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We present a formalism that resums threshold-enhanced logarithms to all orders in perturbative QCD for
the rapidity distribution of any colorless particle produced in hadron colliders. We achieve this by
exploiting the factorization properties and Kþ G equations satisfied by the soft and virtual parts of the
cross section. We compute for the first time compact and most general expressions in two-dimensional
Mellin space for the resummed coefficients. Using various state-of-the-art multiloop and multileg results,
we demonstrate the numerical impact of our resummed results up to next-to-next-to-leading order for the
rapidity distribution of the Higgs boson at the LHC. We find that inclusion of these threshold logs through
resummation improves the reliability of perturbative predictions.
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I. INTRODUCTION

With the successful running of the LHC at CERN and
precise theoretical predictions from various state-of-the-art
computations, we can now test the Standard Model (SM) of
particle physics with unprecedented accuracy and also
severely constrain many physics beyond the SM (BSM)
scenarios. The spectacular discovery [1] of a scalar particle
and the most precise prediction on its production cross
section [2] improved our understanding of the symmetry-
breaking mechanism, namely, the Higgs mechanism. The
copious production of vector bosons Zs and W�s and
lepton pairs at the LHC through Drell-Yan (DY) process
[3], which are used to precisely measure the parton
distribution functions (PDFs) [4] are also very important
to study.
While inclusive rates are important for any phenomeno-

logical study, the differential cross sections often carry
more information on the nature of interaction and quantum
number of particles produced in the hard collisions.
Rapidity distributions of Drell-Yan pair [5], Z boson [6],
and charge asymmetries of leptons inW� boson decays [7]
are already used to measure PDFs. Possible excess events
in these distributions can hint at BSM physics, namely,

R-parity violating supersymmetric models [8], models with
Z0 or with contact interactions, and large extra-dimension
models [9]. Like in DY, measurements of transverse
momentum and rapidity distributions of the Higgs boson
will be very useful to study the properties of the Higgs
boson and its couplings. Theoretical predictions for inclu-
sive production [10] as well as the rapidity distribution [11]
of dileptons in DY production and the Higgs bosons in
gluon-gluon fusion have been known to next-to-next-to-
leading order (NNLO) in perturbative QCD for long time.
A few years back, a complete next-to-next-to-next-to-
leading-order (N3LO) prediction [2] for inclusive Higgs
production became available after its soft-plus-virtual (SV)
contributions (N3LOSV) were computed in Ref. [12]; see
also Refs. [13–15] for earlier works and Ref. [16] for Higgs
productions in other channels at N3LOSV and Ref. [17] for
a renormalization group improved prediction to all orders
for gg → H. For DY, so far, only N3LO in the SV
approximation is known [18]; see also Ref. [19].
Both inclusive and differential cross sections are often

plagued with large logarithms resulting from certain
boundaries of the phase space, spoiling the reliability of
the fixed-order predictions. In the inclusive case, this
happens when partonic scaling variable z ¼ Q2=ŝ → 1,
i.e., the threshold limit, resulting from the emission of soft
gluons in the DY process (Q2 ¼ m2

lþl−) and in Higgs
production (Q2 ¼ M2

H), where mlþl− , MH, and ŝ are the
invariant mass of the dileptons, the mass of the Higgs
boson, and center-of-mass energy squared of the partonic
subprocess, respectively. One finds a similar problem when
the transverse momentum of the final state becomes small.
The resolution to this is to resum these large logs to all
orders in perturbation theory. To achieve this, several
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approaches exist in the literature for both inclusive rates
(see Refs. [20,21] for the earliest approach) as well as for
transverse momentum distributions [22]. Catani and
Trentadue [21], in their seminal work, demonstrated the
resummation of leading large logs for the inclusive rates
in Mellin space and extended their approach to a differ-
ential xF distribution using double Mellin moments. In the
recent past, there have been several approaches to perform-
ing threshold resummation for rapidity distribution. In
Ref. [23], an appropriate Fourier transformation for the
rapidity variable resums certain logs for the rapidity
distribution, and in Ref. [24], the authors have used soft-
collinear effective theory (SCET) to identify the potential
large logs that can be resummed (see also Ref. [25] for
resumming timelike logarithms using SCET).
In Refs. [14,15], one of the authors of the present article

developed z-space formalism to obtain a soft distribution
function that captures the threshold-enhanced part of the
inclusive production of any colorless particle, using factori-
zation properties of cross sections and Kþ G equations that
the form factor as well as soft distribution function satisfy. In
Ref. [15], it was shown that the Nth Mellin moment of the
finite part of the universal soft distribution function was
nothing but the threshold exponent à la Sterman [20] and
Catani and Trentadue [21]. The same approach was later
extended to obtain rapidity distributions of lepton pairs,
Higgs boson [26], and Z and W� [27] using two scaling
variables z1 and z2 in the threshold limit up to N3LO
level [28].
In this article, we derive an all-order resummed result in

two-dimensional Mellin space for rapidity distribution of a
colorless final state F that can be produced in hadron
colliders and present the numerical impact only for the
production of the scalar Higgs boson at the LHC. We work
with double Mellin variablesN1 andN2 corresponding to z1
and z2 in z space and demonstrate the resummation of large
logarithms proportional to lnðNiÞ (in z space, these corre-
spond to plus distributions in both the variables z1 and z2) in
the limit Ni → ∞ (zi → 1). Our approach, while it follows
Ref. [21], differs from Refs. [23,24] in the way the threshold
limits are defined. In the latter, resummation is done in
Mellin-Fourier space spanned by ðN;MÞ, which corresponds
to the scaling variable z and the partonic rapidity yp. By
taking the limitN → ∞ and keepingM fixed, the resummed
result turns out to be identical to the inclusive one.

II. THEORETICAL FRAMEWORK

The rapidity distribution of the state F can be written as

dσI

dy
¼ σIBðx01; x02; q2; μ2RÞ

X
ab¼q;q̄;g

Z
1

x0
1

dz1
z1

Z
1

x0
2

dz2
z2

×HI
ab

�
x01
z1

;
x02
z2

; μ2F

�
ΔI

d;abðz1; z2; q2; μ2F; μ2RÞ: ð1Þ

In the above, μR is the ultraviolet renormalization scale, the
hadron level rapidity y ¼ 1

2
lnðp2:q=p1:qÞ ¼ 1

2
lnðx01=x02Þ,

and τ ¼ q2=S ¼ x01x
0
2, q being the momentum of the final

state F, S ¼ ðp1 þ p2Þ2, where pi are the momenta of
incoming hadrons Piði ¼ 1; 2Þ. For the DY process
(I ¼ q), the state F is a pair of leptons with invariant
mass q2, σI ¼ dσqðτ; q2; yÞ=dq2, whereas for the Higgs
boson production through gluon (bottom-antibottom)
fusion [I ¼ gðbÞ], σI ¼ σgðbÞðτ; q2; yÞ. The function HI

ab
in Eq. (1) is given by

HI
abðx1; x2; μ2FÞ ¼ fP1

a ðx1; μ2FÞfP2

b ðx2; μ2FÞ; ð2Þ

where fP1
a ðx1; μ2FÞ and fP2

b ðx2; μ2FÞ are the PDFs with
momentum fractions xiði ¼ 1; 2Þ, renormalized at the
factorization scale μF. The partonic coefficient functions,
ΔI

d;ab, depend on the parton-level scaling variables

zi ¼ x0i
xi
; i ¼ 1, 2.

Using factorization properties of the cross sections and
renormalization group invariance, in Ref. [26], the thresh-
old-enhanced contribution to the ΔI

d;ab denoted by ΔSV
d;I was

shown to exponentiate as

ΔSV
d;I ¼ C exp (ΨI

dðq2; μ2R; μ2F; z̄1; z̄2; ϵÞ)jϵ¼0; ð3Þ

where the exponentΨI
d is both ultraviolet and infrared finite

to all orders in perturbation theory. It contains finite
distributions computed in 4þ ϵ space-time dimensions
expressed in terms of two shifted scaling variables z̄1 ¼
1 − z1 and z̄2 ¼ 1 − z2,

ΨI
d ¼ ½ln (ZIðâs; μ2R; μ2; ϵÞ)2

þ ln jF̂Iðâs; Q2; μ2; ϵÞj2�δðz̄1Þδðz̄2Þ
− CðlnΓIIðâs; μ2; μ2F; z̄1; ϵÞδðz̄2Þ þ ðz̄1 ↔ z̄2ÞÞ
þ 2ΦI

dðâs; q2; μ2; z̄1; z̄2; ϵÞ; ð4Þ

where Q2 ¼ −q2 and the scale μ is introduced to define the
dimensionless strong coupling constant âs ¼ ĝ2s=16π2 in
dimensional regularization, which is related to the renor-
malized one, as through the renormalization constant
Z(asðμ2RÞ). The definition of double Mellin convolution
C is given in Ref. [26]. The overall operator renormalization
constant ZI renormalizes the bare form factor F̂I; the
corresponding anomalous dimension is denoted by γI, and
the diagonal mass factorization kernels ΓII remove the
collinear singularities. We have factored out F̂I and ΓII in
ΔSV

d;I in such a way that the remaining soft distribution
function, Φd

I, contains only soft gluon contributions. Both
F̂I and ΦI

d satisfy Sudakov-type differential equations
(suppressing the arguments âs; μ2; z̄1; z̄2 for brevity),
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χ2
d
dχ2

ΠI
d ¼

1

2
½KI

d;Πðμ2R; ϵÞ þGI
d;Πðχ2; μ2R; ϵÞ�; ð5Þ

where χ2 ¼ Q2 for ΠI
d ¼ ln F̂I and χ2 ¼ q2 for ΠI

d ¼ ΦI
d.

The constants KI
d;Πðμ2R; ϵÞ contain singular terms in ϵ, and

the GI
d;Πðχ2; μ2R; ϵÞ are finite in ϵ. It is straightforward to

solve the above differential equations in powers of as, and
they can be found in Refs. [14,15,26,28]. Substituting these
solutions in Eq. (4) and setting μ2R ¼ μ2F, we find

ΨI
d¼δðz̄2Þ

�
1

z̄1

�Z
q2 z̄1

μ2F

dλ2

λ2
AI(asðλ2Þ)þDI

d(asðq2z̄1Þ)
��

þ

þ1

2

�
1

z̄1z̄2

�
AI(asðz12Þ)þ

dDI
d(asðz12Þ)
d lnz12

��
þ

þ1

2
δðz̄1Þδðz̄2Þ ln½gId;0(asðμ2FÞ)�þ z̄1↔ z̄2; ð6Þ

where the subscript þ indicates the standard plus
distribution, AI are cusp anomalous dimensions,
and the constants z12 ¼ q2z̄1z̄2. The finite function DI

d
is defined through GI

d;Φðq2; zi; ϵÞ in the limit ϵ → 0

expanded in as as

DI
dðasðq2ziÞÞ ¼

X∞
j¼1

ajsðq2ziÞGI;ðjÞ
d;Φ ðq2; zi; ϵÞjϵ¼0

¼
X∞
j¼1

ajsðq2ziÞ
�
CI
d;j − fIj þ

X∞
k¼1

ϵkḠI;k
d;j

�����
ϵ¼0

:

ð7Þ

The constants CI
d;j can be expressed in terms of lower

order ḠI;k
d;j (see Eq. (32) of Ref. [26]), and the soft

anomalous dimensions fIj are known up to three loops

(see Refs. [29,30]). The constants ḠI;k
d;j and hence DI

d in
Eq. (7) can be determined using

Z
1

0

dx01

Z
1

0

dx02ðx01x02ÞN−1 dσ
I

dy
¼

Z
1

0

dττN−1σI; ð8Þ

where the σI is the inclusive cross section. Since we are
interested in the threshold limit, we consider the limit
N → ∞ on both sides and use the well-known threshold
resummed inclusive cross section, σI;res, in N space to
obtain the unknown constants ḠI;k

d;i and hence the unknown
DI

d. Alternatively, we can use the z-space approach to
determine these constants in terms of the corresponding
ones from the inclusive cross section as they are inde-
pendent of scaling variables zi and z. Hence, using the z-
space formalism for the inclusive cross section described
in Refs. [14,15] and for rapidity distribution in Ref. [26],
we can express ḠI;k

d;i in terms ḠI;k
i . Substituting these

constants in Eq. (7), expanding DI
d in powers as as

DI
d ¼

P∞
j¼1 a

j
sDI

d;j, and comparing against DI from the
inclusive cross section, we obtain

DI
d;1 ¼ DI

1;

DI
d;2 ¼ DI

2 − ζ2β0AI
1;

DI
d;3 ¼ DI

3 − ζ2ðβ1AI
1 þ 2β0AI

2 þ 2β20f
I
1Þ − 4ζ3β

2
0A

I
1: ð9Þ

From the above equations, it is clear that
Dg

d;j ¼ Dq
d;jCA=CF; j ¼ 1, 2, 3, i.e., maximally non-

Abelian. Following Ref. [31] and defining ω ¼
asβ0 lnðN̄1N̄2Þ where N̄i ¼ eγENi; i ¼ 1, 2, we find

Δ̃SV
d;IðωÞ ¼

Z
1

0

dz1z
N1−1
1

Z
1

0

dz2z
N2−1
2 ΔSV

d;I

¼ gId;0ðasÞ exp (gIdðas;ωÞ); ð10Þ

where γE ¼ 0.57721566… is the Euler-Mascheroni con-
stant. The exponent gIdðas;ωÞ takes the canonical form

gIdðas;ωÞ ¼ gId;1ðωÞ lnðN̄1N̄2Þ þ
X∞
i¼0

aisgId;iþ2ðωÞ: ð11Þ

Rescaling the constants by β0 as ḡId;1 ¼ gId;1,
ḡId;iþ2 ¼ gId;iþ2=β

i
0, ĀI

i ¼ AI
i=β

i
0, D̄I

d;i ¼ DI
d;i=β

i
0, and

β̄i ¼ βi=β
iþ1
0 , we find

ḡId;1 ¼ ĀI
1

1

ω
(ωþ ð1 − ωÞ lnð1 − ωÞ);

ḡId;2 ¼ ωðĀI
1β̄1 − ĀI

2Þ þ lnð1 − ωÞðĀI
1β̄1 þ D̄I

d;1 − ĀI
2Þ þ

1

2
ln2ð1 − ωÞĀI

1β̄1 þ Lqr lnð1 − ωÞĀI
1 þ LfrωĀI

1;

ḡId;3 ¼ −
ω

2
ĀI
3 −

ω

2ð1 − ωÞ ½−Ā
I
3 þ ð2þ ωÞβ̄1ĀI

2 þ (ðω − 2Þβ̄2 − ωβ̄21 − 2ζ2)ĀI
1 þ 2D̄I

d;2 − 2β̄1D̄I
d;1�

− lnð1 − ωÞ
�

β̄1
ð1 − ωÞ ðĀ

I
2 − D̄I

d;1 − ĀI
1β̄1ωÞ − ĀI

1β̄2

�
þ ln2ð1 − ωÞ

2ð1 − ωÞ ĀI
1β̄

2
1 þ LfrĀI

2ω −
1

2
L2
frĀ

I
1ω

− Lqr
1

ð1 − ωÞ ½ðĀ
I
2 − D̄I

d;1Þω − ĀI
1β̄1(ωþ lnð1 − ωÞ)� þ 1

2
L2
qr

ω

ð1 − ωÞ Ā
I
1; ð12Þ
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where Lfr ¼ lnðμ2F=μ2RÞ; Lqr ¼ lnðq2=μ2RÞ. Expanding lnðgId;0Þ as lnðgId;0Þ ¼
P∞

i¼1 a
i
sl
I;ðiÞ
g0 , we find

lI;ð1Þg0 ¼ 2GI;1
1 þ 2ḠI;1

d;1 þ 4AI
1ζ2 − 2LfrBI

1 þ 2LqrðBI
1 − γI0Þ;

lI;ð2Þg0 ¼ GI;1
2 þ ḠI;1

d;2 þ 2β0ðGI;2
1 þ ḠI;2

d;1Þ þ 2ζ2(2AI
2 þ β0ð3BI

1 þ 2fI1 − 3γI0Þ)þ
2

3
AI
1β0ζ3 − 2LfrBI

2 þ L2
frB

I
1β0

þ Lqr(2BI
2 − 2γI1 − β0ð2GI;1

1 þ 2ḠI;1
d;1 þ 4AI

1ζ2Þ)þ L2
qrβ0ð−BI

1 þ γI0Þ: ð13Þ

The expression for ḡId;4 and lI;ð3Þg0 can be found in
Ref. [32], the online version of this paper. In the above
equation, GI;k

j s are obtained from the ϵ-dependent part of
GI

d;F, and B
I
j are the coefficients of δð1 − zÞ in ΓII . The all-

order resummed result given in Eq. (10) is the main result
of this paper. Exponentiation of the functions gId;i resums
the terms asβ0 lnðN̄1N̄2Þ systematically to all orders in
perturbation theory analogous to the inclusive one (see
Ref. [31]). The resummed result can be used to study the
rapidity distribution of any colorless particle F produced in
hadron-hadron collision. In this paper, we restrict ourselves
to the production of a scalar Higgs boson at the LHC and
present the numerical impact of the resummed result over
the fixed-order result known to NNLO level [33]. This is
obtained using

dσg;res

dy
¼ dσg;f:o

dy
þ σgB

Z
c1þi∞

c1−i∞

dN1

2πi

Z
c2þi∞

c2−i∞

dN2

2πi

× eyðN0
2
−N0

1
Þð ffiffiffi

τ
p Þ−2−N0

1
−N0

2 f̃gðN0
1Þf̃gðN0

2Þ
× ½Δ̃SV;N0

1
;N0

2

d;g − ðΔ̃SV;N0
1
;N0

2

d;g Þ
trunc

�; ð14Þ

where N0
i ¼ Ni þ 1; i ¼ 1, 2. In the above equation, the

superscript “f.o” refers to the fixed-order result in as and
“res” refers to the resummed result. The subscript “trunc”
refers to the result obtained from Eq. (10) by truncating at
desired accuracy in as. The constants ggd;0 and ggd;i that
appear in Δ̃SV

d;g are functions of cusp (A
g
i ), collinear (B

g
i ), soft

(fgi ), UV (γgi ) anomalous dimensions and universal soft
terms Ḡg;i

d;j, and process-dependent constants Gg;i
j of virtual

corrections, and they are known to next-to-next-to-leading-
logarithmic (NNLL) accuracy. We performed double
Mellin inversions to obtain the final result in terms of τ
and y and used minimal prescription advocated in Ref. [34].
For the resummed result to NmLOþ NnLL we need f.o to
NmLO accuracy and Δ̃SV

d;g to NnLL accuracy. For the latter,
we need ggd;0 up to order ans , and for the exponent, we need
all the terms up to ggd;nþ1.

III. PHENOMENOLOGY

In the following, we study the numerical impact of
resummed contributions up to NNLL accuracy for the

rapidity distribution of a scalar Higgs boson of mass
MH ¼ 125 GeV at the LHC with

ffiffiffi
S

p ¼ 13 TeV. We have
set the number of flavors nf ¼ 5 and the top mass at
173 GeV and use MMHT 2014 [4] PDFs along with the
corresponding values of as for LO, NLO, and NNLO
through the LHAPDF [35] interface, unless otherwise stated.
We use the publicly available code FEHIP [33] to obtain
dσg;f:o=dy up to NNLO level. We have developed an in-
house Fortran code to perform double Mellin inversion for
the resummed contributions computed in this paper. In
Fig. 1, using Eq. (14), we present the production cross
section for the scalar Higgs boson as a function of its
rapidity y up to NNLO in the left panel and to NNLOþ
NNLL in the right panel along with the respective K
factors. The K factor at a given order, say, at NnLO
(NnLOþ NnLL), is defined by the cross section at that
order normalized by the same at LO (LOþ LL) at
μR ¼ μF ¼ MH. The symmetric band at each order is
generated by varying μR and μF between ½MH=2; 2MH�
around the central scale μR ¼ μF ¼ MH with the constraint
1=2 ≤ μR=μF ≤ 2, adding and subtracting the highest
possible errors from all the scale combinations to the
central scale. We find that the magnitude and sign of the
resummed contribution do vary depending on the order in
as as well the exact values of y and the scales μR, μF.

FIG. 1. Higgs rapidity distributions for fixed-order (left panel)
and resummed contributions (right panel) are presented with
corresponding K factors on lower panels around the central scale
μR ¼ μF ¼ MH .
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In particular, at the central scale μ ¼ μR ¼ μF ¼ MH, the
percentage correction from the leading-logarithmic (LL)
contribution goes from 40% to 50% whereas for next-to-
leading-logarithmic (NLL), we find that it varies from 17%
to 24% and for NNLL it varies from 6% to 10% in the region
0 ≤ y ≤ 2.4, which is evident from Table I. Interestingly, at
μ ¼ MH=2, we find that the cross section at NNLOþ
NNLL is very close to NNLO for a wider range of y,
indicating that μ ¼ MH=2 is a good choice for the fixed-
order predictions. A similar conclusion was arrived at in
Ref. [11] for the inclusive production of the Higgs boson.
From the upper-left panel of Fig. 1, we also observe that LO
and NLO predictions do not overlap around the central
rapidity region. However, at NNLO, partial overlap indi-
cates that the inclusion of higher-order corrections has
increased the convergence of perturbation series. The
upper-right panel shows the effect of resummation over
the fixed-order result.We observe that LOþ LL has overlap
with NLOþ NLL for all values of rapidity. In addition, the
distribution at NNLOþ NNLL falls completely within
NLOþ NLL band. In fact, NNLOþ NNLL increases
approximately by 13% with respect to NLOþ NLL; the
corresponding number for NNLO over NLO is approxi-
mately 25%. This implies that the perturbative convergence
at the resummed level is better compared to the fixed-order
result. We have also chosen MH=2 as the central scale and
found out that the choice of central scale has a minimum
effect on the resummed result at NNLOþ NNLL; i.e.,
the resum result at this order stabilizes, irrespective of the

above-mentioned choices, whereas at fixed order, this does
not happen. Based on the above observations, we can predict
that the N3LOwill be very close to NNLOþ NNLL and the
N3LOþ N3LL result will lie within the NNLOþ NNLL
uncertainty band. In the Table I, the impact of N3LL on the
NNLO result is also presented.
To understand the impact of unphysical scales μR and μF

on our resummed results, we first varied onewhile fixing the
other toMH and then varied both simultaneously for various
values of rapidity y, the results are presented in Fig. 2. As
expected, the running coupling constant decreased the cross
section as we increased μR, while the opposite behavior was
observed for μF both in fixed-order and in resummed results.
Varying these two scales simultaneously led to a cancella-
tion of the two different behaviors, and the amount of
cancellation depended on order of perturbation n and value
of y. Finally, to study the impact of choice of PDFs, in
Table II, we have presented the results at NNLOþ NNLL
using the central PDF of each PDF group.

IV. CONCLUSION

In this paper, we have developed a formalism to resum
threshold logarithms in double Mellin space for the rapidity
distribution of a colorless final stateF produced in the hadron
collider. We have derived for the first time compact and most
general expressions for resummed exponents gId up to
NNLOþ NNLL accuracy.We find that the resummed result
not only changes the fixed-order predictions but also
remarkably improves the perturbative convergence. We
observe that the resummed result at NNLOþ NNLL sta-
bilizes over fixed order irrespective of the choices of the
central scale between ½MH=2; 2MH�. We have also studied
the impact of PDFs on the predictions. The present study can
easily be extended to Drell-Yan [36], pseudoscalar, and
W� and Z productions as well as the production of the Higgs
boson in bottom-antibottom annihilation at hadron colliders.

TABLE I. Fixed-order and resummed results for Higgs rapidity distribution with corresponding absolute error for different benchmark
values of y.

y LO LOþ LL NLO NLOþ NLL NNLO NNLO þ NNLL NNLOþ NNNLL

0.0 4.435� 1.145 6.231� 1.950 8.255� 1.684 9.632� 2.286 10.329� 1.088 10.938� 1.050 10.517� 0.820
0.8 4.134� 1.067 5.833� 1.831 7.517� 1.530 8.820� 2.124 9.407� 0.988 9.992� 1.025 9.641� 0.718
1.6 3.189� 0.819 4.630� 1.468 5.522� 1.117 6.611� 1.676 6.877� 0.744 7.380� 0.849 7.045� 0.563
2.4 1.904� 0.492 2.887� 0.942 2.985� 0.597 3.715� :998 3.683� 0.410 4.040� 0.501 3.821� 0.305

FIG. 2. μF, μR scale variations for the NLOþ NLL (dashed)
and NNLO þ NNLL (solid) cases for different benchmark y
values (starting from the top, y ¼ 0, 0.8, 1.6, 2.4).

TABLE II. Using different PDFs, NNLO þ NNLL contribu-
tions to rapidity distribution for y ¼ 0, 0.8, 1.6, 2.4.

y MMHT ABMP CT10 NNPDF PDF4LHC

0.0 10.938 10.654 10.709 11.302 10.850
0.8 9.992 9.713 9.820 10.378 9.977
1.6 7.380 7.043 7.362 7.758 7.456
2.4 4.040 3.727 4.105 4.111 4.075
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