strong repulsive
core that drives the system toward favoring the confining
holonomy at low temperature.

C. The Debye screening mass

Finally, we investigate another important parameter for
the ensemble, namely, the Debye mass MD used to
regularize the large distance behavior of the Coulomb
terms and therefore to account for the screening effect. This
parameter plays an important role in controlling the
contributions to the free energy from the long range

Coulomb interactions among the dyons/anti-dyons. To
see its effect, we compare the free energy density versus
holonomy from dyon ensembles with three different
choices of the MD in Figs. 22 and 23 at both low and
high temperatures. The results show that a smaller screen-
ing mass would disfavor the confining holonomy while a
larger screening mass would help strengthen the confine-
ment. This could be understood as follows: with a large
screening mass the contribution to the free energy from
many-body long-range Coulomb interactions get sup-
pressed and thus the contribution from the short range
correlations via the repulsive core, which essentially drives
confinement, become relatively more important.

V. CONCLUSION

Confinement is a remarkable nonperturbative phenome-
non in pure Yang-Mills and QCD-like theories. The
mechanism of confinement remains a significant challenge
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to our understanding and is generally believed to be a
consequence of certain nontrivial topological configura-
tions of the gluonic sector. The recently found KvBLL
caloron solutions with nontrivial holonomy, consisting of
constituent dyons/antidyons, have provided a concrete and
promising path of investigation. In this paper, we have
constructed a statistical ensemble of such correlated
instanton-dyons and performed a thorough numerical study
of its various properties for the SUð2Þ Yang-Mills theory.
Our main conclusion is that such an ensemble correctly
produces the various essential features of the confinement
dynamics from above to below the transition temperature.
These features include the evolution of holonomy potential
with temperature, a second order phase transition in terms
of the order parameter (Polyakov loop expectation value),
the linear static quark-antiquark potential at large distance,
etc. We have also found that the confinement dynamics is
very sensitive to both the implemented short-range dyo-
nanti-dyon correlations and the Debye screening effect in
the many-body ensemble, by quantitatively investigating
how the holonomy potential changes with these parameters.
Given such success, it appears reasonable to believe that the
ensemble of correlated instaton-dyons may indeed hold the
key of confinement mechanism. The natural next steps of
investigation would be the extension of the present frame-
work toward the SUð3Þ case as well as toward the inclusion
of dynamic fermions thus allowing the study of nontrivial
interplay between the confinement transition and the
spontaneous chiral symmetry breaking, which we shall
report elsewhere in the future.
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APPENDIX A: HOLONOMY, POLYAKOV LOOP,
AND CENTER SYMMETRY

The classification of fiber bundles is an interesting topic
in the geometry. Holonomy group, which describes the
vector parallel transportation around closed loops, is one of
tools to characterize the connection structure of a bundle. In
gauge field theory the Wilson loop plays the same role as
holonomy for gauge connections

W½Aμ� ¼ P exp

�
i
I

dxμAμðxÞ
�
: ðA1Þ

In the imaginary-time formalism of finite temperature
field theory the temporal direction is compactified to a
circle of radius ð2πTÞ−1, where T is the temperature.
Therefore, the holonomy could be defined around this
loop as

L½Aμ� ¼ P exp

�
i
Z

1=T

0

dx4A4ðx⃗; x4Þ
�
; ðA2Þ

which is the so-called Polyakov loop. Here A4 is an element
of Lie algebra suðNÞ. And it could have different forms in
different representations. Practically the Polyakov loop is
very useful in the study of phase transition at finite
temperature. The “condensate” of Polyakov loop serves
as the order parameter of the confinement-deconfinement
transition in the pure Yang-Mills theory.
To relate the fundamental quark confinement with the

Polyakov loop it is intuitive to consider the free energy of a
single static color charge, i.e., a quark with infinite mass [1]

e−Fq=T ¼ Trqe−H=T=Tre−H=T

¼
P

nhΨnð1 quarkÞje−H=T jΨnð1 quarkÞiP
nhΨnð0 quarkÞje−H=T jΨnð0 quarkÞi

: ðA3Þ

From the view point of path integral formalism the
numerator is just an infinitely heavy quark propagating
from ðx⃗; 0Þ to ðx⃗; 1=TÞ. Considering the kinetic part
suppression due to the large mass the only contribution
should come from the gauge field term which is equivalent
to the Polyakov loop up to a constant

e−Fq=T ∝ hTrLi: ðA4Þ

Clearly, the quark confinement, which corresponds to
Fq ¼ þ∞, will induce hTrLi ¼ 0. Otherwise hTrLi ¼ 1

if the quark is totally free. In this sense the Polyakov loop
could be treated as a order parameter for the confinement
deconfinement transition in the pure Yang-Mills theory.
And it is also apparent that the intension of confinement is
much more than the condensate of Polyakov loop. More
information could be revealed by studying the topological
details of it.
In the fundamental representation at spatial infinity up to

a global transformation [30,31]

L ¼ diagðe2πiμ1 ; e2πiμ2 ;…; e2πiμN Þ: ðA5Þ

Generators of SUðNÞ group are all traceless, so eigenvalues
should satisfy

μ1 þ μ2 þ � � � þ μN ¼ 0: ðA6Þ
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With a global transformation we could order them as

μ1 ≤ μ2 ≤ … ≤ μN ≤ μNþ1 ≡ μ1 þ 1: ðA7Þ

And in this paper the term holonomy will be used
especially to call the set fμmjm ¼ 1; 2;…; Ng. The hol-
onomy is said to be trivial if L is in the center group ZN .
Because ZN only has N one-dimensional complex irreduc-
ible representations, there are N choices for the trivial
holonomy

μm ¼
�
k=N − 1 when m ≤ k

k=N when m > k
;

where k ¼ 1;…; N. Without triviality constraint there
would be lots of choices for the holonomy. A typical
nontrivial one is the so-called “maximally nontrivial” one

μm ¼ −
1

2
−

1

2N
þm
N
: ðA8Þ

Obviously, this is an equidistant one which yields
to TrL ¼ 0.
Phase transitions often involve symmetry breaking or

restoration. So it is for the confinement/deconfinement
transition. With the definition of the Polyakov loop we can
see that its condensate is the order parameter for the center
symmetry. In finite temperature field theory the operation
of the center symmetry is defined through the twisted gauge
transformation, which satisfies the boundary condition
along the imaginary-time dimension

Uðx⃗; x4 þ T−1Þ ¼ zUðx⃗; x4Þ; ðA9Þ

where z ∈ ZN which is in the center of gauge group SUðNÞ.
It could be checked that the Yang-Mills lagrangian density
is invariant under the center symmetry transformation. On
the other hand, under such a gauge transformationUðx⃗; x4Þ,
the Polyakov loop transforms as

L½AU
μ � ¼ L

�
UAμU† þ i

g
U∂μU†

	
¼ Uðx⃗; T−1ÞL½Aμ�U†ðx⃗; 0Þ: ðA10Þ

Using the boundary condition the trace of Polyakov loop
should transform as

TrL½AU
μ � ¼ zTrL½Aμ�: ðA11Þ

In confined phase the hTrLi ¼ 0 means the center
symmetry is preserved. While in deconfined phase it
becomes nonzero which means the symmetry breaking.

APPENDIX B: THE PERTURBATIVE
CONTRIBUTION TO HOLONOMY POTENTIAL

Equilibrium state should be determined by the free
energy

ZðTÞ ¼
X
n

hnje−H=TPphysjni

¼
Z

DAexp−S½Aμ�

¼ e−FðTÞ=T: ðB1Þ

Once the background configuration has been chosen

A⃗ ¼ 0

A4 ¼ 2πTdiagðμ1; μ2;…; μNÞ; ðB2Þ

we can always do the 1-loop perturbative calculation above
this mean field. The essential part is to complete the
integration and summation for dressed propagators of
gauge fields [62,63].

log detð−D2Þ ¼
XN
j;k¼1

log detf−½∂μ þ 2πTðμj − μkÞδ4μ�2g

− log detð−∂2Þ: ðB3Þ

It could be seen that the longitudinal part of δAi, which is
an artifact of the gauge field, will cancel with the ghost part
δA4 [63]. Taking the group measure into account and
performing the Matsubara summation, the holonomy de-
pendent part of the perturbative potential energy is related
to the integration and summation as

G ¼
Xþ∞

n¼−∞

Z
d3p log½ðωn þ CÞ2 þ p2�

¼
Z

d3p logð1 − 2 cos βCe−βp þ e−2βpÞ

¼ 8π

Z
p2dpRe½logð1 − eiβCe−βpÞ�

¼ 8π

β3
ðLi4ðeiβCÞ þ Li4ðe−iβCÞÞ

¼ 8π

β3
ð2πÞ4
24

B4

�ðβCÞmod2π

2π

�

¼ 8π

β3
ð2πÞ4
24

�
1

16

��
2
ðβCÞmod2π

2π
− 1

�
2

− 1

	
2

−
1

30



¼ π5T3

3

����
C
πT

�
mod2

− 1

�
2

− 1

	
2

−
8

15


; ðB4Þ

where holonomy independent parts have been omitted at
the second equation. And the Li4ðzÞ and B4ðzÞ are the
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polylogarithm function and Bernoulli polynomials of
fourth order respectively. Here C represents different
combinations μj − μk and β ¼ T−1.
Gathering all of contributions from different combina-

tions C ¼ μj − μk, up to a holonomy independent constant
the perturbative potential energy for the SUðNÞ case is
obtained as

Ppert ¼ V
ð2πÞ2T3

3

XN
m>n

ðμm − μnÞ2½1 − ðμm − μnÞ�2: ðB5Þ

For the SUð2Þ case there is only one term
ðμ2 − μ1Þ2½1 − ðμ2 − μ1Þ�2. The maximally nontrivial hol-
onomy is obtained from the above equation, leading to

Ppert;max ¼ V
ð2πÞ2T3

3

XN−1

i¼1

i2

N2

�
1 −

i
N

�
2

¼ V
ð2πÞ2T3

180

N4 − 1

N2
; ðB6Þ

where the Faulhaber’s formula are used to complete the
summation

P
N
i¼1 i

m. At this 1-loop level the perturbative
potential energy has N minima corresponding to N ele-
ments of the center group. And the confining holonomy
gives larger potential energy than the trivial ones. This
means at 1-loop level trivial holonomies, which indicate the
deconfinement, are favored at arbitrary temperatures.
Hence, in order to achieve confinement at low temperature
a more strict calculation is necessary with a topological
non-trivial background configuration. The KvBLL Caloron
is one of these choices.

APPENDIX C: THE KVBLL
CALORON SOLUTION

The caloron field with nontrivial holonomy discovered
by Kraan and van Baal [27,28] and independently by Lee
and Lu [29] (therefore also known in the literature as the
KvBLL caloron), is a classical solution to the SUðNÞ Yang-
Mills equations of motion in R3 × S1. It is a self-dual field
with unit topological charge and most importantly, the A4

component can be gauged to be diagonal and constant at
spatial infinity, which leads to a nontrivial Polyakov loop.
In the periodic gauge, the SUð2Þ KvBLL caloron field

with period 1=T is given by

AKvBLL
μ ¼ δμ4v

τ3

2
þ τ3

2
η̄3μν∂ν logΦ

þΦ
2
Re½ðη̄1μν − iη̄2μνÞðτ1 þ iτ2Þ

× ð∂ν þ ivδν4Þχ̃�; ðC1Þ

where

ψ̂ ¼ − cosð2πTx4Þ þ coshðv̄rÞ coshðvsÞ

þ r2 þ s2 − π2ρ4T2

2rs
sinhðv̄rÞ sinhðvsÞ;

ψ ¼ ψ̂ þ π2ρ4T2

rs
sinhðv̄rÞ sinhðvsÞ

þ πρ2T

�
sinhðvsÞ coshðv̄rÞ

s
þ sinhðv̄rÞ coshðvsÞ

r

	
;

χ̃ ¼ πρ2T
ψ

�
e−2πix4

sinhðvsÞ
s

þ sinhðv̄rÞ
r

	
;

Φ ¼ ψ

ψ̂
: ðC2Þ

Here, η̄aμν ≡ εamuν − δaμδν4 þ δaνδμ4 are the so called ’t Hooft
symbols, T the temperature and τa the Pauli matrices. The
meaning of the s and r variables will be explained shortly.
From this expression, it is not hard to see that at spatial
infinity, the fourth component is indeed diagonal and
constant A4jjx⃗j→∞ ¼ v τ3

2
. This asymptotic value is para-

metrized as v≡ 2πTν, with ν ∈ ½0; 1� and analogously,
v̄ ¼ 2πTν̄ with ν̄ ¼ 1 − ν. Thus, the trace of the Polyakov
loop at spatial infinity has the nontrivial form

L∞ ≡ lim
jx⃗j→∞

1

2
TrP exp

�
i
Z

1=T

0

dx4AKvBLL
4

�
¼ cosðπνÞ; ðC3Þ

where ν ¼ 1
2
corresponds to maximal nontrivial holonomy

ðL∞ ¼ 0Þ and ν ¼ 0 trivial holonomy L∞ ¼ 1). Therefore,
ν is naturally called the holonomy parameter.
The antiself-dual caloron or anticaloron Āμ with neg-

ative topological charge is easily obtained from Eq. (C1) by

ĀKvBLL
4 ðx⃗; x4Þ ¼ AKvBLL

4 ð−x⃗; x4Þ;
ĀKvBLL
i ðx⃗; x4Þ ¼ −AKvBLL

i ð−x⃗; x4Þ: ðC4Þ

As expected, the KvBLL reduces to the Harrington-
Shepard caloron [23] in the limit of trivial holonomy
(ν → 0 or ν̄ → 0). Furthermore, it becomes a standard
BPST instanton [22] of size ρ in the zero temperature limit.
One of the most important properties of this solution

becomes relevant when ρ ≫ 1=T. In this limit, the field is
seen as composed of two constituent monopoles separated
by a distance πρ2T. As ρ → ∞, the caloron becomes static
and the monopoles are identified as the BPS type [64,65]
with unit, but opposite, electric and magnetic charges,
therefore named dyons or in this context intanton-dyons.
(Anti)dyons are commonly known as (anti)self-dual

static solutions of the Yang-Mills equations of motion with
an adjoint scalar (Higgs) field. However, one can construct
dyonic solutions in pure Yang-Mills theory with the
condition of non-trivial holonomy, namely A4jjx⃗j→∞ ¼ v.
For SUð2Þ there are four kinds of dyon solutions which
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following the usual convention in the literature are labeled
M and L for the self-dual fields and M̄ and L̄ for the
antiself-dual ones, referred to as antidyons (see Table II). In
the hedgehog gauge, the M fields have the form of the
common BPS monopole solution(for more details on the
derivation refer to [31,66])

AM;M̄
4 ¼∓ na

�
v cothðvjx⃗jÞ − 1

jx⃗j
�
τa

2
;

AM;M̄
i ¼ εaijnj

�
1

jx⃗j −
v

sinhðvjx⃗jÞ
�
τa

2
; ðC5Þ

where na ¼ xa=jx⃗j and the (lower)upper sign corresponds
to the (anti)self-dual solution.
If a gauge configuration consists of more than two

dyons, it is inconvenient to superimpose them in this
gauge, since we are interested in configurations where
all dyons have the same A4 asymptotics at spatial infinity.
This is achieved by using the matrices

Sþ ¼ e−i
ϕ
2
τ3ei

θ
2
τ2ei

ϕ
2
τ3 ;

S− ¼ −iτ2Sþ

¼ ei
ϕ
2
τ3ei

θ−π
2
τ2ei

ϕ
2
τ3 ; ðC6Þ

which satisfy the identity S�ðnaτaÞS†� ¼ �τ3, and gauge-
transform the dyon fields Eq. (C5) as

AM;M̄
μ → S∓AM;M̄

μ S†∓ þ iS∓∂μS
†∓: ðC7Þ

In spherical coordinates, the dyon solutions in the new
gauge take the form

AM;M̄
4 ¼ τ3

2

�
v cothðvjx⃗jÞ − 1

jx⃗j
�
;

�AM;M̄
i ¼

8>><
>>:

Ar ¼ 0;

Aθ ¼ v
2 sinhðvjx⃗jÞ ðτ1 sinϕþ τ2 cosϕÞ;

Aϕ ¼ v
2 sinhðvjx⃗jÞ ðτ1 cosϕ − τ2 sinϕÞ þ τ3

2

tanθ
2

jx⃗j :

ðC8Þ

One should notice first that now the A4 component is
Abelian and equal for both M and M̄. Moreover, we have
introduced a singularity along the negative x3-axis in Aϕ, a
so called Dirac string which is merely a consequence of the
gauge choice, hence the name stringy gauge.
The L and L̄ solutions are obtained from Eq. (C8) by

replacing v → v̄ and apply two gauge transformations: first
the time dependent U1 ¼ expð−iπTx4τ3Þ followed by a
global rotation U2 ¼ expðiπτ2=2Þ [29,67,68]. As required,
these will leave the asymptotics of A4 in the same form as
for the M type solutions with the caveat that the spatial
components are no longer static; however, in the large
distance limit, neglecting exponentially small terms, the
time dependent terms vanish and are no longer relevant in
the scope of this article. The L type dyon fields in the
stringy gauge thus are

AL;L̄
4 ¼ τ3

2

�
2πT − v̄ cothðv̄jx⃗jÞ þ 1

jx⃗j
�
;

�AL;L̄
i ¼

8>>><
>>>:

Ar ¼ 0;

Aθ ¼ v̄
2 sinhðv̄jx⃗jÞ ½τ1 sinð2πTx4 − ϕÞ þ τ2 cosð2πTx4 − ϕÞ�;

Aϕ ¼ v̄
2 sinhðv̄jx⃗jÞ ½−τ1 cosð2πTx4 − ϕÞ þ τ2 sinð2πTx4 − ϕÞ� − τ3

2

tanθ
2

jx⃗j :

ðC9Þ

Going back to the KvBLL field, the emergence of
such configurations suggests to express the caloron in
terms of the “constituent” dyon’s positions. The coordi-
nates used to write the caloron in Eq. (C1) are then the
positions of the dyon’s center of mass denoted by r⃗L and
r⃗M, the dyon separation rLM ≡ jr⃗L − r⃗Mj ¼ πρ2T, which
for convenience is chosen to be along the x3-axis (see
Fig. 24); i.e., r⃗LM ¼ rLMê3, and the distances from the

observation point x⃗ to the dyon centers: s⃗ ¼ x⃗ − r⃗M
and r⃗ ¼ x⃗ − r⃗L.
This monopole picture is more evident when looking at

the caloron in the vicinity of one of its constituent dyons and
far away from the other, namely at large separations. For
instance, near the L dyon center and far away from the M
dyon ðs ≫ 1=vÞ, the caloron field reduces to that of the L
dyon, whose asymptotic behavior is given by [see Eq. (C9)]

TABLE II. Properties of the SUð2Þ (anti)dyons.
M M̄ L L̄

Electric charge 1 1 −1 −1
Magnetic charge 1 −1 −1 1
Action ν 8π2

g2 ν 8π2

g2 ν̄ 8π2

g2 ν̄ 8π2

g2

Radius v−1 v−1 v̄−1 v̄−1
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AL;L̄
4 jr→∞ ¼ τ3

2

�
vþ 1

r

�
;

AL;L̄
ϕ jr→∞ ¼∓ τ3

2

tan θ
2

r
; ðC10Þ

whereϕ and θ are the polar and azimuthal angles in spherical
coordinates centered at r⃗L. The other components vanish in
this limit. Analogously, near the M dyon and far away from
the L ðr ≫ 1=v̄Þ, the field is that of the M dyon with
asymptotics [see Eq. (C8)]

AM;M̄
4 js→∞ ¼ τ3

2

�
v −

1

s

�
;

AM;M̄
ϕ jr→∞ ¼ � τ3

2

tan θ
2

s
: ðC11Þ

Finally, in the limits s ≫ 1=v and r ≫ 1=v̄, but not
necessarily at large separations rLM; the KvBLL caloron
field also becomes Abelian and takes the form

AKvBLL
μ ¼ τ3

2
ðδμ4vþ η̄3μν∂ν logΦÞ; ðC12Þ

where Φ in this limit reduces to

Φ ¼ rþ sþ rLM
rþ s − rLM

: ðC13Þ

The only nonvanishing components of Eq. (C12) are

AKvBLL
4 ¼ τ3

2

�
vþ 1

r
−
1

s

�
;

AKvBLL
ϕ ¼ −

τ3

2

�
1

r
þ 1

s

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrLM − rþ sÞðrLM þ r − sÞ
ðrLM þ rþ sÞðrþ s − rLMÞ

s
: ðC14Þ

APPENDIX D: THE QUANTUM WEIGHT

In a similar fashion as it was done for the BPST instanton
(at T ¼ 0) [69] and for the Harrington-Shepard caloron
[62] (at T ≠ 0), it is of interest to calculate the contribution
of small quantum oscillations of the KvBLL caloron to the
Yang-Mills partition function

Z ¼
Z

DAμe−S½Aμ�

¼
Z

DAμ exp

�
−

1

2g2

Z
d4xTrFμνFμν

	
: ðD1Þ

In broad terms, this semiclassical procedure consists in
taking the classical solution as a background field such that
the gauge fields in the functional integral are

AμðxÞ ¼ AKvBLL
μ ðxÞ þ aðxÞ; ðD2Þ

where aðxÞ is a small quantum fluctuation of the classical
solution (the KvBLL field). Then expand the action around
the saddle point up to the desired order in aμ and compute
the functional integral.
In [70] Diakonov et al. obtained an analytic expression

for the quantum weight of the SUð2ÞKvBLL caloron in the
one-loop approximation. They showed that in the limit of
large separation between the constituent dyons (in the
temperature scale) rLM ≫ 1=T, it can be written as

ZKvBLL ¼ e−VPðνÞ=T
Z

d3rLd3rMT6C2π

�
8π2

g2

�
4

×

�
ΛPVeγE

4πT

�22
3

�
1

TrLM

�5
3ð1þ 2πTνν̄rLMÞ

× ð1þ 2πTνrLMÞ8ν3−1ð1þ 2πTν̄rLMÞ8ν̄3−1; ðD3Þ

where PðνÞ ¼ ð4π2=3ÞT4ν2ν̄2 is the one-loop perturbative
potential [62,63] (see Appendix B), C ≈ 1.03142 is a
combination of universal constants and the linear term in
rLM proportional to P00ðνÞ from the exponential factor has
been ignored in this work.
This expression can be further simplified in the approxi-

mation where the separation between dyons is much larger
than their core sizes rLM ≫ 1

2πTν ;
1

2πTν̄; taking the form

ZKvBLL ¼ e−VPðνÞ=T
Z

d3rLd3rMT6ð2πÞ83C
�
8π2

g2

�
4

×

�
ΛPVeγE

4πT

�22
3

ν
8
3
νν̄

8
3
ν̄: ðD4Þ

To obtain Eq. (D3), one has to calculate the invariant
measure of the moduli space metric of the caloron field
denoted as

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞp

. In the general case of SUðNÞ, this is
shown to be exactly equal to the determinant of a N × N

FIG. 24. Coordinates of the KvBLL caloron in terms of the
center of mass positions of its constituent dyon fields.
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matrix Ĝ [30,71], which for SUð2Þ is given by

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p
¼ detðĜÞ; ðD5Þ

where

Ĝ ¼
 
4πν̄þ 1

TrLM
− 1

TrLM

− 1
TrLM

4πνþ 1
TrLM

;

!
; ðD6Þ

which in the limit of large dyon separation reduces to
detðĜÞ ≈ 16π2νν̄, and thus the partition function Eq. (D6)
is rewritten as

ZKvBLL ¼ e−VPðνÞ=T
Z

d3rLd3rMT6
ð2πÞ23
4

C detðĜÞ

×

�
8π2

g2

�
4
�
ΛPVeγE

4πT

�22
3

ν
8
3
ν−1ν̄

8
3
ν̄−1: ðD7Þ

The factor ðΛPVeγE
4πT Þ223 , appears from the running of the

coupling constant g, in the Pauli-Villars regularization
scheme. Namely

�
Λ
T

�22
3 ¼ e

− 8π2

g2ðTÞ; ðD8Þ

where we have absorbed all constants into Λ. At the one
loop calculation, the g−8 coupling in Eq. (D7) is not
renormalized; however, a two loop improvement [ignoring
the effects on PðνÞ] will give

�
8π2

g2

�
4
�
Λ
T

�22
3

→

�
8π2

g2ðTÞ
�

4

e
− 8π2

g2ðTÞhðT=ΛÞ; ðD9Þ

where

hðT=ΛÞ ¼ exp

�
−
34

11
log

�
2 log

�
T
Λ

�	

þ 510

1331

log ½22
3
logðTΛÞ�

logðTΛÞ

: ðD10Þ

As an approximation, one can include the two loop
improvement by substituting Eq. (D9) and absorb the rest
of the constant factors into a parameter Γ which is
modulated in the simulation and fixed to be Γ ≈ 0.119.
Finally, the caloron quantum weight takes the form

ZKvBLL ¼ e−VPðνÞ=T
Z

d3rLd3rM detðĜÞT6Γ2

× S4e−Sν
8
3
ν−1ν̄

8
3
ν̄−1

¼ e−VPðνÞ=T
Z

ðd3rLfLÞðd3rMfMÞT6 detðĜÞ;

ðD11Þ

with

fM ¼ ΓS2e−νSν8ν
3
−1; fL ¼ ΓS2e−ν̄Sν̄8ν̄

3
−1 ðD12Þ

the respective dyon fugacities and the instanton action

SðTÞ ¼ 8π2

g2ðTÞ ¼
22

3
log

�
T
Λ

�
: ðD13Þ
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