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We present a strong coupling constant extraction at next-to-leading order QCD accuracy using ATLAS
Z þ 2,3,4 jets data. This is the first extraction using processes with a dependency on high powers of the
coupling constant. We obtain values of the strong coupling constant at the Z mass compatible with the
world average and with uncertainties commensurate with other next-to-leading order extractions at hadron
colliders. Our most conservative result for the strong coupling constant is αSðMZÞ ¼ 0.1178þ0.0051

−0.0043 .
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I. INTRODUCTION

The strong coupling constantαS is a physical parameter of
QCD that cannot be predicted from first principles and has to
be obtained from an experimental measurement. Values of
αS have been previously obtained by comparing experi-
mental data from hadronic τ decays, deep inelastic scatter-
ing, heavy quarkonia decays, or measurements from eþe−
and hadron colliders against theoretical predictions from
perturbative or latticeQCD (for a review, seeRef. [1]). These
different extractions have different levels of sensitivity
depending on the order at which the αS expansion of the
observable starts. This order is α0S for extractions based on
the R ratio. Three-jet rates and event shapes at eþe− use
observables of which the expansion starts at order α1S. At
hadron colliders, the ratio of three jet production to two jet
production [2] and the transfer energy-energy correlation [3]
starts at order α1S, and the inclusive jet cross section [4] starts
at order α2S. The five-jet production rates at LEP [5], the
heavy quarkonia hadronic decay width [6], and the three-jet
inclusive observables [7] are the observables with the
highest sensitivity used so far; their expansion starts at
order α3S. Typically, the increased sensitivity comes at a cost,

as observableswith a lower sensitivity toαS can bemeasured
more precisely than those with a higher dependency. In this
work, we present an extraction of αS using Z þ 2, 3, 4 jets
differential cross section measurements from the ATLAS
Collaboration [8] at a center-of-mass energy of 7TeV,
comparing them to next-to-leading order (NLO) predictions
fromBLACKHAT+SHERPA [9] which start at orders α2S, α

3
S, and

α4S respectively. The increased sensitivity of the higher-
multiplicity observables partly compensates the larger
experimental and theoretical uncertainties in such a way
that the three different multiplicities yield comparable
degrees of precision for the αS extraction. We combine
the three multiplicities to obtain a final value for αSðMZÞ.

II. EXTRACTION PROCEDURE

To obtain our αS value, we compare theoretical predic-
tions obtained from the BLACKHAT+SHERPACollaboration [9]
with ATLAS data. We minimize the χ2 function

χ2ðαSðMZÞÞ ¼ ðytðαsðMZÞÞ − ydÞTC−1ðytðαsðMZÞÞ − ydÞ;
ð1Þ

where yt are the predictions from theory and yd are the
experimental values. The covariance matrix C is given by

C ¼ Cexp þ Cpdf þ Ctheory; ð2Þ
where Cexp is the experimental error covariance matrix,
described in Sec. II D and Cpdf and Ctheory are the parton
distribution function (PDF) and theory statistical uncertainty
covariance matrices, which we describe in detail in Sec. II A.
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Our best fit value α0 for αSðMZÞ is the value that minimizes
χ2, and the 1 − σ interval is given by the values α� of
αSðMZÞ corresponding to χ2ðα�Þ ¼ χ2ðα0Þ þ 1.
In addition to the sources of uncertainty listed above,

we also consider theoretical uncertainties due to the
factorization and renormalization scale variation and the
nonperturbative corrections. These uncertainties affect
the fit through a rescaling of the theoretical prediction
and corresponding covariance matrix Ctheory. They are
described in more details in Secs. II B and II C.
To obtain the values ytðαSðMZÞ, we need to perform a

consistent calculation of the theoretical prediction using the
same value of αSðMZÞ in the hardmatrix elements as the one
used to fit the PDFs. This is possible since many PDF fitting
groups provide dedicated fits performed with a range of
value of αSðMZÞ. This gives us a discrete set of values for
χ2ðαSÞ, and in order to obtain the precise values of the
minimumand 1 − σ interval, we fit a cubic polynomial to the
discrete points and use this fit to determine the minimum χ2

and the 1 − σ interval. In this work,we consider the PDF sets
CT10nlo [10], CT14nlo [11], MSTW [12], MMHT [13,14],
NNPDF2.3 [15], and NNPDF3.0 [16]. In the ABM [17] PDF
set, the correlation between the value of αSðMZÞ and the
parameters of the PDFs is stronger than in the other PDF set.
As a consequence, the χ2 dependence on αSðMZÞ is much
weaker and does not allow for its determination in our fit.

A. Theoretical prediction

For the theoretical prediction, we used the results of
Ref. [9]. In order to perform the extraction procedure and
assess uncertainties, we need to reevaluate the same NLO
calculation many times with small modifications. We need
to evaluate the prediction for a) different values of the
renormalization and factorization scales, b) different PDF
sets, c) each replica or error set within each PDF set, and d)
each value of αSðMZÞ provided by the PDF set. This type of
repetitive calculation with only minor modifications in the
PDF and scale setting was one of the motivations behind the
development of the N-TUPLES format for NLO calculations
[18]. The other motivation was to allow for the flexibility of
defining new observables after the calculation was per-
formed. In our case, we do not require this flexibility, given
that we have settled on the histograms we want use, so we
can optimize the amount of recalculation needed by using
FASTNLO [19] tables.We used the public N-TUPLES provided
by the BLACKHAT+SHERPA Collaboration for Zþ jets [9] to
create FASTNLOgrids allowing the fast reevaluation of a fixed
set of histograms for a different PDF set and different values
of the factorization and renormalization scales.
Due to the finite amount of statistics available in the

N-TUPLES, the theoretical predictions have a statistical
error. The corresponding covariance matrix can be com-
puted in parallel to the generation of the FASTNLO grids. It
includes the correlation between the transverse momentum
and rapidity distributions for the same multiplicity. There is

in general a relatively large anticorrelation between neigh-
boring bins due to phase-space points where the real matrix
elements and the corresponding subtraction term
fall in separate bins. The correlation between other bins
is moderate. Since the FASTNLO library does not report
statistical integration errors, an alternative method has to be
devised to obtain the statistical covariance matrix while
avoiding the need to run a full N-TUPLES analysis for each
scale and PDF combination. Our strategy is to calculate the
statistical covariance matrix for one reference PDF for each
scale combination and then rescale the covariance matrix
entries for the other members of the set by the ratio of the
bin value for the actual αSðMZÞ and the reference value:

CijðαSðMZÞÞ ≃ Cref
ij

hiðαSðMZÞÞ
hiðαrefS Þ

hjðαSðMZÞÞ
hjðαrefS Þ : ð3Þ

This approach assumes that the relative correlation between
bins is similar between predictions for different values of
αSðMZÞ. We found this assumption to be true at the level of
a few percent for the central choice of scale and assumed it
to be valid to the same level of accuracy for the other scale
choices. Since the statistical uncertainty of the theoretical
prediction is not the dominant term in χ2, this approxima-
tion is well justified.
The PDF uncertainty is obtained from the PDF error sets

using the LHAPDF library [20]. We evaluated the NLO
prediction for each member of the error set and evaluated
the covariance matrices according to the prescriptions of
Ref. [21] to obtain symmetric errors for the MSTW [12],
MMHT [13,14], CT10nlo [10], and CT14nlo [11] PDFs. The
covariance matrices of all PDF fits have been rescaled to
correspond to a 68% confidence level if necessary. The
covariance matrix for NNPDF2.3 [15] and NNPDF3.0 [16] are
obtained statistically from the set of 100 replica.

B. Scale uncertainty

The NLO predictions have been carried out using a
factorization and renormalization scale μ0 defined in terms
of the jet transverse momenta pi

T and the massMZ of the Z
boson

μ0 ¼ Ĥ0
T /2; Ĥ0

T ¼
X

i

pi
T þ EZ

T;

EZ
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Z þ ðpZ
TÞ2

q
; ð4Þ

where the sum runs over all partons in the final state. To
account for the scale uncertainty, we employ two different
methods; in both cases, the scale dependence modifies the
fit by changing the value of the theoretical prediction in
Eq. (1) and the covariance matrix rescaling in Eq. (3).
The first method is to repeat the extraction using predic-
tions obtained with factorization and renormalization scales
modified from the central scale from Eq. (4) μF;R ¼
fF;Rμ μ0 ¼ fF;Rμ Ĥ0

T /2 where the factors fFμ , fRμ can be 1/2,
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1, 2. The scale uncertainty is taken to be the envelope of the
result obtained from all pairs where the factors fFμ and fRμ
differ by at most a factor of 2.
In the second method, we vary the factorization and

renormalization scales by a common factor fμ ¼ fFμ ¼ fRμ
and treat the value of this factor as a nuisance parameter for
the fit. To do so, we calculate the value of χ2 for many
different values of fμ and define the profile χ2,

χ̂2ðαSðMZÞÞ ¼ min
fμ

χ2ðαSðMZÞ; fμÞ; ð5Þ

and then minimize this function χ̂2ðαSðMZÞÞ as a
function of αSðMZÞ to obtain the best fit αSðMZÞ
and 1 − σ uncertainty interval. Figure 1 shows the χ2

distributions as a function of fμ and αSðMZÞ for each
PDF set.

FIG. 1. χ2 in the αSðMZÞ − fμ two-dimensional plane for all the PDF sets considered.
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Uncertainty intervals obtained in this way account for
both experimental, PDF, and theoretical error sources and
also for our choice of fμ. The main advantage of this method
is that it does not rely on the somewhat arbitrary values
fμ ¼ 1/2 and fμ ¼ 2 used in the traditional approach. As
can be seen from Fig. 1, the fit seems to favor slightly
smaller scales than the one used for the central scale.

C. Nonperturbative corrections

Predictions provided by the BLACKHAT+SHERPA

N-TUPLES are at parton level. In order to correct for
hadronization and underlying event effects, we corrected
the partonic cross section using the same corrections as
used in the experimental comparison to the NLO prediction
[8]. These nonperturbative corrections are estimated by
comparing simulated samples generated using ALPGEN [22]
with and without a fragmentation and underlying event
model. The correction factors are applied to the theoretical
data in Eq. (1) and affect the theoretical covariance matrix
through Eq. (3).
In order to assess the uncertainty on these corrections,

two independent models are used for the nonperturbative
modeling: the first set of corrections uses Herwig+JIMMY

[23,24] using the AUET2-CTEQ61L tune [25], and the second
uses PYTHIA [26] with the PERUGIA2011C tune [27]. In both
cases, the correction factors have statistical uncertainty due
to the size of the simulated samples used to derive them.
This uncertainty is added to the theoretical covariance
matrix. As for the scale uncertainty, we use two different
methods to estimate the impact of the nonperturbative
corrections on our extraction. In the standard method, we
use the average of the correction factors for each bin to
obtain the central prediction and use the individual cor-
rection factors to estimate the uncertainty band. In a more
flexible method, we combine the two correction factors
according to

δNP ¼ λδHerwigNP þ ð1 − λÞδPythiaNP : ð6Þ

The central value of the standard method described above
corresponds to λ ¼ 1/2, and the band is given by the values
λ ¼ 0, 1. In the second method, we treat λ as a nuisance
parameter. In the tail of the rapidity distributions, the NLO
description is not expected to be very accurate, which can
be seen in an increase of the corrections described above
from a few percent to over 10%. To limit the impact of this
corner of phase space to our extraction, we combined the
last bins of the rapidity distributions into one bin for each
multiplicity in such a way that the correction factor for the
resulting bin does not exceed 10%.

D. Experimental data

The experimental values we used in this extraction
were obtained from measurements of jets produced in
association with a Z boson in proton-proton collisions at a
center-of-mass energy

ffiffiffi
s

p ¼ 7 TeV. The data correspond to
an integrated luminosity of 4.6 fb−1 collected by the ATLAS
detector. TheZ bosonswere selected in the electron andmuon
pair decay channels with an invariant mass window for the
lepton pair 66 GeV ≤ mlþl− ≤ 116 GeV. The jets were
selected with a transverse momentum cut of pT > 30 GeV
and a rapidity cut jyj < 4.4. For our fits, we used the
combination of the electron and muon channels where the
leptons are selected with pT > 20 GeV and jηj < 2.5.
For our αS extraction, we use the results presented in

Ref. [28] and available from HEPDATA [29,30] for the
rapidity and transverse momentum distribution of the nth
jet in inclusive Z þ n jets event samples. We corrected the
results for the updated total luminosity reported in
Ref. [31]. The experimental uncertainties can be separated
into three categories: the statistical error, the systematic
uncertainty, and the luminosity uncertainty. The authors
used the procedure described in Refs. [32,33] to separate

FIG. 2. Left panel: Measurement of the strong coupling constant as a function of Q2. The error bars represent the experimental and
PDF uncertainties and the statistical error of the theory prediction but do not include the scale and nonperturbative uncertainties. Right
panel: Expectation value of Q2 as a function of the minimum jet transverse momentum considered for the fit. The PDF set MSTW2008
[35] was used for these two figures.
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the correlated uncertainties into a set of independent fully
correlated uncertainties which we used to calculate the full
experimental covariance matrix. The resulting covariance
matrix shows a large correlation between all rapidity bins,
both within the same distribution and between bins in
distributions for different jet multiplicity samples. Low
transverse momentum bins are strongly correlated both
with themselves and with the rapidity bins. Higher trans-
verse momentum bins show a lower correlation both to low
transverse momentum bins and to rapidity bins.

III. RESULTS

The left panel of Fig. 2 shows the scale dependence
of αSðQÞ. The different points on the graph represent the

FIG. 3. Strong coupling values for different PDF sets for each considered histogram and combinations listed in Table I. The green
bands on the left-hand plots are the result from Ref. [4], and the green bands on the right-hand side show the results from Ref. [3]. (The
NNPDF results from Ref. [4] used version 2.1, while we used version 2.3 in this work.) The darker regions represent the uncertainties
without the scale variation, and the lighter regions show the total uncertainties including the scale variation. The red band is the world
average [1]. The boundaries of the thick part of the error bars represent the values of αsðMZÞ for which the χ2 − χ2min ¼ 1. These error
estimates do not include scale variation. The thin error bars show the uncertainty including the scale uncertainties.

TABLE I. Observables and labels for the fits.

Label Observable(s)

all Combination of all histograms
2j, incl Combination of the transverse momentum and rapidity

of the second jet for the two-jet inclusive sample
3j, incl Combination of the transverse momentum and rapidity

of the third jet for the three-jet inclusive sample
4j, incl Combination of the transverse momentum and rapidity

of the fourth jet for the four-jet inclusive sample
all y Combination of all the rapidity distributions
all p⊥ Combination of all three transverse momentum

distributions
yi Rapidity for the i-jet inclusive sample
p⊥
i Transverse momentum for the i-jet inclusive sample
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value of αS obtained by performing a dedicated fit to the
transverse momentum distribution of the ith jet but restrict-
ing the fit to a subset of bins above a given threshold. Since
the jet transverse momentum is correlated with the scale μ0,
raising the minimum transverse momentum considered in
the fit effectively probes the strong coupling constant at
higher scales. The value of the scale Q assigned to the fit
value is the expectation value of the scale used for the NLO
calculation (μ0 ¼ Ĥ0

T /2 as defined in Ref. [34]) for the
subset of bins satisfying the minimum jet transverse
momentum requirement. These scales are shown in the
right panel of Fig. 2 for each multiplicity as a function of
the minimum transverse momentum in the bin subset. The
error bars represent the variance of scale when restricted to
the bins above the minimum transverse momentum. The
values shown in Fig. 2 are obtained using the CT10nlo PDF
set, and the values obtained with other PDF sets are very
similar. The values that fall somewhat above the theoretical
curve correspond to the highest values of the second jet pt
pT
2;min. In this very restricted phase space, the three- and

four-jets contributions are significant so that the NLO
two-jet calculation underestimates the cross section, result-
ing in a higher αSðMZÞ value.
The left-hand column of plots in Fig. 3 shows the

best fit results for the PDF sets MSTW2008 [35], CT10

[36] and NNPDF2.3 [15]. These sets were chosen to facilitate
the comparison with the results obtained in Ref. [4]. The

right-hand column of plots in Fig. 3 shows the best fit
results for the PDF sets MMHT [13], CT14 [11] and NNPDF3.0

[16]. The results for this set of PDFs are compared with the
results published in Ref. [3]. The results are given for fits to
the combinations of observables listed in Table I. A few
patterns emerge from Fig. 3:
(a) The fit to the rapidity histograms favors smaller values

of αSðMZÞ, while fits to the rapidity distributions
prefer larger values of αSðMZÞ.

(b) Fits for the lower multiplicities tend to yield only
moderately more accurate results than higher-
multiplicity ones.

(c) The covariance matrix for the rapidity distributions
displays a large correlation, causing their combination
to yield a value more extreme than any individual
result.

To estimate the share of the uncertainties due to each
error source, we use the quantities

χ2s ¼ðytðαsðMZÞÞ−ydÞTC−1
totCsC−1

tot ðytðαsðMZÞÞ−ydÞ ð7Þ

defined for each error source covariance matrix Cs. The χ2s
sum up to the total χ2. We assign each error source a
fraction χ2s /χ2 of the total uncertainty. In the limit where all
errors are fully uncorrelated, this procedure is equivalent to
summing the errors in quadrature. Figure 4 shows an
example of how the uncertainty is shared between the
error sources for CT14. The figure shows the share for each
individual distribution, for the combination of all transverse
momentum distributions and rapidities, for the multiplicity
combination, and for the full combination. We can see that
the dominant share of the uncertainty comes from the
experimental uncertainties. In principle, the uncertainty
could be reduced by increasing the statistical accuracy of
the theory prediction and the understanding of the non-
perturbative corrections.
Table II shows the result for the best fit αSðMZÞ for a list

of PDF sets. The uncertainties in this table do not include
scale variation and nonperturbative correction uncertain-
ties. The theory and experimental uncertainties are approx-
imately the same size, while the PDF uncertainty is almost
one order of magnitude smaller. The χ2 per degree of
freedom in slightly below 1 and is very similar across
PDF sets.

FIG. 4. Share of the uncertainty by error source according to
Eq. (7) for each combination listed in Table I. The results are for
the PDF set CT14.

TABLE II. Results for the coupling constant extraction with uncertainties.

PDF set αsðMZÞ Uncertainties detail χ2/ndof

CT10nlo 0.1186þ0.0029
−0.0029

þ0.0018
−0.0018 ðtheoryÞ þ0.0022

−0.0023 ðexpÞ þ0.00035
−0.00036 ðpdfÞ 45.4/60

MSTW2008nlo68cl 0.1177þ0.0028
−0.0028

þ0.0017
−0.0017 ðtheoryÞ þ0.0022

−0.0022 ðexpÞ þ0.00034
−0.00034 ðpdfÞ 48.5/60

NNPDF2.3_nlo_as_0118 0.1180þ0.0025
−0.0025

þ0.0016
−0.0016 ðtheoryÞ þ0.0019

−0.0020 ðexpÞ þ0.00022
−0.00022 ðpdfÞ 46.5/60

CT14nlo 0.1178þ0.0030
−0.0029

þ0.0019
−0.0018 ðtheoryÞ þ0.0023

−0.0022 ðexpÞ þ0.00042
−0.00041 ðpdfÞ 46.7/60

MMHT2014nlo 0.1169þ0.0026
−0.0024

þ0.0016
−0.0015 ðtheoryÞ þ0.0020

−0.0019 ðexpÞ þ0.00032
−0.00029 ðpdfÞ 47.8/60

NNPDF3.0_nlo_as_0118 0.1181þ0.0025
−0.0026

þ0.0016
−0.0016 ðtheoryÞ þ0.0019

−0.0020 ðexpÞ þ0.00025
−0.00025 ðpdfÞ 46.3/60
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Table III shows scale variation uncertainty estimates
using the two methods outlined in Sec. II B. The second
and third columns vary the factorization and renormaliza-
tion scales by factors of 1/2, 1, or 2. The second column
shows the resulting uncertainty if the same factor is chosen
for both scales, and the third column shows the uncertainty
resulting from choosing any two factors differing by at

most a factor of 2. Comparing these two columns, we can
see that the correlated variation covers most of the range of
the uncorrelated variation.
While the 1 − σ intervals from the χ2 fit are essentially

symmetric, the uncertainties due to the first scale variation
method are asymmetric, with the upward fluctuation
generally much larger than the downward one. Using the
nuisance parameter approach to scale variation, we get
roughly symmetric uncertainty estimates and lower best fit
values. The uncertainty interval is marginally smaller for
MMHT2014 but larger for all other PDF sets. This approach
gives more symmetric error intervals than the standard
variation, as in the case of NNPDF2.3 in which the standard
variation gave a very small lower variation in the standard
approach. The last column of Table III shows
the value of fμ corresponding to the lowest χ2. It is lower
than 1 for all PDF sets but larger than 1/2, so these values of
fμ are within the range of values considered in the tradi-
tional scale variation approach.
Table IV collects the results for the assessment of the

nonperturbative corrections. Using the correction factors
calculated using ALPGEN+Herwig leads to higher values
of αSðMZÞ than when using ALPGEN+Pythia. The difference
between the results obtained with the two sets of programs
is quite large and is commensurate with the other

TABLE III. Scale uncertainties for the αSðMZÞ extraction. The first column repeats the result of Table II for the theoretical,
experimental, and PDF uncertainties from the fit. The second and third columns show the uncertainties resulting from varying the scale
by either correlated or uncorrelated factors. The fourth column shows the result of the fit in which the scale factor is treated as a nuisance
parameter. The last column shows the value of fμ corresponding to the best fit.

PDF set αsðMZÞ Scale correlated Scale uncorrelated fμ as nuisance parameter Preferred fμ

CT10nlo 0.1186þ0.0029
−0.0029

þ0.0039
−0.0018

þ0.0039
−0.0018 0.1180þ0.0030

−0.0031 0.63

MSTW2008nlo68cl 0.1177þ0.0028
−0.0028

þ0.0023
−0.0021

þ0.0027
−0.0021 0.1170þ0.0029

−0.0028 0.67

NNPDF2.3_nlo_as_0118 0.1180þ0.0025
−0.0025

þ0.0017
−0.0006

þ0.0017
−0.0006 0.1179þ0.0025

−0.0026 0.73

CT14nlo 0.1178þ0.0030
−0.0029

þ0.0031
−0.0025

þ0.0034
−0.0025 0.1170þ0.0031

−0.0030 0.64

MMHT2014nlo 0.1169þ0.0026
−0.0024

þ0.0027
−0.0019

þ0.0030
−0.0019 0.1163þ0.0025

−0.0023 0.67

NNPDF3.0_nlo_as_0118 0.1181þ0.0025
−0.0026

þ0.0017
−0.0003

þ0.0017
−0.0003 0.1180þ0.0025

−0.0026 0.72

TABLE IV. Nonperturbative uncertainty for the αSðMZÞ extrac-
tion. The results in first column are obtained by correcting each bin
with the average of the correction factors obtained with ALPGEN

+Herwig and ALPGEN+Pythia. The second and third columns are
the results obtained using only the individual programs. The last
column is the uncertainty, taken as the difference between the
central values and the second and third columns.

PDF set
Central
value

ALPGEN

+Herwig
ALPGEN

+Pythia Uncertainty

CT10nlo 0.1186 0.1205 0.1168 þ0.0018
−0.0018

MSTW2008nlo68cl 0.1177 0.1199 0.1158 þ0.0022
−0.0019

NNPDF2.3_nlo_as_0118 0.1180 0.1198 0.1164 þ0.0017
−0.0017

CT14nlo 0.1178 0.1202 0.1159 þ0.0023
−0.0019

MMHT2014nlo 0.1169 0.1192 0.1154 þ0.0023
−0.0016

NNPDF3.0_nlo_as_0118 0.1181 0.1197 0.1164 þ0.0017
−0.0017

TABLE V. Summary of the extraction uncertainty. The second column lists the best fit value of the fit with the associated uncertainties.
The third and fourth columns show the estimates of the nonperturbative and scale uncertainties using the standard method. The last
column shows the result of a fit in which both the scale factor and the relative weight of the correction factors are treated as nuisance
parameters.

PDF set Total (standard) Total (nuisance)

CT10nlo 0.1186þ0.0029
−0.0029 ðfitÞ þ0.0018

−0.0018 ðNPÞ þ0.0039
−0.0018 ðscaleÞ ¼ 0.1186þ0.0052

−0.0039 0.1177þ0.0037
−0.0041

MSTW2008nlo68cl 0.1177þ0.0028
−0.0028 ðfitÞ þ0.0022

−0.0019 ðNPÞ þ0.0027
−0.0021 ðscaleÞ ¼ 0.1177þ0.0045

−0.0040 0.1177þ0.0036
−0.0038

NNPDF2.3_nlo_as_0118 0.1180þ0.0025
−0.0025 ðfitÞ þ0.0017

−0.0017 ðNPÞ þ0.0017
−0.0006 ðscaleÞ ¼ 0.1180þ0.0035

−0.0031 0.1197þ0.0025
−0.0031

CT14nlo 0.1178þ0.0030
−0.0029 ðfitÞ þ0.0023

−0.0019 ðNPÞ þ0.0034
−0.0025 ðscaleÞ ¼ 0.1178þ0.0051

−0.0043 0.1160þ0.0044
−0.0037

MMHT2014nlo 0.1169þ0.0026
−0.0024 ðfitÞ þ0.0023

−0.0016 ðNPÞ þ0.0030
−0.0019 ðscaleÞ ¼ 0.1169þ0.0046

−0.0034 0.1166þ0.0030
−0.0028

NNPDF3.0_nlo_as_0118 0.1181þ0.0025
−0.0026 ðfitÞ þ0.0017

−0.0017 ðNPÞ þ0.0017
−0.0003 ðscaleÞ ¼ 0.1181þ0.0034

−0.0031 0.1197þ0.0026
−0.0031
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uncertainties affecting the fit. Such a large disagreement in
the values of nonperturbative corrections is not uncommon;
see, for example, Refs. [3,37].
The results of our extraction are summarized in

Table V. The first columns show the results using the
standard approach to estimating the scale and nonper-
turbative uncertainties, while the last column shows the
result of the approach in which both the scale factor and

the mixing parameter λ in Eq. (6) are treated as nuisance
parameters in the fit. Treating the scale factor and the
nonperturbative mixing parameter λ as nuisance param-
eters leads to a smaller value of αSðMZÞ for all PDF sets
except for the NNPDF sets in which the best fit value
increases. The uncertainty intervals are smaller for
NNPDF2.3, NNPDF3, CT14, and CT10 but larger for MSTW

and MMHT.
Figure 5 shows our results alongside other extractions of

αSðMZÞ [2–4,7,38,39] using LHC data. In general, our
results have comparable experimental uncertainties. With
the exception of the CMS extraction from tt̄ production, the
result we obtained displays a smaller scale uncertainty than
the other extractions using LHC data. This observation can
be explained by the fact that at NLO the scale uncertainty
does not increase with a constant multiplicative factor with
each additional power of the coupling constant. This is an
important advantage of using high-multiplicity processes
to extract a measurement of αSðMZÞ since adding more
experimental data and improving the experimental uncer-
tainties will improve the accuracy of the extraction sig-
nificantly, while the accuracy of other methods is already
limited by the scale contribution to the overall uncertainty.
For our final result, we choose the value obtained using
CT14, using the conventional scale and nonperturbative
uncertainty estimation method as they result in the most
conservative result:

αSðMZÞ ¼ 0.1178þ0.0019
−0.0018ðtheoryÞ þ0.0023

−0.0022 ðexpÞ þ0.00042
−0.00041 ðpdfÞþ0.0034

−0.0025ðscaleÞ
¼ 0.1178þ0.0030

−0.0029ðall but scaleÞ þ0.0034
−0.0025 ðscaleÞ

¼ 0.1178þ0.0051
−0.0043 :

IV. CONCLUSION

We presented an extraction of the strong coupling
constant from high-multiplicity Z þ jets processes. Our most
conservative result is αSðMZÞ ¼ 0.1178þ0.0051

−0.0043 , obtained
with the CT14 PDF set. Table V and Fig. 5 summarize the
best fit values and uncertainty estimates for other PDF sets.
We used two different methods to assert the uncertainties
from the scale variation and the nonperturbative corrections.
Both methods yield comparable results. The best fit value for
αSðMZÞ is in good agreement with the current world average
value, and its uncertainty is comparable to other NLO
determinations at the LHC but have a smaller scale uncer-
tainty and a larger experimental uncertainty.
The results we obtained show the potential of high-

multiplicity processes for the extraction of the strong
coupling constant: the larger experimental uncertainties
are mostly compensated by the steeper dependence on
αSðMZÞ. The lower multiplicities have slightly smaller

uncertainties, but the higher-multiplicity processes still
contribute to the reduction of the final uncertainty. Our
results highlight another advantage of higher-multiplicity
processes: as they have a relatively smaller scale uncer-
tainty, they provide complementary information to other
measurements at the LHC for which the scale variation is
the major source of uncertainty.
The lowest hanging fruit to improve on the uncertainty of

the results is to improve the statistical precision of the
theoretical prediction. The extraction can be improved with
the larger statistics of more recent runs at the LHC and a
reduction in the systematic errors of the measurement.
A better understanding of nonperturbative effects will also
improve the accuracy of the extraction significantly. It is
reasonable to expect improvements on all these fronts in the
future so we can expect large-multiplicity processes to
provide improved constraints on the value of the strong
coupling constant.

FIG. 5. Comparison of the results presented in this work and
other strong coupling extractions using LHC data. The thick part
of the error bar includes all errors but the scale uncertainty. The
narrow part of the error bar takes that uncertainty into account.
TEEC stands for transverse energy-energy correlation, and
ATEEC stands for its asymmetry.
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