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We present nonperturbative correlation functions in Landau-gauge Yang-Mills theory at finite temper-
ature. The results are obtained from the functional renormalisation group within a self-consistent
approximation scheme. In particular, we compute the magnetic and electric components of the gluon
propagator, and the three- and four-gluon vertices. We also show the ghost propagator and the ghost-gluon
vertex at finite temperature. Our results for the propagators are confronted with lattice simulations and our
Debye mass is compared to hard thermal loop perturbation theory.
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I. INTRODUCTION

Understanding the phase structure of quantum chromo-
dynamics still poses a major challenge. On the theoretical
side, its strongly-correlated nature hampers the progress of
first-principles approaches in particular at high densities.
While lattice simulations struggle with the sign problem,
functional methods have to address the resonant interaction
structure, which requires particularly advanced truncations
of the corresponding generating functionals. The tremen-
dous progress in functional approaches to QCD has
recently led to a shift from qualitative bottom-up towards
quantitative top-down approaches [1–6]; see also [7–22] for
reviews. In particular, the functional renormalisation group
(FRG) is a first-principles method that allows for quanti-
tative computations of the generating functional of QCD.
Recently, the functional QCD (fQCD) collaboration [23]
has established a comprehensive framework encompassing
both, top-down [1–3] and bottom-up [24–30] approaches
within the FRG framework.
In this work, we focus on thermal correlation functions

of the pure gauge sector of QCD. Quantitative control over
Yang-Mills theory at zero as well as finite temperature is a
pivotal prerequisite for predictive investigations of the
QCD phase structure with functional methods. While
vacuumYang-Mills correlation functions have been studied
intensively in the past two decades [2,31–60], results for
the finite-temperature correlation functions are scarce; see

[61–71] for propagator studies. For the vertices, the
situation is even less satisfactory and only exploratory
studies exist [72,73].
The main goal of this study is to get quantitative access

to the finite-temperature 1PI n-point functions of Yang-
Mills theory. These correlators contain all the information
about the observables. For example, the resulting propa-
gators and vertices can be used to investigate the center-
symmetry phase transition in terms of the Polyakov-loop
potential; see, e.g., [74–85]. Furthermore, the Debye mass,
which has been studied intensively on the lattice [86–89]
and hard thermal loop perturbation theory [90,91] as well
as with other thermal QCD approaches [92–94], can be
extracted from the gluon propagator. Additionally, the
correlators allow for the extraction of spectral functions
and the calculation of the shear viscosity [95,96].
To calculate the 1PI n-point functions, we perform a

systematic vertex expansion of the effective action with the
aim of quantitative precision, controlled by apparent con-
vergence. The zero-temperature baseline for this calcula-
tion is provided by [2], a recent FRG study, which
incorporates all tensor structures present at the classical
level in a self-consistent truncation scheme. Here, we
generalize this truncation to finite temperature, which
includes the splitting of the correlation functions into
electric and magnetic components. In particular, we pro-
vide results for the electric and magnetic gluon propagators
as well as the electric and magnetic components of the
three- and four-gluon vertices. For the propagators, we
compare extensively to results obtained in lattice simula-
tions. We use the Debye screening mass to determine a
lower bound for the temperature range in which hard
thermal loop perturbation theory can be applied straight-
forwardly. Furthermore, the finite-temperature behavior of
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the ghost-induced zero crossing of the three-gluon vertex is
investigated. The comprehensive truncation brings along
new technical challenges whose solutions are discussed. In
summary, this work provides a major step towards inves-
tigations of the QCD phase structure from first principles
within the functional methods.
This paper is organized as follows. In Sec. II we discuss

the finite-temperature vertex expansion, order parameters,
and the Debye screening mass. Section III deals with finite-
temperature flows of gauge theories. We present our results
in Sec. IV and discuss them in Sec. V. Finally, we
summarize our findings and give an outlook in Sec. VI.
Technical details and numerical checks are provided in the
appendices. In particular, we confirm regulator independ-
ence in Appendix A.

II. YANG-MILLS THEORY AT T > 0

We consider Euclidean Yang-Mills theory, whose
classical action in general covariant gauges is given by

S ¼ 1

4

Z
x
Fa
μνFa

μν þ
1

2ξ

Z
x
ð∂μAa

μÞ2 −
Z
x
c̄a∂μDab

μ cb: ð1Þ

Here, A, c and c̄ denote the gluon, ghost and antighost
fields and

R
x ¼

R
d4x. The gauge fixing parameter ξ is

taken to zero in Landau gauge, ξ → 0. The field strength
tensor and adjoint covariant derivative are given by

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν;

Dab
μ ¼ δab∂μ − gfabcAc

μ; ð2Þ

where fabc are the structure constants of the Lie algebra.
Our notation largely follows earlier works within the fQCD
collaboration [23], and we refer to [1–3,26] for further
details.

A. Finite-temperature vertex expansion

Functional approaches require an approximation of the
corresponding generating functional. We use a vertex
expansion about the vanishing expectation values of the
gluon and ghosts fields, Aμ ¼ 0 and c ¼ c̄ ¼ 0. These field
values are solutions of the equations of motion and
constitute the vacuum at vanishing temperature. The
intricacies at finite temperature are discussed in more detail
in the next Sec. II B. In the vertex expansion, the effective
action is written as a sum over powers of the fields,

Γ½Φ� ¼
X
n

1

n!

XZ
fpig

ΓðnÞðp1;…; pnÞΦðp1Þ � � �ΦðpnÞ; ð3Þ

where Φ ¼ ðAμ; c̄; cÞ is a superfield and momentum con-
servation implies

P
ipi ¼ 0. The expansion coefficients

in (3) are the 1PI n-point functions that are in field
components given by

ΓðnÞ
Φi1

���Φin
½Φ� ¼ δnΓk½Φ�

δΦin � � � δΦi1

: ð4Þ

The correlation functions are expanded in terms of basis
tensors T ðiÞ and dressing functions λðiÞ,

ΓðnÞ
Φi1

…Φin
¼

X
i

λðiÞΦi1
…Φin

T ðiÞ
Φi1

…Φin
: ð5Þ

At finite temperature, the vacuum Oð4Þ-symmetry is
replaced by Z2 ⊗ Oð3Þ. This reduced symmetry implies a
difference between the magnetic and electric components,
which correspond to the directions that are transverse and
longitudinal with respect to the heat bath. Starting from the
longitudinal and transverse vacuum projection operators,

Πk
μνðpÞ ¼ pμpν

p2
;

Π⊥
μνðpÞ ¼ δμν − Πk

μνðpÞ; ð6Þ

we decompose four-vectors into

p ¼
�
ωn

p⃗

�
¼

�
2πTn

p⃗

�
; ð7Þ

where n ∈ Z are the discrete Matsubara modes and
ωn ¼ 2πTn the corresponding frequencies. This leads to
the magnetic and electric projection operators at finite
temperature,

ΠM
μνðpÞ ¼ ð1 − δ0μÞð1 − δ0νÞ

�
δμν −

pμpν

p⃗2

�
;

ΠE
μνðpÞ ¼ Π⊥

μνðpÞ − ΠM
μνðpÞ: ð8Þ

A crucial consequence of the breaking of the vacuum
Oð4Þ-symmetry by (8) is the splitting of the tensor
structures into electric and magnetic components. In
particular, the propagators are given by

½Γð2Þ
AA�abμνðpÞ ¼ δabp2½ZM

A ðpÞΠM
μνðpÞ þ ZE

AðpÞΠE
μνðpÞ�;

½Γð2Þ
c̄c �abðpÞ ¼ δabp2ZcðpÞ; ð9Þ

with dimensionless scalar dressing functions 1=ZM
A and

1=ZE
A for the magnetic and electric components of the gluon

propagator. In the case of the vertices, we take only the
classical tensor structures into account. Similarly to the
gluon propagator, we split their dressings into electric and
magnetic components. See Fig. 1 for an illustration of the
constituents of our truncation and Appendixes B and C for
further details. As a consequence of the restriction to
classical tensors only, the tensor bases of the gluonic
vertices are not complete, and the projection of the tensor
equations onto the scalar dressing functions is not unique.
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We use vacuum calculations to identify uncertainties that
stem from the projections in order to disentangle them from
finite-temperature effects; see Appendix D for details.
Due to the breaking of Oð4Þ-invariance, the scalar

dressings are in general functions of the Matsubara modes
and spatial momenta, e.g., ZðpÞ ¼ Zðω2

n; p⃗2Þ for a generic
wave function renormalization Z. However, the thermal
contributions to the correlation functions decay rapidly
for spatial momenta and frequencies with p2 ≳ ð2πTÞ2.
Hence, the thermal correlation functions converge quickly
towards their Oð4Þ-symmetric vacuum counterparts for
these momenta; see, e.g., Figs. 6 and 9. Consequently,
the correlation functions exhibit an approximate Oð4Þ-
symmetry for all higher Matsubara modes, and most of the
finite temperature effects are encoded in the zero mode at
small spacial momenta p⃗2 ≲ ð2πTÞ2. Therefore, the spatial
momentum dependence of the Matsubara zero modes can
be used to obtain a very good approximation of the full
frequency and momentum dependence via

Zðω2
n; p⃗2Þ ≈ Zð0;ω2

n þ p⃗2Þ; ð10Þ

or in short ZðpÞ ¼ Zð0; p2Þ. In this work, we compute the
zero modes of the propagators and use (10) to close the
equations. Within functional methods, thisOð4Þ-symmetric
approximation has been found to be quantitatively reliable
for gluon [62,97] as well as quark propagators [67]. This is
confirmed by lattice studies that show a slight deviation of
the Oð4Þ invariance only for the first Matsubara mode at
temperatures just below the critical temperature [98,99].
This pattern carries over to the scalar dressings of higher

order correlation functions λðnÞðp1;…; pnÞ. Analogously to
the propagator dressings, we base our computation on the
zero modes

λðnÞðp⃗1;…; p⃗iÞ¼ λðnÞðωn1 ¼ 0; p⃗1;…;ωnn ¼ 0; p⃗nÞ: ð11Þ

In contradistinction to the propagator dressings, the zero
modes of the vertex dressings λðnÞ depend on all p⃗i · p⃗j and
not only p⃗2. However, the spatial momentum dependence
of the vertices is well described by a one-dimensional
symmetric-point approximation in four [2] as well as three
dimensions [100,101]; see also Appendix A. This leads to

λðnÞðp⃗1;…; p⃗nÞ ≈ λðnÞðp̄Þ; p̄2 ≡ 1

n

Xn
i¼1

p⃗2
i ; ð12Þ

which allows to compute the flows of the zero modes of the
vertex dressings in a quantitatively reliable approximation,
cf. Fig. 12. However, the flows of the zero modes depend
on the full frequency and spatial momentum dependence.
Analogously to the propagator dressings, we approximate
the full momentum dependence with an Oð4Þ-symmetric
generalization of (12),

λðnÞðωn1 ; p⃗1;…;ωnn ; p⃗nÞ ≈ λðnÞðp̄Þ; ð13Þ

where the symmetric momentum p̄ is then given by

p̄2 ≡ 1

n

Xn
i¼1

ðω2
ni þ p⃗2

i Þ: ð14Þ

In summary, we use two quantitatively reliable approx-
imations for the dressing functions: the approximate Oð4Þ-
invariance of all nonvanishing Matsubara modes, which
allows to use only information from the lowest Matsubara
mode, and the well-tested symmetric point approximation.
This truncation generalizes the vacuum truncation used in
[2]; see Appendix E for an explicit numerical check.

B. Nontrivial vacuum and backgrounds

As discussed in the last Sec. II A, we use a vertex
expansion about vanishing field expectation values Aμ ¼ 0
and c ¼ c̄ ¼ 0. This necessitates a thorough discussion of
the implications of this choice, in particular for compar-
isons to lattice results. We argue that such an expansion
about vanishing background fields, i.e., Landau gauge,
leads to correlation functions that agree with the lattice
correlators for temperatures outside a small region around
the phase transition. Furthermore, even near the phase
transition, sizeable effects are only expected for correlation
functions that have electric gluon legs, the electric gluon
propagator being their most prominent representative.
This becomes most evident by investigating the relation
of the physical solution of the equation of motion in
nonvanishing gluon background fields and the Polyakov
loop, the canonical order parameter of the confinement-
deconfinement phase transition. For the convenience of the
reader, the first two parts briefly review corresponding
relevant advances in nonperturbative functional approaches
[74–79,102]; see [65,80–85] for further applications.

FIG. 1. Constituents of our vertex expansion. We use the
classical tensors that are present in the bare action and attach
magnetic (blue) and electric (red) projection operators to the
gluon legs. Missing combinations, e.g., vertices with one electric
leg, vanish if the Matsubara modes are set to zero and are not
computed in our truncation.
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1. Correlation functions

To facilitate the discussion, we use the background
extension of Landau gauge,

ð∂μ − igĀμÞaμ ¼ 0 with Aμ ¼ Āμ þ aμ; ð15Þ

called Landau-deWitt gauge. Here, Āμ is a general back-
ground and aμ is the quantum fluctuation field. In this
formulation, the effective action is gauge invariant under
background gauge transformations, which allows for a
simpler interpretation of physical backgrounds as well as
simpler technical implementations. Besides being a func-
tional of Φ ¼ ðaμ; c̄; cÞ, the effective action depends now
also on the background Ā. Accordingly, the vertices
ΓðnÞ½Ā;Φ� are correlation functions in the background

Φ ¼ hΦ̂iJðĀ;ΦÞ: ð16Þ

Here, we have introduced the background current, which
satisfies JðĀ;ΦÞ ¼ δΓ=δΦ. The correlation functions in the
absence of external sources, JðĀ;ΦÞ ¼ 0, are then given by
ΓðnÞ½Ā;ΦEoM�, where ΦEoM is a solution of the equation of
motion in the chosen background Ā,

δΓ½Ā;Φ�
δΦ

����
ΦEoM

¼ 0: ð17Þ

In general, this conditions yields stationary points of
the effective action. In particular, the expansion point
ðĀ; ΦÞ ¼ 0 satisfies (17), but does not necessarily single
out the physical minimum. In contrast, the physical
correlators that correspond to scattering amplitudes are
obtained at the physical solution of the equation of motion
(17), i.e., the minimum of the effective action ðĀ;Φmin½Ā�Þ.
This is also the field value about which the vertex
expansion is expected to be most stable and converge
most rapidly. Furthermore, only an expansion around the
physical solution of the equation of motion allows for a
direct comparison with correlation functions from lattice
simulations, since the latter are measured on the physical
ground state. In general, any other expansion point requires
information about higher correlation functions in order to
evaluate ΓðnÞ½Ā;Φmin�. In particular, in a vertex expansion
with expansion point ðĀ;ΦÞ ¼ 0, the inverse propagator is
given by

Γð2Þ½Ā;Φmin� ¼
X
n

1

n!

XZ
fpig

Γð2þnÞ½Ā; 0�ðp1;…; pnÞ

×Φminðp1Þ � � �ΦminðpnÞ; ð18Þ

where we suppressed external momentum arguments.
Therefore, we expect deviations between the correlation

functions ΓðnÞ½0; 0�, computed in this work, and those from
lattice simulations. However, these differences are sizeable
only if the momentum scales of the solution ðĀ;ΦminÞ ≠ 0
are of the same order as Tc, the characteristic scale of the
finite temperature Yang-Mills system. Only in this case, the
higher correlation functions would lead to noticeable
contributions in (18).
We can utilize the background field to achieve a

technical simplification. Since it is arbitrary, we can choose
Ā ¼ Āmin ≡ hĀi such that

Φmin½Āmin� ¼ 0: ð19Þ

For this particular choice, the background carries all the
nontrivial information about the ground state, whereas the
(classical) fluctuation field vanishes on the equation of
motion. The physical correlators are then given by
ΓðnÞ½hĀi; 0�. In particular, the inverse propagator (18) for
the gluon is then given by

Γð2Þ
AA½Ā;Φmin� ¼ Γð2Þ

AA½hĀi; 0�: ð20Þ

Semi-perturbative studies in the Curci-Ferrari model for
Yang-Mills theory confirm that the background has large
effects on the electric propagator at temperatures close to
the phase transition [65]. Furthermore, the calculation of
quantitatively correct values for the chiral phase transition
temperature as well as its observed coincidence with the
confinement-deconfinement crossover temperature require
to take into account such a nontrivial minimum [76].
Finally, such a consistent treatment was also required for
the description of the Roberge-Weiss transition [76] as
well as the study of criticality in SUð2Þ Yang-Mills
theory [75,102].

2. Order parameters

A further advantage of the background hĀi is its relation
to the Polyakov loop [74,76,78,79], the standard order
parameter of the confinement-deconfinement phase tran-
sition. The traced Polyakov loop is expressed as a correlator
of the temporal gauge field with

L½A0� ¼
1

Nc
trP½A0�;

P½A0� ¼ Peig
R

β

0
dtA0ðt;x⃗Þ ≡ e2πiφ½A0�: ð21Þ

Here,P stands for path ordering, and the functional φ½A0� is
the gauge-covariant algebra element of the Polyakov loop.
It transforms as φ → Uφ½A0�U† under time-periodic gauge
transformation U ∈ SUðNÞ. This entails that the eigenval-
ues of φ½A0� are gauge invariant, and consequently the
eigenvalues of its expectation value φ̄≡ hφ½A0�i are
observables. This expectation value, as well as L½hφi�,
are order parameters for the confinement-deconfinement
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phase transition. In Polyakov gauge, the expectation value
of the algebra element takes the particularly simple form

φ̄ ¼ βgĀ0; ð22Þ

for a given background Ā0. Due to background gauge
invariance, the eigenvalues of φ̄ can therefore be calculated
from the eigenvalues of Ā0 in any background gauge. In
particular, the effective potential, V½Ā0�, of Landau-deWitt
gauge carries thus the full information about the eigenval-
ues of the expectation value of φ.
In conclusion, the effective potential V½Ā0� is an order

parameter potential for center symmetry. The gauge invari-
ant observables, hL½A0�i and L½hĀ0i�, or equivalently also
hĀ0i, serve as order parameters for the confinement-
deconfinement phase transition; see Fig. 2. Therefore,
the vanishing of hL½A0�i in the confined phase relates to
a nonvanishing value for hĀ0i. This has recently been
demonstrated explicitly in a self-consistent vertex expan-
sion scheme, which has been used for the first computation
of hL½A0�i within functional methods [79]. Finally, the
electric propagator hA0ðpÞA0ð−pÞi is closely related to the
propagator of an order parameter field, and as such should
show critical properties; see [78]. Hence, we expect the
electric correlators to be affected most by the back-
ground field.

3. Comparison to lattice simulations

The previous discussion of the nontrivial Ā0 background
and its relation to the order parameter of the confinement-
deconfinement phase transition allows us to derive a
theoretical estimate of the temperature range, in which
our present results potentially deviate from the respective
lattice results due to the different background configura-
tions. The first important piece of information is given by

the fact that the order parameter L½hĀ0i� approaches unity
rapidly for temperatures above the phase transition temper-
ature; see Fig. 2. This in stark contrast to the Polyakov loop
hL½A0�i, which is usually calculated in lattice simulations.
The latter reaches its asymptotic value only for T ≫ Tc,
which can be understood from fluctuation effects [79]. The
fact that L½hĀ0i� quickly approaches unity above the
transition temperature can be formulated as the more
precise statement,

hĀ0i ≈ 0 if T ≳ 1.3Tc: ð23Þ

As a consequence, we can expect quantitative effects due to
the nontrivial background only at temperatures T ≲ 1.3Tc.
The most immediate effect of this nontrivial background is
a shift in the Matsubara frequencies ωn → ωn � 2πTνi,
where νi are the eigenvalues of φ̄, or equivalently of
βghĀ0i=ð2πÞ. Rotating the constant field into the Cartan
sub-algebra, these are given by

νSUð2Þ ¼ f0;�φ3g; νSUð3Þ ¼
�
0;0;�φ3;�

φ3�
ffiffiffi
3

p
φ8

2

�
;

ð24Þ

in SUð2Þ and SUð3Þ; see, e.g., [79]. However, for
T ≲ 0.5Tc the effect of the shifts of the Matsubara
frequencies is suppressed by the zero temperature gapping
mgap of the gluon propagator 2πνiT=mgap ≪ 1. Therefore,
we expect sizeable effects due to the nontrivial background
only in the regime

T ∈ ð0.5Tc; 1.3TcÞ; ð25Þ

and in particular in the electric gluon propagator.

C. Debye screening mass

Gluons are screened at high temperatures by the standard
thermal Debye mass. However, also in the confined phase,
they posses a finite screening mass. Our nonperturbative
results allow to compute a screening mass also below the
critical temperature. We extract it from the zero mode of
the electric gluon propagator, GE

TðpÞ ¼ hA0ðpÞA0ð−pÞÞi,
whose computation is detailed below in Sec. III. To this
end, we Fourier transform the propagator,

GE
TðxÞ ¼

Z
∞

−∞

dp
2π

GE
TðpÞeipx: ð26Þ

At high temperatures, the screening mass can then be
extracted from the exponential decay at large distances,

lim
x→∞

GE
TðxÞ ¼ ce exp ð−msxÞ: ð27Þ

FIG. 2. Expectation value of hL½A0�i versus L½hĀ0i� from [79].
Both observables are order parameters for the confinement-
deconfinement phase transition. Moreover, L½hĀ0i� ¼ 1 entails
hĀ0i ¼ 0.
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The screening mass ms obtained with (27) is shown in
Fig. 3. The large distance behavior of GE

TðxÞ and the fits
by (27) are provided in Appendix I. The left panel shows
that the screening mass is finite across the phase
transition and possesses a minimum at some finite
temperature. Perturbatively, the Debye mass is given to
leading order by

m0
D ¼

ffiffiffiffi
N
3

r
gTT þOðg2TTÞ: ð28Þ

A prescription for taking higher-order effects into account
has been proposed by [92]

mD ¼ m0
D þ

�
cD þ N

4π
ln

�
m0

D

g2TT

��
g2TT þOðg3TTÞ: ð29Þ

In order to compare our screening mass to the expres-
sions (28) and (29), we have to determine gT and cD.
We use

gT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παEA3ðT; p ¼ cp2πTÞ

q
; ð30Þ

and fit cD at large temperatures to our result since it is
not computable within perturbation theory. The running
coupling of the (electric) three-gluon vertex αEA3 is
introduced below in (37).
As shown in Fig. 3(b), the Arnold-Yaffe Debye mass

agrees almost perfectly with our nonperturbative result
down to T ≈ 0.6 GeV. In contrast, the leading-order Debye
mass deviates instantly from our result. By default, we set
cp ¼ 1 in (30) because this is the scale that is expected to
contribute most. This yields for the nonperturbative con-
stant cD ¼ 0.100ð3Þ. To substantiate the choice cp ¼ 1, we
also leave it as a free fit parameter and find cp ¼ 0.88ð64Þ,
where the nonperturbative constant cD ¼ 0.105ð30Þ

changes only within the fit uncertainties. The effect on
the resulting Debye mass is negligible; see Fig. 3(b). The
excellent agreement at very high temperatures provides a
nontrivial check of the calculations. Further physical
consequences are discussed in Sec. V B.

III. METHOD

In this section, we discuss the flow equations, the
implications of the regulator term at nonvanishing RG scale,
and we provide details on the numerical implementation.

A. FRG flows

The functional renormalization group in Wetterich’s
formulation [103] allows to integrate momentum-shell
contributions to the effective action in the Wilsonian spirit.
To this end, a scale- and momentum-dependent mass term
is added to the classical action,

ΔSk ¼
Z
x

1

2
Aa
μRab

k;μνA
b
ν þ

Z
x
c̄aRab

k cb: ð31Þ

The regulator term suppresses quantum as well as thermal
fluctuations at momenta below the RG scale k. Taking
the derivative with respect to the scale k leads to the
Wetterich equation for the generalized effective action Γk.
This flow equation interpolates between the classical
Γk→Λ→∞ ¼ S and the 1PI effective action Γk→0 ¼ Γ.
For the pure gauge theory at finite temperature, the
Wetterich equation reads

∂tΓk½Φ� ¼
XZ
q

1

2
Gab

k;μν½Φ�∂tRba
k;νμ −

XZ
q

Gab
k ½Φ�∂tRba

k ;

ð32Þ

where t ¼ lnðk=ΛÞ denotes the RG time and

(a) (b)

FIG. 3. Debye screening massms; see Fig. 18 for the fits of (27) to GTðxÞ. (a) Screening massms in units of GeVat low temperatures.
(b) Dimensionless Debye screening ms=T mass at high temperatures in comparison with leading order perturbation theory (28) and the
Arnold-Yaffe prescription (29) for accommodating beyond leading order effects [92].
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Gk½Φ� ¼ 1

Γð2Þ½Φ� þ Rk
: ð33Þ

Using the Matsubara formalism, the momentum integral
in (32) is given by

XZ
q

¼
Z

d3q
ð2πÞ3 T

X
n

; ð34Þ

where q0 ¼ 2πTn≡ ωn. A graphical representation of the
Wetterich equation for the effective action is shown in
Fig. 4. The truncated flow equations for the correlation
functions that are obtained by taking functional deriva-
tives of (32) are displayed in Fig. 5.
Instead of the flat regulator [104] used in the vacuum

computation [2], we use an exponential regulator. As
demonstrated in Appendx A, the results for the correlation
functions do not depend on this choice within our error
bars. However, analytic regulators such as the exponential
regulator are better suited for numerical calculations of
thermodynamic quantities since they carry the thermal
exponential decay with the cutoff scale ∼e−ck=T in the
flow [62,97]; see [105] for a detailed study.

To reduce the numerical effort of the finite-temperature
calculation, we exploit the degeneracy of the dressings for
k ≫ 2πT. We integrate the finite-temperature flow starting
from the nontrivial zero-temperature effective action at

ΛT ¼ max ðλ2πT;Λmin
T Þ; ð35Þ

with λ ¼ 4 and Λmin
T ¼ 1 GeV; see Appendix F for details.

B. Renormalization and mSTIs

In the presence of a regulator, the BRST-symmetry leads
to modified Slavnov-Taylor identities (mSTIs) for non-
vanishing RG scales, k > 0 [2,8,106–111]. The additional
terms are generated by the BRST-variation of the regulator
term and have a one loop form. They are similar in form
and structure to the flow equation itself. The latter encodes
the breaking or flow of scale invariance while the former
encode the breaking or flow of BRST symmetry. The
resulting mSTIs reduce to the standard STIs in the limit of
vanishing RG scale, k → 0, similar to the removal of the
explicit breaking of scale invariance due to the regulator.
Therefore, in both cases the underlying symmetry is
restored in the limit of vanishing RG scale k → 0. We
emphasize that any regularization scheme in momentum
space leads to such a modification of BRST symmetry in
terms of modified STIs. This is also well known from
perturbation theory, where a cutoff regularization, amongst
other modifications, requires a gluon mass counter term in
order to guarantee gauge invariance. Modified STIs are also
present within other functional methods such as non-
perturbative DSE and nPI approaches that rely on numeri-
cal momentum integrations.
To take the modification of the STIs of the vertices into

account, we choose constant vertex dressings λc̄cA, λA3 and
λA4 at the cutoff scale, k ¼ Λ, such that the STIs for the
running couplings,

αc̄cAðμÞ ¼ αA3ðμÞ ¼ αA4ðμÞ≡ αðμÞ; ð36Þ

are fulfilled at μ ¼ 20 GeV, k ¼ 0. Here, the running
couplings in (36) are obtained from the classical vertices,

αc̄cAðp̄Þ ¼
ðλc̄cAðp̄ÞÞ2
ZAðp̄ÞZ2

cðp̄Þ
;

αA3ðp̄Þ ¼ ðλA3ðp̄ÞÞ2
Z3
Aðp̄Þ

;

αA4ðp̄Þ ¼ λA4ðp̄Þ
Z2
Aðp̄Þ

; ð37Þ

with the symmetric momentum configuration p̄.
The mSTI of the gluon propagator implies a nonvanish-

ing longitudinal gluon mass term at the cutoff scale [106].
In the perturbative regime, it can be shown that the
transverse mass agrees with the longitudinal one; for

FIG. 4. Graphical representation of the Wetterich equation.
Wiggly (dotted) lines represent the dressed gluon (ghost) propa-
gators. The cross in the circle denotes the regulator insertion ∂tRk
of the corresponding field type.

FIG. 5. Truncated equations of all computed n-point functions.
Permutations of external legs and regulator insertions are omitted
in the vertex equations. The gluon lines represent the sum over
electric and the magnetic propagators, cf. (9). They are connected
to the corresponding magnetic and electric components of the
vertices; see also Fig. 1.
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details, see [2]. However, while the longitudinal mass
parameter vanishes at k ¼ 0, the transverse mass term
encodes the gapping of the transverse gluon propagator at
k ¼ 0. At the initial UV cutoff scale k ¼ Λ the gluon mass
parameter is uniquely determined by the mSTI and cannot
be chosen freely. Its precise determination is at the root of
confinement, which is encoded in the transverse mass gap
at vanishing cutoff scale. Since the mass parameter is
proportional to the cutoff, m2

Λ ∝ αðΛÞΛ2, quadratic pre-
cision is required in its determination from the mSTI. The
solution of this quadratic fine tuning problem requires both,
a BRST-consistent quantitative level of the approximation,
as well as sufficient numerical precision. Consequently, in
truncated systems of flow equations, its computation from
the mSTI at the required precision level is extremely
challenging. The above brief discussion is detailed in
[2]. Note that these statements hold also for other functional
methods such as DSE and nPI approaches.
In the present work we utilize that it is possible to

uniquely determine the gluon mass parameter by demand-
ing a solution of the scaling type; for details, see again [2].
We exploit that this also holds at finite temperature.
Requiring scaling in the magnetic sector provides us with
a unique value for the gluon mass parameter at each
temperature. This procedure resolves the necessity of a
BRST-consistent level of the approximation, but still
requires quadratic precision in the fine-tuning. Further
details are provided in Appendix G.

C. Numerical implementation

To solve the system of coupled flow equations, we use
the tools established by the fQCD collaboration [23].
The tensorial flow equations are derived with DoFun
[112]. Subsequently, the projected equations are traced with
FormTracer [113], a Mathematica package that uses FORM
[114–117] and has native support for finite-temperature
applications. The output is exported as optimized C++ code,
which is then used within the computational framework of

the fQCD collaboration. The latter uses the adaptive ordinary
differential equation solver from the Boost library [118] and
the adaptive multidimensional integration routine from
[119], which implements [120,121].
In the derivation of the equations, tracing the four-gluon

vertex equation, and in particular the gluon box diagrams, is
the most challenging part. To this end, we generate FORM
files with FormTracer [113] for each of the twelve permu-
tations of the box diagrams. Executing one of these with
FORM can take up to eight core days and intermediate
expressions reach more than 1 TB in size. Since the resulting
expressions are still very large, we sum all permutations,
factorize all dressing functions and then use the simultaneous
optimization feature of FORM’s optimization routine [116]
in combinationwith a parallelized version of FORM [122] to
optimize the result. Concerning the numerical computation,
integrating the flow once takes roughly one day on an
ordinary quad-core desktop computer. This has to be done
multiple times for each temperature due to the gluon mass
parameter determination.

IV. RESULTS

The main results are displayed in Figs. 6–11. We show
results for the magnetic and electric dressing functions of
propagators and vertices for various temperatures. For all
correlators we find that the magnetic and electric dressings
coincide for momenta p ≫ 2πT, and become degenerate
with the vacuum dressings. This is required by the recovery
of Oð4Þ invariance. The convergence towards the vacuum
dressings for small temperatures is explicitly checked in
Appendix E. This apparently obvious property is actually
nontrivial within frequency and momentum-dependent
nonperturbative truncations.
We compare our gluon propagators to SUð2Þ [69,123]

and SUð3Þ [71] lattice results in Figs. 6 and 7. This
comparison requires the setting of a relative scale as well
as renormalization, detailed in Appendix H. As a conse-
quence, a potential relative offset of functional and lattice

(a) (b)

FIG. 6. Magnetic gluon propagator dressing, (9).
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results has to be considered in addition to the systematic
errors of the truncation, when juxtaposing the results from
the different calculations. The comparison with SUð2Þ as
well as SUð3Þ lattice data is legitimate because the

truncation used in this work yields only a trivial depend-
ence on the gauge group. This is the case because the color
traces can be taken without specifying the gauge group
[113,126], and the only group constant appearing in the

(a) (b)

FIG. 7. Electric gluon propagator dressing, (9).

(a) (b)

FIG. 8. Ghost propagator dressing, (9), compared to SUð2Þ lattice results [69,123] and ghost-gluon vertex, (B1).

(a) (b)

FIG. 9. Temperature dependence of the three-gluon vertex dressing, (B2).
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equations is the quadratic Casimir operator of the adjoint
representation CA. Furthermore, CA occurs only in combi-
nation with the coupling at the renormalization point
αðμÞ · CA ≡ α̃ðμÞ. Thus, it can be absorbed into a redefi-
nition of the running coupling, or, equivalently, the scale of
the theory. Therefore, the propagators are identical for all
groups, and the different couplings can be obtained by a
trivial rescaling with CA. We emphasize that this is not a
mere artifact of the approximation. Perturbatively, the beta
function of the pure gauge theory has a trivial group
dependence up to three loops; see, e.g., [127] for a recent
discussion. See Sec. V for a discussion.
At low momenta, the electric and magnetic propagators

show a qualitatively different behavior. While the magnetic
gluon propagator decreases almost monotonously with
increasing temperature, the electric propagator increases
at small temperatures. At high temperatures, where the
growth of thermal contributions to the mass becomes
dominant, also the electric gluon propagator decreases;
see also Sec. II C and in particular Fig. 3. For the magnetic

gluon propagator we find agreement with the lattice results
on the 10% accuracy level we expect from the truncation of
the vertices. Furthermore, we see that the deviation takes its
maximum for temperatures about the phase transition
temperature, where we expect large-scale dynamical fluc-
tuations to be most relevant. On the one hand, our
truncation is tested maximally in this regime, and on the
other hand discretization and finite volume effects in the
lattice calculation are strongest there. In contradistinction to
the very satisfactory situation for the magnetic propagator,
we observe a significant deviation about the phase tran-
sition temperature Tc for the electric gluon propagator.
However, the agreement is very good for small and large
temperatures. As discussed in great detail in Sec. II B and V,
the deviation about Tc can be explained by the missing
nontrivial hA0i-background in the present calculation.
The ghost propagator agrees qualitatively, but deviates

quantitatively, from the lattice results, as shown in Fig. 8(a).
We discuss this point further in Sec. V. The ghost-gluon
vertex is plotted in Fig. 8(b). Interestingly, it is weaker
around the phase transition temperature than in the vacuum.
At high temperatures it shows a broader and less pro-
nounced bump than at zero temperature.
The gluonic vertex dressing functions are shown in Figs. 9

and 10. Themagnetic dressings of both vertices show scaling
in the infrared. Contrarily, the corresponding electric com-
ponents decouple at p ≈ 2πT and become constant in the
infrared. We show the position of the zero crossing of the
magnetic three-gluon vertex dressing function as a function
of temperature in Fig. 11. At small temperatures the zero
crossingmoves towards lowermomenta as the temperature is
increased, since the three-gluon vertex is stronger at small
and intermediatemomenta for small temperatures, cf., Fig. 9.
At high temperatures, the magnetic zero crossing rises
linearly with the temperature. In contrast, the zero crossing
of the electric three-gluon vertex dressing function disap-
pears at T ≈ 40 MeV. Similarly, the electric dressing of the
four-gluon vertex undergoes a drastic change from zero to

(a) (b)

FIG. 10. Temperature dependence of the four-gluon vertex dressing, (B3).

FIG. 11. Temperature dependence of the magnetic three-gluon
vertex zero crossing λMA3ðp0Þ ¼ 0.
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small temperatures, where scaling is lost, and goes on to
increase with growing temperature.
At low momenta p ≪ 2πT the dimension of the theory is

effectively reduced and the magnetic dressings behave as
they do in three dimensions. In the case of the scaling
solution, all magnetic dressing functions scale with a
power-law [39,40,44],

lim
p→0

λð2n;mÞðpÞ ∝ ðp2Þðn−mÞκþð1−nÞðd
2
−2Þ; ð38Þ

where 2n and m is the number of ghost and gluon legs,
respectively. Due to dimensional reduction, the temper-
ature-independent scaling coefficient κ is determined by
three-dimensional Yang-Mills theory. Fitting the magnetic
gluon propagators to (38) with d ¼ 3 at p ≪ 2πT, we find
κ ¼ 0.323ð3Þ. This agrees with the scaling exponent
κ ¼ 0.321ð1Þ of the three-dimensional vacuum theory
[100]. We summarize the different scaling coefficients in
Table I.

V. DISCUSSION

In the previous section we have presented nonperturba-
tive results obtained with the most comprehensive trunca-
tion within functional methods to date. The agreement of
the magnetic propagator and the electric propagator for
high temperatures is of the order of 10% in the momentum
regime relevant for hadronic observables. These small
deviations can be attributed to lattice artifacts, the relative
scale setting uncertainty, and the systematic error within
our truncation. The latter stems from incomplete momen-
tum dependencies of the vertices and missing nonclassical
tensors; see Appendixes A and D for estimates of their
respective importance. The electric propagator deviates
from the lattice results at temperatures about the phase
transition temperature. The explanation has already been
indicated in Sec. IV and is discussed below.

A. Nontrivial backgrounds and their impact
on electric and magnetic propagators

A potential source of the discrepancy of the electric
gluon propagator near the phase transition temperature is an
insufficient order in our approximation scheme. However,
such deviations of the electric gluon propagator from lattice

results were already observed in much simpler truncations
[62]. Furthermore, if truncation artifacts were the main
source, we would expect larger discrepancies also in the
magnetic gluon propagator.
In contrast to this, the electric propagator, which is

closely related to the order parameter L½hĀ0i�, is particu-
larly sensitive to a nonvanishing background field [65]. As
argued in Sec. II B, the nontrivial solution of the equation
of motion, Ā0 ≠ 0, is important in the temperature regime
(25), that is

T ∈ ð0.5Tc; 1.3TcÞ:

This is exactly the temperature range where the deviations
from the lattice results, which are evaluated on the equation
of motion, are most pronounced. We expect a considerable
improvement in the electric propagator if the correlation
functions are evaluated on the nontrivial background. At
this point, we want to emphasize that the observed
deviations do not invalidate our results for the electric
two-point correlator. It simply represents the correlation
functions at a nonminimal configuration, cf. (18). Further-
more, these findings underline that Polyakov-enhanced
low-energy effective models should be constructed in
Ā0-backgrounds and the effective potential V½Ā0� rather
than Polyakov loop backgrounds and the Polyakov loop
potential V½L�: the electric propagators agree on the 10%
level above T ≳ 1.3Tc. This entails that the relevant back-
ground for the shifts in the Matsubara frequencies is hĀ0i.
The above analysis is also important for the discussion of

the comparison of the present results with SUð2Þ and
SUð3Þ lattice simulations. As discussed in detail in the last
Sec. IV, the gauge group enters only at very high orders of
the approximation in an expansion of the effective action
around vanishing background. Thus, our results depend
only trivially on the gauge group. However, the gauge
group, and in particular the universality class, enters via the
Polyakov loop background, or, more precisely hĀ0i. It has
already been shown in [74,80] that the different orders of
the phase transition for SUð2Þ and SUðN > 2Þ are encoded
in the Polyakov loop potential V½Ā0� and the respective
expectation values ν in (24), rather than in the propagators.
The Ising critical exponents for SUð2Þ are also extracted
from critical fluctuations encoded in the effective potential;
see [75] for Yang-Mills theory in Polyakov gauge and [102]
for Landau-gauge Yang-Mills theory. In [75,102] it also has
been shown, that the critical fluctuations are the actual
cause of the higher phase transition temperature in com-
parison to SUðN > 2Þ. Thus, the gauge group dependence
of the order of the phase transition and the value of
transition temperature are to leading order caused by the
effective potential, and hence by the related expansion
about the physical ground state, i.e., hĀ0i in the current
setting.

TABLE I. Scaling exponents. See Sec. II A for the definition of
the symmetric momentum approximation and Appendix A for a
comparison.

Simple vertices

Symmetric
momentum

approximation
Full momentum
dependence

d¼ 4 0.5953 [32,33,36] 0.567(3) 0.576(5) [2]
d¼ 3 0.3976 [32] 0.321(1) [100] ×
d¼4, T > 0 × 0.323(3) ×
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We close the discussion of the propagators with the
remark that the comparison of our results with the lattice
results at small momenta p2 ≪ Λ2

QCD has to be taken with a
grain of salt. The lattice results are of the decoupling type,
while our results are of the scaling type. Consequently,
possible nonperturbative gauge fixing effects have to be
kept in mind; see, e.g., [128–131]. This concerns in
particular the ghost propagator, shown in Fig. 8(a), which
is more sensitive to the treatment of the Gribov copies than
the gluon propagator [131].

B. Debye mass and perturbative regime

We find very good agreement of our nonperturbative
Debye screening mass with two-loop hard thermal loop
perturbation theory down to T ≈ 0.6 GeV; see Fig. 3. This
remarkable agreement down to comparably low temper-
atures is in line with earlier findings; see, e.g., [86–94]. In
general, perturbative resummation schemes have been
found to be applicable at surprisingly large couplings.
An explanation of this unexpectedly large range of validity
can be given by the structural similarity of higher order
perturbative resummation schemes and the nonperturbative
resummations performed within functional methods. This
opens the door for applications of functionally assisted
analytic perturbative computations beyond the validity
bounds of perturbation theory, in particular to the transport
and kinetic realm of heavy ion collisions.

C. Three-gluon vertex and its zero crossing

The magnetic three-gluon vertex dressing function has
been studied on the lattice [72] and with a semi-perturbative
approximation of its DSE [73]. Both studies show a
significant enhancement of the magnetic dressing at low
momenta p ≈ 0.2 GeV for temperatures just below the
critical temperature. While we also observe this effect
qualitatively, see Fig. 9, we find a much weaker enhance-
ment. This is consistent with the finding that our electric
gluon propagator is weaker than the electric lattice propa-
gator, cf., Fig. 7. This electric propagator enters the triangle
diagram in the three-gluon vertex equation, which yields a
positive contribution to the dressing function [53]. Thus, a
stronger electric propagator increases the strength of the
magnetic three-gluon vertex.
At zero temperature, the three-gluon vertex shows

a zero crossing in four as well as in three dimensions
[2,6,46,49,51–53,59,132–135]. Analytical studies show
that it is caused by the divergent ghost triangle diagram.
We find that the zero crossing persists in the magnetic
dressing function for all temperatures. This stands in line
with [73] but in contrast to [72], where the lowest
investigated momenta show a positive sign at temperatures
somewhat below the critical temperature. Here, we present
an analytical argument for the persistence of the magnetic
zero crossing at all temperatures. The argument is first
presented for a vanishing gluonic background and is based

on the infrared dominance of ghost loops. Finally we
discuss the case of nonvanishing gluonic backgrounds
relevant for temperatures about Tc.
All gluonic diagrams are gapped below a certain scale,

whereas the ghost triangle effectively behaves like the cor-
responding three-dimensional diagram for p2 ≪ ð2πTÞ2.
Therefore, it causes a divergence in the magnetic three-
gluon vertex dressing function at low momenta for all
temperatures, and thus, the magnetic zero crossing cannot
vanish. At high temperatures, this zero crossing moves then
to higher scales, which is in line with the high temperature
limit and [72]. This qualitative argument is actually
independent of the type of the solution, since the three-
dimensional ghost triangle diagram diverges with a power-
law in the case of the scaling solution and linearly [6,49,51]
in the case of the decoupling solution. We find that the zero
crossing of the electric component vanishes at a temper-
ature of T ≈ 40 MeV. This can be understood by observing
that the zero mode of the ghost triangle diagram, evaluated
at zero external Matsubara frequencies, contributes to the
magnetic three-gluon vertex dressing, but vanishes ana-
lytically if projected with the electric three-gluon vertex
projection operator. Our numerical results show precisely
the expected behavior; see Figs. 9 and 11.
We extend the argument to the case of nonvanishing

backgrounds. They introduce a color structure in the ghost
propagator and the ghost-gluon vertex. After diagonaliza-
tion, we are left with gapped and ungapped modes in the
ghost propagator, as well as background-dependent and
background-independent (color) tensor structures in the
ghost-gluon vertex. The remaining ungapped ghost modes
couple to the latter tensor structure, which is nothing but
the original tensor structure at vanishing background.
Therefore, the background simply leads to a weakening
of the infrared dominance by gapping some, but not all,
ghost modes. Accordingly, the zero crossing moves
towards smaller momenta, but does not disappear, in the
presence of nontrivial backgrounds. Furthermore, for small
temperatures T=ΛQCD → 0, the gapping of the ghost occurs
only at very small momenta p⃗2 ≲ ð2πTÞ2, and we are left
with the temperature regime (25), in which a weakening of
the infrared ghost dominance is to be expected. This
structure is compatible with the results in [72], where no
zero crossing was observed at temperatures about Tc in the
accessible momentum regime. In our opinion, it would
therefore be interesting to extend the analysis of [72] to
smaller momenta.

VI. SUMMARY AND OUTLOOK

We have presented nonperturbative first-principles
results for the finite-temperature Landau-gauge Yang-
Mills correlation functions, obtained from the functional
renormalization group. Our comprehensive truncation of
the effective action includes the computationally especially
expensive magnetic and electric components of the purely
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gluonic vertices. We gauged our truncation by comparing
to propagator results obtained in lattice simulations and
found very good agreement for the magnetic gluon propa-
gator. Our result for the Debye screening mass shows
excellent agreement with two-loop hard thermal loop
perturbation theory at high temperatures and the electric
gluon propagator compares very well to lattice results for
all temperatures except T ∈ ð0.5Tc; 1.3TcÞ. We have
argued that the deviations in this regime are related to
the different backgrounds used. Particular focus was also
put on the fate of the zero crossing in the three-gluon vertex
at finite temperature. In the electric component of the three-
gluon vertex we found the disappearance of the zero
crossing at a very small temperature. The magnetic zero
crossing also moves towards lower momenta for small
temperatures but it never vanishes. At high temperatures,
its position increases linearly with the temperature. We
gave an analytic argument for the observed qualitative
behavior of the zero crossing in the magnetic and electric
components.
The presented first-principles results for the finite-

temperature correlation functions of Yang-Mills theory
form the foundation for a number of subsequent studies.
First and foremost, the capability to perform nonperturba-
tive first-principles studies of gauge theories at finite
temperatures provides a crucial prerequisite for the inves-
tigation of the QCD phase structure. In particular, combin-
ing the advancements of this work with those of a recent
calculation of the correlators of two-flavor QCD [3], will
allow us to investigate the properties of quantum chromo-
dynamics at finite temperature and density from first
principles. Furthermore, the presented correlators can be
used to compute thermodynamic quantities like the pres-
sure, the shear viscosity, as well as the Polyakov loop
potential and spectral functions, the latter being notoriously
difficult to obtain. Additionally, it is suggestive to use the
remarkable agreement of fully nonperturbative results with
resummed perturbative results, in particular in the Debye
mass, to devise functionally assisted analytic applications
for the transport and kinetic regime in heavy ion collisions.
Finally, we expect that improving the current investigation
by including a nonvanishing background field and non-
vanishing Matsubara modes will lead to the disappearance
of the discrepancy in the electric gluon propagator near the
phase transition temperature.
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APPENDIX A: REGULATOR AND
TRUNCATION DEPENDENCE

The regulators in (31) are parametrized by

Rab
k;μνðpÞ ¼ Z̃M

A;krðp2=k2Þp2δabΠ⊥
μνðpÞ;

Rab
k ðpÞ ¼ Z̃c;krðp2=k2Þp2δab; ðA1Þ

where we dress the regulators with Z̃M
A;k and Z̃c;k as in [2].

Since Π⊥
μνðpÞ ¼ ΠM

μνðpÞ þ ΠE
μνðpÞ, (A1) implies the same

regularization for electric and magnetic modes. Due to its
advantages for the evaluation of thermodynamic quantities
[62,97] we use the exponential regulator shape function,

rðxÞ ¼ xm−1e−x
m

1 − e−x
m ; ðA2Þ

with m ¼ 2. This is in contrast to the vacuum calculations
in [2], which were performed with a smoothed version of
the flat regulator [104].
In Fig. 12, we show vacuum results obtained with the flat

and the exponential regulator. Clearly, the results obtained
with the symmetric-point approximation, defined by (13),
agree very well. However, they show a higher bump than
the lattice results. This is due to the symmetric-point
approximation used for the vertices. This discrepancy
vanishes if more momentum dependencies are included
as shown in Fig. 12, cf. [2], for a thorough discussion. An
extension of the current finite-temperature investigations

FIG. 12. Gluon propagator dressing obtained with the expo-
nential regulator in comparison with dressings calculated with the
flat regulator in [2] and SUð3Þ lattice data [124]. The lattice
results are renormalized as in [2]. Newer lattice results [125]
agree with [124] if the largest physical volumes are compared.
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beyond the symmetric-point approximation is deferred to
future work.

APPENDIX B: TENSOR SPLITTING

At vanishing Matsubara frequencies, not all tensors that
are obtained by contracting the classical tensor structures
with all possible combinations of electric and magnetic

projectors are linearly independent; see Appendix C. Since
we calculate the dressing functions at vanishing Matsubara
mode, we can compute only a restricted set of dressings.
This implies that we have to approximate the remaining
degenerate dressing functions from this reduced set of
dressings in order to obtain the correct UV behavior and to
recover the vacuum results in the zero-temperature limit.
We use

½Γð3Þ
Ac̄c�abcμ ðp; qÞ ¼ ½Sð3ÞAc̄c�abcμ0 ðp; qÞðλMc̄cAðp̄ÞΠM

μ0μ þ λMc̄cAðp̄ÞΠE
μ0μÞ ðB1Þ

for the ghost-gluon vertex,

½Γð3Þ
A3 �abcμνρðp; qÞ ¼ ½Sð3ÞA3 �abcμ0ν0ρ0 ðp; qÞ · ðλMA3ðp̄ÞΠM

μ0μΠ
M
ν0νΠ

M
ρ0ρ þ ðλMA3ðp̄ÞΠE

μ0μΠ
M
ν0νΠ

M
ρ0ρ þ perm:Þ

þ ð λEA3ðp̄ÞΠE
μ0μΠ

E
ν0νΠ

M
ρ0ρ þ perm:Þ λMA3ðp̄ÞΠE

μ0μΠ
E
ν0νΠ

E
ρ0ρÞ; ðB2Þ

for the three-gluon vertex and

½Γð4Þ
A4 �abcdμνρσ ðp; q; rÞ ¼ ½Sð4ÞA4 �abcdμ0ν0ρ0σ0 · ðλMA4ðp̄ÞΠM

μ0μΠ
M
ν0νΠ

M
ρ0ρΠ

M
σ0σ þ ðλMA4ðp̄ÞΠE

μ0μΠ
M
ν0νΠ

M
ρ0ρΠ

M
σ0σ þ perm:Þ

þ ð λEA4ðp̄ÞΠE
μ0μΠ

E
ν0νΠ

M
ρ0ρΠ

M
σ0σ þ perm:Þ þ ð λMA4ðp̄ÞΠE

μ0μΠ
E
ν0νΠ

E
ρ0ρΠ

M
σ0σ þ perm:Þ

þ ð λMA4ðp̄ÞΠE
μ0μΠ

E
ν0νΠ

E
ρ0ρΠ

E
σ0σÞ; ðB3Þ

for the four-gluon vertex. Here and in the following we
leave the momentum arguments implicit. Although the
dressing functions of some tensors coincide in our approxi-
mation, we explicitly show the splitting to make the
construction of the approximation apparent. The magnetic
dressing functions appear in more than one tensor struc-
ture, and we evaluate them by projecting onto the
purely magnetic tensors structure for every vertex; see
Appendix D. Due to the Oð4Þ-symmetry of the vacuum,
this approximation becomes exact for large momenta
p2 ≫ ð2πTÞ2, which are not affected by finite-temperature
effects. In the limit of vanishing Matsubara frequencies, the
dimension of the tensor space is reduced; see Appendix C.
Therefore, this approximation is very good also for small
momenta p2 ≲ ð2πTÞ2. Hence, the approximations used in
(B1)–(B3) affect only intermediate Matsubara modes,
which are only slightly influenced by finite temperature
effects; see Sec. II A.

APPENDIX C: TENSOR DEGENERACY

We generalize the classical tensor structures to finite
temperature by attaching all combinations of magnetic and
electric projection operators; see (B1)–(B3). However,
contracting the electric ghost-gluon vertex with itself and
evaluating it at vanishing Matsubara modes yields

½Sð3ÞAc̄c�abcμ ΠE
μμ0 ½Sð3ÞAc̄c�abcμ0

���
fni¼0g

¼ 0: ðC1Þ

Hence, the electric component of the ghost-gluon vertex
disappears in the limit of vanishing Matsubara frequencies.
Similarly, we find for the three-gluon vertex,

½Sð3Þ
A3 �abcμνρΠE

μμ0Π
M
νν0Π

M
ρρ0 ½Sð3ÞA3 �abcμ0ν0ρ0

���
fni¼0g

¼ 0;

½Sð3Þ
A3 �abcμνρΠE

μμ0Π
E
νν0Π

E
ρρ0 ½Sð3ÞA3 �abcμ0ν0ρ0

���
fni¼0g

¼ 0; ðC2Þ

and for the four-gluon vertex,

½Sð4Þ
A4 �abcdμνρσΠE

μμ0Π
M
νν0Π

M
ρρ0Π

M
σσ0 ½Sð4ÞA4 �abcdμ0ν0ρ0σ0

���
fni¼0g

¼ 0;

½Sð4ÞA4 �abcdμνρσΠE
μμ0Π

E
νν0Π

E
ρρ0Π

M
σσ0 ½Sð4ÞA4 �abcdμ0ν0ρ0σ0

���
fni¼0g

¼ 0;

½Sð4Þ
A4 �abcdμνρσΠE

μμ0Π
E
νν0Π

E
ρρ0Π

E
σσ0 ½Sð4ÞA4 �abcdμ0ν0ρ0σ0

���
fni¼0g

¼ 0: ðC3Þ

Thus, for p2 ≪ ð2πTÞ2 the classical vertex dressings are
fully described by the remaining basis tensors, to wit,
those with only magnetic legs and those with exactly two
electric legs.

APPENDIX D: PROJECTING THE
FLOW EQUATIONS

The tensor bases for the propagators as well as for the
ghost-gluon vertex are complete, and therefore the projec-
tion onto the dressings is unique. For the gluonic vertices
we do not take the full transverse tensor bases into account.
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Consequently, already in the vacuum, any projection
is an approximation that relies on the assumption that
nonincluded basis elements are small. If the flows are
projected onto their electric and magnetic components, the
incompleteness of the bases can lead to intricate compli-
cations. The reason is that the magnetic and electric
projection operators can yield differing contributions from
nonclassical tensor structures that are created by quantum
fluctuations. As an immediate consequence, the magnetic
and electric dressings differ then by momentum dependent
terms. This effect occurs already at vanishing temperature,
and is therefore in contradiction with theOð4Þ-symmetry of
the vacuum. If one uses a complete basis, projecting with
magnetic and electric projection operators does not spoil
the Oð4Þ-symmetry although the projection operators
themselves are not Oð4Þ-symmetric.
In the following two subsections we discuss in detail the

quantitative relevance of these effects caused by the
incomplete bases for the gluonic vertices. In order to
disentangle genuine finite-temperature contributions from
these projection artifacts, we consider only vacuum flows.
By splitting the projection into electric and magnetic
components and comparing them to the Oð4Þ-symmetric
projection, we are able to quantify these basis artifacts.
Unfortunately, we find that the emergence of certain
nonclassical tensors yields sizeable artifacts on the dressing
of the classical tensor structure of the four-gluon vertex.
As discussed in detail in this and the following two
Appendixes E and F, implementing a proper treatment of
these artifacts of the incomplete bases turns out to be vital
to obtain the correct UV behavior and cutoff independence
of the finite-temperature results.

1. Three-gluon vertex

We project onto the magnetic and electric components of
the three-gluon vertex by

λMA3 ¼
½Sð3Þ

A3 �abcμνρΠM
μμ0Π

M
νν0Π

M
ρρ0 ½Γð3Þ

A3 �abcμ0ν0ρ0

½Sð3Þ
A3 �abcμνρΠM

μμ0Π
M
νν0Π

M
ρρ0 ½Sð3ÞA3 �abcμ0ν0ρ0

;

λEA3 ¼
½Sð3Þ

A3 �abcμνρΠE
μμ0Π

E
νν0Π

M
ρρ0 ½Γð3Þ

A3 �abcμ0ν0ρ0

½Sð3Þ
A3 �abcμνρΠE

μμ0Π
E
νν0Π

M
ρρ0 ½Sð3ÞA3 �abcμ0ν0ρ0

; ðD1Þ

as generalization of the vacuum projection

λA3 ¼ ½Sð3Þ
A3 �abcμνρΠ⊥

μμ0Π
⊥
νν0Π

⊥
ρρ0 ½Γð3Þ

A3 �abcμ0ν0ρ0

½Sð3Þ
A3 �abcμνρΠ⊥

μμ0Π
⊥
νν0Π

⊥
ρρ0 ½Sð3ÞA3 �abcμ0ν0ρ0

: ðD2Þ

In explicit numerical checks we find that the projections
(D1) and (D2) agree to the per mille level at T ¼ 0 and
therefore also for k ≫ 2πT. We conclude that our projec-
tion is not sensitive to the possible emergence of non-
classical tensors structures in the three-gluon vertex. This is

also consistent with the sub-leading importance of non-
classical tensor structures found in earlier three-gluon
vertex studies [53].

2. Four-gluon vertex

We project onto the vacuum dressing function with

λA4 ¼ ½Sð4Þ
A4 �abcdμνρσΠ⊥

μμ0Π
⊥
νν0Π

⊥
ρρ0Π

⊥
σσ0 ½Γð4Þ

A4 �abcdμ0ν0ρ0σ0

½Sð4Þ
A4 �abcdμνρσΠ⊥

μμ0Π
⊥
νν0Π

⊥
ρρ0Π

⊥
σσ0 ½Sð4ÞA4 �abcdμ0ν0ρ0σ0

: ðD3Þ

Assuming vanishing nonclassical tensor structures, this
generalizes to

λMA4 ¼
½Sð4Þ

A4 �abcdμνρσΠM
μμ0Π

M
νν0Π

M
ρρ0Π

M
σσ0 ½Γð4Þ

A4 �abcdμ0ν0ρ0σ0

½Sð4Þ
A4 �abcdμνρσΠM

μμ0Π
M
νν0Π

M
ρρ0Π

M
σσ0 ½Sð4ÞA4 �abcdμ0ν0ρ0σ0

;

λEA4 ¼
½Sð4Þ

A4 �abcdμνρσΠE
μμ0Π

E
νν0Π

M
ρρ0Π

M
σσ0 ½Γð4Þ

A4 �abcdμ0ν0ρ0σ0

½Sð4Þ
A4 �abcdμνρσΠE

μμ0Π
E
νν0Π

M
ρρ0Π

M
σσ0 ½Sð4ÞA4 �abcdμ0ν0ρ0σ0

; ðD4Þ

for the magnetic and the electric components. If the only
tensor generated by the flow were the classical one,

½Γð4Þ
A4 �abcdμνρσ ∝ ½Sð4Þ

A4 �abcdμνρσ ¼ fabnfcdnδμρδνσ þ perm:; ðD5Þ

the projections (D3) and (D4) would yield λA4 ¼ λMA4 ¼ λEA4 .
However, this equality can be spoiled by the presence
of nonclassical tensors, which are in general created by
the flow equation. Consider, for example, the following
Oð4Þ- and Bose-symmetric nonclassical tensor:

½Γð4Þ
A4;ncl

�abcdμνρσ ðp;q;r; sÞ
¼ ðfabnfcdn · ðqþ sÞμðqþ sÞρðpþ rÞνðpþ rÞσÞþ perm:

ðD6Þ

Inserting (D6) into (D3) and (D4) yields differing con-
tributions to the dressing functions λA4 , λMA4 , and λEA4 .
Therefore, Oð4Þ-invariance is lost due to the incomplete-
ness of the basis that was used to construct the projection
operators, (D3) and (D4).
In Fig. 13, we show the vacuum flows of the four-gluon

vertex obtained with different projection operators and
identical vacuum vertices on the right hand side of the flow
equation. In contrast to the three-gluon vertex, we find a
considerable difference in the resulting momentum depend-
ence of the projections (D3) and (D4). We conclude, that
sizeable nonclassical tensors, which affect the difference
between the magnetic and electric projection operators,
are generated. As an immediate consequence, the Oð4Þ-
symmetric limit at T → 0 is spoiled by the presence of these
tensors since λMA4ðT ¼ 0Þ ≠ λEA4ðT ¼ 0Þ.
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A simple estimate of the unphysical projection artifacts
of these nonclassical tensors is given by the vacuum
differences of the projections (D3) and (D4),

∂t½λA4 − λMA4ðT ¼ 0Þ�;
∂t½λA4 − λEA4ðT ¼ 0Þ�; ðD7Þ

which are also shown in Fig. 13. Assuming that this
unphysical difference depends only mildly on the temper-
ature, a natural strategy to account for this artifact is to
subtract (D7) from the finite-temperature flows. However,
there is an additional complication in the case of the scaling
solution. The vertex dressings obey a power law behavior at
small momenta, see (38), and the corresponding exponent
changes as one goes from the vacuum to finite temperature.
Although this behavior of the correlators at very small
momenta does not affect any observables, it has to be
taken into account when subtracting (D7) from the

finite-temperature flows. Consequently, we modify the
flows of the magnetic and electric components by

∂tλ
M
A4ðTÞ¼ ∂tλ

M
A4ðTÞþθϵðk;kcÞ∂t½λA4 −λMA4ðT¼ 0Þ�;

∂tλ
E
A4ðTÞ¼ ∂tλ

E
A4ðTÞþθϵðk;kcÞ∂t½λA4 −λEA4ðT¼ 0Þ�: ðD8Þ

The purpose of the smoothed step function,

θϵðk; kcÞ ¼
1

1þ exp ½1ϵ ð1 − k
kc
Þ� ; ðD9Þ

is to provide a transition from the corrected flows to the
pure finite-temperature flows with the correct scaling
behavior at very low momenta. We set the transition
scale kc to

kc ¼ min ðλc2πT;ΛcÞ; ðD10Þ

which is defined in terms of the parameters Λc and λc. The
modified dressings fulfill

lim
T→0

λMA4ðTÞ ¼ lim
T→0

λEA4ðTÞ ¼ λA4 : ðD11Þ

This guarantees that we recover the vacuum results in the
limit of vanishing temperature while our best estimates for
the basis artifacts are subtracted above the transition
scale kc.
In order to investigate the influence of the precise value

of the transition scale, we vary Λc and λc in reasonable
ranges. Since temperature effects are expected to be small
at momentum scales k ≥ 2πT, λc should be of order unity
and we vary it from 1 to 2. Furthermore, the gapping scale
of the gluon propagator gives us an estimate on the scale
below which no phenomenologically important effects are
to be expected. Consequently, we vary Λc between the

FIG. 13. Four-gluon vertex vacuum flows from different
projection operators, (D3) and (D4), and their differences at
the RG scale k ¼ 2 GeV.

(a) (b)

FIG. 14. Relative deviations, e.g., ðλMA4ðλc ¼ 1Þ − λMA4ðλc ¼ 2ÞÞ=λMA4ðλc ¼ 1Þ, of the four-gluon vertex dressings, (B3), calculated with
different parameters in the smoothed theta function (D9). Depending on the temperature, the dressings depend either on λc or Λc;
see (D10).
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location of the maxima of the gluon propagator and the
gluon propagator dressing, i.e., Λc ∈ ½0.3; 1� GeV. We find
only a mild (10%) dependence of the four-gluon vertex
dressings on these parameters as shown in Fig. 14. Since
the four-gluon vertex is the least important of all classical
tensors in the self-consistently coupled system, we find that
the dependence of all other dressings on these parameters is
even smaller. For example, the induced uncertainty on the
electric gluon propagator is at most 3%, but for a wide
range of temperatures and momenta it is even smaller than
0.5%. In all cases the dependence on the smoothing
parameter, ϵ ¼ 0.05, is negligible.

APPENDIX E: VACUUM LIMIT

We constructed the truncation such that it converges to
the symmetric-point approximation used in [2] in the
vacuum limit, T → 0. In Fig. 15(a), we show the gluon
propagator for a range of small temperatures. We clearly
see that the magnetic as well as the electric propagators
approach the vacuum propagator in the zero temperature
limit. In particular, for each temperature there exists a
threshold momentum above which the magnetic, the
electric and the vacuum dressings agree. This is not only
a strong check of our code but also shows the validity of
(B1)–(B3) at k ≪ T as well as the consistency of our
Oð4Þ-symmetric momentum approximations, i.e., (13).
Similarly, the magnetic and electric dressing functions of
the other vertices become degenerate in the vacuum limit.
As discussed in the next appendix, this behavior allows us
to significantly reduce the computational effort.

APPENDIX F: INITIAL SCALE

The regulator suppresses quantum as well as thermal
fluctuations below the regulator scale k. Therefore, the

temperature-dependent generalized effective action ΓkðTÞ
agrees with the zero-temperature effective action as long as
temperature fluctuations are suppressed,

ΓkðTÞ ¼ ΓkðT ¼ 0Þ if 2πT ≪ k: ðF1Þ

This property enables us to reduce the computational effort
by one to two orders of magnitude. First we compute the
T ¼ 0 effective action, starting at a large perturbative scale
of typically k ¼ Λ ¼ 60 GeV from the classical action. To
obtain the temperature-dependent 1PI effective action, we
integrate the flow equation starting from the effective
average action ΓΛT

ðTÞ ¼ ΓΛT
ðT ¼ 0Þ at a lower, temper-

ature-dependent cutoff scale,

ΛT ¼ max ðλ2πT;Λmin
T Þ: ðF2Þ

Here, Λmin
T has been introduced to avoid the interference of

the lowered starting scale with the dynamical mass gen-
eration of the gluon. This is necessary, because the scaling
condition forces us to modify the input at ΛT by a gluon
mass term; see Appendix G. Consequently, we choose Λmin

T
as the scale where the vacuum gluon propagator dressing
becomes maximal, i.e., Λmin

T ¼ 0.955 GeV. We show the
dependence of the longitudinal gluon propagator on the
physical start scale λ in Fig. 15(b). The gluon propagator as
well as all other quantities do not depend on the start scale
for λ ≥ 2. In our numerical computation we use λ ¼ 4
although λ ¼ 2 is sufficient, as argued in Appendix G.
To demonstrate the advantage of the temperature-

dependent initial scale, we consider the numerical vacuum
integration,

Z
q
¼

Z
d4q
ð2πÞ4 ¼

Z
L

0

dq
ð2πÞ4 q

3

Z
dΩ: ðF3Þ

(a) (b)

FIG. 15. Vacuum limit and initial scale independence of gluon propagator, (9).
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Numerically, it is advantageous to choose a k-dependent
numerical cutoff L ¼ lk, where l ¼ 3 is sufficient for the
exponential regulator due to the regulator derivative
appearing in all diagrams. This persists in the Matsubara
formalism and we can limit the summation to frequencies
ω ¼ 2πTn smaller than L ¼ lk,

XZ
q

¼
Z

L

0

dq
ð2πÞ3 q

2

Z
dΩT

Xw≤L
n

: ðF4Þ

Thus, the number of required integrand evaluations grows
linearly with k as well as with 1=T. For small temperatures,
the increased number of evaluations due to the growing
number of small Matsubara modes is therefore compen-
sated by the shrinking initial scale, at least down to
T ¼ Λmin

T =ð2πλÞ.

APPENDIX G: GLUON MASS PARAMETER

The gluon mass parameter, m2
Λ ∝ αðΛÞΛ2, is fixed at the

cutoff scale k ¼ Λ, which is far bigger than the temperature
scale, Λ ≫ 2πT. As discussed in Sec. III B, this parameter
is determined by the modified Slavnov-Taylor identity that
is difficult to solve numerically with the required quadratic
precision. In addition, a truncation to the combined system
of mSTI and flow has to be self-consistent to quadratic
precision. At vanishing temperature, we have therefore
determined the gluon mass term by requiring a solution of
the scaling type.
Temperature effects are suppressed exponentially for the

used regulators; see [105] and Sec. III A. Hence, the initial
conditions for the flow at k ¼ Λ converge exponentially to
that at vanishing temperature. However, in the present
scaling solution the initial conditions compensate for the
violation of the modified BRST-symmetry during the flow,
and in particular at low cutoff scales. Therefore, we expect
a temperature-dependent change of the initial conditions for
compensating temperature-dependent truncation artifacts at
low scales. Keeping this in mind, we extend the BRST-
consistent fine-tuning of the initial conditions to finite
temperature,

Γð2Þ;M;raw
AA;k¼ΛT

ðpÞ¼Γð2Þ;E;raw
AA;k¼ΛT

ðpÞ¼Γð2Þ;T¼0
AA;k¼ΛT

ðpÞþΔm2
T: ðG1Þ

The temperature-dependent part of the gluon mass param-
eter Δm2

T is fixed such that we obtain infrared scaling in the
purely magnetic sector; see Sec. III B. Its sole purpose is to
adjust the modified BRST symmetry as in the T ¼ 0 case.
Requiring scaling fixes Δm2

T uniquely. While adjusting the
correct infrared behavior, this introduces truncation arti-
facts in the UV. The RG-relevant part of the temperature-
dependence at large momentum has to vanish identically. It
is uniquely removed with

Γð2Þ;M=E
AA;k¼0 ¼ Γð2Þ;M=E;raw

AA;k¼0 −
�
Γð2Þ;M=E;raw
AA;k¼kT

− Γð2Þ;T¼0
AA;k¼kT

	
: ðG2Þ

Here, kT ≈ 4πT ≤ ΛT is the scale above which temperature
effects are virtually absent, i.e.,

Γð2Þ;M;raw
AA;k≥kT ¼ Γð2Þ;E;raw

AA;k≥kT : ðG3Þ

Note that (G2) keeps the physical temperature-dependent
polynomially suppressed large momentum corrections; see
[62]. Equation (G2) removes in particular Δm2

T from the
final result. Moreover, the mass correction (G1) leads to
modifications of the flows due to the back coupling of the
changed gluon mass parameter. Consequently, the sub-
traction (G2) removes back-coupling artifacts that are
accumulated during the integration of the flow from ΛT
to kT . In the case ΛT ¼ kT , no back-coupling artifacts are
created at scales larger than kT and the correction becomes
trivial,

Γð2Þ;M=E;raw
AA;k¼kT

− Γð2Þ;T¼0
AA;k¼kT

¼ Δm2
T: ðG4Þ

We demonstrate in Fig. 15(b) that neither the raw nor the
final gluon propagators, obtained with (G2), depend on the
initial cutoff scale ΛT . Thus, ΛT ¼ kT is the numerically
least demanding and most stable choice that includes all
thermal fluctuations. Note that (G1) modifies the magnetic
and electric propagators identically. Thus, the electric mass
is an observable at vanishing cutoff.
In order to assess the effect of the temperature-dependent

tuning of the gluon mass parameter (G1), we compare the
raw with the final propagators in Fig. 16. We observe a
sizeable influence of the correction on the final result. We
plot the raw and the final magnetic gluon propagator each
normalized by the magnetic lattice propagator in Fig. 17.
Since the lattice data have to be renormalized for each
temperature separately, agreement is always found at the
corresponding momentum scale; see Appendix H. At lower
scales, the raw propagator quickly deviates from the lattice
results. Contrarily, the final propagator shows better agree-
ment, which we interpret as support for our subtraction
procedure (G2).

APPENDIX H: SCALE SETTING
AND RENORMALIZATION

Weset the scale by rescaling our internal units such that the
bump position of the gluon propagator dressing lies at
pmax ≡ 0.955 GeV, and thus coincides with the bump
position of the vacuum lattice results from [124]; see Fig. 12.
The temperatures of the SUð2Þ lattice results from

[69,123] are given in terms of the critical temperature. In

order to compare, we use TSUð2Þ
c ¼ 0.7091

ffiffiffi
σ

p ¼ 312 MeV
[136] to convert the temperature into units of GeV, where the
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string tension σ is given by σ ¼ 0.440 GeV2. These lattice
results need to be renormalized for each temperature sepa-
rately. We determine the temperature-dependent renormal-
ization constants by fitting all lattice points above
p ≥ max ð2πT; 1 GeVÞ to our results.
The SUð3Þ lattice results from [71] do not include the

vacuum case T ¼ 0. Therefore, we allow for a scale
mismatch by introducing a temperature-independent rela-
tive scale factor rs, in addition to the temperature-
independent wave function renormalization constant zL.
We determine rs and zL by fitting the magnetic gluon
dressing function, 1=ðzLZM

A ðrsT; rspÞÞ, simultaneously for
all temperatures to all lattice points above p ≥ 0.5 GeV.
Subsequently, we use rs and zL to rescale the magnetic as
well as the electric lattice propagators to our data. We find
the relative scale mismatch rs − 1 to be small, of the order of
2%. The temperatures in [71] are given in units of GeV. In
order to simplify the discussion, we convert the temperatures
into units of the critical temperature, using their value for the
SUð3Þ phase transition temperature, Tc ¼ 270 MeV.

APPENDIX I: SCREENING MASS

In this appendix we describe the extraction of the
screening masses shown in Sec. II C and provide the
propagators in position space; see Fig. 18. In general,
the thermal propagators at large distances show a combi-
nation of an exponential and an algebraic decay,

lim
x→∞

GE
TðxÞ ¼ cax1−4κ þ ce exp ð−msxÞ; ðI1Þ

where GE
TðxÞ is the Fourier transformed zero mode of

the electric gluon propagator (26); see Sec. II C. The
algebraic decay originates from the infrared scaling
at vanishing temperature with 1 − 4κ being the scaling
exponent in position space, cf., also (38). At low
enough temperatures T ≪ Tc, we see remnants of this
zero-temperature algebraic part. At higher temperatures we
have ca ¼ 0.

(a) (b)

FIG. 16. Electric and magnetic gluon propagators with and without mass subtraction procedure, (G2).

(a) (b)

FIG. 17. Magnetic SUð2Þ lattice propagator [69,123] over FRG propagator; see Fig. 6(a) for the color coding.
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In Fig. 18, we show GE
TðxÞ for low (left panel) and high

(right panel) temperatures. For all shown temperatures, the
exponential decay is apparent as linear regime. For even
lower temperatures, the linear regime shrinks considerably

due to the algebraic decay, and we need a higher numerical
precision for extracting the sub-leading exponential
decay. This is clearly seen in the lowest temperature shown,
T ¼ 0.102 GeV.
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