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In this work, we explore the pattern of chiral symmetry breaking and restoration in a solvable magnetic
field configuration within the Nambu–Jona-Lasinio model. The special semilocalized static magnetic field
can roughly mimic the realistic situation in peripheral heavy ion collisions; thus, the study is important for
the dynamical evolution of quark matter. We find that the magnetic-field-dependent contribution from
discrete spectra usually dominates over the contribution from continuum spectra and chiral symmetry
breaking is locally catalyzed by both the magnitude and scale of the magnetic field. The study is finally
extended to the case with finite temperature or chemical potential.
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I. INTRODUCTION

Recently, it was found that an extremely strong electro-
magnetic (EM) field can be generated in peripheral relativistic
heavy-ion collisions (HICs), such as those at the Relativistic
Heavy Ion Collider (RHIC) at BNL and the Large Hadron
Collider (LHC) at CERN [1–4]. Relevantly, an unexpected
inverse magnetic catalysis effect (IMCE) was discovered at
finite temperature from lattice quantum chromodynamics
(LQCD) simulations [5–8]. In this context, much effort was
devoted to explaining or exploring the thermodynamic
properties of strong coupling systems in the presence of a
constant magnetic field [9–17]; see review Ref. [18]. In
addition, due to the successful realization of the chiral
magnetic effect (CME) in the condensed matter system
ZrTe5 [19], chiral anomaly phenomena [20,21] and the
related phenomenology in hydrodynamics [22–24] become
even hotter topicswhich further push the efforts to look for the
CME signal in the QCD system, see reviews Refs. [25–28]. It
is very interesting to note that the magnetic field usually
brings us a lot of surprises due to the specific quantum effects.
One thing should be kept in mind about the HICs is that

the magnetic field produced is actually inhomogeneous in
the fireball. Thus, it is very important to explore how the
free energy and chiral symmetry will be affected by such a
magnetic field, and that exploration is the main goal of this
work. A sizable electric field can also be generated in HICs
on an event-by-event basis, due to the proton fluctuation in
the colliding ions. However, the average is small over many
events for the same ion collisional systems, and the
magnetic field perpendicular to the reaction plane domi-
nates for a larger impact parameter [4]. Thus, we just focus
on the effect of the magnetic field here. Surely, the
configuration of the magnetic field is quite complicated
in the fireball because of the initial charge fluctuation and
later expansion of the fireball, but the main feature can be

captured by the configuration between the two long straight
electric currents with opposite directions [4]. In order to
derive an exact fermion propagator for later use, we choose
an ideal semilocalized configuration, that is B⃗ðxÞ ¼
Bsech2ðx/λÞẑ [29,30], which is illuminated in Fig. 1. As
we can see, the corresponding electric current configuration
is mainly composed of two peaks along opposite directions
which is just like the case in peripheral heavy ion collisions.
The contribution of fermions to the free energy in such a
magnetic field was studied in detail in both 2þ 1 [29] and
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FIG. 1. The configurations of the semilocalized magnetic field
BðxÞ ¼ Bsech2ðx/λÞ along z direction and the corresponding
current Jy ¼ B0ðxÞ along y direction in the region ð−3λ; 3λÞ.
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3þ 1 dimensions [30], but the simple results [see Eqs. (13)
and (14)] should be treated cautiously since the quadratic
terms of Bwere not dropped completely. Quite recently, the
Schwinger mechanism was checked, and pair production
was found to be enhanced in such a magnetic field together
with the presence of a parallel electric field [31].
In this work, we only focus on the pure magnetic field

case for simplicity, and the paper is arranged as follows: In
Sec. II, we develop the main formalism for a semilocalized
magnetic field within the Nambu–Jona-Lasinio (NJL)
model, where Sec. II A is devoted to a preliminary
calculation of the thermodynamic potential of fermion
systems, with the assumption of a constant mass gap,
and Sec. II B is devoted to exploring the pattern of chiral
symmetry breaking in the weak magnetic field approxi-
mation. The main numerical results for both the constant
and semilocalized mass gap Ansätze are given in Sec. III.
Finally, we briefly summarize in Sec. IV.

II. NAMBU–JONA-LASINIO MODEL WITH
A SEMILOCALIZED MAGNETIC FIELD

In order to study the effect of a semilocalized magnetic
field to the chiral symmetry breaking and restoration in
QCD systems, we adopt the effective Nambu–Jona-Lasinio
model [32–34] which has an approximate chiral symmetry
as the basic QCD theory. Taking into account the magnetic
field BðxÞ and baryon chemical potential μ, the Lagrangian
is given by

L ¼ ψ̄ðiD −m0 þ μγ0Þψ þG½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�; ð1Þ
where ψ ¼ ðu; dÞT is the two-flavor quark field, τ are Pauli
matrices in flavor space, m0 is the current quark mass, and
G is the coupling constant with a dimension ½GeV−2�. Here,
Dμ ¼ ∂μ þ iqAμ is the covariant derivative in flavor space
with electric charges qu ¼ 2e/3 and qd ¼ −e/3 for the u
and d quarks, and the static magnetic field is chosen to
be along the z direction but varying along the x direction
with the corresponding vector potential given by Aμ ¼
ð0; 0;−Bλ tanhðx/λÞ; 0Þ [29].
In order to explore the ground state of the system,

we introduce four auxiliary fields σ ¼ −2Gψ̄ψ and
π ¼ −2Gψ̄iγ5τψ , then the Lagrangian density becomes

L ¼ ψ̄ ½iD −m0 − σ − iγ5ðτ3π0 þ τ�π�Þ þ μγ0�ψ

−
σ2 þ π20 þ π∓π�

4G
; ð2Þ

where π� are the physical fields which are related to
the auxiliary fields as π� ¼ ðπ1 ∓ iπ2Þ/

ffiffiffi
2

p
, and τ� ¼

ðτ1 � iτ2Þ/
ffiffiffi
2

p
are the raising and lowering operators in

flavor space, respectively. The order parameters for the
spontaneous breaking of SULð3Þ × SURð3Þ chiral sym-
metry are the expectation values of the collective fields hσi,
hπ0i, and hπ�i. There should be no pion superfluid for

vanishing isospin chemical potential, that is, hπ�i ¼ 0, in
the recent case. But there might exist a stable π0 domain
wall due to the coupling term μB · ∇π0ðxÞ when B exceeds
the critical value ð0.255 GeVÞ2 in nuclear matter [35].
Although we can show the possibility of the π0 domain wall
in the NJL model by expanding over small π0ðxÞ, the
calculation is so involved that we just neglect it in this
work. It is more reasonable to assume a spatial varying
chiral condensate for an inhomogeneous magnetic field, so
we just set hσi ¼ mþmðxÞ −m0. Then by integrating out
the fermion degrees of freedom, the partition function can
be expressed as a bosonic version:

Z ¼
Z

½Dσ̂�½Dπ̂0�½Dπ̂��

× exp

�
−
Z

d4X

�ðmþmðxÞ −m0 þ σ̂Þ2 þ π̂20 þ π̂2�
4G

�

þ Tr ln½iD −m −mðxÞ − σ̂ − iγ5ðτ3π̂0 þ τ�π̂�Þ

þ μγ0�
�
; ð3Þ

where the fields with a hat denote the bosonic fluctuation
modes, and the trace is taken over the quark spin, flavor,
color, and the spacetime coordinate spaces. In the mean-
field approximation, the thermodynamic potential can be
expressed as

Ω ¼ 1

V4

�Z
d4X

ðmþmðxÞ −m0Þ2
4G

− Tr ln½iD −m −mðxÞ þ μγ0�
�
; ð4Þ

where the four-dimensional volume is V4 ¼ βV, with
β ¼ 1/T the inverse temperature, and V as the spatial
volume of the system. In principle, the gap equation can be
obtained by the extremal condition δΩ/δmðxÞ ¼ 0 as

Z
d3X

mþmðxÞ −m0

2G
− Tr3SAðxÞ ¼ 0; ð5Þ

where the fermion propagator in the semilocalized mag-
netic field is given by SAðxÞ ¼ −½iD −m −mðxÞ þ μγ0�−1,
and the coordinate integrals take over all directions but x.
The gap equation can be separated into two parts: the
x-independent part which gives the expectation value of m
and the x-dependent part which gives the expectation value
ofmðxÞ. It is not easy to solve the gap equation for spatially
varying mðxÞ such as the inhomogeneous FFLO phases
[36–40], let alone that the explicit form of mðxÞ is
unknown. For this reason, we first develop a formalism
with only constant m (that is mðxÞ ¼ 0) to evaluate the
thermodynamic potential in the semilocalized magnetic
field and then explore small mðxÞ by adopting the Taylor
expansion in the weak magnetic field limit.
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A. Thermodynamic potential with constant m

It is usually not easy to solve the Dirac equation exactly
in the presence of an inhomogeneous magnetic field. But
for the chosen semilocalized magnetic field BðxÞ ¼
Bsech2ðx/λÞ with B the magnitude and λ the scale, we
are able to derive an exact solution [29,30]. Because the
magnetic field is well confined in the region ð−3λ; 3λÞ as
shown in Fig. 1, we will first choose L ¼ 6λ as the system
size to study the change of the thermodynamic potential
due to the presence of the inhomogeneous magnetic field.
One can also understand it in another way; that is, the
magnetic field spreads all over the space with the centers at
x0 ¼ 6nλ, ðn ∈ ZÞ, then the situation is just equal to the
case with a system size L ¼ 6λ due to the periodicity of the
configuration. After developing the whole formalism, we
simply extend the formula to the system with a fixed size.
For brevity, we will proceed with one color and one

flavor first. By following the discussions in Ref. [29,30],
the discrete eigenenergy for a given charge qf in the
orthogonal dimensions can be presented as

ϵnsðp2Þ ¼
�
p2
2 þ ðqfBλÞ2 − λ−2

�
nþ 1

2
− cs

�
2

− ðp2qfBλ2Þ2
�
nþ 1

2
− cs

�
−2
�
1/2
; ð6Þ

where cs ¼ j 1
2
þ sqfBλ2j with s ¼ � denoting the fermion

spin along the z direction and n constrained to 0 ≤ n ≤ Ns

with Ns ¼ ceilingðcs − 3
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp2qfBλ3j

p
Þ. One should

notice that in the constant magnetic field limit λ → ∞,
ϵnsðp2Þ ¼ ½ð2nþ 1 − ssgnðqfBÞÞjqfBj�1/2 and Ns → ∞ for
a fixed p2. Besides, there are also contributions from the
continuum spectra as we will illuminate soon.
In the case with finite temperature and density, the

contribution of the fermion loop to the thermodynamic
potential can be given as

Ωðm2; qf ; B; λÞ ¼ −
1

2L

Z
d3p
ð2πÞ2 Tr ln½−∂

2
x þ Vp2

ðxÞ þm2

þ p2
3 þ ðωl þ iμÞ2�

¼ −
1

2L

Z
d3p
ð2πÞ2

Z
dm2Tr½−∂2

x þ Vp2
ðxÞ

þm2 þ p2
3 þ ðωl þ iμÞ2�−1

Vp2
ðxÞ ¼ −λ−2

��
1

2
þ qfBλ2σ3

�
2

−
1

4

�

×

�
1 − tanh2

�
x
λ

��

þ
X
t¼�

1

2
ðp2 − tqfBλÞ2

�
1þ t tanh

�
x
λ

��
;

ð7Þ

where the fermion Matsubara frequency ωl ¼
ð2lþ 1ÞπTðl ∈ ZÞ, and we denote

R
d3p ¼R

dp2dp3T
P∞

l¼−∞ for convenience. Then, the trace of
the Green’s function can be completed with the help of
hypergeometric functions to give

Ωðm2;qf ;B;λÞ

¼ λ2

4L

Z
d3p
ð2πÞ2

Z
dm2

X
s;t¼�

�
1

αþ
þ 1

α−

�

×ψ

�
1

2
ðαþþα−þ1Þ− tcs

�

¼ 1

L

Z
d3p
ð2πÞ2

×
Z

dm2
X
s;t¼�

∂ðωlþiμÞ2Γð12ðαþþα−þ1Þ− tcsÞ
Γð1

2
ðαþþα−þ1Þ− tcsÞ

; ð8Þ

where α�¼λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
�ðp2;p3;mÞþðωlþiμÞ2

p
with the con-

tinuum spectrum Etðp2;p3;mÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2þtqfBλÞ2þp2

3þm2
p

.
Completing the summation overωl by deforming the integral
contour and then the integral overm2, we find the contribution
from the bound states or discrete spectra is

Ωbðm2;qf ;B;λ;T;μÞ

¼−
1

L

Z
dp2dp3

ð2πÞ2
Z

dm2
X
s;t¼�

XNs

n¼0

tanhðEnsðp2;p3;mÞþtμ
2T Þ

4Ensðp2;p3;mÞ

¼−
1

2L

Z
dp2dp3

ð2πÞ2
X
s;t¼�

XNs

n¼0

½Ensþ2T lnð1þe−ðEnsþtμÞ/TÞ�;

ð9Þ

where the dispersion relation is Ensðp2; p3; mÞ ¼
ðϵ2nsðp2Þ þ p2

3 þm2Þ1/2. If the integral region of p2 is fixed
to�qfBL/2 withL the fixed system size, then in the constant
magnetic field limit λ → ∞, we can recover the unregularized
form [15] of the thermodynamic potential from Eq. (9).
The contribution from the cut branches �Etðp2; p3; mÞ can
be evaluated with the help of the following integral trans-
formation properties:

1

2πi

Z
−aþiη

−∞þiη
dx

fðx2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − x2

p tanh

�
xþ μ

2T

�

¼ 1

2π

Z
∞

a
dx

fðx2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − a2

p tanh

�
x − μ

2T

�
;

1

2πi

Z
∞þiη

aþiη
dx

fðx2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − x2

p tanh

�
xþ μ

2T

�

¼ 1

2π

Z
∞

a
dx

fðx2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − a2

p tanh

�
xþ μ

2T

�
; ð10Þ
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with a > 0, η⪆ 0. Then, the contribution from the continuum spectrum can be given as

Ωcðm2;qf ;B;λ;T;μÞ¼
λ

16πL

Z
dp2dp3

ð2πÞ2
Z

dm2
X

s;t;u;v¼�

Z
∞

Et

dω
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2−E2
t

p
�
tanh

�
ω−μ

2T

�
þ tanh

�
ωþμ

2T

��

×ψ

�
1

2
ðivλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−E2

t

q
þλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jω2−E2

−tj
q

ðivθðω−E−tÞþθðE−t−ωÞÞþ1Þ−u

				12þ sqfBλ2
				
�

¼ λ

2πL

Z
dp2dp3

ð2πÞ2
X

s;u;v¼�

Z
∞

0

dy

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þE2⊥

q
þT ln



1þe−ð

ffiffiffiffiffiffiffiffiffiffi
y2þE2⊥

p
þμÞ/T

�
þT ln



1þe−ð

ffiffiffiffiffiffiffiffiffiffi
y2þE2⊥

p
−μÞ/T

��

×ψ

�
1

2
ðivλyþλ

ffiffiffiffiffiffi
jhj

p
ðivθðhÞþθð−hÞÞþ1Þ−u

�
1

2
þ sqfBλ2

��
; ð11Þ

where hðy; p2; qf ; B; λÞ ¼ y2 þ 4p2qfBλ − 4ðqfBλÞ2 and
E⊥ðp2; p3; mÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
2 þ p2

3 þm2
p

. This actually cannot
reduce to the well-known form in the vanishing magnetic
field limit B → 0 because some B-independent terms have
been dropped in deriving Eq. (8) [29]. However, we can still
recognize the main part of the thermodynamic potential with
eigenenergyEðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
except for themultiplicative

digamma function ψ .
For further convenience, we denote the vacuum and

thermal parts of the thermodynamic potential Ωb/cðm2; qf ;
B; λ; T; μÞ byΩb/cðm2; qf ; B; λÞ andΩt

b/cðm2; qf ; B; λ; T; μÞ,
separately. The divergence comes solely from the vacuum
part ΩB¼ΩbþΩc, and the B-dependent part was
previously renormalized to a compact form by dropping
some B-independent and B2 terms [30]. Actually, for the
study of chiral symmetry breaking and restoration, the B2

terms can not be dropped at will because ΩB will have a
“wrong” sign compared to the case with constant magnetic
field [15]:

ΩB ¼ 1

8π2

Z
∞

0

ds
s3

e−m
2s

�
qfBs

tanhðqfBsÞ
− 1

�
: ð12Þ

Thus, from the 2þ 1-dimensional result [29],

ΩBðm2; qf ; B; λÞ

¼ 1

2πλ2L

Z
∞

0

dx
e2πx − 1

ℜ

�
ðjqfBλ2j − ixÞg−1ðxÞ

× ðλ2m2 þ g2ðxÞÞ ln λm − igðxÞ
λmþ igðxÞ

�
; ð13Þ

we should just keep the third momentum integral form for
the 3þ 1-dimensional case as [30]

ΩBðm2; qf ;B;λÞ ¼
1

2π2λ2L

Z
∞

0

dp3

Z
∞

0

dx
e2πx − 1

ℜ

×

�
ðjqfBλ2j− ixÞg−1ðxÞðλ2ðm2 þp2

3Þ

þ g2ðxÞÞ ln λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þp2

3

p
− igðxÞ

λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þp2

3

p
þ igðxÞ

�
; ð14Þ

where gðxÞ¼x2þ2ixjqfBλ2j. Then, ΔΩBðm2; qf ; B; λÞ−
ΔΩBðm2

1; qf ; B; λÞ, where ΔΩ denotes the difference
between the finite magnetic field result and the one in the
B → 0 limit, can be shown to be convergent for m1 ≠ 0
and negative divergent for m1 ¼ 0. Thus, m ≠ 0 is always
favored in the magnetic field.
Here, it is illuminative to present the thermodynamic

potential for N species fermion systems in 2þ 1 dimen-
sions because it is renormalizable in the large-N expansion
[41]. In the chiral limit, by following the renormalization
scheme in Ref. [12], the thermodynamic potential can be
presented as

Ω/N ¼ −
m2mg

2π
sgnðg − gcÞ þ

jmj3
3π

þ ΔΩB; ð15Þ

whereΩB is given by Eq. (13),mg stands for the magnitude
of the coupling g, and gc is the critical coupling constant.
One can easily check that ΔΩBðm2; qf ; B; λÞ ¼ 0 in the
limit λ → 0 as should be and the thermodynamic potential
is reduced to

Ωðm2; qf ; B; λÞ/N

¼ −
m2mg

2π
sgnðg − gcÞ þ

m3

3π
þ λ

2πL

Z
∞

0

dx
xðe2πx − 1Þℜ

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
jqfBjx

p �
ð1þ iÞjqfBjxþ

1 − i
2

m2

�

× ln
mþ ð1 − iÞ ffiffiffiffiffiffiffiffiffiffiffiffiffijqfBjx

p
m − ð1 − iÞ ffiffiffiffiffiffiffiffiffiffiffiffiffijqfBjx

p
�
; ð16Þ

in the limit λ → ∞.
Turn back to the case with 3þ 1 dimensions. For the

thermal parts, it is clear that

lim
B→0

Ωt
bðm2; qf ; B; λ; T; μÞ ¼ 0;

lim
B→0

Ωt
cðm2; qf ; B; λ; T; μÞ ≠ 0; ð17Þ

so the pure B-dependent part can be given as
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Ωt
B ¼ Ωt

b þ ΔΩt
c; ð18Þ

which vanishes at B ¼ 0. In order to explore the relative
importance of the discrete and continuum eigenstates, we
compute the ratio ΔΩt

c/Ωt
b in this part for convenience. As

shown in Fig. 2, the contribution from the continuum part is
usually very small compared to the discrete one and can be
neglected for simplicity, which justifies the later treatment
in the weak magnetic-field approximation. Finally, by
recovering the B-independent term or the thermodynamic
potential in the B ¼ 0 case, which takes the following
three-momentum cutoff regularized form [42],

ΩΛðm; T; μÞ ¼ −
T
π2

X
s¼�

Z
∞

0

p2dp lnð1þ e−ðEðpÞþsμÞ/TÞ

−
m3

8π2

�
Λ
�
1þ 2Λ2

m2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

m2

r

−m ln

�
Λ
m
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

m2

r ��
; ð19Þ

the total finite thermodynamic potential of the NJL model
in the given semilocalized magnetic field is

Ω ¼ ðm −m0Þ2
4G

þ Nc

X
f¼u;d

ðΩΛ þ ΩB þ Ωt
BÞ: ð20Þ

Now, if we fix the system size L, which is large enough to
neglect boundary effect, then only the case λ≳ L is interest-
ing for such a system because the average effect of the
magnetic field is not vanishingly small. In this case, Ns is
usually very large, and the contribution from the continuum
spectrum can be safely neglected due to either the heaviness
or the relatively small effective integral region of p2. Then,
the thermodynamic potential can be simply given by
Ωbðm2; qf ; B; λ; T; μÞ with the integral limit of p2 fixed as
�qfBL/2 as stated before. Thus, it can be regularized in the
more convenient Pauli-Villars scheme [15] as

Ω ¼ ðm −m0Þ2
4G

þ Nc

X
f¼u;d

X2
j¼0

CjΩbðm2 þ jΛ2; B; λ; T; μÞ

ð21Þ

with Cj ¼ 3j2 − 6jþ 1.

B. Weak magnetic field approximation

Due to the difficulty in determining the exact mass gap
from the gap equation (5), we will try to solve this issue in
the weak magnetic field limit. Here, “weak” actually just
means the effect of the magnetic field is very small
compared to the chiral condensate already developed in
the vacuum. It is reasonable to expect that the coordinate-
dependent part of the mass gap mðxÞ is restricted to the
same region, where the semilocalized magnetic field
presents. Thus, “weak magnetic field” just means small
mðxÞ, and we can make Taylor expansions of the thermo-
dynamic potential to the second order of mðxÞ, that is,

Ω¼ 1

V4

�Z
d4X

ðmþmðxÞ−m0Þ2
4G

−Tr lnG−1ðX;XÞ

þTrGðX;XÞmðxÞþ1

2
TrGðX;X0Þmðx0ÞGðX0;XÞmðxÞ

�
:

ð22Þ

Here, the inverse fermion propagator G−1ðX;X0Þ ¼ iDþ
μγ0 −m and the constant mass m should be determined in
the case without magnetic field with the thermodynamic
potential:

Ω ¼ ðm −m0Þ2
4G

−
NcNf

V4

tr lnði∂ þ μγ0 −mÞ: ð23Þ

From the explicit regularized expression Eq. (19), we have
the following gap equation [42]:
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FIG. 2. The ratio ΔΩt
c/Ωt

b, where the color and flavor degrees
of freedom are both taken into account, as a function of the
magnetic field magnitude B for a given scale λ (upper panel)
and of λ for a given B (lower panel). The chemical potential,
temperature, and mass are reasonably chosen as μ ¼ 0,
T ¼ 0.15 GeV, and m ¼ 0.3 GeV.
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m −m0

2G
¼ Ncm2

π2

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

m2

r
−m ln

�
Λ
m
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

m2

r ��
−
Ncm
π2

X
s¼�

Z
∞

0

p2dp
1

EðpÞ
2

1þ eðEðpÞþsμÞ/T : ð24Þ

Then the extremal condition δΩ/δmðxÞ ¼ 0 gives the following integral equation:

mþmðxÞ −m0

2G
þ
Z

d3p
ð2πÞ3 trGðp; x; xÞ þ

Z
d3p
ð2πÞ3

Z
dx0trGðp; x; x0Þmðx0ÞGðp; x0; xÞ ¼ 0; ð25Þ

where trGðp; x; xÞ can be evaluated by following the property

trðiDþ μγ0 −mÞ−1 ¼ trðiðωl þ iμÞγ0 − iDi −mÞ½ðωl þ iμÞ2 −D2
i þm2 þ qfσμνFμν�−1

¼ −mtr½ðωl þ iμÞ2 −D2
i þm2 þ qfσμνFμν�−1 ð26Þ

as [29,30]

trGðp; x; xÞ ¼ −
2m
W

X
s¼�

g1ðs; xÞg2ðs; xÞ; W ¼ 2

λ

Γð1þ 2aÞΓð1þ 2bÞ
Γðaþ bþ 1

2
− csÞΓðaþ bþ 1

2
þ csÞ

;

g1ðs; xÞ ¼ ξað1 − ξÞbF
�
aþ bþ 1

2
− cs; aþ bþ 1

2
þ cs; 1þ 2a; ξ

�
;

g2ðs; xÞ ¼ ξað1 − ξÞbF
�
aþ bþ 1

2
− cs; aþ bþ 1

2
þ cs; 1þ 2b; 1 − ξ

�
; ξ ¼ 1þ tanhðxλÞ

2

a ¼ λ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 − qfBλÞ2 þ ðωl þ iμÞ2 þ p2

3 þm2

q
; b ¼ λ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þ qfBλÞ2 þ ðωl þ iμÞ2 þ p2

3 þm2

q
: ð27Þ

In the limit B → 0, Fðaþ bþ 1
2
− cs; aþ bþ 1

2
þ cs; 1þ 2a; ξÞ → ð1 − ξÞ−2a and the trace reduces to

−2m/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2 þ ðωl þ iμÞ2 þ p2

3 þm2
p

, which is consistent with the usual one obtained in energy-momentum space, but
p1 is integrated over first here. In the limit x → ∞ or ξ → 1, the hypergeometric functions become

F

�
aþ bþ 1

2
− cs; aþ bþ 1

2
þ cs; 1þ 2a; ξ

�
¼ ð1 − ξÞ−2b

2b
Γð1þ 2aÞΓð1þ 2bÞ

Γðaþ bþ 1
2
− csÞΓðaþ bþ 1

2
þ csÞ

;

F

�
aþ bþ 1

2
− cs; aþ bþ 1

2
þ cs; 1þ 2b; 1 − ξ

�
¼ 1: ð28Þ

Then trGðp; x; xÞ becomes magnetic field independent after shifting the integral variable p2 in b which indicates
limx→∞mðxÞ ¼ 0 as expected. For the last term on the left-hand side of the gap equation (25), the effective integral region is
constrained by mðxÞ, or originally by BðxÞ, to order λ. Thus, for not too large λ, it is enough to evaluate this term with the
fermion propagator in the absence of magnetic field because that only gives the next-to-next-to-next- order contribution,
and we can just take mðx0Þ ≈mðxÞ as its leading order contribution of the Taylor expansions around x. Finally, the integral
equation (25) can be reduced to an algebra equation:

mðxÞ ¼ −
�
1

2G
þ
Z

d4p
ð2πÞ4 trðiðωl þ iμÞγ0 þ piγi −mÞ−2

�−1�Z d3p
ð2πÞ3 trGðp; x; xÞ − ðB → 0Þ

�
: ð29Þ

The prefactor in the expression ofmðxÞ is actually the propagator of the σ mode at vanishing energy-momentum and can be
given directly as [34]

�
1

2G
þ
Z

d4p
ð2πÞ4 trðiðωl þ iμÞγ0 þ piγi −mÞ−2

�−1

¼
�
1

2G
− NcNf

Z
Λ

0

dp
π2

p4

E3ðpÞ þ NcNf

X
s¼�

Z
∞

0

dp
π2

p4

E3ðpÞ
1

1þ eðEðpÞþsμÞ/T

�−1
: ð30Þ

In principle, the magnetic-field-dependent part needs further regularization as the prefactor, but the integral over p2 is
automatically constrained for not too large λ, as will be shown in the following.
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According to the properties of the hypergeometric function, there is no pole in g1ðs; xÞg2ðs; xÞ for 0 < ξ < 1. Thus, the poles
of trGðp; x; xÞ solely come from Γðaþ bþ 1

2
− jcsjÞ for aþ bþ 1

2
− jcsj ¼ −nðn ∈ ZÞ, which correspond to the discrete

spectra. Thus, the summation over the Matsubara frequency can be completed to give

Z
d3p
ð2πÞ3 trGðp; x1; x1Þ ¼ −

2

λ

X
s;t¼�

Z
d2p
ð2πÞ2

XNs

n¼0

mΓð2jcsj − nÞ
Γð1þ 2asnÞΓð1þ 2bsnÞ

ð−1Þn
n!

asnbsn
jcsj − 1

2
− n

ξ2a
s
nð1 − ξÞ2bsn tanhð

Ensðp2;p3;mÞþtμ
2T Þ

Ensðp2; p3; mÞ
× Fð−n; 2jcsj − n; 1þ 2asn; ξÞFð−n; 2jcsj − n; 1þ 2bsn; 1 − ξÞ; ð31Þ

where the discrete asn and bsn are, respectively,

asn ¼
1

2

				
�
nþ 1

2
− jcsj

�
− ðp2qfBλ3Þ

�
nþ 1

2
− jcsj

�
−1
				;

bsn ¼
1

2

				
�
nþ 1

2
− jcsj

�
þ ðp2qfBλ3Þ

�
nþ 1

2
− jcsj

�
−1
				:
ð32Þ

As has been mentioned, the contribution from discrete
spectra vanishes automatically at zero magnetic field
because Ns < 0. From the non-negativity of Ns, the

integral limits of p2 are found to be constrained as
�ðcs − 3/2Þ2/jqfBλ3j, which serve as natural momentum
cutoffs if λ is not so large. The integral over p3 is
divergent which can be regularized by the three-
momentum cutoff Λ for simplicity. Still, there is a
contribution from the continuum spectra which can be
neglected after separating out the B-independent part, as
indicated in the previous section.
As a byproduct, the magnetic-field-dependent term can

be derived directly by neglecting the degree of freedom
along p3 in 2þ 1 dimensions, that is,

Z
d2p
ð2πÞ2 trGðp; x; xÞ ¼ −

2

λ

X
s;t¼�

Z
dp2

2π

XNs

n¼0

mΓð2jcsj − nÞ
Γð1þ 2asnÞΓð1þ 2bsnÞ

ð−1Þn
n!

asnbsn
jcsj − 1

2
− n

ξ2a
s
nð1 − ξÞ2bsn tanhð

Ensðp2;0;mÞþtμ
2T Þ

Ensðp2; 0; mÞ
× Fð−n; 2jcsj − n; 1þ 2asn; ξÞFð−n; 2jcsj − n; 1þ 2bsn; 1 − ξÞ: ð33Þ

Then, as we have already known, the prefactor in the gapped phase at zero temperature [41] is

�
1

2G
þ
Z

d3p
ð2πÞ3 trðiωγ

0 þ piγi −mÞ−2
�−1

¼ π

m
; ð34Þ

and the mass fluctuation Eq. (29) is simply reduced to

mðxÞ ¼ 2

λ

X
s¼�

Z
dp2

XNs

n¼0

Γð2jcsj − nÞ
Γð1þ 2asnÞΓð1þ 2bsnÞ

ð−1Þn
n!

asnbsn
jcsj − 1

2
− n

ξ2a
s
nð1 − ξÞ2bsn

Ensðp2; 0; mÞ
Fð−n; 2jcsj − n; 1þ 2asn; ξÞFð−n; 2jcsj − n; 1þ 2bsn; 1 − ξÞ: ð35Þ

Thus, for second-order transitions such as those induced
by coupling tuning, local chiral symmetry breaking with
mðxÞ ≠ 0 will be realized; but for first-order transitions
such as those induced by chemical potential,mðxÞ ∝ m due
to the invalidity of Eq. (34), local chiral symmetry is also
restored.

III. NUMERICAL RESULTS

We devote this section primarily to exploring the
coordinate-dependent mass fluctuationmðxÞ briefly in 2þ1
dimensions and, in detail, in 3þ 1 dimensions. In 2þ 1
dimensions, there is only one energy scale, mg, in the

vacuum, so we take mg as the unit of all other dimensional
quantities for universality. In 3þ 1 dimensions, the param-
eters of the NJL model were fixed to G ¼ 4.93 GeV−2,
Λ ¼ 0.653 GeV, and m0 ¼ 5 MeV by fitting the pion
mass mπ¼134MeV, pion decay constant fπ¼93MeV,
and quark condensate hψ̄ψi ¼ −2 × ð0.25 GeVÞ3 in the
vacuum [43].
It is instructive to qualitatively illuminate the effects

of the magnitude B and scale λ of the magnetic field to
chiral symmetry breaking and restoration in the constant m
Ansätz. The gap equations can be derived from the
thermodynamic potentials Eqs. (15) and (20) through

CHIRAL SYMMETRY BREAKING IN A SEMILOCALIZED … PHYS. REV. D 97, 054021 (2018)

054021-7



∂Ω/∂m ¼ 0 for 2þ 1 and 3þ 1 dimensions, respectively.
The results are shown in Figs. 3 and 4, from which both
chiral catalysis effects of B and λ can be easily identified.
Then, for more reasonable study of local chiral sym-

metry breaking and restoration, the 2þ 1-dimensional
results are illuminated in Fig. 5 for the supercritical case
g > gc. As we can see, the weak magnetic field approxi-
mation is still good for the magnetic field comparable tomg

and the magnetic catalysis effect shows up for the local
chiral symmetry breaking. Besides, the larger magnetic
field scale λ usually means a higher peak but smaller half-
width of mðxÞ. It can be understood in this way: For larger
λ, the region near the original is more like in a constant
magnetic field, which of course prefers a largermð0Þ due to
MCE. However, the magnitude at the boundary,mð�3λÞ, is
not sensitive to λ due to the flatness of BðxÞ there (see the
upper panel of Fig. 1), which then just means the reduction
of the half-width. All the features are qualitatively

consistent with the ones obtained in a constant m
Ansätz (Fig. 3).
The 3þ 1-dimensional results are illuminated in

Fig. 6, share similar features as the results of the 2þ 1-
dimensional case, and are qualitatively consistent with the
ones obtained with the constant m Ansätz (Fig. 4). Finally,
in order to explicitly show how the local mass fluctuation
responds to the global chiral symmetry restoration, we
calculate the constant mass m together with the original
mass fluctuation mð0Þ at different temperature and chemi-
cal potential; see Fig. 7. As is illuminated, the fluctuation is
not sensitive to the change ofm when it is still considerably
large and is deeply suppressed when it becomes small,
which justifies the Taylor expansions in the whole region.
It is interesting that the ratio mð0Þ/m would show a peak
∼0.4 around the critical temperature, which is just an
indication of phase transition. Because of the approximate
chiral symmetry with finite current quark mass and
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FIG. 3. The mass m as a function of the magnetic field scale λ
for fixed magnitude B at zero temperature in 2þ 1 dimensions
with supercritical coupling g > gc. All the quantities are scaled
by mg to dimensionless ones.
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λ for fixed magnitude B at zero temperature in the 3þ 1-
dimensonal NJL model.
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FIG. 5. The mass gap mðxÞ in the region where the magnetic
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baryon chemical potential. The parameters shown in the plot are
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nonrenormalizability with four fermion couplings of the
NJL model, the expected features across the phase tran-
sition for 2þ 1 dimensions are not found. In particular, the
vanishing of mðxÞ is not found across the first-order
transition because m is still finite after the transition.

IV. CONCLUSIONS

In this work, we first developed a formalism to evaluate
the thermodynamic potential with constant fermion mass in
the region where the magnetic field is localized and also for
the system with fixed size under the framework of the NJL
model. Then apart from the magnetic-field-independent
terms, the contributions from the discrete and continuum
spectra were compared with each other, which indicates the
negligible of the latter. Finally, we tried to study the local
chiral symmetry breaking due to a weak semilocalized
magnetic field by using the Taylor expansion technique,
which is the main motivation of this work.
The main findings are the following. In the constant m

Ansätz, both themagnetic field magnitudeB and scale λ tend
to catalyze chiral symmetry breaking in the2þ 1- and 3þ 1-
dimensional cases. And in the weak magnetic field approxi-
mation, the local chiral condensate was also found to be
enhanced by both B and λ, which confirms the qualitative
features from the constant m Ansätz. Thus, the results
indicate the importance of inhomogeneous magnetic field
effect in HICs with much larger B and that the expanding of
the fireball (λ becomes larger) doesn’t necessarily reduce the
magnetic field effect during the period when B sustains.
Furthermore, the mass fluctuation mðxÞ is found to be not
sensitive to the change of temperature T or baryon chemical
potential μ when the global mass is still considerably large,
which further supports the importance of the inhomogeneous
magnetic effect in HICs.

ACKNOWLEDGMENTS

We thank Xu-guang Huang from Fudan University
for his comments on this work. G. C. is supported
by the Thousand Young Talents Program of China,
Shanghai Natural Science Foundation with Grant
No. 14ZR1403000, the NSFC with Grants
No. 11535012 and No. 11675041, and the China
Postdoctoral Science Foundation with Grant
No. KLH1512072.

[1] V. Skokov, A. Y. Illarionov, and V. Toneev, Estimate of the
magnetic field strength in heavy-ion collisions, Int. J. Mod.
Phys. A 24, 5925 (2009).

[2] V. Voronyuk, V. D. Toneev, W. Cassing, E. L. Bratkovskaya,
V. P. Konchakovski, and S. A. Voloshin, (Electro-)Magnetic
field evolution in relativistic heavy-ion collisions, Phys.
Rev. C 83, 054911 (2011).

[3] A. Bzdak and V. Skokov, Event-by-event fluctuations of
magnetic and electric fields in heavy ion collisions, Phys.
Lett. B 710, 171 (2012).

[4] W. T. Deng and X. G. Huang, Event-by-event generation of
electromagnetic fields in heavy-ion collisions, Phys. Rev. C
85, 044907 (2012).

[5] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz,
S. Krieg, A. Schafer, and K. K. Szabo, The QCD phase
diagram for external magnetic fields, J. High Energy Phys.
02 (2012) 044.

[6] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz,
and A. Schafer, QCD quark condensate in external magnetic
fields, Phys. Rev. D 86, 071502 (2012).

0.10 0.12 0.14 0.16 0.18 0.20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

T GeV

0
G

eV

0.30 0.32 0.34 0.36 0.38 0.40
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Μ GeV

0
G

eV

FIG. 7. The constant mass gap m (black solid lines) and
the maximal fluctuation mð0Þ (red dashed lines) as functions
of temperature T at vanishing baryon chemical potential
(upper panel) and baryon chemical potential μ at vanishing
temperature in the 3þ 1-dimensional NJL model. The magnitude
and scale of the magnetic field are chosen as ðjeBj1/2; λÞ ¼
ð0.3 GeV; 2 GeV−1Þ.

CHIRAL SYMMETRY BREAKING IN A SEMILOCALIZED … PHYS. REV. D 97, 054021 (2018)

054021-9

https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1016/j.physletb.2012.02.065
https://doi.org/10.1016/j.physletb.2012.02.065
https://doi.org/10.1103/PhysRevC.85.044907
https://doi.org/10.1103/PhysRevC.85.044907
https://doi.org/10.1007/JHEP02(2012)044
https://doi.org/10.1007/JHEP02(2012)044
https://doi.org/10.1103/PhysRevD.86.071502


[7] F. Bruckmann, G. Endrodi, and T. G. Kovacs, Inverse
magnetic catalysis and the Polyakov loop, J. High Energy
Phys. 04 (2013) 112.

[8] G. Endrodi, Critical point in the QCD phase diagram for
extremely strong background magnetic fields, J. High
Energy Phys. 07 (2015) 173.

[9] K. Fukushima and Y. Hidaka, Magnetic Catalysis Versus
Magnetic Inhibition, Phys. Rev. Lett. 110, 031601 (2013).

[10] J. Chao, P. Chu, and M. Huang, Inverse magnetic catalysis
induced by sphalerons, Phys. Rev. D 88, 054009 (2013).

[11] B. Feng, D. F. Hou, and H. C. Ren, Magnetic and inverse
magnetic catalysis in the Bose-Einstein condensation of
neutral bound pairs, Phys. Rev. D 92, 065011 (2015).

[12] G. Cao, L. He, and P. Zhuang, Collective modes and
Kosterlitz-Thouless transition in a magnetic field in the
planar Nambu-Jona-Lasino model, Phys. Rev. D 90, 056005
(2014).

[13] N. Mueller and J. M. Pawlowski, Magnetic catalysis and
inverse magnetic catalysis in QCD, Phys. Rev. D 91, 116010
(2015).

[14] X. Guo, S. Shi, N. Xu, Z. Xu, and P. Zhuang, Magnetic field
effect on charmonium production in high energy nuclear
collisions, Phys. Lett. B 751, 215 (2015).

[15] G. Cao and P. Zhuang, Effects of chiral imbalance and
magnetic field on pion superfluidity and color supercon-
ductivity, Phys. Rev. D 92, 105030 (2015).

[16] G. Cao and X. G. Huang, Electromagnetic triangle anomaly
and neutral pion condensation in QCD vacuum, Phys. Lett.
B 757, 1 (2016).

[17] C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, A.
Rucci, and F. Sanfilippo, Magnetic field effects on the static
quark potential at zero and finite temperature, Phys. Rev. D
94, 094007 (2016).

[18] V. A. Miransky and I. A. Shovkovy, Quantum field theory in
a magnetic field: From quantum chromodynamics to gra-
phene and Dirac semimetals, Phys. Rep. 576, 1 (2015).

[19] Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A.
V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T.
Valla, Observation of the chiral magnetic effect in ZrTe5,
Nat. Phys. 12, 550 (2016).

[20] K. Hattori and Y. Yin, Charge Redistribution from Anoma-
lous Magnetovorticity Coupling, Phys. Rev. Lett. 117,
152002 (2016).

[21] Z. Qiu, G. Cao, and X. G. Huang, On electrodynamics of
chiral matter, Phys. Rev. D 95, 036002 (2017).

[22] X. G. Huang, Y. Yin, and J. Liao, In search of chiral
magnetic effect: Separating flow-driven background effects
and quantifying anomaly-induced charge separations, Nucl.
Phys. A956, 661 (2016).

[23] Y. Jiang, X. G. Huang, and J. Liao, Chiral vortical wave and
induced flavor charge transport in a rotating quark-gluon
plasma, Phys. Rev. D 92, 071501 (2015).

[24] Y. Jiang, S. Shi, Y. Yin, and J. Liao, Quantifying chiral
magnetic effect from anomalous-viscous fluid dynamics,
Chin. Phys. C 42, 011001 (2018).

[25] J. Liao, Anomalous transport effects, and possible environ-
mental symmetry violation in heavy-ion collisions, Pramana
84, 901 (2015).

[26] D. E. Kharzeev, Topology, magnetic field, and strongly
interacting matter, Annu. Rev. Nucl. Part. Sci. 65, 193
(2015).

[27] X. G. Huang, Electromagnetic fields, and anomalous trans-
ports in heavy-ion collisions—A pedagogical review, Rep.
Prog. Phys. 79, 076302 (2016).

[28] D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, Chiral
magnetic and vortical effects in high-energy nuclear colli-
sions-A status report, Prog. Part. Nucl. Phys. 88, 1 (2016).

[29] D. Cangemi, E. D’Hoker, and G. V. Dunne, Effective energy
for QED in (2þ 1)-dimensions with semilocalized magnetic
fields: A Solvable model, Phys. Rev. D 52, R3163 (1995).

[30] G. V. Dunne and T. M. Hall, An Exact (3þ 1)-Dimensional
QED Effective Action, Phys. Lett. B 419, 322 (1998).

[31] P. Copinger and K. Fukushima, Spatially Assisted
Schwinger Mechanism and Magnetic Catalysis, Phys.
Rev. Lett. 117, 081603 (2016).

[32] Y. Nambu and G. Jona-Lasinio, Dynamical model of
elementary particles based on an analogy with supercon-
ductivity. 1., Phys. Rev. 122, 345 (1961).

[33] Y. Nambu and G. Jona-Lasinio, Dynamical model of
elementary particles based on an analogy with supercon-
ductivity. Ii, Phys. Rev. 124, 246 (1961).

[34] S. P. Klevansky, The Nambu-Jona-Lasinio model of quan-
tum chromodynamics, Rev. Mod. Phys. 64, 649 (1992).

[35] D. T. Son and M. A. Stephanov, Axial anomaly and magnet-
ism of nuclear and quark matter, Phys. Rev. D 77, 014021
(2008).

[36] J. A. Bowers and K. Rajagopal, The crystallography of color
superconductivity, Phys. Rev. D 66, 065002 (2002).

[37] D. Nickel, How Many Phases Meet at the Chiral Critical
Point?, Phys. Rev. Lett. 103, 072301 (2009).

[38] G. Cao, L. He, and P. Zhuang, Solid-state calculation of
crystalline color superconductivity, Phys. Rev. D 91,
114021 (2015).

[39] G. Cao and L. He, Ginzburg-Landau free energy of
crystalline color superconductors: A matrix formalism from
solid-state physics, Commun. Theor. Phys. 64, 687 (2015).

[40] G. Cao and A. Huang, Solitonic modulation and Lifshitz
point in an external magnetic field within Nambu-Jona-
Lasinio model, Phys. Rev. D 93, 076007 (2016).

[41] B. Rosenstein, B. Warr, and S. H. Park, Dynamical sym-
metry breaking in four Fermi interaction models, Phys. Rep.
205, 59 (1991).

[42] G. Cao and X. G. Huang, Chiral phase transition and
Schwinger mechanism in a pure electric field, Phys. Rev.
D 93, 016007 (2016).

[43] P. Zhuang, J. Hufner, and S. P. Klevansky, Thermodynamics
of a quark—meson plasma in the Nambu-Jona-Lasinio
model, Nucl. Phys. A576, 525 (1994).

GAOQING CAO PHYS. REV. D 97, 054021 (2018)

054021-10

https://doi.org/10.1007/JHEP04(2013)112
https://doi.org/10.1007/JHEP04(2013)112
https://doi.org/10.1007/JHEP07(2015)173
https://doi.org/10.1007/JHEP07(2015)173
https://doi.org/10.1103/PhysRevLett.110.031601
https://doi.org/10.1103/PhysRevD.88.054009
https://doi.org/10.1103/PhysRevD.92.065011
https://doi.org/10.1103/PhysRevD.90.056005
https://doi.org/10.1103/PhysRevD.90.056005
https://doi.org/10.1103/PhysRevD.91.116010
https://doi.org/10.1103/PhysRevD.91.116010
https://doi.org/10.1016/j.physletb.2015.10.038
https://doi.org/10.1103/PhysRevD.92.105030
https://doi.org/10.1016/j.physletb.2016.03.066
https://doi.org/10.1016/j.physletb.2016.03.066
https://doi.org/10.1103/PhysRevD.94.094007
https://doi.org/10.1103/PhysRevD.94.094007
https://doi.org/10.1016/j.physrep.2015.02.003
https://doi.org/10.1038/nphys3648
https://doi.org/10.1103/PhysRevLett.117.152002
https://doi.org/10.1103/PhysRevLett.117.152002
https://doi.org/10.1103/PhysRevD.95.036002
https://doi.org/10.1016/j.nuclphysa.2016.01.064
https://doi.org/10.1016/j.nuclphysa.2016.01.064
https://doi.org/10.1103/PhysRevD.92.071501
https://doi.org/10.1088/1674-1137/42/1/011001
https://doi.org/10.1007/s12043-015-0984-x
https://doi.org/10.1007/s12043-015-0984-x
https://doi.org/10.1146/annurev-nucl-102313-025420
https://doi.org/10.1146/annurev-nucl-102313-025420
https://doi.org/10.1088/0034-4885/79/7/076302
https://doi.org/10.1088/0034-4885/79/7/076302
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1103/PhysRevD.52.R3163
https://doi.org/10.1016/S0370-2693(97)01429-9
https://doi.org/10.1103/PhysRevLett.117.081603
https://doi.org/10.1103/PhysRevLett.117.081603
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/PhysRev.124.246
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1103/PhysRevD.77.014021
https://doi.org/10.1103/PhysRevD.77.014021
https://doi.org/10.1103/PhysRevD.66.065002
https://doi.org/10.1103/PhysRevLett.103.072301
https://doi.org/10.1103/PhysRevD.91.114021
https://doi.org/10.1103/PhysRevD.91.114021
https://doi.org/10.1088/0253-6102/64/6/687
https://doi.org/10.1103/PhysRevD.93.076007
https://doi.org/10.1016/0370-1573(91)90129-A
https://doi.org/10.1016/0370-1573(91)90129-A
https://doi.org/10.1103/PhysRevD.93.016007
https://doi.org/10.1103/PhysRevD.93.016007
https://doi.org/10.1016/0375-9474(94)90743-9

