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We study the semileptonic decays of the B, meson into final charmonium states within the standard
model and beyond. The relevant hadronic transition form factors are calculated in the framework of the
covariant confined quark model developed by us. We focus on the tau mode of these decays, which may
provide some hints of new physics effects. We extend the standard model by assuming a general effective
Hamiltonian describing the b — czv transition, which consists of the full set of the four-fermion operators.
We then obtain experimental constraints on the Wilson coefficients corresponding to each operator and
provide predictions for the branching fractions and other polarization observables in different new physics

scenarios.
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I. INTRODUCTION

The B, meson is the lowest bound state of two
heavy quarks of different flavors, lying below the BD
threshold. As a result, while the corresponding cc¢ and
bb quarkonia decay strongly and electromagnetically,
the B, meson decays weakly, making it possible to
study weak decays of doubly heavy mesons. The weak
decays of the B, meson proceed via the c-quark decays
(~70%), the b-quark decays (~20%), and the weak
annihilation (~10%). Due to its outstanding features,
the B, meson and its decays have been studied exten-
sively (for a review, see e.g., Ref. [1] and references
therein).

Among many weak decays of the B, meson, the semi-
leptonic decay B, — J/wv has an important meaning. In
fact, the first observation of the B, meson by the CDF
Collaboration was made in an analysis of this decay [2].

“ctt@theor, jinr.ru
tranchienthang1347 @ gmail.com
fivanovm @theor jinr.ru
*jukoerne @uni-mainz.de
¥Pietro.Santorelli @na.infn. it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2018,/97(5)/054014(13)

054014-1

Recently, the LHCb Collaboration has reported their
measurement [3] of the ratio of branching fractions

Ry = DB = V) G 14 0172018, (1)
B(B. = J/yuv)

which lies at about 20 above the range of existing pre-
dictions in the Standard Model (SM). At the quark level, the
decay B, — J/y¢v is described by the transition b — c£v,
which is identical to that of the decays B" — D™ ¢y, It is
important to note that measurements of the decays B® —
D¢y carried out by the BABAR [4], Belle [5-7], and
LHCb [8,9] Collaborations have also revealed a significant
deviation (~40) of the ratios R ,.) from the SM predictions
[10-13]. The excess of R;,, over the SM predictions not
only sheds more light on the unsolved R .) puzzle, but also
suggests the consideration of possible new physics (NP)
effects in the decays B, — J/y/(n.)v.

Essential to the study of the B, semileptonic decays is the
calculation of the invariant form factors describing
the corresponding hadronic transitions. In the literature, a
wide range of different approaches has been used to compute
the B. — J/w(n.) transition form factors, such as the
potential model approach [14], the Bethe-Salpeter equa-
tion [15,16], the relativistic constituent quark model on the
light front [17,18], three-point sum rules of QCD and
nonrelativistic QCD (NRQCD) [19-21], the relativistic
quark model based on the quasipotential approach [22],
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the nonrelativistic quark model [23], the Bauer-Stech-Wirbel
framework [24], the perturbative QCD (pQCD) [25,26], and
the covariant quark model developed by our group [27,28]. It
is worth revisiting these decays in the modern version of our
model with updated parameters and new features like the
embedded infrared confinement [29]. We also mention that
very recently, the HPQCD Collaboration has provided their
preliminary results for the form factors of the B, — J/y and
B, — 1, transitions using lattice QCD [30].

It should be noted that in our covariant confined quark
model (CCQM), all form factors are calculated in the full
kinematic range of momentum transfer squared ¢, making
the predictions for physical observables more accurate. In
the pQCD approach and QCD sum rules, for example, the
form factors are evaluated only for small values of g (large
recoil), and then extrapolated to the large ¢* region (small
recoil), in which they become less reliable. In general, the
knowledge of the B, — J/w(n,.) form factors is much less
than that of the B® — D) ones. This is due to, first, the
lack of experimental data for the decays B, — J/y/(5.)¢v,
and second, the appearance of two heavy quark flavors in
the initial (bc) and final (cc) states. The latter breaks the
heavy quark symmetry (HQS), leaving the residual heavy
quark spin symmetry (HQSS), which allows reducing the
number of form factors in the infinite heavy quark limit
[19,31,32]. However, the HQSS does not fix the normali-
zation of the form factors as the HQS does, for example, in
the case of B — D),

The possible NP effects in the semileptonic decays
B. — J/w(n.)rv have been discussed recently in several
papers [33—40]. As what has been done in the studies of
the R, anomalies, one can choose between a specific-
model approach, such as charged Higgs models, leptoquark
models etc., or a model-independent approach based on a
general effective Hamiltonian describing the b — ctv
transition. In this paper we adopt the second approach
by proposing an SM-extended effective Hamiltonian con-
sisting of the full set of the four-fermion operators.
Constraints on the corresponding Wilson coefficients are
obtained from the experimental data for the ratios R, and
R, as well as the LEP1 data, which requires B(B,. —
) < 10% [41]. Another useful constraint is provided by
using the lifetime of B, as discussed in Ref. [42]. However,
in this paper we only use the constraint from the LEP1 data,
which is more stringent than the latter. We then analyze the
effects of these NP operators on several physical observ-
ables including the ratios of branching fractions R; ),
the forward-backward asymmetries, the convexity param-
eter, and the polarization components of the 7 in the final
state. We also provide our predictions for these physical
observables in the SM and in the presence of NP.

The paper is organized as follows. In Sec. II we introduce
the general b — c/v effective Hamiltonian and parame-
trize the hadronic matrix elements in terms of the invariant
form factors. We then obtain the decay distributions in the

presence of NP operators using the helicity technique. In
Sec. III we present our result for the form factors in the
whole ¢* range. A detailed comparison of the form factors
calculated in the CCQM with those in other approaches is
also provided. In Sec. IV we obtain constraints on the NP
Wilson coefficients from available experimental data.
Theoretical predictions for the physical observables in
the SM and beyond are presented in Sec. V. Finally, we
briefly conclude in Sec. VI.

II. EFFECTIVE HAMILTONIAN, HELICITY
AMPLITUDES, AND DECAY DISTRIBUTION

In the model-independent approach, NP effects are intro-
duced explicitly by proposing an effective Hamiltonian for
the weak decays that includes both SM and beyond-
SM contributions. In this study, the general effective
Hamiltonian for the quark-level transition b — (¢ =
e,p,7) is given by (i = L, R)

4GrV,

(o 3

X=8;.V. T,

Heff =

6,fX(’)X> . (2)

where the four-fermion operators Oy are defined as

Oy, = (er*P:b)(£y,Prye), (3)
Os, = (¢P;b)(£PLvy), (4)
OTL = (EG”UPLb)(;ﬂGMDPLVK)' (5)

Here, 6, = i[y,.7.]/2. PLr = (1 F y5)/2 are the left and
right projection operators, and X’s are the complex Wilson
coefficients characterizing the NP contributions. The tensor
operator with right-handed quark current is identically
equal to zero and is therefore omitted. In the SM one
has V; g = S, g = T, = 0. We have assumed that neutri-
nos are left-handed. Besides, the delta function in Eq. (2)
implies that NP effects are supposed to appear in the tau
mode only. The proposed Hamiltonian can be considered as
a natural way to go beyond the SM since it is generalized
from the well established SM Hamiltonian with the V — A
structure by adding more currents. One may also consider
right-handed neutrinos and may as well assume that NP
appears in all lepton generations. However, current exper-
imental data suggest that NP effects in the case of light
leptons (if any) are very small. A recent discussion of these
NP operators and their possible appearance in the light
lepton modes can be found in Ref. [43].

Starting with the effective Hamiltonian, one writes
down the matrix element of the semileptonic decays
B. — J/w(n.)rv, which has the form

M= Mgy + \/EGFVcbZX' (J/w(n)|crxb|B,) -t xvy,
X

(6)
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where I'y is the Dirac matrix corresponding to the operator Oy. The hadronic part in the matrix element is parametrized by a
set of invariant form factors depending on the momentum transfer squared ¢ between the two hadrons as follows:

(nc(p2)|cy*b|B.(p1)) = F(q*)P* + F_(q*)q",
(nc(p2)|eb|B.(py)) = (my + my)FS(q?),

i T(,2
1epa)leo (1 = P)piB (o) = L)

T
I (plert (1 F 7)bIBLp1)) = 2 [ 9" Pad(4”) + PPUAL(q?)

+q"P*A_(q%) + ie" "1V (q?)],
(J/w(pa)|er’b|B.(p))) = b, P*GP (¢?).

(J/w(pa)|ea™ (1 = y*)b|B.(p1)) = —i€b, | (P — PYg® + ie"*)GT (q?)

(Prg¥ — PYq! + i),

+ (qygva _ qygya + ieqﬂya)Gg(QZ)
GT 2
+ (Pﬂqv _ quﬂ + l'qu;w)Pa O(q ) 51 (7)
(my +my)

where P = p; + p,, ¢ = p; — p2, and ¢, is the polarization vector of the J/y meson which satisfies the condition
€} - p» = 0. The particles are on their mass shells: p} = m? = my_and p3 = mj; = mf/w(ﬂ )

We define a polar angle 6 as the angle between q = p; — p, and the three-momentum of the charged lepton in the (£7,)
rest frame. The angular decay distribution then reads

dr P my GVl [p2 my
= 1 —-—*% MZICi 1 —-——% prLw 8
dg*dcos® (2r)332m? q* ;l | (27)364m? 7 fz (8)

where |p,| = '/2(m}, m3, ¢*)/2m, is the momentum of the daughter meson in the B, rest frame, and H*L,, is the
contraction of hadron and lepton tensors. The covariant contraction H**L,,, can be converted to a sum of bilinear products of
hadronic and leptonic helicity amplitudes using the completeness relation for the polarization four-vectors of the process
[44]. This technique is known as the helicity technique, which has been described in great detail in our previous papers
[44-47]. In Ref. [47] we have shown how to acquire the decay distribution for the semileptonic decays B — D™ zy in the
presence of NP operators and provided a full description of the helicity amplitudes, which can be applied to the case of the
decays B. — J/w(n.)tv. Therefore, we find no reason to repeat the procedure in this paper. However, for completeness, we
present here the final result for the decay distributions. The angular distribution for the decay B, — #.7v is written as
follows:

dr(B. — n.w) _ GilVe'palg? <1 _m%)z
dq*d cos 6 (27)316m? q*

< {1+ 0o 2| Hol2sin®0 + 26, H, — Hycos O

+ lgsPIHB* + 16|, |*[28, + (1 — 26, )cos*0]| H|*

+24/26,RegsH3[H, — H(cos 0] + 81/26.ReT [Hy — H,cos | Hr}, 9)

where gy =V, + Vg, gs =S + Sg, gp =S, — S, and &, = m2/24q? is the helicity flip factor. The hadronic helicity
amplitudes H’s are written in terms of the invariant form factors defined in Eq. (7). Their explicit expressions are presented
in Ref. [47]. Note that we do not consider interference terms between different NP operators since we assume the dominance
of only one NP operator besides the SM contribution. The corresponding distribution for the decay B. — J/wzv is rather
cumbersome and therefore is not shown here. One can find it in Appendix C of Ref. [47].
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After integrating the angular distribution over cos§ one has

dl’'(B J G4V, |? 2 2\ 2
( c él//(nc)ﬂ/) _ F| Cl;| |p22|q ]_m_; ’Htjo/ty/(m)v where (10)
dg (27)°12mj q
2 2 3 21gS 12
Hise = 11+ gy P[|Hol* + 8. (|Hol* + 3|H,[*)] +§|95| |H|
+ 3\/ 257RegsH§Ht + 8|TL|2<1 + 467)|HT|2 + 12\/ 25TReTLH0HT, (11)

J 2
&W::ﬂl+-VA2+vav>[§:|Hn|+—@

n=0,%+
— 2ReVg[(1 +

+ 8T, |*(1
n=0,%t

8:)(|Ho|* +2H H_

+45,) Y |HA? - 12y/26.ReT;, > H,H}. (12)

)+ 38,|H,|?]

|Hn|2+3|Ht|2)] 3 sy
(Z +2 1o P13

—3./26.RegpHS H,

n=0,%+

In this paper, we also impose the constraint from the leptonic decay channel of B, on the Wilson coefficients. Therefore
we present here the leptonic branching in the presence of NP operators. In the SM, the purely leptonic decays B, — £v
proceed via the annihilation of the quark pair into an off shell W boson. Assuming the effective Hamiltonian Eq. (2), the tau
mode of these decays receives NP contributions from all operators except Or, . The branching fraction of the leptonic decay

in the presence of NP is given by [48]

2

G
B(BC g TIJ) = 8—; |Vc‘b|27’-chch‘%<

where gy = Vi =V, gp = Sg — S, 73, is the B, lifetime,
f g, 1s the leptonic decay constant of B, and fgc is a new
constant corresponding to the new quark current structure.

One has

(0lgr*ysb|B.(p)) = =f5.p"s (0lgrsb|B.(p)) = mg [} -

(14)

In the CCQM, we obtain the following values for these
constants (all in MeV):

S, =489.3, fgﬁ = 645.4. (15)

III. FORM FACTORS IN THE COVARIANT
CONFINED QUARK MODEL

The CCQM is an effective quantum field approach to
hadron physics, which is based on a relativistic invariant
Lagrangian describing the interaction of a hadron with its
constituent quarks (see e.g., Refs. [49-55]). The hadron is
described by a field H(x), which satisfies the correspond-
ing equation of motion, while the quark part is introduced
by an interpolating quark current Jy(x) with the hadron
quantum numbers. In the case of mesons, the Lagrangian is
written as

BfB
‘rfB

L—g4+

%f ) £ % (13)

Lan() = g5 H ()T () = geH(x) / dn,

x / A, F oy (5361, 32)85 ()T (x1). (16)

where gy is the quark-meson coupling, I'y; is the Dirac
matrix ensuring the quantum numbers of the meson, and
the so-called vertex function Fp effectively describes the
quark distribution inside the meson. From the requirement
for the translational invariance of Fy, we adopt the
following form  Fpy(x,x;, %) = 6(x — wix; — waxy) X
@y ((x) —x2)%), where w; =m, /(m, +m,), and m,
are the constituent quark masses. The Fourier transform
of the function @ in momentum space is required to fall
off in the Euclidean region in order to provide for the
ultraviolet convergence of the loop integrals. For the sake
of simplicity we use the Gaussian form ®(—k?) =
exp(k?/A%), where the parameter A effectively character-
izes the meson size.

The coupling gy is determined by using the so-called
compositeness condition [56], which imposes that the wave
function renormalization constant of the hadron is equal to
zero Zy = 0. For mesons, the condition has the form
Zy =1 =T (m%) = 0, where IT},(m?%) is the derivative
of the hadron mass operator, which corresponds to the self-
energy diagram in Fig. 1 and has the following form:
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FIG. 1. Self-energy diagram for a meson.
dk .
p(p*) = 39%/W¢%(_k2)

x tr[S1(k +wip)y>S,(k — wap)y’],
v dk
HV(pz) = g%/ <g/w - pp]; ) /(27[)41

xtr[Sy(k+wip)y,Sx(k —wap)y,].

D} (k%)

(17)

for pseudoscalar and vector mesons, respectively. Here,
Sy, are quark propagators, for which we use the Fock-
Schwinger representation

Si(k) = (m,, + 1) / ® dayexpl-a,(m2, — K2, (18)

It should be noted that all loop integrations are carried out
in Euclidean space.

Similarly to the hadron mass operator, matrix elements
of hadronic transitions are represented by quark-loop
diagrams, which are described as convolutions of the
corresponding quark propagators and vertex functions.
Using various techniques described in our previous papers,
any hadronic matrix element IT can be finally written in the
form I1 = [* d"aF(ay, ...,a,), where F is the resulting
integrand corresponding to a given diagram. It is more
convenient to turn the set of Fock-Schwinger parameters into
a simplex by adding the integral 1 = [* dt5(1— Y7 | a;)
as follows:

e 1 n
H:/ dtt”‘l/ d"aé(l— ai>F tay, ... tay).
[ a [ was(1 -3 ) Pl ot

i=1
(19)

The integral in Eq. (19) begins to diverge when ¢t — oo, if the
kinematic variables allow the appearance of branching point

corresponding to the creation of free quarks. However, these
possible threshold singularities disappear if one cuts off the
integral at the upper limit,

1/12 1 n
I = / det"! / d”aé(l - Za,-) F(tay, ..., ta,).
0 0 i=1

(20)

The parameter A effectively guarantees the confinement of
quarks inside a hadron and is called the infrared cutoff
parameter.

Finally, we briefly discuss some error estimates within
our model. The CCQM consists of several free parameters:
the constituent quark masses m,, the hadron size param-
eters Ay, and the universal infrared cutoff parameter A.
These parameters are determined by minimizing the func-
tional y? =3, S il pjfm)z
uncertainty. If ¢ is too small then we take its value of 10%.
Besides, we have observed that the errors of the fitted
parameters are of the order of 10%. Thus, the theoretical
error of the CCQM is estimated to be of the order of 10%.

The B. — J/w(n.) hadronic transitions are calculated
from their one-loop quark diagrams. For a more detailed
description of the calculation techniques we refer to
Ref. [47] where we computed the similar form factors
for the B" — D) transitions. In the framework of the
CCQM, the interested form factors are represented by
threefold integrals which are calculated by using FORTRAN
codes in the full kinematical momentum transfer region
0 < ¢* < Gmax = (mp, — m;p,(,.))*. The numerical results
for the form factors are well approximated by a double-pole
parametrization

where o; is the experimental

F(0) q*
T l—as+bs? ST (21)
B

F(q*)
The parameters of the B, — J/y (1. ) form factors are listed
in Table 1. Their ¢> dependence in the full momentum
transfer range 0 < ¢* < g = (mp_ — My, ))* is shown
in Fig. 2.
Firstly, we focus on those form factors that are needed
to describe the B, — J/w(n,) transitions within the SM
(without any NP operators), namely, F., Ag+, and V. Itis

TABLEL Parameters of the dipole approximation in Eq. (21) for B, — J/y (1. form factors. Zero-recoil (or g2,,) values of the form

factors are also listed.

B, — Iy B. = .
Ay A, A_ v G Gt GT Gl F, F_ FS$ FT
F(0) 165 055 -087 078  —0.6l -0.21 056  —027 075 -040  0.69 093
a 1.19 1.68 1.85 1.82 1.84 2.16 1.86 1.91 1.31 125  0.68 1.30
b 0.17  0.70 0.91 0.86 0.91 133 093 .00 033 025 -0.12 031
F(gk) 234 089  -149 133 -1.03  -039 096  —047 .12 -059  0.86 1.40
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; ; ; ; ; ; 14F
1.0 '//A 1.3f
F
* 1.2} FT
0.5 1.1
1.0f
0.0 0.9F ]
. "
F_ 0.8 "/<
-05[, ‘ — 07t ‘ ‘ ‘ ‘ N
0 2 4 6 8 10 0 2 4 6 8 10
7% (GeV?) 7* (GeV?)
. " T T T 1.0 T
2.0f —AO//“‘/ ] GT
1.5¢ 4 9 0.5F
- ——
1.0F 1
0.5} Ay 0.0
0.0 Gy
—0.5F E -0.5¢ Gt ]
-1.0 '\A—; N
—1.5E . . , ) ] -1.0¢, , , , , q
0 2 4 6 8 10 0 2 4 6 8 10
q* (GeV?) ¢* (GeV?)

FIG. 2. Form factors of the transitions B. — 7.

worth noting that all these form factors have a pronounced
(¢*)~* contribution (the ratio b/a lies between 0.14 and
0.50) in comparison with the case B® — D), where all
form factors (except for A;) have a very small ratio
b/a ~0.05-0.08, and therefore show a monopolelike
behavior [46].

The B.— J/y(n.) form factors have been widely
calculated in the literature. For a better overview of
existed results we perform a comparison between various
approaches. For easy comparison, we relate all form factors
to the well-known Bauer-Stech-Wirbel form factors [57],
namely, ', for B, = ., and Ay, and V for B, — J/y.
Note that in Ref. [57] the notation F; was used instead

(upper panels) and B. — J/y (lower panels).

of F,. In Figs. 3 and 4 we compare our form factors
with those obtained in other approaches, namely, pertur-
bative QCD [25], QCD sum rules (QCDSR) [21], the
Ebert-Faustov-Galkin relativistic quark model [22], the
Hernandez-Nieves-Verde-Velasco (HNV) nonrelativistic
quark model [23], and the covariant light-front quark model
(CLFQM) [18]. It is interesting to note that our form factors
are very close to those computed in the CLFQM [18].
Using the heavy quark spin symmetry, the authors of
Ref. [19] have obtained several relations between the form
factors of the B. — J/w(n,) transitions. In particular, the
relation between the form factors F', and F_ can be used to
prove the linear behavior of the ratio Fy(q?)/F. (q*),

14+ g

| ——  ccQM /' 1
———  pQCD F, o

L , |

12 =====- QCDSR P4 i

LIf —— S

4 7 ]

———  pQCD Fo s

1O ====m=- QCDSR PP
. 7.

47 (GeV?)

FIG. 3.
Ref. [22] (EFG), Ref. [23] (HNV), and Ref. [18] (CLFQM).

q* (GeV?)

Comparison of our form factors (CCQM) for the B, — 7, transition with those from Ref. [25] (pQCD), Ref. [21] (QCDSR),
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q* (GeV?)

4% (GeV?)

7* (GeV?)

FIG. 4. Comparison of our form factors (CCQM) for the B, — J/y transition with those from Ref. [25] (pQCD), Ref. [21] (QCDSR),

Ref. [22] (EFG), Ref. [23] (HNV), and Ref. [18] (CLFQM).

2
q
Fo(q*) = Fo(q?) + - F_(¢), =1-aq’,

Pq F+(qz)
(22)

where the slope a only depends on the masses of the
involved quarks and hadrons. We find a = 0.020 GeV~2
from the numerical values in Ref. [19]. Similarly, we
obtain @ = 0.018 GeV~2 from results of Refs. [21,25], @ =
0.021 GeV~2 from Ref. [18]. However, Refs. [22] and [23]
yield much smaller values, which are a = 0.005 GeV~2
and a = 0.007 GeV~2, respectively. In our model, the ratio
Fy(q*)/F.(q*) exhibits an almost linear behavior in the
whole ¢ range as demonstrated in Fig. 5, from which we
obtain @ = 0.017 GeV~2. The value of the slope a plays an
important role in studying the shape of the form factors,
which can be determined more accurately by future lattice
calculations.

It is also worth mentioning the very recent lattice
results for the B. — J/y form factors provided by the
HPQCD Collaboration [30]. In this study, they found
A(0) = 0.49, A, (g2.) = 0.79, and V(0) = 0.77, which

are very close to our values A, (0) = 0.56, A, (¢2.x) = 0.79,
and V(0) = 0.78.

Almost all the recent studies on possible NP in the
decays B. — (J/w.n.)rv employ the form factors Fj .,
Ap12, and V calculated in pQCD approach [25]. The
remaining form factors corresponding to the NP operators
are obtained by using the quark-level equations of motion
(EOMs). In this paper we provide the full set of form

1.00

0.95

0.90

0.85
0o 2 4 6 8 10
7 (GeV?)
FIG. 5. Linear behavior of the ratio Fy(q?)/F.(q?).
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factors in the SM as well as in the presence of NP operators
without relying on the EOMs. However, this does not mean
that our form factors do not satisfy the EOMs. A brief
discussion of the EOMs in our model can be found in
Ref. [47]. Our form factors therefore can be used to
analyze NP effects in the decays B, — (J/w,n.)tv in a
self-consistent manner and independently from other

studies.

IV. EXPERIMENTAL CONSTRAINTS

Constraints on the Wilson coefficients appearing in the

effective Hamiltonian Eq. (2) are obtained by using experi-

mental data for the ratios of branching fractions Rp
0.407 £+ 0.046, Rp- =0.304 £0.015 [13], and R;,,
0.71 4+ 0.25 [3], as well as the requirement B(B, — 7v)

<

10% from the LEP1 data [41]. It should be mentioned that

:

. ﬁ
,"_ S ~ I ?\ RJ/
et 2 0 b=
i Rp 1l 1
Ry ! L
—Z’V —2H \_/,
; ; ; -3
-3 -2 -1 0 1 -3 -2 -1 0 1 2 3
RCSR ReSL

FIG. 6. Constraints on the Wilson coefficients S and §; from the measurements of R;,, Rp, and Rp- within 26, and from the
branching fraction B(B. — 7v) (dashed curve).

l L
‘\ Rp-
- =
1z 0
4 Riw %7
/ it
— 2 L
-3 -2 -1 0 1 -3 -3 -2 -1 0
ReV, ReT,
. 7 e o
S \ 1+ 1+
/ o i = / . < =
— % © % g0 —
‘\\ \\\\: y /s /’v = \\\ ) \\ =i =
\ (Y ,// 14 h \\‘ \/>
- /:'/,/ —1t -1t
“““““““ i -2t ] o
-3 -2 -1 0 1 -3 -2 -1 0 1 -3 -2 -1 0
ReV, ReVg ReT,

FIG.7. Constraints on the Wilson coefficients Vg, V;, and T, from the measurements of R;,,,, Rp, and R+ within lo (upper panels)
and 20 (lower panels), and from the branching fraction B(B,. — 7v) (dashed curve).
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within the SM our calculation yields Rp = 0.267,
Rp = 0.238, and RJ/W = 0.24. We take into account a
theoretical error of 10% for our ratios. Besides, we assume
the dominance of only one NP operator besides the SM
contribution, which means that only one NP Wilson
coefficient is considered at a time.

In Fig. 6 we show the constraints on the scalar Wilson
coefficients S; p within 2¢. It is seen that the recent
experimental value of R;,, does not give any additional
constraint on S; p to what have been obtained by using
Rpe. In particular, Sg is excluded within 2¢ using only
Rpw. However, in the case of S;, the constraint from
B(B. — 7v) plays the main role in ruling out S; . In general,
the branching of the tauonic B, decay imposes a severe
constraint on the scalar NP scenarios. Many models of NP
involving new particles, such as charged Higgses or
leptoquarks, also suffer from the same constraint, and
therefore need additional modifications to accommodate
the current experimental data (see e.g., Refs. [58-60]).

In the upper panels of Fig. 7 we present the constraints
on the vector V; p and tensor 7;, Wilson coefficients. There
is no available space for these coefficients within lo.
Moreover, they are excluded mainly due to the additional
constraint from R, rather than from B(B. — 7v). This
holds exactly in the case of 7 since the operator O, has
no effect on B(B, — tv). In the lower panels of Fig. 7 we
show the allowed regions for V; x and 7; within 2¢. In
each allowed region at 2¢ we find a best-fit value for each
NP coupling. The best-fit couplings read V; = —1.05 +
il.15, Vgx =0.04 +i0.60, T; =0.38 —i0.06, and are
marked with an asterisk.

V. THEORETICAL PREDICTIONS

In this section we use the 2¢ allowed regions for V; g
and T; obtained in the previous section to analyze their
effects on several physical observables. Firstly, in Fig. 8
we show the ¢> dependence of the ratios R, sy and R, in
different NP scenarios. It is obvious that all the NP
operators Oy,, Oy,, and Or, increase the ratios. How-
ever, it is interesting to note that O7, can change the shape
of Ry, (¢*) and may imply a peak in the distribution. This
unique behavior can help identify the tensor origin of NP
by studying the g distribution of the decay B, — J/ytv.

The average values of the ratios R;,, and R, over the
whole ¢? region are given in Table II. The row labeled by
SM contains our predictions within the SM using our form
factors. The predicted ranges for the ratios in the presence
of NP are given in correspondence with the 2¢ allowed
regions of the NP couplings shown in Fig. 7. Here, the most
visible effect comes from the operator Oy,, which can
increase the average ratio (R, ) by a factor of 2.

Next, we consider the polarization observables in these
decays. For this purpose we write the differential (¢, cos 0)
distribution as

dF(Bc_)J/l//(”c)fy)_G%|vcb|2|p2|q2 m; 2
2 3 2 == -W(0).
dg*dcos6 (27)°16m; q
(23)

where W (@) is the polar angular distribution, which is
described by a tilted parabola. For convenience we define a
normalized polar angular distribution W(6) as follows:

q* (GeV?) q* (GeV?)
0.8H ' 0.8} '
V T
R — Ryu(@®)
o6 T 0.61 B
0.4} e 0.4f St
,‘»’;’4"’ // ”l" S ~
5y ;. R4 N
0.2f 02t S -
/ /" /I /'
’/
e I (X L Lt
4 5 6 7 8 9 10 4 5 6 7 8 9 10 4 5 6 7 8 9 10
q* (GeV?) q* (GeV?) q* (GeV?)

FIG. 8. Differential ratios R, (¢?) (upper panels) and R, /,,,(qz) (lower panels). The thick black dashed lines are the SM prediction; the
gray bands include NP effects corresponding to the 20 allowed regions in Fig. 7; the red dot-dashed lines represent the best-fit values of

the NP couplings.
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TABLE II. The ¢ average of the ratios in the SM and in the
presence of NP.

(Ry,) (Ryy)

SM 0.26 0.24
Vi (0.28, 0.39) (0.26, 0.37)
Vi (0.28, 0.51) (0.26, 0.37)
T, (0.28, 0.38) (0.24, 0.36)
W(6) - W(0) a—+ bcos + ccos’d (24)

How 2(a+c¢/3)
The normalized angular decay distribution W(6) obviously
integrates to 1 after cos @ integration. The linear coefficient
b/2(a + ¢/3) can be projected out by defining a forward-
backward asymmetry given by

dl(F)—dU'(B)  [[y — [°]dcos@dl'/d cos 6
dU(F)+dU(B)  [[}+ [°]dcos@dl'/dcos

-AFB(qz) =

(25)

b
“ 2(a+c¢/3)
The quadratic coefficient c¢/2(a + ¢/3) is obtained by

taking the second derivative of W(6). We therefore define
a convexity parameter by writing

. W) o«
Crla’) = d(cos)> a+c/3

(26)

In the upper panels of Fig. 9 we present the ¢°
dependence of the forward-backward asymmetry Agp. In

the case of the B, — J/y transition, the operator Oy, tends
to decrease Ay and shift the zero-crossing point to greater
values than the SM one, while the tensor operator OTL can
enhance Ay at high ¢. In the case B, — 7, Oy, does not
affect App, while Or, tends to decrease Agp, especially at
high ¢°.

In the lower panels of Fig. 9 we show the convexity
parameter C%(g?). It is seen that the operator Oy, has a
very small effect on C%, and only in the case of B, — J /.
In contrast to this, Cf is extremely sensitive to the tensor
operator Or, . In particular, Or, can change C%(J/y) by a
factor of 4 at ¢* ~ 7.5 GeV?. Besides, Oy, enhances the
absolute value of C%(J/y), but reduces that of C%(7.).

Similar to what has been discussed in Refs. [61-63], one
can use the polarization of the 7 in the semileptonic decays
B. — J/w(n.)tv to probe for NP. The longitudinal (L),
transverse (7'), and normal (V) polarization components of
the 7 are defined as

dU(s})/dq* = dU(=s})/dq*

Pi(¢*) = ; , | =L,N,T,
O = o fag + ar - jag
(27)
where s/ are the polarization four-vectors of the 7 in the

W~ rest frame. One has

> E - - % -
S/Z = <|p7|9_r l—)>r>a S;lv = <0’ le 1—772)’
m; mg |p7:| ‘p’[xp2|

s’} = (0,

ﬁ‘rxﬁZ E) (28)
ﬁrxﬁ2| |I_57|

AFB (Bc —>T]L.TV)

~0.1 '

_03[

App(B.~IyTv)
- S -04f
3 4 5 6 7 8 9 10 11 4 5 6 7 8 9 10 4 5 6 7 8 9 10
7 (GeV?) 7 (GeV?) 7 (GeV?)
o OOM
-0.1 Cr(ne) -0.1
-0.2
~02 Cr/)
-03 :
~04 -0.3
-0.5 \\‘- f’,
A " " Pt 1Ll " " X " " " N " " " -04 " " " " " " "
3 4 5 6 7 8 9 10 11 4 5 6 7 8 9 10 4 5 6 7 8 9 10
¢* (GeV?) q* (GeV?) q* (GeV?)

FIG. 9. Forward-backward asymmetry A5 (g*) (upper panels) and convexity parameter C%(g?) (lower panels) for B, — n.7v and
B, — J/yrv. Notations are the same as in Fig. 8. In the case of B, — n.7v, Oy, does not affect these observables.
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1.0 1.0F

0.8 0.8,

02 Py(B:-1.Tv)

06 06k Pr(Bc—nctv)
0.4 0.4
0.2}< 0.2F
04
3 4 5 6 7 8 9 10 11 3 4 5 6 8 9 10 11 3 4 5 6 71 8 9 10 II
q* (GeV?) 4" (GeV?) q* (GeV?)
0.6f (] S — 06 (Ve
0.4f 04f Tl 04 3
0.2F Pr(B.~I/yty) 0.2 Pr(BooIjyry) N . 0.2 Pn(BoIytv)
0.0 0.0
-02 -02
-0.4 -0.4
-0.6 -0.6
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06 _--"""~~-'___; o osf ,

Pn(BoIyTv)

04 Rl 04
} Pr(Beol ey -~ )
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-0.6

q* (GeV?)

4% (GeV?)

4% (GeV?)

FIG. 10. Longitudinal (left), transverse (center), and normal (right) polarization of the 7 in the decays B. — n.tv and B, — J/wzv.
Notations are the same as in Fig. 8. In the case of B, — 5.7v, Oy, does not affect these observables.

Here, p, and p, are the three-momenta of the 7 and
the final meson (J/y or n,.), respectively, in the W~ rest
frame. A detailed analysis of the tau polarization with
the help of its subsequent decays can be found in
Refs. [63-65].

The ¢ dependence of the tau polarizations are presented
in Fig. 10. For easy comparison, the plots for each decay
are scaled identically. Several observations can be made
here. First, the operator Oy, affects only the tau transverse

polarization in B, — J/wzv. Second, in both decays, all
polarization components are very sensitive to the tensor
operator Oy, . In the presence of O, , the longitudinal and
transverse polarization of the tau in B. — J/wrv can
change their signs. And finally, the normal polarization,
which is equal to zero in the SM, can become quite large
when Oy, is present. The predictions for the mean
polarization observables are summarized in Table III with
the same notations as for Table II.

TABLE II.  ¢* averages of the forward-backward asymmetry, the convexity parameter, the polarization components, and the total
polarization.
B =1,
(Ars) (CE) (Pr) (Pr) (Py) (|13|)
SM -0.36 -0.43 0.36 0.83 0 0.92
T, (-0.45,-0.37) (-0.38,-0.19) (0.16, 0.32) (0.78, 0.82) (=0.17,0.17) (0.81, 0.90)
B.—~J/y
(Arg) (CE) (PL) (Pr) (Py) (|f’|)
SM 0.03 —-0.05 —-0.51 0.43 0 0.70
Ve (—=0.09,0.01) (—0.05,-0.04) -0.51 (0.30, 0.41) 0 (0.62, 0.69)
T, (—=0.10,0.01) (=0.31,-0.10) (—0.35,0.25) (—0.61,0.21) (=0.17,0.17) (0.23, 0.70)
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VI. SUMMARY AND CONCLUSIONS

In the wake of recent measurements of the B. weak
decays performed by the LHCb Collaboration, we have
studied possible NP effects in the semileptonic decays
B, — J/wrwwv and B, —n.v based on an effective
Hamiltonian consisting of vector, scalar, and tensor four-
fermion operators. The form factors parametrizing the
corresponding hadronic transitions B, — J/y and B, —
n. have been calculated in the framework of the CCQM
in the full kinematical region of momentum transfer. We
have also provided a detailed comparison of our form
factors with those of other authors and predicted the slope
for the ratio of form factors Fy(q?)/F. (q?).

Using the experimental data for the ratios R, and R;/,,
from the BABAR, Belle, and LHCb Collaborations, as well
as the LEP1 result for the branching B(B, — 7v), we have
obtained the constraints on the Wilson coefficients char-
acterizing the NP contributions. It has turned out that at the
level of 20, the scalar coefficients S; p are excluded, while
the vector (V g) and tensor (7';) ones are still available.
However, all coefficients are ruled out at 1. It is worth
mentioning that the constraints have been obtained under

the assumption of one-operator dominance, where the
interferences between different operators have been
omitted.

Finally, within the 2¢ allowed regions of the correspond-
ing Wilson coefficients, we have analyzed the effects of
the NP operators Oy, , Oy,, and O, on various physical
observables, namely, the ratios R, (¢*) and R, (¢%),
the forward-backward asymmetry Agz(g?), the convexity
parameter C%(g?), and the polarizations of the 7 in the final
state. Some of the effects may help distinguish between NP
operators. We have also provided predictions for the g?
average of the mentioned observables, which will be useful
for other theoretical studies and future experiments.
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