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Low-energy effective couplings of baryons’ constituent quarks to light vector and axial mesons are
derived by considering quark polarization for a dressed one gluon–exchange quark interaction. The quark
field is split into two components, one for background constituent quarks and another one for quark-
antiquark states, light mesons, and the scalar chiral condensate. By considering a large quark effective mass
derivative expansion, several effective coupling constants are resolved as functions of the original model
parameters and of components of the quark and gluon propagators. Besides the leading single vector
meson–constituent quark gauge–type effective coupling, several two-vector and axial meson–constituent
quark couplings are also obtained in the next leading order. Among these, vector and axial mesons mixings
induced by constituent quark currrents are found. Approximated and exact ratios between the effective
coupling constants in the limit of very large quark effective mass and numerical estimates are exhibited.
Numerical results of the corresponding form factors and of the (strong) vector mesons quadratic radius are
also presented.
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I. INTRODUCTION

Light vector mesons play an important role in a broad
range of energies in hadron and nuclear physics. Besides
the problems related to their structure, it is interesting to
understand in detail the emergence of the phenomenologi-
cal models describing their interactions with hadrons [1] at
different energy density scales by departing from the more
fundamental QCD degrees of freedom. There are different
conceptual frameworks to describe their dynamics such as
in massive Yang-Mills, the hidden gauge approach, and
Weinberg-Callan-Coleman-Wezz-Zumino, among others
[1–8], several of them being equivalent [3]. Although it
is highly desirable to formulate an effective field theory
(EFT) that incorporates explicitly their degrees of freedom,
some difficulties arise by trying to define the correct power-
counting rules in the framework of chiral perturbation
theory [9,10]. The lightest vector mesons (ρ and ω) are
expected to be more relevant for the low and intermediary
energies regimes, being that axial chiral partners eventually
are included such as the A1 for the ρmeson, and, less often,
an axial partner of theω has also been considered [5,11,12].
The light vector mesons effective couplings to nucleons
present fewer ambiguities than the strict (chiral) vector
mesons dynamics [3,13,14] being extremely relevant in the
short-range nucleon and nuclear potentials [15,16]. In the
framework of the constituent quark model [17–19], mesons
couple directly to constituent quarks, and the resulting
coupling constants are proportional to the corresponding
vector mesons-baryons coupling constants. From the cri-
teria of dimensionality and simplicity [3,4], the leading

different rho-quark couplings can be expected to be
gvVi

μðxÞjμi;vðxÞ and gTFi
μνðxÞjμνi;TðxÞ, where Fi

μνðxÞ is the
vector mesons strength tensor. The first one is the minimal
gauge coupling to the vector current [1,13], and the second
one is a momentum-dependent tensor coupling to a tensor
current [14]. Besides that, it is worth it to mention that
vector mesons mixings are interesting effects associated to
charge symmetry violation [20] and they are expected to
occur further in the nuclear medium [21]. These effects are
usually parametrized in terms of effective Lagrangian terms
without more fundamental justification from first grounds.
So, it is interesting to search for mechanisms from the
quark and gluon more fundamental dynamics that generate
hadron and nuclear effective models. Instantons have been
considered to describe several low-energy quark effective
interactions [22], and other mechanisms have also been
envisaged [23,24]. Although it is possible to constraint the
phenomenological couplings usually suitable for the
hadron and nuclear dynamical models, it is highly desirable
to obtain a QCD-based derivation of the mechanism
according to which the vector meson–baryon interactions
emerge. There are considerable difficulties to obtaining the
complete QCD effective action by integrating out gluons
exactly from QCD [25]. However, it is already interesting
to understand the emergence of hadron interactions from a
restricted part of the QCD effective action. Besides the
dynamical calculation of the hadrons effective coupling
constants, it is also important to extract the whole momen-
tum dependence of their interactions by means of form
factors. Eventually, the correct behavior of these effective
coupling constants and form factors with nuclear density,
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temperature, and other variables up to the chiral transition
scales can be obtained [26].
In this work, light quark-antiquark vector and axial

mesons couplings to (nucleons) constituent quarks are
derived by considering a quark-quark interaction mediated
by a dressed (nonperturbative) gluon propagator. The non-
perturbative gluon propagator will be therefore an external
input for the calculation, and it will be required that it has
strength enough to provide dynamical chiral symmetry
breaking (DChSB). Besides that, this is a way of considering
part of the non-Abelian gluon dynamics. Therefore, the
quark interaction given in expression (1) is selected from the
QCD effective action to be investigated with well-known
analytical methods. One-loop quark polarization is calcu-
lated after a Fierz transformation to allow for the inves-
tigation of more complete flavor structure. By considering
the background field method [27], the quark field is split into
sea and background (constituent) quarks. Lightmesons fields
are introduced in the followingbymeans of the auxiliary field
method [28–31]. This procedure has been described in detail
in Refs. [23,24,32–34], and therefore in the present work, it
will not be described extensively. This approach has shown
itself capable of providing, for example, a derivation of
different constituent quark–pion effective couplings without
and with electromagnetic couplings and the leading terms of
chiral perturbation theory [23,32] corresponding to a whole
effective field theory for low-energy QCD [19]. The work is
organized as it follows. In the next section, the Fierz
transformation, the quark field splitting, and the introduction
of auxiliary mesons fields are briefly revisited. In the
following section, a derivative and large quark effective
mass expansion of the sea-quark determinant is performed.
The leading and next-leading terms for vector mesons
couplings to quarks are exhibited by resolving effective
coupling constants. These effective coupling constants are
written in terms of parameters of the initial Lagrangian and of
components of the quark and gluon propagators. Some exact
and approximated ratios between effective coupling con-
stants are also exhibited for very large quark effective mass,
and numerical estimates are also presented. Finally, the
momentum-dependent form factors and a detailed inves-
tigation of the strong vector and axial mesons quadratic radia
are presented. A summary is presented in the last section.

II. FLAVOR STRUCTURE AND
AUXILIARY FIELDS

The dressed one-gluon exchange between quarks can be
written as [28,29]

Z ¼ N
Z

D½ψ̄ ;ψ � exp i
Z
x

�
ψ̄ði∂ −mÞψ −

g2

2

×
Z
y
jbμðxÞR̃μν

bcðx − yÞjcνðyÞ þ ψ̄J þ J�ψ
�
; ð1Þ

where the color-quark current is jμa ¼ ψ̄λaγ
μψ ;

R
x stands forR

d4x; i; j; k ¼ 0;…ðN2
f − 1Þ will be used for SU(2) flavor

indices; and a; b… ¼ 1;…ðN2
c − 1Þ stands for color in the

adjoint representation. The sums in color, flavor, and Dirac
indices are implicit. To account for the non-Abelian structure
of the gluon sector, the gluon propagator R̃μν

bcðx − yÞmust be
nonperturbative, and, as an external input for the model, it
will be required tohave enough strength to yieldDChSBwith
a given strength of the quark-gluon coupling. DChSB has
been found in several works with different approaches,
though somewhat similar [35–38]. Other terms from the
QCD effective action, such as multiquark interactions
eventually due the non-Abelian gluon structure, are not
considered. The aim of this work is therefore to investigate
the resulting hadron effective interactions that are obtained
by considering well-known analytical methods presented
below for the quark interaction (1). In several Landau-type
gauges, the gluon propagator R̃μν

abðkÞ can be written as

R̃μν
abðkÞ ¼ δab

��
gμν −

kμkν

k2

�
RTðkÞ þ

kμkν

k2
RLðkÞ

�
; ð2Þ

where RTðkÞ and RLðkÞ are transversal and longitudinal
components. By performing a Fierz transformation [31], the
flavor structure of the interaction (1) can be exploited further
by introducing the corresponding light quark-antiquark states
and corresponding auxiliary fields for light mesons as it is
usually done for the model (1) and Nambu-Jona Lasinio
(NJL)-typemodels. This Fierz transformed interactionwill be
written in terms of the bilocal flavor-quark currents built
with the Dirac gamma matrices and the flavor SU(2)
Pauli matrices. They are given by jsðx;yÞ¼ψ̄ðxÞψðyÞ,
jpðx;yÞ¼ψ̄ðxÞiγ5σiψðyÞ, jsiðx;yÞ¼ψ̄ðxÞσiψðyÞ, jpsðx;yÞ¼
ψ̄ðxÞiγ5ψðyÞ, jμVðx; yÞ ¼ ψ̄ðxÞγμσiψðyÞ, jμAðx;yÞ¼
ψ̄ðxÞiγ5γμσiψðyÞ, jμvsðx; yÞ ¼ ψ̄ðxÞγμψðyÞ, and
jμasðx; yÞ ¼ ψ̄ðxÞiγ5γμψðyÞ. The complete resulting set of
color-singlet nonlocal interactions is

Ω
αg2

≡ ½jsðx; yÞjsðy; xÞ þ jipðx; yÞjipðy; xÞ þ jisðx; yÞjisðy; xÞ

þ jpðx; yÞjpðy; xÞ�Rðx − yÞ − 1

2
½jiμðx; yÞjiνðy; xÞ

þ jiμAðx; yÞjiνAðy; xÞ þ jμðx; yÞjνðy; xÞ
þ jAμ ðx; yÞjAν ðy; xÞ�R̄μνðx − yÞ; ð3Þ

where α ¼ 4=9 for flavor SU(2), and the following kernels
were defined:

Rðx − yÞ ¼ 3RTðx − yÞ þ RLðx − yÞ;
R̄μνðx − yÞ ¼ gμνðRTðx − yÞ þ RLðx − yÞÞ

þ 2
∂μ∂ν

∂2
ðRTðx − yÞ − RLðx − yÞÞ: ð4Þ

The background field method (BFM) [27,39] is applied
next by splitting the quark field into a sea quark, ψ2,
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composing light quark-antiquark states and therefore light
mesons and the chiral condensate, and the background
(constituent) quark, ψ1, eventually forming baryons. At the
one-loop level, it is enough to perform a quark bilinears
shift [27] for each of the channels m ¼ s, p, si, pi, ps, V,
A, as, vs defined with the currents above:

jm ¼ ψ̄Γmψ → ðψ̄ΓmψÞ2 þ ðψ̄ΓmψÞ1: ð5Þ

This separation preserves chiral symmetry, and it may not
correspond to a simply mode separation of low and high
energies, which might be too restrictive of an assumption.
The ambiguity involved in this splitting is discussed with
more details in Ref. [23], and it is outside the scope of this
work. The effective Fierz transformed interaction Ω is then
rewritten as the sum of the different quark components
interactions as Ω ¼ Ω1 þ Ω2 þ Ω12, where Ωi stands for
each of the components and Ω12 stands for the interaction
terms between ψ1 and ψ2. Instead, to proceed by neglecting
Ω2 according to the usual one-loop BFM, the auxiliary field
method is considered to make the functional integration of
the sea-quark field possible. Besides that, it allows for
introducing light mesons fields. A set of bilocal auxiliary
fields (a.f.) is introduced by means of unitary functional
integrals multiplying the generating functional [40].
Although this work is concerned only with the vector
and axial mesons, all the a.f. will be introduced, and, later,
some of them will be neglected. There is one bilocal a.f.
associated to each of the quark currents, and they are the
following: Sðx; yÞ, Piðx; yÞ, Siðx; yÞ, Pðx; yÞ, Vi

μðx; yÞ,
Vμðx; yÞ, Āi

μðx; yÞ, and Āμðx; yÞ. This way, besides the
rho and A1 mesons, the isoscalar vector ω and an isoscalar
axial f1 [5,12] are also considered, besides a scalar
isoquartet (Si and P) that will be taken into account
elsewhere. The (unity Jacobian) shifts in the functional
integrals also generate couplings to sea quarks. The bilocal
auxiliary fields give origin to punctual meson fields by
expanding in an infinite basis of local meson fields [29]; for
instance, a particular bilocal field the vector Vi

μðx; yÞ can be
written in terms of a corresponding complete orhonormal
sum of local fields as

Vμ
i ðx; yÞ ¼ Vμ

i

�
xþ y
2

; x − y

�
¼ Vμ

i ðu; zÞ

¼
X
k

FkðzÞVμ
i;kðuÞ; ð6Þ

where Fk are vacuum functions invariant under translation
for each of the local fields Vμ

i;kðuÞ. For the low-energy
regime, one might pick up only the lowest-energy modes
and lightest k ¼ 0 and make the form factors reduce to
constants in the zero momentum limit FkðzÞ ¼ Fkð0Þ. In
the case of expression (6), this mode turns out to be
structureless isotriplet local mesons Vμ

i;k¼0ðuÞ ¼ ρμi ðxÞ.

From here on, these structureless lowest modes for each
of the channels will be denoted by SðxÞ, PiðxÞ, SiðxÞ, PðxÞ,
Vi
μðxÞ, VμðxÞ, Āi

μðxÞ, and ĀμðxÞ. In the present work, only
the vector and axial mesons couplings to constituent quarks
will be addressed. Pions and the other eventual scalar or
pseudoscalar quark-antiquark states have been considered
elsewhere and will be neglected, except for the fact that the
scalar field can give rise to a constant contribution in the
vacuum. The resulting structureless vector and axial mes-
ons local couplings to quarks, by omitting the index 2, can
be written as

ψ̄ðxÞΞvðx − yÞψðyÞ
¼ ψ̄ðxÞΞ̃vðxÞδðx − yÞψðyÞ

¼ −ψ̄ðxÞ γ
μ

2
½FvσiðVi

μðxÞ þ iγ5Āi
μðxÞÞ

þ FvsðVμðxÞ þ iγ5ĀμðxÞÞ�ψðxÞδðx − yÞ; ð7Þ

where the constants Fv and Fvs provide the canonical field
definitions, respectively, of rho and A1 mesons and of ω
and axial f1.
The Gaussian integration of the sea-quark field can

now be performed, and by making use of the identity
detA ¼ exp Tr lnðAÞ, it yields

Seff ¼ Tr ln

�
−i
�
S0−1ðx − yÞ þ Ξvðx − yÞ

þ
X
q

aqΓqjqðx; yÞ
��

; ð8Þ

where Tr stands for traces of all discrete internal indices and
integration of spacetime coordinates, Tr ¼ R

d4xtrDtrCtrF
with the traces in Dirac, color, and flavor indices, where
the free quark kernel can be written as S−10 ðx − yÞ ¼
ði∂ −mÞδðx − yÞ and the following notation was used
for the constituent quark currents, by omitting the index 1

since sea quarks have already been integrated out:

P
qaqΓqjqðx; yÞ

αg2

¼ 2Rðx − yÞ½ψ̄ðyÞψðxÞ þ iγ5σiψ̄ðyÞiγ5σiψðxÞ
þ ψ̄ðyÞσiψðxÞ þ iγ5ψ̄ðyÞiγ5ψðxÞ�
− R̄μνðx − yÞγμσi½ψ̄ðyÞγνσiψðxÞ þ iγ5ψ̄ðyÞiγ5γνσiψðxÞ�
− R̄μνðx − yÞγμ½ψ̄ðyÞγνψðxÞ þ iγ5ψ̄ðyÞiγ5γνψðxÞ�: ð9Þ

Different limits of Expression (8) have already been inves-
tigated in several works. For example, the complete pion
sector by considering pion structure, for example, in
Ref. [29], and structureless pions coupled to constituent
quarks in the vacuum and coupled to the electromagnetic
field [23,32] providing all the leading chirally symmetric and
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symmetry breaking terms of chiral perturbation theory. In
Refs. [4,8], the chiral vector mesons sector (ρ and A1),
without quarks, was investigated at length. The purely
constituent quark sector was investigated to derive higher-
order quark effective couplings and magnetic field–
dependent effective interactions [24,32,34].
The determination of the auxilary fields in the ground

state makes it possible to incorporate dynamical chiral
symmetry breaking, as is usually done for the NJL model
and analogously for the Schwinger-Dyson approach. The
saddle-point equations for the a.f., by denoting each of
them by ϕα, are given by ∂Seff∂ϕα

¼ 0. These equations for the
NJL model and global color model have been analyzed in
many works in the vacuum or under a finite energy density.
The scalar a.f. is the only nontrivially zero in the vacuum,
provided the strength of the gluon propagator and the
quark-gluon (running) coupling constant are strong enough
for that. It corresponds to a scalar quark-antiquark con-
densate, and it produces a large effective quark mass. A
constant value for the solution of the scalar field gap
equation yields a correction to the quark effective mass in
expression (8). In this case, the quark kernel above can then
be written in terms of the quark effective mass M� as
usually done [23,24,32], and besides that, it might incor-
porate the quark coupling to vector and axial mesons that
might be seen as a covariant derivative, Dv ¼ =∂ − iΞ̃v.
It can then be written as

S−1v ðx − yÞ ¼ ði∂ −M�Þδðx − yÞ þ Ξvðx − yÞ: ð10Þ

III. LARGE QUARK MASS EXPANSION
AND EFFECTIVE COUPLINGS

The quark determinant can be rewritten as

Idet ¼
i
2
Tr ln

��
1þ Svðx − yÞ

X
q

aqΓqjqðy; xÞ
�

×

�
1þ Svðx − yÞ

�X
q
āqΓqjqðy; xÞ

����
þ I0;

ð11Þ

where I0 yields a multiplicative constant in the generating
functional with corrections exclusively from the vector and
axial mesons [4], which are outside the scope of this work.
Next, a large quark and gluon effective masses and zero-

order derivative expansion of the determinant is performed
at the zero-order derivative expansion [41]. Equivalently, a
weak vector/axial field and large gluon effective mass can
be considered. The large gluon effective mass limit leads to
a weak strength of the gluon propagator in expression (11)
and consequently small effective coupling constants for the
terms of the expansion with quark currents as shown below.

The leading effective action interaction terms Il:o:det for the
effective constituent quark couplings to the canonically
defined vector and axial mesons are presented now. As an
example, the vector mesons Vi

μ interaction with the
constituent quark term is given by the following effective
action term:

Il:o:det;Vi
μ
¼ i

2
Tr

�
S0ðy − xÞ γ

μσi
2

Vi
μðxÞS0ðx − zÞ

× R̄ρσðy − zÞγρσjψ̄ðzÞγσσjψðyÞ
�
: ð12Þ

With the insertion of complete sets of orthogonal momen-
tum states, effective coupling constants, gr1 and gv1, are
resolved in the local limit for zero momentum exchange,
and the term above can be written as Il:o:det;Vi

μ
¼R

d4xgr1V
μ
i ψ̄γμσiψ . In this limit, the resulting four leading

effective Lagrangian interaction terms can be written as

Lv−q ¼ gr1ðVμ
i ðxÞjV;iμ ðxÞþ Āμ

i ðxÞjA;iμ ðxÞÞþgv1ðVμðxÞjμðxÞ
þ ĀμðxÞjμAðxÞÞ; ð13Þ

where, by taking the traces in Dirac, color, and isospin
indices, the effective dimensionless coupling constants
were defined,

gr1 ¼ gv1 ¼ 4iNcd1ðαg2ÞTr0ððS0ðkÞS0ðkÞ ¯̄RðkÞÞÞ; ð14Þ

where ¯̄RðkÞ ¼ R̄μνðkÞgμν, Tr0 stands for the integral in the
internal momentum of the components of quark and gluon
kernels for the limit of zero momentum exchange and

dn ¼ i ð−1Þ
nþ1

2n . These couplings correspond to the minimal
couplings proposed by Sakurai [1] and are extended for the
chiral case with axial mesons. Differently from the nucleon
level, the ρ–constituent quark and ω–constituent quark
coupling constants are equal without a factor 1=3 for the
rho coupling [15]. The corresponding Feynman diagrams
are presented in Fig. 1(a), where the dashed line stands for
any of the vector or axial mesons. The zero-order derivative
expansion is suitable for the local low-energy regime, and
higher-order derivative effective couplings of the type
GdnVj∂nVμðxÞjμðxÞ for n ≥ 2 are neglected.
Besides that, in the next-leading order of the large quark

mass expansion, there are three types of two–vector/axial
mesons–constituent quark current couplings. The very long
wavelength and zero momentum transfer limits, for the
leading terms from the first-order expansion, can be
written, in terms of the canonically normalized mesons
and by omitting the spacetime dependence of the fields and
currents, as
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L2v−j ¼ gva−jð½VμĀ
μ
i þ Vi

μĀμ�jips þ ½Vi
μĀ

μ
i þ VμĀμ�jpsÞ

þ gva−jð½ðV2
μ þ Ā2

μÞ þ ðVi
μ
2 þ ðĀμ

i Þ2Þ�js þ ½VμVi
μ þ ĀμĀ

μ
i �jisÞ

þ gFjs½ððF μνF μν þ FA
μνF

μν
A Þ þ ðF i

μνF
μν
i þ FA;i

μν F
μν
A;iÞÞjs

þ ðF i
μνF

μν
A þ F μνF

μν
A;iÞjip þ ðF i

μνF μν þ FA;i
μν F

μν
A Þjis þ ðF μνF

μν
A þ F μνF

μν
A Þjp�

þ gϵviϵijkðF i
μνVν

j þ F i;A
μν Āν

jÞjμk;V þ gϵviϵijkðF i
μνĀν

j þ F i;A
μν V̄ν

jÞjμk;A; ð15Þ

where the Abelian tensors for each of the fields are
defined as

F i
μν ¼ ∂μVi

ν − ∂νVi
μ; F μν ¼ ∂μVν − ∂νVμ;

Gi
μν ¼ ∂μĀi

ν − ∂νĀi
μ; Gμν ¼ ∂μĀν − ∂νĀμ: ð16Þ

In the expression (15), the following effective coupling
constants have been defined for the zero momentum
transfer limit:

gva−j ¼ i12Ncd2ðαg2ÞTr0ððS0ðkÞS0ðkÞS0ðkÞRðkÞÞÞ; ð17Þ

gϵv ¼ −
gva−j
M� ; ð18Þ

gFjs ¼ −i12Ncd2ðαg2ÞTr0ððS0ðkÞS̃0ðkÞS̃0ðkÞRðkÞÞÞ: ð19Þ

In these expressions, the function S̃0ðkÞ ¼ 1
k2−M�2 is used, by

implicitly assuming a regularization procedure. It is interest-
ing to note that there are very few coupling constants for

several different couplings along the lines of the universality
idea. Whereas the single vector/axial mesons coupling to
the quark current is dimensionless, these couplings have
the following dimensions: gva−j ∼M−1, gϵv ∼M−2, and
gFjs ∼M−3, where M is an energy scale. These effective
coupling constants are the zeromomentum exchange limit of
the corresponding form factors, and they are proportional to
the elastic and inelastic scattering amplitudes. The inelastic
case termsmight also be seen as a type ofmixingmediated or
induced by different quark currents. Among these effective
coupling constants, gFjs is 1 order of magnitude smaller than
the others within the large quark mass M� expansion by a
factor S̃0 ∼ 1=M�2.Most of these couplings donot seem tobe
possibly incorporated into a chiral vector/axialmesons gauge
framework [2–4] in the sense that the couplings of the first
line (gva−j) and also from the last line (gϵv), such asVμĀ

μ
i j

i
ps,

cannot be written in terms of parts of non-Abelian vector
mesons tensors that generalize expressions (16). In pro-
gressively higher-order terms of the determinant expansion,
i.e., for more than two vector mesons involved or more than
one constituent quark current, there are also higher-order
n vector meson–quark interactions since each of the addi-
tional external vector/axial mesons fields has an extra factor
S0ðkÞ or S̃0ðkÞ that contributes to suppressing the corre-
sponding coupling constant by 1=M� or 1=M�2 in the large
quark mass expansion. The strengths of the corresponding
higher-order vector/axial mesons couplings to constituent
quarks are reduced considerably and progressively in the
limit of large quark effectivemass. Exactly the samebehavior
was noticed for higher-order quark effective interactions
[24]. At higher energies, eventually, close to the chiral
restoration transition, the large quark effective mass expan-
sion might not be valid anymore, and a different treatment of
the determinant is required. Other types of quark currents
might be considered to contribute to the structure of a vector
meson such as jμV1

¼ ψ̄i∂μψ and jμνT ¼ ψ̄σμνψ . Although the
first of them might be obtained from the derivative expan-
sion, their contributions for the vector mesons structure and
their interactions with constituent quark interactions are
outside the scope of this work.
The corresponding Feynman diagrams are presented in

Fig. 1(b) for the effective couplings with gva−j, Fig. 1(c)
for the effective couplings of the types of gϵv, and Fig. 1(d)
for the effective couplings of the type gFjs. The dashed
lines stand for any of the vector/axial mesons, and the

FIG. 1. In these diagrams, the wavy line with a full dot is a
(dressed) nonperturbative gluon propagator; the solid line rep-
resents the constituent quark; the dashed line represents a vector
or axial meson, Vμ, Vi

μ, Āμ, and Āi
μ, and the dotted-dashed line

represents a strength tensor line for a vector/axial meson, F μν,
F i

μν, FA
μν, and F i;A

μν . Diagram (a) stands for the couplings gr1 and
gv1. Diagrams (b), (c), and (d) represent, respectively, effective
couplings with coupling constants gva−j, gϵv, and gFjs from
expression (15). In diagrams (b), (c), and (d), the vector or axial
mesons lines might be the same, or they might be different in the
case of mixings; therefore, the corresponding lines were drawn
with different thicknesses.
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dotted-dashed lines stand for any of the tensors F μν, F i
μν,

Gμν, and Gi
μν. The different thicknesses of the dashed and

dotted-dashed lines stand for the possibility of the
couplings between different vector or axial mesons, i.e.,
in the case these diagrams can be seen as vector/axial
mesons mixings due to the interaction with a constituent
quark current.

A. Free vector and axial mesons terms

Although the aim of this work is to investigate vector/
axial mesons interactions with constituent quarks, it is
interesting to have in mind some leading terms emerging
from the effective action (11) for the strict vector/axial
mesons sector. This sector has been investigated in some
works within very similar formalisms for the NJL model
[4,8], and the expression (21) below contains basically the
same vector mesons free terms. The following leading free
vector/axial mesons terms arise in the very long wavelength
limit for zero momentum exchange,

Ifree ¼ −
gð0Þf

4
ðF μν

i F i
μν þ Gμν

i Gi
μν þ F μνF μν þ GμνGμνÞ

−
Mð0Þ

v

2
ðVi

μ
2 þ Ā2

i;μ þ Vμ
2 þ Ā2

μÞ; ð20Þ

where the following effective parameters have been
defined:

gð0Þf ¼ id14NcTr0ððS̃0ðkÞS̃0ðkÞÞÞ; ð21Þ

Mð0Þ
v

2 ¼ −id18NcTr0ððS0ðkÞS0ðkÞÞÞ: ð22Þ

It is interesting to note that both of the two quantities, gf
and M2

v, are the same for all the vector and axial mesons.
They remain nonzero in the chiral limit of zero quark
effective massM� → 0. In this formulation, the vector/axial
mesons masses are all the same for the four mesons (22),
and the normalization constants of the canonical meson
field definitions are also the same. Therefore, these
expressions only satisfy one of the Weinberg sum rules,
f2Vm

4
V ¼ f2Am

4
A, due to the absence of the coupling to pions

[42]. The complete resulting vector and axial mesons sector
with leading self-interactions will be presented elsewhere.

IV. NUMERICAL RESULTS

The expressions for the effective coupling constants
depend on components of the gluon and quark propagator.
However, it is possible to find exact and approximated
ratios between them that provide approximated estimations
of their relative strengths. The limit of very large quark
effective mass might be obtained, for example, by observ-
ing that S0ðkÞ ∼ 1=M� and S̃0ðkÞ ∼ 1=M�2. This yields the
following approximated ratios:

gva−j
gr1

∼
3

2M� ;
gFjs
gr1

∼
3

2M�3 : ð23Þ

These ratios show that the gauge-type single vector mesons
couplings to quark currents gr1 are the leading ones as
compared to the others in the large quark mass expansion
presented above as it should be. There is also an exact ratio
between coupling constants that is given by

gϵv
gva−j

¼ −
1

M� : ð24Þ

This exact ratio has the shape of a gauge-invariant relation
since it does not depend on the gluon propagator; however,
it has been found by considering (2).
In Table I, numerical values are presented for the

effective coupling constants of expressions (14), (17),
and (19) and also for the parameters (21) and (22) for
different values of the quark effective mass. Two gluon
propagators were chosen, one of them with only a trans-
versal component from Tandy-Maris DIðkÞ [35,43] and the
other being an effective longitudinal one by Cornwall
DIIðkÞ [38]. Both of them are written below; they yield
dynamical chiral symmetry breaking, and the association

g2R̃μνðkÞ≡ haD
μν
i ðkÞ ð25Þ

was adopted, where Dμν
i ðkÞ (i ¼ I, II) is one of the chosen

gluon propagators from the quoted articles, ha is a constant
factor which corresponds to fixing the quark-gluon (run-
ning) coupling constant. The value of this factor ha was
chosen to make the coupling constant gv1 ¼ gr1 to repro-
duce a typical numerical value considered in nucleon-
nucleon potential [15] in the vacuum or from nuclear
properties. The Kawarabayashi-Suzuki- Riazuddin-
Fayyazuddin relation [15,39,44] in the vacuum can be

written as g2 ¼ M2
ρ

2F2
π
, where Mρ ¼ 770 MeV and

Fπ ¼ 92 MeV, it yields g ≃ 6. From the Quark-Mesons
Coupling model in different approximations, these in
medium coupling constants have values in ranges 4.2 ≤
gρ ≤ 8.5 and 6.8 ≤ gω ≤ 9.5 [45]. The fixed chosen value
was gv1ha ¼ 12. The overall normalization and momentum
dependence of the gluon propagators are different, and
therefore they provide considerably different values for the
resulting vector mesons–constituent quark coupling con-
stants. The expressions for the gluon propagators consid-
ered below are

DIðkÞ ¼
8π2

ω4
De−k

2=ω2 þ 8π2γmEðk2Þ
ln ½τ þ ð1þ k2=Λ2

QCDÞ2�
; ð26Þ

DIIðkÞ ¼ KF=ðk2 þM2
kÞ2; ð27Þ

where for the first expression γm ¼ 12=ð33 − 2NfÞ,Nf ¼ 4,
ΛQCD ¼ 0.234 GeV, τ ¼ e2 − 1, Eðk2Þ ¼ ½1 − expð−k2=
½4m2

t �Þ=k2, mt ¼ 0.5 GeV, ω ¼ 0.5 GeV, and D ¼
0.553=ω GeV2 [35,43] and for the second expression
KF ¼ ð2πMk=ð3keÞÞ2, where ke ¼ 0.15 was chosen

FÁBIO L. BRAGHIN PHYS. REV. D 97, 054025 (2018)

054025-6



together with the value of ha andMk ¼ 220 MeV [38]. The

numerical results for the free vector mesons parameters gð0Þf

andMð0Þ
v areUVdivergent, and therefore amomentum cutoff

was considered. However, these two parameters cannot be
expected to reproduce experimental data due to the limit of
structureless mesons considered in this work.When compar-
ing the numerical values exhibited in the table, it is seen they
do not satisfy the ratios estimated above (23), (24) because
the effective quark massM� ∼ 330 MeV is not large enough
to reproduce the analytical ratios above. Larger values of the
effective mass, however, are not realistic, and they were not
included in the table. Nevertheless, it can be noted that the
resulting numerical values for larger values of the quark
effective mass in the table are closer to the approximated
ratios estimated above.

A. Form factors

The complete expressions for two of the form factors gr1
and gva−j, expressions (14) and (17), will be generalized for
nonzero momentum transfer. To explain the notation, two
examples of full momentum-dependent terms in expres-
sions (13) and (15) are shown, corresponding to a particular
channel of the diagrams shown in Fig. 1. They can be
written after a Fourier transformation as

Lff ¼ gr1ðQÞVi
μðQÞψ̄ðQÞγμσiψð0Þ

þ gva−jðQ1; Q2ÞVi
μðQ1Þ

× VμðQ2Þψ̄ðQ1 þQ2Þσiψð0Þ: ð28Þ
The couplings gva−j in expression (15) are the same for two
identical vector/axial mesons couplings to quarks and for
two different vector/axial mesons couplings to quarks
although the quark currents might be different in each
case. After a Wick rotation to the Euclidean momentum

space, the form factors were calculated numerically. For the
two–vector mesons couplings to constituent quarks, two
different calculations were performed, a complete one ( com)
and a momentum-truncated one ( tr). The truncated expres-
sion is obtained by the following approximation: S0ðkÞ≃
M�S̃0ðkÞ. The expressions

gr1ðQÞ ¼ 4Ncd1ðαg2ÞM�2
Z
k
S̃0ðkÞS̃0ðkþQÞ ¯̄Rð−kÞ;

ð29Þ
gcomva−jðQ1; Q2Þ ¼ 12Ncd2ðαg2ÞM�

×
Z
k
TQ1;Q2

ðkÞS̃0ðkÞS̃0ðkþQ1Þ

× S̃0ðkþQ1 þQ2ÞRð−kÞ; ð30Þ

gtrva−jðQ1; Q2Þ ¼ 12Ncd2ðαg2ÞM�3

×
Z
k
S̃0ðkÞS̃0ðkþQ1Þ

× S̃0ðkþQ1 þQ2ÞRð−kÞ; ð31Þ
where

R
k ¼

R
d4k=ð2πÞ4, were investigated numerically,

and the momentum-dependent functions above are given by

S̃0ðkÞ ¼
1

k2 þM�2 ; ð32Þ

S̃2ðk; kþQÞ ¼ k2 þ k ·Q −M2

ðk2 þM�2ÞððkþQÞ2 þM�2Þ ; ð33Þ

TQ1;Q2
ðkÞ ¼ ½3k2 þ 4k ·Q1 þ 2k ·Q2 þQ1 ·Q2

þQ2
1 −M�2�; ð34Þ

and ¯̄RðkÞ was given after expression (14).

TABLE I. In the first column, the quark effective masses are displayed with the values of the factor ha that were
chosen to fix the coupling constant gv1 ¼ gr1 ¼ 12 as a typical numerical value considered in nucleon-nucleon
potential [15]. In the second column, the gluon propagators are indicated:DIðkÞ andDIIðkÞ are the gluon propagators,
respectively, from Refs. [35,43] and Ref. [38]. In the other columns, results, which depend on the gluon propagator,
from the expressions (14), (17), and (19) are displayed, and also parameters do not depend on the gluon

propagators (21) and (22). The momentum cutoff used for the integrations (21), (22) is indicated together with gð0Þf .

M�, ha (GeV) DiðkÞ gr1ha gvajha (GeV−1) gFjsha (GeV−3) gð0Þf (Λ) (GeV) Mð0Þ
v (GeV)

0.33, 12
9.3 DI 12 5.8 111 0.10 (2.0) 0.479

0.33, 12
0.67 DII 12 5.7 107 � � � � � �

0.28, 12
10.5 DI 12 6.4 165 0.11 (2.0) 0.495

0.28, 12
0.75 DII 12 6.4 163 � � � � � �

0.22, 12
12.7 DI 12 6.8 279 0.13 (2.0) 0.512

0.22, 12
0.9 DII 12 6.7 285 � � � � � �

0.07, 12
20.3 DI 12 7.2 4944 0.22 (2.0) 0.545

0.07, 12
1.5 DII 12 7.6 3228 � � � � � �
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In Figs. 2–7, the form factors gcomva−jðQ1; Q2Þ;
gtrva−jðQ1; Q2Þ of the expressions above are presented as
functions of Q1 for the two gluon propagators DI and DII
and different external momenta Q2 by considering
M� ¼ 330 MeV. The cases for two incoming vector/axial
mesons to the vertex in the same direction, Q1 ·Q2 ¼
jQ1jjQ2j > 0, are presented with solid lines, and the case
for one incoming meson and another outgoing meson
(Q2 < 0 and Q1 ·Q2 ¼ jQ1jjQ2j < 0) from the interaction
vertex, in the same longitudinal direction, are presented
with dashed lines in all these figures. The thick lines

correspond to the complete expressions ( com), and the thin
lines correspond to the truncated ones tr. Figures 2, 4, and 6
are drawn with propagator DIðkÞ, and Figs. 3, 5, and 7 are
drawn with DIIðkÞ. In Figs. 2 and 3, it was considered
Q2 ¼ �Q1, whereas in Figs. 4 and 5, Q2 ¼ �2Q1, and
finally in Figs. 6 and 7,Q2 ¼ �Q1=2. In all these figures, it
is seen that the more intricate momentum structures of
gcomva−jðQ1; Q2Þ produce a nonmonotonic behavior, whereas
the truncated expression yields a much faster decreasing
behavior of the form factor with increasing Q1. In all the
figures, the numerical values for mesons with opposite

FIG. 2. By considering the gluon propagator I from
Refs. [35,43], the expressions for gcomva−jðQ1; Q2 ¼ þQ1Þ and
gcomva−jðQ1; Q2 ¼ −Q1Þ are plotted, respectively, in the solid
thick line and dashed thick line; gtrva−jðQ1; Q2 ¼ þQ1Þ and
gtrva−jðQ1; Q2 ¼ −Q1Þ are plotted, respectively, in the solid line
and dashed line.

FIG. 3. By considering the gluon propagator II from Ref. [38],
the expressions for gcomva−jðQ1; Q2 ¼ þQ1Þ and gcomva−jðQ1; Q2 ¼
−Q1Þ are plotted, respectively, in the solid thick line and dashed
thick line; gtrva−jðQ1; Q2 ¼ þQ1Þ and gtrva−jðQ1; Q2 ¼ −Q1Þ are
plotted, respectively, in the solid line and dashed line.

FIG. 4. By considering the gluon propagator I from
Refs. [35,43], the expressions for gcomva−jðQ1; Q2 ¼ þ2Q1Þ and
gcomva−jðQ1; Q2 ¼ −2Q1Þ are plotted, respectively, in the solid
thick line and dashed thick line; gtrva−jðQ1; Q2 ¼ þ2Q1Þ and
gtrva−jðQ1; Q2 ¼ −2Q1Þ are plotted, respectively, in the solid line
and dashed line.

FIG. 5. By considering the gluon propagator II from Ref. [38],
the expressions for gcomva−jðQ1; Q2 ¼ þ2Q1Þ and gcomva−jðQ1; Q2 ¼
−2Q1Þ are plotted, respectively, in the solid thick line and dashed
thick line; gtrva−jðQ1; Q2 ¼ þ2Q1Þ and gtrva−jðQ1; Q2 ¼ −2Q1Þ
are plotted, respectively, in the solid line and dashed line.
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momenta Q2 < 0 are always larger than the parallel
incoming mesons Q2 > 0. The former, in all cases, go
to zero considerably slower than the latter. For Q2 ¼
þ a

2
Q1 (a ¼ 1, 2, and 4, respectively, in Figs. 6 and 7, 2

and 3, and 4 and 5), the complete expressions exhibit quite
different behaviors with low momentum when comparing
the results from propagators I and II. The complete
expression with propagator I (Figs. 2, 4, and 6) in thick
solid lines yields a local minimum for low-momentum Q1

that turns out to be always close to zero in the case of
the results with propagator II. It is also noted that the

propagator II yields results that go to zero faster with Q1

than the calculation with propagator I. For the behavior of
gcomva−jðQ1; Q2Þ with negative Q2 ¼ − a

2
Q1 (a ¼ 1, 2, and 4

in the figures), there is a maximum value of gcomva−j that
occurs in larger values of Q1 for smaller a (or smaller Q2).
For example, by comparing the thick dashed lines in Figs. 4
and 6, respectively, for Q2 ¼ −2Q1 and Q2 ¼ −Q1=2, the
maximum value appears to be, respectively, around Q1 ≃
400 MeV and Q1 ≃ 650 MeV for propagator I.
In Fig. 8, the form factor gr1ðQÞ is plotted for M� ¼

330 MeV with gluon propagators DI and DII, respectively,
in thick solid and dashed lines. By considering M� ¼
280 MeV, the same convention was adopted for thin solid
and thin dashed lines. The results for M� ¼ 330 MeV are
compared to the nucleon vector form factor fitted by a
quadrupolar form from Ref. [46] from the Faddeev equa-
tion in the dotted line and line with circles. This fit is given

by the expression Fρ
1ðQ2Þ ¼ Fρ

1
ð0Þ

ð1þ Q2

Λ2
1;ρ

Þ3
, where Λ1;ρ ¼

1.12 GeV and Fρ
1ð0Þ ¼ gρNN is in the range 4.82–6.4 in

different works. To allow the comparison of the strict
momentum dependence, the value of FV

1 ð0Þwas taken to be
the numerical zero momentum form factors obtained in this
work. Therefore, Fρ

1ð0Þ ¼ 9.2 (propagator I, thick dotted
line), and Fρ

1ð0Þ ¼ 6.7 (propagator II, line with circles).
The large-Q behavior of gr1ðQÞ is dictated by the quark
effective mass as can be seen in the region of Q ¼ 2 GeV.
The strong vector mesons form factors yield the strong

squared radius for the vector and axial mesons. With the
expression (29), the following expression was calculated:

FIG. 6. By considering the gluon propagator I from
Refs. [35,43], the expressions for gcomva−jðQ1; Q2 ¼ þQ1=2Þ and
gcomva−jðQ1; Q2 ¼ −Q1=2Þ are plotted, respectively, in the solid
thick line and dashed thick line; gtrva−jðQ1; Q2 ¼ þQ1=2Þ and
gtrva−jðQ1; Q2 ¼ −Q1=2Þ are plotted, respectively, in the solid line
and dashed line.

FIG. 7. By considering the gluon propagator II from Ref. [38],
the expressions for gcomva−jðQ1; Q2 ¼ þQ1=2Þ and gcomva−jðQ1; Q2 ¼
−Q1=2Þ are plotted, respectively, in the solid thick line and
dashed thick line; gtrva−jðQ1; Q2 ¼ þQ1=2Þ and gtrva−jðQ1; Q2 ¼
−Q1=2Þ are plotted, respectively, in the solid line and dashed line.

FIG. 8. The strong vector mesons form factor gr1ðQÞ given in
expression (29) is presented for the two gluon propagators I
[35,43], solid lines, and II [38], dashed lines. The quark effective
mass was considered M� ¼ 330 MeV for thick lines and M� ¼
280 MeV for thin lines. The normalized vector meson–nucleon
form factor from Ref. [46] is also presented for further com-
parison with corresponding normalization with results of the two
propagators above: Fρ

1ð0Þ ¼ 9.2 (propagator I, thick dotted line)
and Fρ

1ð0Þ ¼ 6.7 (propagator II, lines with circles).
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hr2ρis ¼ −6
dgr1ðQÞ
dQ2

����
Q¼0

: ð35Þ

An exact relation between this strong squared radius (35)
and the electromagnetic squared radius for the rho and
omega vector mesons, hr2ρiE (in expression (41) of
Ref. [47]) and hr2ωiE (both for zero magnetic field) follows,
and it is given by

hr2ρis ¼
2

e
hr2ρiE; hr2ωis ¼

2

3e
hr2ωiE: ð36Þ

The rho quadratic radius (35) is presented in Fig. 9 for the
two gluon propagators, respectively, DI and DII . Most of
the numerical results are of the order of magnitude of the
experimental data, hr2ρiexp ≃ 0.28–0.56 fm2 [48,49], except
the numerical results obtained with the gluon propagatorDI
for which the values are divided by a factor 10 to keep the
scale of the figure. These results manifest the strong
dependence of the results on the strength of the quark-
gluon coupling and on the overall momentum dependence
of the gluon propagator.

V. SUMMARY AND FINAL REMARKS

To summarize, different effective couplings between
vector/axial mesons and constituent quarks were presented.
The effective coupling constants were obtained as the zero
momentum limit of form factors, and they were expressed
in terms of the parameters of the original model and of
components of the quark and gluon kernels. The vector and
axial mesons fields were introduced by means of the
auxiliary field method, and the ω and f1 vector and axial
mesons were considered to be chiral partners. The

structureless mesons limit was considered for the zero-
order derivative and large quark effective mass expansion.
The leading vector mesons–constituent quark interactions
are the minimal gauge couplings in expression (13). The
determinant expansion given by expression (10) can be
written in terms of a covariant derivative for the minimal
coupling with vector/axial mesons. However, most of the
two vector/axial mesons effective couplings to constituent
quarks (15) cannot be written in terms of non-Abelian parts
of vector mesons strength tensors that generalize expres-
sions (16) and therefore do not seem to be possibly
incorporated into a chiral vector/axial mesons gauge
framework [2–4]. Some next-leading, or second-order,
effective couplings can be associated to a part of the elastic
and inelastic scattering amplitudes of the vector mesons–
constituent quarks scattering amplitude, and some of the
inelastic ones might be seen as vector or axial mesons
mixings mediated or induced by constituent quark currents
exhibited in expression (15). They present considerably
different structures from the usual charge symmetry–
violation mixing. Also, they emerge not only for the neutral
ρ0, A1 but also for the charged ρ, A1 mesons coupled to
quark currents such as ρ⃗μð∂μωνÞ · ψ̄ σ⃗ γνψ . It is interesting
to note that only one effective coupling constantwas found to
emerge in the leading order in expressions (13), and only
three different coupling constants were found at the second
order in expression (15) in spite of the relatively large number
of different effective couplings. This issue goes along the
universality idea. However, these effective couplings do not
represent all the possible effective couplings since tensor
quark currents are not obtained from themethod presented in
this work. The resulting leading single-meson couplings (13)
are the only renormalizable effective couplings- and the
higher-order ones, such as (15), are nonrenormalizable. All
the coupling constants, however, are UV finite for usual
large-momentum behaviors of the gluon propagator such as
DðpÞ ∼ 1=ps for s > 2. Furthermore, each additional vector/
axial meson that appears in higher-order terms of the large
quark mass expansion will present progressively additional
factors S0ðkÞ ∼ 1=M�, and these extra factors will make the
higher-order coefficients of the terms (effective coupling
constants) of the expansion be progressively smaller in the
large quark mass regime. Numerical estimates were pre-
sented by considering two very different gluon propagators.
Although the resulting order of magnitude of the leading
vector meson–constituent quark coupling constants, gv1 and
gr1, nearly reproduced experimental or expected values,
these coupling constants gv1 and gr1 were normalized to a
typical value considered in the literature by fixing a particular
value for the quark-gluon coupling constant. This was done
by fixing ha as shown in the table. The other coupling
constants of the table, for which we found no values in the
literature, were corrected accordingly. Eventually, it might be
that, by considering all the complementary mechanism(s)
from QCD for the couplings shown above (if there are

FIG. 9. By considering propagators I and II, the vector mesons
strong quadratic radius is exhibited as a function of the quark
effectivemassM�. Results are shownwith andwithout the factorha
explained in the table, with thick solid and thick dashed lines with
DIðkÞ, and they aremultiplied by 1=10 to be kept in the scale of the
figure. The cases for gluon propagatorDII are represented in dotted
and dotted-dashed lines, respectively, with and without ha.
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relevant corrections in differentQCDmechanisms), thegauge
independence should be expected to be recovered at the
hadron and nuclear levels. Nevertheless, although the effec-
tive coupling constants shown above have different dimen-
sions, it was possible to estimate approximated and exact
ratios between them in the limit of large quark effective mass.
The momentum dependences of two different form factors,
gr1ðQÞ and gvqa−jðQ1; Q2Þ, were addressed also by consid-
ering a momentum truncation for the coupling gva−j in
expression (31). The momentum of the second vector/axial
meson was chosen to assume the values Q2 ¼ � a

2
Q1 for

a ¼ 1, 2, 4, i.e., for its modulus to be smaller, equal to, or
larger than Q1. Finally, the quark effective mass dependence
of the strong rho (or omega) square radius was investigated
for the two gluon propagators. Pions dynamics and effective

couplings to constituent quarks were presented in Ref. [23],
and they make it possible to consider constituent quark
and vector mesons effective interactions mediated by them.
They would correspond to a class of effective hadron
interactions mediated by pseudoscalar auxiliary fields that
can be found by integrating out them approximately. With
this, the resulting effective couplings would contain addi-
tional factors S0ðkÞ or S̃0ðkÞ, being therefore of higher order
in 1=M� and therefore numerically smaller.
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