
 

Structure of hadron resonances with a nearby zero of the amplitude
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We discuss the relation between the analytic structure of the scattering amplitude and the origin of an
eigenstate represented by a pole of the amplitude. If the eigenstate is not dynamically generated by the
interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on
the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with
the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the
eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the
resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero.
Finally, studying the positions of poles and CDD zeros of the K̄N-πΣ amplitude, we discuss the origin of
the eigenstates in the Λð1405Þ region.
DOI: 10.1103/PhysRevD.97.054019

I. INTRODUCTION

Given the recent findings of many candidates of exotic
hadrons [1–3], it is an urgent task to establish a method to
clarify the internal structure of hadrons. An important but
difficult aspect of this task is brought by the unstable nature
of hadrons, which sometimes spoils the straightforward
interpretation of physical quantities to characterize the
hadrons [4–6]. For instance, the energy of a resonance is
uncertain, because of the finite decay width. To define the
energy of the resonance unambiguously, one can utilize the
pole of the analytically continued scattering amplitude [7],
which represents the eigenenergy of the Hamiltonian
with the outgoing boundary condition, as in the same
way with the stable bound state. It is therefore desirable to
pin down the clue to characterize the internal structure of a
resonance within the scattering amplitude.
One step in this direction has been made by the pole

counting method [8,9]. In a coupled-channel scattering
system, the position of poles in different Riemann sheets
(shadow poles [10]) is used as a test of the internal
structure. It is argued that the resonance pole is accom-
panied by a nearby pole in the different Riemann sheet if
the state is not dynamically generated. Although the pole
counting method is a powerful tool to qualitatively inves-
tigate the structure of resonances, it is required to determine

the pole positions away from the most adjacent
Riemann sheet.
Alternatively, several studies focus on the Castillegio-

Dalitz-Dyson (CDD) zero [11,12] which is defined as the
zero of the scattering amplitude.1 The general form of the
hadron scattering amplitude including the CDD contribu-
tion is discussed in Refs. [13,14]. The effect of the CDD
zero on the effective range expansion in the near threshold
region is discussed in detail for the case of a single channel
in Ref. [15] and for the case of multicontinuum channels
in Ref. [16]. In a recent study [17], it is shown that the
CDD zero accompanied by nearby πΣc thresholds performs
the crucial role to reproduce the mass and width of
Λcð2595Þ. In Ref. [6], the CDD zero contribution near
the threshold energy region in the estimation of the
compositeness is discussed. While the importance of the
CDD zero contribution is recognized, the direct relation
between the structure of the state and the CDD zero is still
unclear.
In this paper, we show that the distance between the

eigenstate pole and the CDD zero is related to the structure
of the state. To reveal the origin of the eigenstate, we
consider the zero coupling limit (ZCL), which is the limit of
turning off the couplings among different coupled chan-
nels. By analyzing the behavior of CDD zeros and poles in
the ZCL, we discuss the relation between the internal
structure of the eigenstate and the existence of a nearby
CDD zero.*yuki.kamiya@yukawa.kyoto-u.ac.jp
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1The CDD zero is often referred to as “CDD pole”, as it
represents the pole of the inverse amplitude. In this paper, to
avoid the confusion with the eigenstate pole, we call it CDD zero.
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II. ZERO COUPLING LIMIT AND ORIGIN
OF EIGENSTATE

Our aim is to clarify the dynamical origin of the eigenstate
expressed by a pole of the coupled-channel scattering
amplitude in a given partial wave. For this purpose, we
focus on one of the coupled channels, say channel i, and
consider the diagonal component of the scattering amplitude
F iiðEÞ. We would like to utilize the analytic structure
of the scattering amplitude, namely, the position of the
CDD zero F iiðECDDÞ ¼ 0 relative to the eigenstate pole
F iiðEpoleÞ ¼ ∞. In this study, we concentrate on ECDD and
Epole in the most adjacent Riemann sheet to the physical real
energy. For later convenience, we recall the fact that Epole is
common to all the channel components, whereas the
position of the CDD zero can be channel dependent.
To elucidate the origin of the eigenstate, we consider the

zero coupling limit (ZCL) [10,18,19], where the off-
diagonal couplings between different channels are switched
off, but the diagonal interactions are kept fixed. We can
draw the trajectory of the pole toward the ZCL, by
gradually switching off the channel couplings. While the
pole exists in the all components of the coupled channel
amplitude with nonzero channel couplings, in the exact
ZCL, the pole remains only in the one of the components
and decouples from the others.2 It is natural to attribute the
origin of the eigenstate to the dynamics of the channel
where the pole remains in the ZCL.
Thus, we can classify the behavior of the pole in a

specific channel into two cases:
(1) The pole remains in the amplitude in the ZCL.
(2) The pole decouples from the amplitude in the ZCL.

In the former case, the origin of the eigenstate is attributed
to the dynamics of this channel. The latter case is achieved
by the vanishing of the residue of the pole and the
eigenstate originates in the dynamics of the other channels.
In the following, we show that the CDD zero is closely
related to this latter case. Before addressing the general
case, it is instructive to study two examples in which the
position of the eigenstate pole and the CDD zero can be
calculated explicitly.
First, we consider a single-channel scattering problem

coupled to a bare state, utilizing the nonrelativistic effective
field theory introduced in Ref. [6]. The effective field
theory includes the fields ψ , ϕ and B0, with the
Hamiltonian given as

H ¼
Z

d3x

�
1

2M
∇ψ† · ∇ψ þ 1

2m
∇ϕ† · ∇ϕ

þ 1

2M0

∇B†
0 · ∇B0 þ ω0B

†
0B0;

þ g0ðB†
0ψϕþ ϕ†ψ†B0Þ þ v0ψ†ϕ†ϕψ

�
; ð1Þ

with ℏ ¼ 1. The fields ψ and ϕ compose the scattering
channel and the field B0 expresses the discrete channel with
a discrete energy level, e.g. compact quark state. The exact
on shell T-matrix in this system is obtained as

tðEÞ ¼ v0ðE − ω0Þ þ g20
ðE − ω0Þ½1 − v0GðEÞ� − g20GðEÞ

; ð2Þ

where GðEÞ denotes the loop function of the scattering
channel

GðEÞ≡
Z

d3p
ð2πÞ3

1

E − p2=ð2μÞ þ i0þ
; ð3Þ

and μ ¼ Mm=ðM þmÞ. The scattering amplitude F ðEÞ
relates to the T-matrix as F ðEÞ ¼ −μtðEÞ=ð2πÞ.
We consider the case where the system has a discrete

eigenstate. The zero of the denominator of Eq. (2) tells us
the pole position of the amplitude E ¼ Epole is

ðEpole − ω0Þ½1 − v0GðEpoleÞ� − g20GðEpoleÞ ¼ 0: ð4Þ
The residue of the pole is calculated by limE→Epole

ðE − EpoleÞtðEÞ as
v0ðEpole − ω0Þ þ g20

1 − v0½GðEpoleÞ þ ðEpole − ω0ÞG0ðEpoleÞ� þ g20G
0ðEpoleÞ

;

ð5Þ
where G0ðEÞ denotes the energy derivative of the func-
tion GðEÞ.
Let us examine the behavior of the pole Epole in the ZCL.

Because there is a bare state B0 in addition to the scattering
channel, the ZCL corresponds to the limit of g0 → 0. In this
case, Eq. (4) indicates that Epole → ω0 or Epole → E0 with
1 − v0GðE0Þ ¼ 0. If the origin of the eigenstate is the
interaction of the scattering channel, the pole must remain
in the amplitude at Epole ¼ E0 because the position of E0 is
determined within the scattering channel. On the other
hand, if the bare state is the origin of the eigenstate, the pole
behaves as Epole → ω0. In the absence of degeneracy of the
eigenstate, we have 1 − v0Gðω0Þ ≠ 0, and therefore, the
residue of the pole in Eq. (5) vanishes in the ZCL.
Next let us consider the CDD zero ECDD, defined as

F ðECDDÞ ¼ 0. In the present case, ECDD is determined by
the zero of the numerator of the T-matrix in Eq. (2), so the
position of the CDD zero can be written as

ECDD ¼ ω0 − g20=v0: ð6Þ

2If a pole remains in two or more components in the exact
ZCL, the degenerate eigenstates must exist. In this case, there
must be a symmetry which relates different channels. If the
eigenstate is generated not by the interaction of a specific channel
but purely generated by the channel coupling effect, the pole
cannot remain in any of the components. In this case, the pole
should move away to infinity as jEpolej → ∞ in the ZCL. In the
following, we do not consider these special cases, and concen-
trate on the case where the eigenstate originates in the dynamics
of one specific channel.
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In the ZCL (g0 → 0), we find ECDD → ω0. Thus, if the bare
state is the origin of the eigenstate, both the pole and the
CDD zero move toward E ¼ ω0 by reducing the coupling
g0. In the exact ZCL (g0 ¼ 0), the pole and the CDD zero
no longer exist because the zero of the numerator and
denominator in Eq. (2) cancel out each other. When the
coupling g0 is small, the deviation ECDD − ω0 and Epole −
ω0 are of the order of g20. This means that the distance
between the pole and the CDD zero Epole − ECDD is also
Oðg20Þ. Thus, we conclude that the pole and the CDD zero
lie close to each other when the eigenstate originates in the
bare state channel.
Next, we consider the system with two scattering

channels. We introduce fields ψ i and ϕi which consist of
the scattering channel i ¼ 1, 2. The Hamiltonian is given as

H ¼
Z

d3x

�X
i¼1;2

�
1

2Mi
∇ψ†

i · ∇ψ i þ
1

2mi
∇ϕ†

i · ∇ϕi

�

− ωψψ
†
2ψ2 − ωϕϕ

†
2ϕ2 þ

X
i;j¼1;2

v0;ijψ
†
jϕ

†
jϕiψ i

�
: ð7Þ

Similarly to the previous problem, the on-shell T-matrix of
channel 1 is obtained as

t11ðEÞ ¼
v0;11½1 − v0;22G2� þ v20;12G2

½1 − v0;11G1�½1 − v0;22G2� − v20;12G1G2

; ð8Þ

with

GiðEÞ≡
Z

d3p
ð2πÞ3

1

E − p2=ð2μiÞ þ δi;2ðωψ þ ωϕÞ þ i0þ
;

ð9Þ
with μi ¼ Mimi=ðMi þmiÞ. The scattering amplitude of
channel i is given as F iiðEÞ ¼ −μitiiðEÞ=ð2πÞ.
Again, we consider the case with one eigenstate at

E ¼ Epole. With Eq. (8), the conditions for Epole is given as

½ð1−v0;11G1Þð1−v0;22G2Þ−v20;12G1G2�jE¼Epole
¼ 0: ð10Þ

In this model, the ZCL corresponds to the limit of v0;12 → 0

where the pole behaves as Epole → E0;1 or E0;2 with 1 −
v0;11G1ðE0;1Þ ¼ 0 and 1 − v0;22G2ðE0;2Þ ¼ 0. If the
dynamical contribution of channel 1 is the origin of the
eigenstate, the pole remains in the amplitude at Epole ¼ E0;1

in the ZCL. If not, the pole moves toward E0;2 which plays
a similar role with the bare state energy ω0 in the previous
example. It can also be shown that the residue of the pole
vanishes at E ¼ E0;2 in this case.
The position of the CDD zero is determined from

Eq. (8) as

v0;11½1 − v0;22G2ðECDDÞ� þ v20;12G2ðECDDÞ ¼ 0: ð11Þ

In the ZCL, namely, both ECDD and Epole move to E0;2 if the
dynamical contribution of channel 2 is the origin of the
eigenstate. As with the previous example, the distance
Epole − ECDD is of the order of the square of coupling
constant Oðv20;12Þ.
It is also instructive to comment on the realization of the

pole counting rule [8,9] in this model. In the pole counting
method, one studies the position of the shadow pole which
lies in the other Riemann sheet than that of the eigenstate
pole [10]. It is conjectured in Refs. [8,9] that a shadow pole
does not appear near the eigenstate pole of a dynamically
generated state, and the existence of a nearby shadow pole
indicates the hidden-channel origin of the eigenstate. In the
present model, the Riemann sheet can be chosen by
changing the sign of i0þ in Eq. (9). The equation to
determine the shadow pole is then obtained by modifying
G1 in Eq. (10). Thus, if the eigenstate is generated in channel
2, near the ZCL, the shadow pole approaches E0;2 and its
deviation from E0;2 isOðv20;12Þ. This means that the shadow
pole appears near the eigenstate pole. Note that the shadow
pole also encounters with a CDD zero in its own Riemann
sheet, because the equation for the CDD zero (11) does not
depend on G1. In this way, the shadow pole in this model
behaves in accordance with the pole counting method.
Let us shortly summarize the discussion of this part. We

have studied the behavior of the pole and zero of the
amplitude in the ZCL in two models. In both cases, we find
that the pole representing an eigenstate and the CDD zero
annihilate each other in the ZCL if the origin of the
eigenstate is attributed to the dynamics of the hidden
channel. It is also shown that the distance between the
pole and the CDD zero is small when the channel coupling
is small.

III. ORIGIN OF EIGENSTATE
AND NEARBY CDD ZERO

Here we show that the annihilation of the pole and zero
is, in fact, a consequence of the general property of the
scattering amplitude. Let F ðzÞ be an analytically continued
partial-wave scattering amplitude with the complex energy
variable z. Because F ðzÞ is a meromorphic function of z,
for a counterclockwise closed contour C on which F ðzÞ is
analytic, the argument principle leads to

1

2π

I
C
dz

d argF ðzÞ
dz

¼ nZ − nP ≡ nC; ð12Þ

where the integers nZ and nP represent the number of zeros
and poles of F ðzÞ enclosed by C.3 For instance, if C

3Here we assume that all the poles and zeros are simple.
Singularities with multiplicity can appear only with a fine tuning
of the parameters, and its existence is not stable against the small
perturbation of the parameters.
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encloses a single pole, nC ¼ −1. If there is neither a pole
nor a zero in C, nC ¼ 0. Equation (12) can be shown by
rewriting the integrand as ðdF ðzÞ=dzÞ=iF ðzÞ. The expres-
sion in Eq. (12) indicates that nC is an integer because it is
the topological invariant of π1ðUð1ÞÞ ≅ Z.
If we continuously vary the parameters of the system

(e.g. reducing the channel couplings toward the ZCL), the
poles and zeros of the scattering amplitude move contin-
uously in the complex z plane. As long as the contour C is
chosen not to intersect with the trajectories of poles and
zeros, the value of nC cannot change along with the
continuous variation of the parameters, due to its topo-
logical nature. This means that an abrupt transition from the
amplitude with one pole in C (nC ¼ −1) to nothing
(nC ¼ 0) is forbidden. In order for a pole to decouple,
there must exist a zero in C so that nC ¼ 0 in total, and the
pole and the zero must encounter to cancel out with each
other, as we have observed in the examples.
This feature of the scattering amplitude is particularly

important for the fate of the pole in the ZCL.4 As we have
discussed, the pole decouples from the amplitude in the
ZCL if the state is not dynamically generated in the channel
of interest. Here we find that such pole must be accom-
panied by a nearby CDD zero. In other words, there is a
simple rule to elucidate the origin of the eigenstate:
(1) If there is no CDD zero near a pole in F iiðzÞ, the

eigenstate is dynamically generated in channel i.
(2) If a pole is accompanied by a nearby CDD zero, the

origin of the eigenstate is not in channel i.
With the scattering amplitude fitted to reproduce the
experimental data, this rule can be directly utilized in order
to determine the origin of the eigenstate by searching the
positions of the poles and zeros of the amplitude.5 We note
that the position of the CDD zero can, in principle, be
uniquely determined from the amplitude because of the
uniqueness of the analytic continuation. Moreover, as we
show below, the existence of the CDD zero has a physical
consequence in the two-body spectrum. In this sense, the
above rule can be used as a practical method to pin down
the origin of an eigenstate from the observable quantity.
The existence of the CDD zero near the pole causes yet

another consequence for the near-threshold states. The
effective range expansion (ERE) is often introduced in

the analysis of near-threshold energy region of the scatter-
ing amplitude. However, the CDD zero near the threshold
harms the convergence of the ERE as pointed out in
Refs. [6,15,17]. When the above case 2 is realized, because
of the nearby CDD zero, the analysis with ERE may fail to
describe the eigenstate pole. Conversely, the failure of the
ERE is an indication of the external origin of the eigenstate
in accordance with the result in Ref. [17].
Because the analytic structure of the scattering amplitude

is utilized to determine the origin of the eigenstate, the
method constructed above has similarity with the pole
counting method [8,9]. However, there is one difference;
while the CDD zero lies in the most adjacent Riemann
sheet to the real axis as the eigenstate pole does, the shadow
poles exist in Riemann sheets which are not directly
connected to the real axis. Thus, it is an advantage of
the present method to utilize the position of the CDD zero
which can be determined less ambiguously than those of
the shadow poles. Moreover, the CDD zero can appear on
the real axis, as in the example in the next section, and also
in the πΣðI ¼ 0Þ scattering [6]. In terms of the phase shift δ,
the CDD zero corresponds to δ ¼ π, which is indeed
observed in ππðI ¼ 0Þ scattering near the K̄K threshold
[20]. In this way, for the CDD zero on the real axis, the
analytic continuation of the amplitude is no longer neces-
sary, and the phase shift data directly determines its
location.
While our method draws qualitative conclusion on the

origin of the eigenstate, one may want to discuss the
structure quantitatively. For this purpose, we can calculate
Weinberg’s Z or the amount of the scattering state in the
eigenstate wave function, the so-called compositeness X
[4–6,15,17,21–32]. The quantity Z is introduced as the
field renormalization constant in Ref. [21] and is later
extended for the study of the hadron resonances in Ref. [23]
by using the spectral density approach [33]. In the recent
study, it is found that the compositeness X can be calculated
by the residue of the pole in the scattering amplitude in
Ref. [17,24,25]. However, Z or X of the unstable state with
a finite decay width becomes a complex number that is
difficult to interpret physically, and it generally suffers from
model dependence except for near-threshold states in s
wave [5,6]. On the other hand, as in the pole counting rule,
our method can only draw qualitative conclusions.
However, using this method, it is possible to discuss the
state other than the s wave and the state away from the
threshold in a model-independent manner. Therefore, since
the two methods have different advantages, practically it is
better to use both of them complementarily.

IV. OBSERVABLE CONSEQUENCE OF CDD
ZERO NEAR RESONANCE

In this section, we consider the influence of the existence
of a CDD zero near the pole. Again, we take an example of
coupled-channel scattering model with the Lagrangian in

4The above argument can be applied to a single component of
coupled-channel amplitude FiiðzÞ by choosing the integration
contour C to avoid the branch cuts.

5Here we focus on the zeros of the diagonal component of the
scattering amplitude. However, when the effect of the multi-
channel (multicomponent) is important, the production amplitude
obtained in an experiment is the mixture of the different terms.
The position of the zero of this production amplitude can be
different from that of the diagonal scattering amplitude. Therefor,
in order to discuss the structure of the eigenstates, it is necessary
to extract the coupled channel scattering amplitude by detailed
analysis of the experimental data and to search the position of
zero of the diagonal scattering amplitude.
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Eq. (11) for illustration. We consider the coupled-channel
NΞ (channel 1) and ΛΛ (channel 2) scattering, in which a
quasibound state (H-dibaryon) can be generated by the
attractive NΞ interaction as discussed in Ref. [34].
Taking the model parameters as v0;11 ¼ −8.93×

10−5 MeV−2, v0;12 ¼ 1.20× 10−5 MeV−2, v0;22 ¼ −3.53×
10−5 MeV−2, and Λ ¼ 300 MeV, we find an eigenstate at
Epole ¼ −5 − 1i MeV measured from the threshold energy
of the NΞ channel. We find a CDD zero at ECDD ¼
−4 MeV in the ΛΛ amplitude. This zero appears close
to the physical pole, implying that the ΛΛ dynamical
component is not dominant in accordance with the NΞ
molecule picture.
The scattering amplitudes of the ΛΛ and NΞ channel are

plotted in Fig. 1. In both the amplitudes, a peak structure is
observed below theNΞ threshold. To see the distortion of the
line shape, we fit these amplitudes around the peak position
by the Breit-Wigner function F ðEÞ¼g2=ðE−MrþiΓr=2Þ
as shown in Fig. 1. In theNΞ amplitude, the peak structure is
well approximated by the Breit-Wigner function. However,
the line shape in theΛΛ amplitude is highly asymmetric and
distorted from the Breit-Wigner form. Such distortion is
caused by the nearby CDD zero, because both the real and
imaginary part of the amplitude must vanish at E ¼ ECDD.
This requirement shifts the peak position from the real part
of the pole to the other side of the CDD zero and distorts the
peak structure. In general, the CDD zero can lie in the

complex energy plane, but the distortion of the line shape
can also occur in this case. This is because the zero lies in the
most adjacent Riemann sheet to the physical real energy,
which directly affects the line shape.
The limited applicability of the Breit-Wigner fit for the

near-threshold states is pointed out in Ref. [35]. In addition
to this admonition, the present study shows that we have to
pay attention to the CDD zero around the resonance. Even
away from the threshold, the CDD zero may hamper the
application of the Breit-Wigner fit.

V. APPLICATION TO Λð1405Þ
Let us now consider the physical I ¼ 0 K̄N scattering to

study the origin of the Λð1405Þ baryon resonance. In the
recent analyses of experimental data with next-to-leading
order chiral SU(3) dynamics [1,36–40], it is shown that
there are two poles in the Λð1405Þ region [41]. We denote
the pole near the K̄N (πΣ) threshold energy as high-mass
(low-mass) pole according to Ref. [1].
To study the K̄N − πΣ scattering amplitude, we use the

effective Tomozawa-Weinberg (ETW) model [37] in which
the experimental data around the K̄N threshold energy is
well reproduced by the Tomozawa-Weinberg term with the
K̄N, πΣ and πΛ channels. The Tomozawa-Weinberg
interaction is an energy-dependent four-point contact inter-
action that is the leading order term in chiral perturbation
theory. In the ETW model, two poles of Λð1405Þ are also
dynamically generated in the coupled-channel scattering
amplitude. With the isospin symmetric hadron masses, the
positions of the low-mass and high-mass poles are, respec-
tively, found to be

WLow
pole ¼ 1375 − 65i MeV;

WHigh
pole ¼ 1423 − 22i MeV: ð13Þ

Searching for the K̄N and πΣ amplitudes, we find one
CDD zero in each component. Because the CDD zero in the
K̄N (πΣ) channel lies near the low-mass (high-mass) pole,
we denote its energy asWLow

CDD (WHigh
CDD). The positions of the

zeros are

WLow
CDD ¼ 1381 − 108i MeV;

WHigh
CDD ¼ 1428 − 0i MeV: ð14Þ

The poles and CDD zeros are shown in Fig. 2 together with
the phase of the amplitude. It is seen that the phase
increases 2π (decreases 2π) along with the contour enclos-
ing the CDD zero (pole). This rotation of the phase gives
the topological invariant nC in Eq. (12). The high-mass pole
is accompanied by the CDD zero in the πΣ channel, but not
in the K̄N channel. This means that the high-mass pole
originates in the K̄N channel. This result is consistent with
the dominance of the K̄N composite component in this
eigenstate as suggested in various studies [4–6,22,41–43].

(a)

(b)

FIG. 1. The NΞ → NΞ (a) and ΛΛ → ΛΛ (b) scattering
amplitude near the NΞ threshold energy region. The solid line
and dashed line denote the real part and imaginary part of the
scattering amplitude, respectively. The dotted line and the dash-
dotted line denote the real part and the imaginary part of the fitted
amplitude by the Breit-Wigner function.
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In the same manner, the origin of the low-mass pole is in the
πΣ channel as indicated in Refs. [4,41,42].
In the ETW model, the ZCL is achieved by suppressing

the off-diagonal interaction VK̄N-πΣ → 0, keeping the
diagonal parts VK̄N-K̄N and VπΣ-πΣ unchanged. The trajec-
tories of the poles and CDD zeros toward the ZCL are
shown in Fig. 3. The poles appear at the same position in
each component so that the trajectories are also identical
with each other. We see that the high-mass pole moves
toward W ¼ 1415 MeV on the real axis. In the ZCL, this
pole decouples from the πΣ amplitude, while it remains in
the K̄N amplitude as a bound state pole [42]. Because the
diagonal parts of the interaction are unchanged in the ZCL,
this pole is dynamically generated by the single-channel
K̄N interaction. In contrast to this, the πΣ pole remains in
the πΣ amplitude as a single-channel resonance at
W ¼ 1367 − 91i MeV, but it decouples from the K̄N
amplitude. These trajectories of poles are consistent with
the results in Ref. [19].
Now let us consider the trajectories of the CDD zeros. In

the K̄N amplitude, we see that the low-mass zero WLow
CDD

encounters with the low-mass pole and decouples from the
amplitude in the ZCL. The high-mass zero in the πΣ
amplitude moves toward the real axis and annihilates the
high-mass pole. This result shows that the physical ampli-
tude is close to the ZCL because the modification of the
eigenenergy (a few tens of MeV) is much smaller than the
mass of the eigenstate. Thus, as expected by the positions
of the poles and CDD zeros, the πΣ (K̄N) dynamical

component is not dominant in the structure of the state
represented by the high-mass (low-mass) pole.

VI. SUMMARY

We have proposed a useful method to study the origin of
hadron resonances. It is shown that the eigenstate pole
should be accompanied by a nearby CDD zero, if the
resonance originates in the dynamics of a hidden channel.
The existence of the zero is robust, as it is topologically
guaranteed by Eq. (12). Moreover, a CDD zero near the pole
causes the distorted line shape of the resonance from the
Breit-Wigner form as an observable consequence. Applying
this method to Λð1405Þ, we show that the high-mass (low-
mass) pole originates in the K̄N (πΣ) dynamics from the
position of the CDD zeros in the πΣ (K̄N) amplitude.
We summarize how to apply our method in practice. One

way is to find the distortion of the peak of the invariant
mass distribution. As discussed in Sec. IV, the existence of
the CDD zero distorts the line shape of the peak from the
Breit-Wigner form. While there are various mechanisms
that distort the line shape, the observation of the distorted
peak may give us a hint to search for a possible CDD zero
near the eigenstate pole. A better way is to extract the two-
body scattering amplitude by analyzing the experimental
data of final state interactions with sufficiently accurate
data as in the ππ scattering. In this case, we can apply our
method directly, by searching for the position of the pole
and CDD zero of the fitted scattering amplitude. Because of
its generality, the method developed here will shed light on
the origin of many hadron resonances.

(a)

(b)

FIG. 3. Trajectories of poles (solid line) and CDD zeros (dashed
line) in the K̄N amplitude (a) and the πΣ amplitude (b).

(a)

(b)

FIG. 2. Positions of the poles (squares) and CDD zeros (circles)
in the K̄N amplitude (a) and the πΣ amplitude (b). The angle of
vectors from the real axis denotes the phase of amplitude
argF iiðzÞ.
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