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Baryon chiral perturbation theory combined with the 1=Nc expansion is implemented for three flavors.
Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according
to the ξ-expansion, in which the 1=Nc and the low-energy power countings are linked according to
1=Nc ¼ OðξÞ ¼ OðpÞ. The renormalization toOðξ3Þ necessary for the mentioned observables is provided,
along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.
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I. INTRODUCTION

The low-energy effective theory for baryons is a recur-
rent topic in low-energy QCD, which has evolved through
different approaches and improvements. The original
version of baryon chiral perturbation theory (ChPT) [1]
gave rise to different versions of baryon effective field
theories based on effective chiral Lagrangians [2–4],
starting with the relativistic version [5,6] or baryon
ChPT (BChPT), followed by the nonrelativistic version
based in an expansion in the inverse baryon mass [7–10] or
heavy baryon ChPT (HBChPT), and by manifestly Lorentz
covariant versions based on the IR regularization scheme
[11–13], which allow for an explicit implementation of the
low-energy power counting. In all those versions of the
baryon effective theory a consistent low-energy expansion
can be implemented. A key issue, which became apparent
quite early, was the convergence of the low-energy expan-
sion. Being an expansion that progresses in steps of OðpÞ,
in contrast to the expansion in the pure Goldstone boson
sector where the steps are Oðp2Þ, it is natural to expect a
slower rate of convergence. However, a key factor affecting
the convergence has to do with the relatively small mass
gap between the spin 1=2 and 3=2 baryons. In the context
of BChPT, it was realized in [14] that the inclusion of the
spin 3=2 degrees of freedom improves the convergence of
the one-loop contributions to certain observables such as
the π-N scattering amplitude and the axial currents and
magnetic moments. There have been since then numerous
works including spin 3=2 baryons [15–24]. The explan-
ation of those improvements was obtained through the
study of baryons in the large Nc limit of QCD [25], where
in that limit a dynamical spin-flavor symmetry emerges

[26–29], which requires the inclusion of the higher spin
baryons in the effective theory and leads to a better behaved
low-energy expansion. In the large Nc limit, baryons
behave very differently than mesons [30], in particular
because their masses scale like OðNcÞ (they are the heavy
sector of QCD) and the π-baryon couplings are Oð ffiffiffiffiffiffi

Nc
p Þ.

Those properties were shown to demand, for consistency
with π-baryon scattering at large Nc, that at large Nc
baryons must respect the mentioned dynamical contracted
spin-flavor symmetry SUð2NfÞ, Nf being the number of
light flavors [26–29], which is broken by effects ordered in
powers of 1=Nc and in powers of the quark mass
differences. The inclusion of the consistency requirements
of the largeNc limit into the effective theory came naturally
through a combination of the 1=Nc expansion and
HBChPT [31], which is the framework followed in the
present work. The study of one-loop corrections in that
framework was first carried out in Refs. [31–33] and more
recently in [34,35]. In the combined theory, the 1=Nc and
chiral expansions do not commute [36]: the reason is the
baryon mass splitting scale of Oð1=NcÞ (Δ − N mass
difference), for which it becomes necessary to specify its
order in terms of the low-energy expansion. Thus the 1=Nc
and chiral expansions must be linked. Particular emphasis
will be given to the specific linking in which the baryon
mass splitting is taken to be OðpÞ in the chiral expansion,
and which will be called the ξ-expansion. Following
Refs. [31–34], in the present work the framework for
HBChPT × 1=Nc is extended to three flavors. The renorm-
alization necessary for the baryon masses, and the vector
charges and axial-vector currents is implemented to one-
loop, i.e., Oðξ3Þ. As it had been done in the case of two
flavors [34], the present work gives all results at generic
values of Nc, i.e., all formulas presented have been derived
for general Nc, and therefore detailed analyses of Nc
dependencies can be carried out.
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The significant progress in lattice QCD (LQCD) calcu-
lations of baryon observables [37–39] provides opportu-
nities for further testing and understanding low-energy
effective theories of baryons, which in turn can serve to
understand the LQCD results themselves. The determina-
tion of the quark mass dependence of the various low-
energy observables, such as masses, axial couplings,
magnetic moments, electromagnetic polarizabilities, etc.,
are of key importance for testing the effective theory, in
particular its range of validity in quark masses, as well as
for the determination of its low-energy constants (LECs).
Lattice results for N and Δ as well as hyperon masses
[40–48] (results of the last reference are used in the present
work), the axial coupling gA of the nucleon [49–54] and a
subset of the axial couplings of the octet and decuplet
baryons [55] at varying quark masses can be analyzed with
the effective theory, as presented in this work.
This work is organized as follows. In Sec. II, the

framework for the combined 1=Nc and HBChPT expan-
sions is described. Section III presents the evaluation of the
baryon masses toOðξ3Þ, Sec. IV presents the corrections to
the vector charges, and Sec. V the corrections to the axial
couplings. In both Secs. III and V, applications to LQCD
results are presented. Finally, a summary is given in
Sec. VI. Several appendixes present useful material needed
in the calculations, namely, Appendix A on spin-flavor
algebra, Appendix B on tools to build the chiral
Lagrangians, Appendix C on the one-loop integrals, and
Appendix D on reduction formulas of composite operators.

II. COMBINED BARYON CHIRAL
PERTURBATION THEORY AND 1=Nc EXPANSION

FOR THREE FLAVORS

In this section, the framework for the combined 1=Nc
and chiral expansions in baryons is presented in some detail
along similar lines as in the original works [31–33] and the
more recent work [34,35]. The symmetries that constrain
the effective Lagrangian in the chiral and largeNc limits are
chiral SULðNfÞ × SURðNfÞ, which is a Noether symmetry,
and contracted dynamical spin-flavor symmetry SUð2NfÞ
[26–29].1 Nf is the number of light flavors, where in this
work Nf ¼ 3. In the limit Nc → ∞, the spin-flavor
symmetry requires baryon states to fill degenerate multip-
lets of SUð6Þ. In particular, the ground state (GS) baryons
belong into a symmetric SUð6Þ multiplet. At finite Nc the
spin-flavor symmetry is broken by effects suppressed by
powers of 1=Nc, and the mass splittings in the GS multiplet
between the states with spins Sþ 1 and S are proportional
to ðSþ 1Þ=Nc. The effects of finite Nc are then imple-
mented as an expansion in 1=Nc in the effective
Lagrangian. Because baryon masses are proportional to
Nc, it becomes natural to use the framework of HBChPT

[7,56], where the expansion in inverse powers of the baryon
mass becomes part of the 1=Nc expansion. The framework
used here follows that of Refs. [31,32,34].
The dynamical contracted SUð2NfÞ symmetry results

from the requirement of large Nc consistency of baryon
observables [26–29],2 in particular the requirement that the
Born contribution to the Goldstone boson-baryon (GB-
baryon) scattering amplitude be finite as Nc → ∞. The
constraint emerges because the GB-baryon coupling is
Oð ffiffiffiffiffiffi

Nc
p Þ, and therefore cancellations between crossed

diagrams must occur. The 35 generators of SUð6Þ and
their commutation relations are the following:

Si∶ SUð2Þ spin generators;

Ta∶ SUð3Þ flavor generators;
Gia∶ spin-flavor generators

½Si; Sj� ¼ iϵijkSk

½Ta; Tb� ¼ ifabcTc

½Si; Ta� ¼ 0; ½Si; Gja� ¼ iϵijkGka; ½Ta; Gib� ¼ ifabcGic

½Gia; Gjb� ¼ i
4
δijfabcTc þ i

6
δabϵijkSk þ i

2
ϵijkdabcGkc:

ð1Þ

The generators Gia have coherent matrix elements, i.e.,
matrix elements that scale as Nc between baryons of spin
S ¼ OðN0

cÞ. These generators are the ones that represent
the spatial components of axial-vector currents at the
leading order in the 1=Nc expansion. A contracted
SUð6Þ symmetry, which is the actual dynamical symmetry
in large Nc, is generated by the Algebra where Gia is
replaced by Xia ≡Gia=Nc. The ground state baryons
belong to the totally symmetric spin-flavor irreducible
representation with Nc spin-flavor indices, and consist of
states with spin S ¼ 1=2;…; Nc=2 (assuming Nc to be
odd). For a given spin S, the corresponding SUð3Þmultiplet
is ðp; qÞ ¼ ð2S; 1

2
ðNc − 2SÞÞ in the usual Young tableau

notation. For Nc ¼ 3, the states are the physical S ¼ 1=2
octet and S ¼ 3=2 decuplet.
In HBChPT, the baryon field, denoted by B, represents

the spin-flavor multiplet where its components are sorted
out by spin and flavor, that is, the entries in B have well
defined spin, and therefore they are in irreducible repre-
sentations of SUð3Þ.
Implementing chiral symmetry follows the well known

scheme of the nonlinear realization on the matter fields.
Representing the Goldstone boson octet by

u ¼ eiπ
aTa=Fπ ; ð2Þ

the nonlinear transformation law is implemented,

1See also Appendix A. 2See also Appendix A.
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Ruh†ðL;R; uÞ ¼ hðL; R; uÞuL†; ð3Þ

where L (R) is a transformation of SULð3Þ (SURð3Þ).
hðL;R; uÞ is then a SUð3Þ flavor transformation. One can,
therefore, define the usual chiral transformations on the
baryon fields according to

ðL;RÞ∶ B ¼ hðL;R; uÞB; ð4Þ

where obviously the nonlinear transformation h acts on the
different components of B with the corresponding SUð3Þ
irreducible representation. Chiral transformations do not
commute with SUð6Þ, but they leave the commutation
relations unchanged. The chiral covariant derivativeDμB is
then given by

DμB ¼ ∂μB − iΓμB;

Γμ ¼
1

2
ðu†ði∂μ þ rμÞuþ uði∂μ þ lμÞu†Þ; ð5Þ

where lμ ¼ vμ − aμ and rμ ¼ vμ þ aμ are gauge sources.
Another building block is the axial Maurer-Cartan one-
form:

uμ ¼ u†ði∂μ þ rμÞu − uði∂μ þ lμÞu†;
ðL;RÞ∶ uμ ¼ hðL;R; uÞuμh†ðL;R; uÞ: ð6Þ

Both Γμ and uμ belong to the SUð3Þ Algebra, and are
written in the general form X ¼ XaTa. When acting on the
different components of the field B, Ta is obviously taken
in the corresponding SUð3Þ irreducible representation.
The scalar and pseudoscalar densities are collected into

χ ¼ 2B0ðsþ ipÞ
χ� ≡ u†χu† � uχ†u

χ0� ¼ hχ�i
χ̃� ≡ χa�T

a; ð7Þ

where s and p are the scalar and pseudoscalar sources, and
eventually s is set to be the quark mass matrix.
The field strengths associated with the gauge sources are

Fμν
L ¼ ∂μlν − ∂νlμ − i½lμ;lν�;

Fμν
R ¼ ∂μrν − ∂νrμ − i½rμ; rν�

Fμν
� ¼ uFμν

L u† � u†Fμν
R

†u: ð8Þ

Since contracted SUð6Þ is not a Noether symmetry,
its role in the effective Lagrangian is to primarily con-
strain couplings. For instance, at the leading order, one
such constraint is that the GB-baryon couplings are

determined by a single coupling g
∘
A. The effective

Lagrangian will be explicitly invariant under rotations

and chiral transformations and the QCD discrete sym-
metries P and T. The Lagrangian consists of terms which
are the product of tensors containing the GB and source
fields (chiral tensor operators) with terms which are
composite spin-flavor tensor operators built with products
of SUð6Þ generators. The Nc power assigned to a term in
the Lagrangian is determined by the spin-flavor operator
according to N1−n

c , where n is the number of factors of
SUð6Þ generators involved in the operator. In general, the
chiral tensor operators carry hidden Nc dependencies
through the factors of 1=Fπ accompanying the GB field
operators, where Fπ ¼ Oð ffiffiffiffiffiffi

Nc
p Þ. Matrix elements of the

spin-flavor operators carry additional Nc dependencies, as
is the case of operators where factors of the generators Gia

appear, which lead to additional factors of Nc in the matrix
elements. Following this approach, the Lagrangian terms
are organized in powers of the chiral and 1=Nc expansions.
The 1=Nc expansion naturally leads to the HBChPT
expansion, as the large mass of the expansion is taken to
be the spin-flavor singlet component of the baryon masses,
namely M0 ¼ Ncm0 (m0 can be considered here to be a
LEC defined in the chiral limit and which will have itself an
expansion in 1=Nc).
Bases of spin-flavor tensor operators are built using the

tools in Appendix A, and requires in general lengthy
algebraic work. In the Appendix, only the bases needed
in this work are provided.
In order to ensure the validity of the OZI rule for the

quark mass dependency of baryon masses, namely, that
the nonstrange baryon mass dependence on ms is OðN0

cÞ,
the following combination of the source χþ is defined:

χ̂þ ≡ χ̃þ þ Nc χ
0þ; ð9Þ

which is OðNcÞ but has dependence on ms which isOðN0
cÞ

for al states where the strangeness is OðN0
cÞ.

For convenience, a scale Λ is introduced, which can be
chosen to be a typical QCD scale, in order to render most of
the LECs dimensionless. In the calculations, Λ ¼ mρ will
be chosen.
The lowest-order Lagrangian is [31]

Lð1Þ
B ¼ B†

�
iD0 þ g

∘
AuiaGia −

CHF

Nc
Ŝ2 þ c1

2Λ
χ̂þ

�
B: ð10Þ

The kinetic term is OðpN0
cÞ, and the terms involving GBs

(when the vector and axial vector sources are turned off)
start with the Weinberg-Tomozawa term which is
Oðp=NcÞ. The second term gives in particular the axial

vector current and the GB-baryon interaction. g
∘
A is the axial

coupling in the chiral and large Nc limits (it has to be
rescaled by a factor 5=6 to coincide with the usual axial

coupling as defined for the nucleon, i.e., gNA ¼ gA ¼ 5
6
g
∘
A).

Because the matrix elements of Gia are OðNcÞ, the
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GB-baryon coupling is Oð ffiffiffiffiffiffi
Nc

p Þ. This strong coupling at
large Nc demands the constraints of SUð6Þ, which will
allow for Nc consistency at higher orders in the effective
theory. The third term gives the SUð3Þ singlet mass
splittings between baryons of different spins, and it is
Oðp0=NcÞ. The fourth term gives the contributions of
quark masses to the baryon masses, it isOðp2NcÞ and gives
SUð3Þ breaking effects which are Oðp2N0

cÞ. This indicates
a first issue with the interchange of chiral and large Nc
limits. As it becomes evident at the NLO due to the
nonanalytic terms of loop corrections, the limits do not
commute, and for that reason it becomes necessary to make
a choice: the choice made here is that 1=Nc is counted as a
quantity of order p: 1=Nc ¼ OðpÞ ¼ OðξÞ, which is
coined as the ξ expansion. The Lagrangian is now organ-
ized in powers of ξ. If the Nc dependencies of the matrix

elements of the spin-flavor operators are disregarded, Lð1Þ
B

is OðξÞ.
The construction of higher-order Lagrangians is accom-

plished making use of the tools provided in Appendixes A

and B. In this work, the Lagrangians of Oðξ2Þ and Oðξ3Þ
are needed. Throughout, the spin-flavor operators appear-
ing in the effective Lagrangians will be scaled by the
appropriate powers of 1=Nc in such a way that all LECs are
of zeroth order in Nc. The 1=Nc power of a Lagrangian
term with nπ pion fields is given by [57], n − 1 − κ þ nπ

2
,

where the spin-flavor operator is n-body (n is the number of
factors of SUð6Þ generators appearing in the operator), and
κ takes into account the Nc dependency of the spin-flavor
matrix elements. The last term, nπ=2, stems from the factor
ð1=FπÞnπ carried by any term with nπ GB fields.
For convenience, the following definitions are used:

δm̂≡ CHF

Nc
Ŝ2 −

c1
2Λ

χ̂þ

iD̃0 ≡ iD0 − δm̂: ð11Þ

Note that δm̂ gives rise to mass splittings between baryons
which are Oð1=NcÞ or Oðp2Þ.

With this, the Oðξ2Þ Lagrangian is given by3:

Lð2Þ
B ¼ B†

��
−

1

2Ncm0

þ w1

Λ

�
D⃗2þ

�
1

2Ncm0

−
w2

Λ

�
D̃2

0 þ
c2
Λ
χ0þ

þ CA
1

Nc
uiaSiTa þ CA

2

Nc
ϵijkuiafSj; Gkag

þ κ0ϵ
ijkF0

þijS
k þ κ1ϵ

ijkFa
þijG

ka þ ρ0F0
−0iS

i þ ρ1Fa
−0iG

ia

þ τ1
Nc

ua0G
iaDi þ

τ2
N2

c
ua0S

iTaDi þ
τ3
Nc

∇iua0S
iTa þ τ4∇iua0G

ia þ � � �
�
B; ð12Þ

where additional terms not explicitly displayed are not needed in the present work. Note that there are also Oðξ2Þ terms
stemming from the 1=Nc suppressed terms in the LECs of the lower-order Lagrangian. Similar comments apply to the
higher-order Lagrangians. Such terms require knowledge of the physics at Nc > 3 to be determined, which can in principle
be obtained using LQCD results at varying Nc [58,59].
Similarly, the Oðξ3Þ Lagrangian needed here is given by

Lð3Þ
B ¼ B†

�
c3

NcΛ3
χ̂2þ þ h1Λ

N3
c
Ŝ4 þ h2

N2
cΛ

χ̂þŜ
2 þ h3

NcΛ
χ0þŜ

2 þ h4
NcΛ

χaþfSi; Giag

þ CA
3

N2
c
uiafŜ2; Giag þ CA

4

N2
c
uiaSiSjGja

þDA
1

Λ2
χ0þuiaGia þDA

2

Λ2
χaþuiaSi þ

DA
3 ðdÞ
Λ2

dabcχaþuibGic þDA
3 ðfÞ
Λ2

fabcχaþuibGic

þ gE½Di; Fþi0� þ α1
i
Nc

ϵijkFa
þ0iG

iaDk þ β1
i
Nc

Fa
−ijG

iaDj þ � � �
�
B ð13Þ

3The notation for the LECs used here differs from the ones used in ordinary BChPT due to the unification of terms demanded by the
1=Nc expansion. The notation aims at distinguishing classes of terms in the Lagrangian, e.g., spin-independent mass terms, spin-
dependent mass terms, axial-vector couplings, etc. The identification of some of the LECs with those used in ordinary versions of
BChPT are straightforward.
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In this work, some terms Oðξ4Þ are needed for sub-
tracting UV divergencies, but they are beyond the order of
the present calculations and can be consistently eliminated.
Through the calculation of the one-loop corrections to the
self energies and the vector and axial vector currents, the β
functions associated with the LECs that affect those
quantities are determined.
The terms in the effective Lagrangian are constrained in

their Nc dependence by the requirement of the consistency
of QCD at large Nc. This constraint is in the form of a lower
bound in the power in 1=Nc for each term in the Lagrangian.
This leads in particular to constraints on theNc dependencies
of the ultra-violet (UV) divergencies of loop corrections,
which have to be subtracted by the corresponding counter-
terms in the Lagrangian. The UV divergencies are neces-
sarily polynomials in low momenta p (derivatives), in χ�
and other sources, and in 1=Nc (modulo factors of 1=

ffiffiffiffiffiffi
Nc

p
due to 1=Fπ factors in terms where GBs are attached).
Therefore, the structure of counterterms is independent of
any linking between the 1=Nc and chiral expansions. For this
reason, in order to determine the UV divergencies, the large
Nc and low-energy limits can be taken independently. For a
connected diagram with nB external baryon legs, nπ external
GB legs, ni vertices of type iwhich have nBi

baryon legs and
nπi GB legs, and L loops, the following topological relations
hold [60,61]:

L ¼ 1þ Iπ þ IB −
X

ni;

2IB þ nB ¼
X

ninBi
; 2Iπ þ nπ ¼

X
ninπi ; ð14Þ

where Iπ is the number of GB propagators and IB the
number of baryon propagators.
The chiral or low-energy order of a diagram, where νpi

is
the chiral power of the vertex of type i, is then given by [61]:

νp ¼ 2 −
nB
2
þ 2Lþ

X
i

ni

�
νpi

þ nBi

2
− 2

�
; ð15Þ

Note that nBi
is equal to 0 or 2 in the single baryon sector.

On the other hand, the 1=Nc power of a connected
diagram is determined by looking only at the vertices: the
order in 1=Nc of a vertex of type i is given by νOi

þ nπi
2
,

where νOi
is the order of the spin-flavor operator. Thus, the

1=Nc power of a diagram, upon use of the third Eq. (14), is
given by

ν 1
Nc
¼ nπ

2
þ Iπ þ

X
niνOi

; ð16Þ

where nπ is the number of external pions, and νOi
the 1=Nc

order of the spin-flavor operator of the vertex of type i.
Since νOi

can be negative (due to factors of Gia in vertices),
there are individual diagrams with ν 1

Nc
negative and

violating large Nc consistency. When the latter occurs,

there must be other diagrams that cancel those violating
terms. This will be clearly seen in the calculations pre-
sented here.
One can determine now the nominal counting of the

one-loop contributions to the baryon masses and currents.
The LO baryon masses are OðNcÞ, with hyperfine mass
splittings that are Oð1=NcÞ and SUð3Þ symmetry breaking
mass splittings that are Oðp2Þ. The one-loop correction
shown in Fig. 1 has: ðL ¼ 1; nB ¼ 2; nπ ¼ 0; n1 ¼ 2;
νO1

¼ −1; nB1
¼ 2; νp1

¼ 1Þ giving νp ¼ 3 as it is well
known, and ν 1

Nc
¼ −1. Since there is only one possible

diagram, this will be consistent if it contributes OðNcÞ to
the spin-flavor singlet component of the masses, it must
contribute at Oð1=NcÞ or higher to the hyperfine splittings,
and atOðN0

cÞ to SUð3Þ breaking. Indeed, this will be shown
to be the case. For the vector and axial-vector currents, the
one-loop diagrams are depicted in Figs. 2 and 3, respec-
tively. Taking as example the axial currents, at tree level it is
OðNcÞ, and the sum of the diagrams cannot scale as a
higher power of Nc. Performing the counting for the
individual diagrams one obtains: νpðjÞ ¼ 2 for j ¼
1;…; 4, and ν 1

Nc
ðjÞ ¼ −2, j ¼ 1, 2, 3 and ν 1

Nc
ð4Þ ¼ 0.

Thus a cancellation must occur of the OðN2
cÞ terms when

the contributions to the axial currents by the different
diagrams are added, as it will be shown to be the case.

FIG. 1. One-loop contribution to baryon self energy.

A B

C

D E

p
0

p
0

p
0

p
0

p
0

p
0

q,a q,a

q,aq,a

q,a q,a

FIG. 2. Diagrams contributing to the 1-loop corrections to the
vector charges.
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One can consider the case of two-loop diagrams, in
particular diagrams where the same GB-baryon vertex
Eq. (10) appears four times. For the self-energy, the chiral
power is νpðjÞ ¼ 5, and individual diagrams give
ν 1
Nc
¼ −2. Thus a cancellation among the different dia-

grams must therefore occur. A comment is here in order: in
Refs. [34,59], the wave function renormalization factor was
included in defining the baryon mass, but that is not correct
as in includes an incomplete inclusion of the two-loop
contributions. In all cases, and as shown in this work, the
diagrams that invoke the wave function renormalization
factors play a key role in such cancellations.
Using the linked power counting ξ,Oð1=NcÞ ¼ OðpÞ ¼

OðξÞ, the ξ order of a given Feynman diagram will then be
equal to νp þ ν 1

Nc
as given by Eqs. (15) and (16), which

upon use of the topological formulas Eq. (14) leads to

νξ ¼ 1þ 3Lþ nπ
2
þ
X
i

niðνOi
þ νpi

− 1Þ: ð17Þ

The ξ-power counting of the UV divergencies is obvious
from the earlier discussion. At one-loop the masses have
Oðξ2Þ andOðξ3Þ counterterms, while the axial currents will

have OðξÞ and Oðξ2Þ counterterms. To two loops there are
in addition Oðξ4Þ and Oðξ5Þ, and Oðξ3Þ and Oðξ4Þ
counterterms for masses and axial currents, respectively.
The noncommutativity of limits is manifested in the finite
terms where the GB masses and/or momenta, and δm̂
appear combined in nonanalytic terms, and are therefore
sensitive to the linking of the two expansions. The ξ
expansion corresponds to not expanding such terms at all.

III. BARYON MASSES

In this section, the baryon masses are analyzed to order
ξ3, or next-to-next-to-leading order (NNLO), in the limit of
exact isospin symmetry. To that order, one must include the
one-loop contribution depicted in Fig. 1 with the vertices

from Lð1Þ
B given in Appendix B. The contribution to the

self-energy is then given by

δΣ1−loop ¼ i
g
∘2
A

F2
π

X8
a¼1

X
n

GiaPnGia Γð1 − d
2
Þ

ð4πÞd2
× Jð1; 0;M2

a − ðp0 − δmnÞ2; 1; p0 − δmnÞ;
ð18Þ

A D

E

B
q,ia

C

q,ia

p
0

q,ia

p
0

q,ia

p
0 p

0

p
0

q,ia

p
0

q,ia

p
0

q,ia

p
0

q,ia

F

p
0

p
0

q,ia
q,ia

FIG. 3. Diagrams contributing to the 1-loop corrections to the axial vector currents.
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where n indicates the possible intermediate baryon states in
the loop, Pn are the corresponding spin-flavor projection
operators, the loop integral J is given in Appendix C, δmn
is the residual mass of the baryon in the propagator, i.e. δm̂
in Eq. (11) evaluated for that state n, Ma is the mass of the
Goldstone boson in the loop (throughout the Gell-Mann-
Okubo (GMO) mass relation M2

η ¼ ð4M2
K −M2

πÞ=3 is
used), and p0 is the energy of the external baryon. In
the ξ expansion, the SUð3Þ breaking effects in δmn are
Oðξ2Þ, and thus they can be neglected, i.e., one can simply
use δm̂ → CHF

Nc
Ŝ2 which is OðξÞ. In the specific evaluation

of δΣ1−loop for a given baryon state denoted by “in”, p0 ¼
δmin þ p0, where p0 is the kinetic energy Oðp2=NcÞ. The
noncommutativity of the 1=Nc and chiral expansions of
course resides in the nonanalytic terms of the loop integral

through their dependence on the ratios of the small scales
ðδmn − δminÞ=Ma. Notice that when the one-loop integrals
are written in terms of the residual momentum p0, they do
not depend on the spin-flavor singlet piece of δm̂. p0 is
naturally associated with iD̃0. The one-loop contribution to
the wave function renormalization factor is given by
δZ1−loop ¼ ∂

∂p0 δΣ1−loopjp0→0
. Appendixes A and D provide

all the necessary elements for the evaluation of the spin-
flavor matrix elements in Eq. (18). The explicit final
expressions for the self energy are straightforwardly calcu-
lated using those elements, and are not given explicitly
because they are too lengthy.
The correction to the baryon mass is given by setting

p0 ¼ 0 in the self-energy correction, and the mass of the
baryon state jS; YIi then reads

mBðS; Y; IÞ ¼ Ncm0 þ
CHF

Nc
SðSþ 1Þ − c1

2Λ
ððNc þ 2SÞM2

π − 2SM2
KÞ þ δm1−loopþCT

B ðS; Y; IÞ; ð19Þ

where S is the strangeness, δm1−loopþCT
B ðS; Y; IÞ is the

contribution from the one-loop diagram in Fig. 1 and CT
denotes counterterm contributions. From both types of
contributions, there are Oðξ2Þ and Oðξ3Þ terms, and the
calculation is exact to the latter order, as can be deduced

from the previous discussion on power counting. Note that
in LO the LEC CHF is equal to the hyperfine splittingMΔ −
MN in the real world Nc ¼ 3.
The ultraviolet divergent pieces of the self energy can be

brought to have the following form:

δΣUV
1−loop ¼

λϵ
ð4πÞ2

�
g
∘
A

Fπ

�2�
p0M2

aGiaGia þ 1

2
M2

a½½δm̂; Gia�; Gia� − 2

3
p03

−p02½½δm̂; Gia�; Gia� − p0½½δm̂; ½δm̂; Gia��; Gia� − 1

3
½½δm̂; ½δm̂; ½δm̂; Gia���; Gia�

�
; ð20Þ

where λϵ ≡ 1=ϵ − γ þ log 4π. Using the SUð3Þ singlet and octet components of the quark masses, m0 and ma, the meson
mass-squared matrix can be written as:

M2ab ¼ 2B0

�
δabm0 þ 1

2
dabcmc

�
; ð21Þ

and therefore,

M2
aWaa ¼ M2abWab; ð22Þ

for any symmetric 8 × 8 tensor W. In terms of Mπ and MK , one has m0 ¼ 1
3
ð2m̂þmsÞ ¼ 2M2

KþM2
π

6B0
and

ma ¼ δ8a 2ffiffi
3

p ðm̂ −msÞ ¼ δ8a
2ð−M2

KþM2
πÞffiffi

3
p

B0

.

In order to obtain from Eq. (21) the counterterms necessary to renormalize the mass and wave function, one
uses the results in Appendix D. The explicit UV divergent and polynomial (in 1=Nc,mq, p0) terms of the self-energy are the
given by
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δΣpoly ¼ −
1

ð4πÞ2
�
g
∘
A

Fπ

�2��
7

3
þ λϵ

�
B0

CHF

Nc

��
3

4
NcðNc þ 6Þ − 7Ŝ2

�
m0

þ
�
−2fSi; Giag þ 3

4
ðNc þ 3ÞTa

�
ma

�
þ
�
8

3
þ λϵ

�
C3
HF

N3
c

�
−NcðNc þ 6Þ þ 1

3
ð36 − 5NcðNc þ 6ÞÞŜ2 þ 12Ŝ4

�
þ p0

�
ð1þ λϵÞB0

��
−
3

8
NcðNc þ 6Þ þ 5

6
Ŝ2
�
m0þ

�
7

12
fSi; Giag − 3

8
ðNc þ 3ÞTa

�
ma

�
þ ð2þ λϵÞ

C2
HF

N2
c

�
3

2
NcðNc þ 6Þ þ ð−18þ NcðNc þ 6ÞÞŜ2 − 4Ŝ4

���
; ð23Þ

where terms of higher powers in p0 have been disre-
garded. A few observations on δΣpoly are in order: (1) the
contributions to the spin-flavor singlet component of the
masses is Oðp2N0

cÞ and proportional to CHF, the spin-
symmetry breaking is Oð1=N2

cÞ, and the SUð3Þ breaking
is Oðp2=NcÞ, (2) the UV divergencies in the mass are
produced by the contribution of the partner baryon in the
loop, i.e. baryon of different spin, and is therefore
determined by the mass splitting, i.e., by CHF, and
(3) the contributions to δZ are suppressed by powers
of 1=Nc, but with two exceptions, namely, there is a spin-
flavor singlet contribution proportional to m0 which is
OðNcÞ and a term proportional to ma which is OðN0

cÞ.
The term OðNcÞ in δZ is of key importance for the
mechanism of cancellations of 1=Nc power counting
violating terms, as it is shown later in the analysis of
the one-loop contributions to the currents.
The counterterms for renormalizing the masses and

wave functions are Oðξ2Þ and Oðξ3Þ (all contributions
Oðξ4Þ are consistently dropped) and involve terms that

appear in Lð1Þ
B with higher-order terms in 1=Nc in the

LECs and terms in Lð2;3Þ
B . To renormalize, the LECs

are written as: X ¼ XðμÞ þ 1
ð4πÞ2 βXλϵ, where μ is the

renormalization scale and the beta-functions βX necessary
to renormalize the masses are given in Table I. The reader
can easily work out the renormalization of the wave
functions.
Finally, the nonanalytic contributions to δΣ are

δΣNA ¼ −
1

ð4πÞ2
�
g
∘
A

Fπ

�2X
n

GiaPnGia

×

�
ðp0 − δmnÞ

�
M2

a −
2

3
ðp0 − δmnÞ2

�
log

M2
a

μ2

þ 2

3
ðM2

a − ðp0 − δmnÞ2Þ32

×

�
π þ 2 arctan

�
p0 − δmnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
a − ðp0 − δmnÞ2

p ��
:

ð24Þ

At tree level, and up to order ξ3, baryon masses satisfy
the GMO and Equal Spacing (ES) relations, which hold
unchanged at arbitrary Nc. The deviations from these
relations are given by the nonanalytic terms in the self-
energy; i.e., they are calculable to the one-loop order,
and in the strict large Nc limit they are Oðp3=NcÞ and
Oðp2=N2

cÞ. The calculated deviations compare to the
observed ones as follows: GMO∶ ð3mΛ þmΣÞ − 2ðmN þ
mΞÞ ¼ ΔGMO ¼ Th∶ ðgNA=FπÞ2 × 2.42 105 MeV3 vs Exp:
25.8 MeV, and ES: mΞ� − 2mΣ� þmΔ ¼ ΔES ¼
ðgNA=FπÞ2 × ð−3.72 104Þ MeV3 vs −4� 7 MeV, where
for the theoretical evaluation CHF ¼ mΔ −mN was used.
Note that using the physical gNA ¼ 1.267� 0.004 and
Fπ ¼ 93 MeV, the value of ΔGMO turns out to be
significantly larger than the physical one. When studying
the axial couplings, it will be found that the LO value of
the axial coupling is smaller than the physical one. In
fact, ΔGMO could be used in determining the ratio gNA=Fπ

at LO. Expanding ΔGMO in the strict large Nc limit one
obtains:

TABLE I. β functions for mass renormalization.

LEC F2
πβ=g2A

m0 − Ncþ6

N3
c
C3
HF

CHF
36−5NcðNcþ6Þ

3N2
c

C3
HF

c1 − 3
8
Ncþ3
Nc

ΛCHF

c2 3
16
ð2Nc þ 9ÞΛCHF

c3 0
h1 − 12

Λ C3
HF

h2 0
h3 7

4
ΛCHF

h4 1
2
ΛCHF
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ΔGMO ¼ −
�

g
∘
A

4πFπ

�2�
2π

3

�
M3

K −
1

4
M3

π −
2ffiffiffi
3

p
�
M2

K −
1

4
M2

π

�3
2

�
þ CHF

2Nc

�
4M2

K log

�
4M2

K −M2
π

3M2
K

�
−M2

π log

�
4M2

K − 1
3
M2

π

3M2
π

���
þOð1=N3

cÞ: ð25Þ

For the physicalMK andMπ , the shown expansion is within
30% of the exact result, and the expansion gives a good
approximation for Nc > 5. Note the large cancellations that
appear within the first line and within the second line of the
equation, and also the tendency to cancel between the first
and second lines. In the physical case and not expanding in
1=Nc, it is found that the numerical dependency of ΔGMO
on CHF is not very significant. One also observes that only
43% of ΔGMO is contributed by the octet baryons in the
loop, and thus the decuplet contribution is very important.
ΔGMO is therefore an important observable for assessing
whether the decuplet baryons ought to be included or not in
the effective theory; as indicated earlier, this however

depends on the value the LO g
∘
A, which to be independently

determined requires the analysis of other observables,
namely the axial currents. Along the same lines ΔES can
be analyzed, although in this case the experimental un-
certainty is rather large.

Disregarding the term proportional to h2 in L
ð3Þ
B Eq. (13),

which gives SUð3Þ breaking in the hyperfine splittings, one
additional relation follows, first found by Gürsey and
Radicati [62], namely:

ΔGR ¼ mΞ� −mΣ� − ðmΞ −mΣÞ ¼ 0;

Exp∶ 21� 7 MeV; ð26Þ

which relates SUð3Þ breaking in the octet and decuplet, and
which is valid for arbitrary Nc. The deviation from that
relation (26) is due to SUð3Þ breaking effects in the
hyperfine interaction that splits 8 and 10 baryons, and
such deviation starts with the term proportional to h2 which
is Oðp2=NcÞ. In addition, the one-loop contributions to it
are free of UV divergencies and the nonanalytic terms when
expanded in the large Nc limit give contributionsOð1=N2

cÞ.
To one-loop:

ΔGR ¼ h2
Λ

12

Nc
M2

K þ
�

g
∘
A

4πFπ

�2�
2π

9
M3

K þ ð9Nc − 43Þπ
72

�
M2

K −
�
3CHF

Nc

�
2
�3

2

−
Nc − 3

24

2643�M2
K −

�
5CHF

Nc

�
2
�3

2

0B@π − 2 arctan
5CHF

Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

K − ð5CHF
Nc

Þ2
q

1CA

þ 10

0B@M2
K −

�
3CHF

Nc

�
2
�3

2

arctan
3CHF

Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

K − ð3CHF
Nc

Þ2
q þ 240

N3
c
C3
HF logM

2
K

375
1CA − ðMK → MπÞ

¼ h2
Λ

12

Nc
ðM2

K −M2
πÞ þ

3π

Nc

�
g
∘
ACHF

4πFπ

�2

ðMK −MπÞ þO
�
logðMK=MπÞ

N3
c

�
; ð27Þ

where the last line corresponds to strictly expanding in the
large Nc limit. For the physicalMπ,MK , andCHF, the 1=Nc
expansion of ΔGR is, however, only reasonable for Nc > 8:
clearly the nonanalytic dependency in 1=Nc is important,
showing the need for the combined ξ expansion in the
physical case, similarly to what occurs for ΔGMO. Still, the
understanding of the smallness of the deviation is con-
nected with the 1=Nc expansion. Finally, it is important to
emphasize, as indicated earlier, that all the relations are not
explicitly dependent on Nc, and their deviations are sup-
pressed by powers of 1=Nc at large Nc.

The σ-terms are obtained following the Hellman-
Feynman theorem, σBmq

≡mq∂mB=∂mq, where mq can
be taken to be m̂;ms, or the SUð3Þ singlet and octet com-
ponents of the quark masses, namely m0 ¼ ð2m̂þmsÞ=3
and m8 ¼ 2=

ffiffiffi
3

p ðm̂ −msÞ. Naturally they will satisfy the
same relations discussed above for the masses. In par-
ticular, σ terms associated with the same mq are related
via those relations and their deviations are calculable as
described before for the masses. In addition to the GMO and
ES relations, the following tree level Oðξ3Þ relations hold,
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σNms
¼ ms

8m̂
ð−4ðNc − 1ÞσNm̂ þ ðNc þ 3ÞσΛm̂ þ 3ðNc − 1ÞσΣm̂Þ

σΛms
¼ ms

8m̂
ð−4ðNc − 3ÞσNm̂ þ ðNc − 5ÞσΛm̂ þ 3ðNc − 1ÞσΣm̂Þ

σΣms
¼ ms

8m̂
ð−4ðNc − 3ÞσNm̂ þ ðNc þ 3ÞσΛm̂ þ ð3Nc − 11ÞσΣm̂Þ

σΔms
¼ ms

8m̂
ð−4ðNc − 1ÞσΔm̂ − 5ðNc − 3ÞðσΛm̂ − σΣm̂Þ þ 4NcσΣ�m̂Þ

σΣ�ms
¼ ms

8m̂
ð−ðNc − 3Þð4σΔm̂ þ 5σΛm̂ − 5σΣm̂Þ þ 4ðNc − 2ÞσΣ�m̂Þ: ð28Þ

Several of these relations are poorly satisfied. The
deviations are calculable and given by the nonanalytic
contributions to one-loop. In the physical case Nc ¼ 3,
those deviations are numerically large for the first, third,
and fourth relations above. This in particular affects the
nucleon strangeness σ term, and thus indicates that its
estimation from arguments based on tree level relations is
subject to important corrections [63]. In terms of the octet
components of the quark masses, in addition to GMO
and ES relations one finds:

σNm8 ¼ ðNc þ 3ÞσΛm8 þ 3ðNc − 1ÞσΣm8

4ðNc − 3Þ ð29Þ

σΔm8 ¼ −5ðNc − 3ÞσΛm8 þ 5ðNc − 3ÞσΣm8 þ 4NcσΣ�m8

4ðNc − 3Þ ;

ð30Þ

where it can be readily checked that they are well
defined for Nc → 3 as the numerators on the RHS are
proportional to ðNc − 3Þ. These relations are violated at
large Nc as Oðp3N0

cÞ. For both relations in the limit

Nc → ∞, one finds LHS − RHS ¼ Nc
128π ðg

∘
A

Fπ
Þ2ðMK −MπÞ×

ðM2
K −M2

πÞ þOð1=NcÞ. Thus they are not as precise as
the GMO and ES relations.
Finally, if the LEC constant h3 vanishes, one extra tree-

level relation related to Eq. (26) follows, namely,

σΞ�m8 − σΣ�m8 − ðσΞm8 − σΣm8Þ ¼ 0 ð31Þ

which is only violated at large Nc as Oð1=N2
cÞ, and thus

expected to be very good.

To complete this section, fits to the octet and decuplet
baryon masses including results from LQCD are presented.
This in particular allows for exploring the range of validity
of the calculation as the quark masses are increased. The
mass formula for the fit is4:

mB ¼ Ncm0 þ
CHF

Nc
Ŝ2 −

c1
2Λ

χ̂þ −
c2
Λ
χ0þ −

c3
NcΛ3

χ̂2þ

−
h2
N2

cΛ
χ̂þŜ2 −

h3
NcΛ

χ0þŜ
2 − 2

h4
NcΛ

χ̃aþSiGia

þ δm1−loop
B ; ð32Þ

where, in the isospin symmetry limit, χ0þ → 4B0m0;
χ̃aþ → 8B0δ

a8m8, and χ̂þ → 4B0ðm8T8 þ Ncm0Þ. The fits
at Nc ¼ 3 cannot obviously give the Nc dependence of
LECs. LECs of terms that depend on quark masses can be
more completely determined by fits that include the LQCD
results for different quark masses, e.g., c2 and the various
h0s. For this reason, such combined fits are presented here,
in Table II and in Fig. 4. Also, some LECs are redundant at
Nc ¼ 3, and are thus set to vanish for the fit. The constant
c3 is also set to vanish as it turns out to be of marginal
importance for the fit. A test of mass relations is shown in
Table III.
The study of the fits show that at fixed MK ∼ 500 MeV,

the physical plus LQCD results up to Mπ ∼ 300 MeV can

TABLE II. Results for LECs: the ratio g
∘
A=Fπ ¼ 0.0122 MeV−1 is fixed by using ΔGMO. The first row is the fit to

LQCD octet and decuplet baryon masses [48] including results for Mπ ≤ 303 MeV (dof ¼ 50), and second row is
the fit including also the physical masses (dof ¼ 58). Throughout the μ ¼ Λ ¼ mρ.

χ2dof m0 [MeV] CHF [MeV] c1 c2 h2 h3 h4

0.47 221(26) 215(46) −1.49ð1Þ −0.83ð5Þ 0.03(3) 0.61(8) 0.59(1)
0.64 191(5) 242(20) −1.47ð1Þ −0.99ð3Þ 0.01(1) 0.73(3) 0.56(1)

4A useful formula for the term proportional to h4 is [64]:
SiGi8 ¼ 1ffiffi

3
p ð3

4
Î2 − 1

4
Ŝ2 − 1

48
NcðNc þ 6Þ þ 1

8
ðNc þ 3ÞY − 3

16
Y2Þ ¼

1

16
ffiffi
3

p ð12Î2 − 4Ŝ2 þ 3Sð2− SÞÞ, where S is the strangeness.
This term is responsible for the tree-level mass splitting between
Λ and Σ.
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be fitted with natural size LECs. The LEC h2 which enters
in ΔGR is best determined by fixing it using ΔGR in the
physical case, and then the rest of the LECs are determined
by the overall fit. In this way, the deviations of the
mass relations are one of the predictions of the effective
theory, and can therefore be used as a test of LQCD
calculations. At present the errors in the LQCD calculations
are relatively large, and thus such a test is not yet very
significant.

IV. VECTOR CURRENTS: CHARGES

In this section, the one-loop corrections to the vector
current charges are calculated. The analysis is similar to
that carried out in [65], except that in that reference
higher-order terms in 1=Nc in the GB-baryon vertices
were included. In the ξ expansion and the order consid-
ered here, such higher-order terms are not required. At
lowest order the charges are simply given by the
generators Ta, the one-loop corrections are UV finite,

TABLE III. Deviations from mass relations in MeV. Here ΔES1 ¼ mΞ� − 2mΣ� þmΔ and ΔES2 ¼
mΩ− − 2mΞ� þmΣ� .

Mπ MK ΔGMO ΔGR ΔES1 ΔES2

[MeV] Exp/LQCD Th Exp/LQCD Th Exp/LQCD Th Exp/LQCD Th

139 497 31� 42 46 23� 30 38 −6� 30 −14 −9� 30 −14
213 489 75� 70 33 0� 72 29 −40� 97 −11 9.2� 83 −11
246 499 124� 77 30 −7� 75 25 −46� 101 −11 23� 86 −11
255 528 133� 89 37 −12� 94 26 −32� 125 −14 29� 108 −14
261 524 139� 99 35 24� 103 25 −29� 138 −13 −3� 119 −13
302 541 77� 87 32 −14� 94 23 −30� 125 −13 46� 108 −13

FIG. 4. Baryon masses vs Mπ obtained from the combined fit (second row of Table II). The bands correspond to the 67% and
95% confidence intervals. The red points with error bars are from the LQCD calculations [48], and the squares are the theoretical values
for the values of Mπ and MK of the corresponding data point.
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and since up to Oðξ3Þ the Ademollo-Gatto theorem
(AGT) is satisfied, the corrections to the charges are
unambiguously given at one-loop.
The one-loop diagrams are shown in Fig. 2, and the

corrections to the charges are obtained by evaluating the

diagrams at q → 0. In that limit, the UV divergencies as
well as the finite polynomial terms in quark masses and δm̂
cancel in each of the two sets of diagrams, Aþ B, and
CþDþ E, as required by the AGT. The results for the
diagrams are the following:

A ¼ −
i

2F2
π
fabcfbcdTdIð0; 1;MbÞ

B ¼ i
4F2

π
fabcfbcdTdðq02Kðq;Mb;McÞ þ 4q0K0ðq;Mb;McÞ þ 4K00ðq;Mb;McÞÞ

C ¼ 1

2
fTa; δẐ1−loopg

D ¼ i

�
g
∘
A

Fπ

�2X
n1;n2

GibPn2T
aPn1G

jb 1

q0 − δmn2 þ δmn1

ðHijðp0 − δmn1 ;MbÞ −Hijðp0 þ q0 − δmn2 ;MbÞÞ

E ¼
�
g
∘
A

Fπ

�2

fabc
X
n

GibPnGjcHij0ðp0 − δmn; q;Mb;McÞ; ð33Þ

where the integralsK,Kμ,Kμν,Hij andHij0 are given in Appendix C. Since the temporal component of the current can only
connect baryons with the same spin, q0 is equal to the SUð3Þ breaking mass difference between them plus the kinetic energy
transferred by the current, which are all Oðp2Þ, and can be neglected: the limit q0 → 0 must then be taken in the end.
DiagramD indeed requires a careful handling of that limit in the cases when the denominator vanishes. The same is the case
for diagram F in the axial-vector currents in next section. The Uð1Þ baryon number current is used to check the calculation:
only diagrams CþD contribute, and as required cancel each other.
The UV divergent and polynomial pieces contributed by the diagrams are the following:

Apoly ¼ λϵ þ 1

ð4πÞ2
1

2F2
π
fabcfbcdM2

bT
d

Bpoly ¼ −
λϵ þ 1

ð4πÞ2
1

2F2
π
fabcfbcdTd

�
M2

b þ
1

6
q⃗2
�

Cpoly ¼ 1

ð4πÞ2
�
g
∘
A

Fπ

�2
1

2
fTa; ðλϵ þ 1ÞM2

bG
ibGib − 2ðλϵ þ 2ÞGib½δm̂; ½δm̂; Gib��g

Dpoly ¼ 1

ð4πÞ2
�
g
∘
A

Fπ

�2
1

3

X
n1;n2

GibPn2T
aPn1G

ib 1

q0 − δmn2 þ δmn1

× fðp0 − δmn1Þð3ðλϵ þ 1ÞM2
b − 2ðλϵ þ 2Þðp0 − δmn1Þ2 − fp0 → p0 þ q0; δmn1 → δmn2gÞg

¼ 1

ð4πÞ2
�
g
∘
A

Fπ

�2
1

3
f−3ðλϵ þ 1ÞM2

bG
ibTaGib þ 2ðλϵ þ 2Þð½δm̂; ½δm̂; Gib��TaGib

þ GibTa½δm̂; ½δm̂; Gib�� − ½δm̂; Gib�Ta½δm̂; Gib�Þg

Epoly ¼ −
1

ð4πÞ2
�
g
∘
A

Fπ

�2 i
6
fabc

X
n

GibPnGjcfλϵð2qiqj þ q2gijÞ þ q2gij − 3gijððλϵ þ 1ÞðM2
b þM2

cÞ

− ðλϵ þ 2Þðδmin − 2δmn þ δmoutÞ2Þg

¼ −
1

ð4πÞ2
�
g
∘
A

Fπ

�2 i
6
fðð2qiqj þ q2gijÞλϵ − q2gijÞ½Ta; Gib�Gjb þ 3ðλϵ þ 1ÞM2

b½½Ta; Gib�; Gjb�

− 3ðλϵ þ 2Þð½½Ta; Gib�; ½δm̂; ½δm̂; Gjb��� þ ½½δm̂; Gib�; ½Ta; ½δm̂; Gib���Þg; ð34Þ
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where in the evaluations p0 → δmin and p0 þ q0 → δmout.
Combining the polynomial pieces and using that ½δm̂; Ta� ¼
½δm̂; Ĝ2� ¼ ½δm̂; GibTaGib� ¼ 0 lead to the result:

ðAþ BÞpoly ¼ −
λϵ þ 1

ð4πÞ2
q⃗2

4F2
π
Ta

ðCþDþ EÞpoly ¼ λϵ − 3

ð4πÞ2
�

g
∘
A

4Fπ

�2

q⃗2Ta ð35Þ

As required by the AGT, when q → 0 the UV divergen-
cies and polynomial terms vanish for all the SUð3Þ vector
charges of the baryon spin-favor multiplet. The calculation
of the finite nonanalytic contributions has been carried out
in previous work [65], and will not be revisited here.
The only counterterm required is the one proportional to

gE in Eq. (13), where βgE ¼ 1
ð4FπÞ2 ð4 − g

∘2
AÞ, and which

provides the only analytic contribution to the octet and
decuplet charge radii up to the order of the calculation.
More details will be presented elsewhere in a study of the
form factors of the vector currents. In the context of the
charge form factors, studies implementing the 1=Nc
expansion for extracting the long distance charge distribu-
tion of the nucleon has been carried out in Refs. [66–69].

V. AXIAL COUPLINGS

The axial vector currents are studied to one-loop. At the
tree level the axial vector currents have two contributions,

namely the contact term and the GB pole ones, and
reads

Aμa ¼ g
∘
AGja

�
gμj −

qμqj
q2 −M2

a

�
: ð36Þ

In the nonrelativistic limit, or equivalently largeNc limit, the
time component of the axial vector current is suppressed
with respect to the spatial components. The couplings
associated with the latter are analyzed below to Oðξ2Þ.
At the leading order, the axial couplings are all given in

terms of g
∘
A. For Nc ¼ 3: F ¼ g

∘
A=3, D ¼ g

∘
A=2, and the

axial coupling in the decuplet baryons is H ¼ g
∘
A=6.

The one-loop diagrams contributing at that order are
shown in Fig. 3.
The matrix elements of interest for the axial currents are

hB0jAiajBi evaluated at vanishing external 3-momentum.
The axial couplings gBB

0
A are conveniently defined by

hB0jAiajBi ¼ gBB
0

A
6

5
hB0jGiajBi; ð37Þ

which areOðN0
cÞ. TheOðNcÞ of the matrix elements of the

axial currents is due to the operator Gia. The factor 6=5
mentioned earlier is included so that gNN

A at Nc ¼ 3 exactly
corresponds to the usual nucleon gA, which has the value
1.267� 0.004 [70].

The results for the one-loop diagrams are the following:

A ¼ −gμi
g
∘
A

2F2
π
fabcfcdbGidIð0; 1;MbÞ

B ¼ g
∘
A

6F2
π

qμqi
q2 −M2

a
fabcfcdbGidIð0; 1;MbÞ

C ¼ 2g
∘
A

3F2
π

qμqi
q2 −M2

d

fabcfcdbGidIð0; 1;MbÞ

D ¼ −
g
∘
A

3F2
π

qμqi
q2 −M2

a
fabcfcdbGidIð0; 1;MbÞ

E ¼ 1

2
g
∘
A

�
gμi −

qμqi
q2 −M2

a

�
fGia; δẐ1−loopg

F ¼ i

�
gμi −

qμqi
q2 −M2

a

�
g
∘
A

�
g
∘
A

Fπ

�2X
n1;n2

GjbPn2G
iaPn1G

kb 1

q0 − δmn2 þ δmn1

× ðHjkðp0 − δmn1 ;MbÞ −Hjkðp0 þ q0 − δmn2 ;MbÞÞ ð38Þ

The corresponding polynomial terms of these one-loop contributions are
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Apoly ¼ 1

ð4πÞ2
g
∘
A

2F2
π
ðλϵ þ 1Þgμi fabcfbcdGidM2

b

Bpoly ¼ −
1

ð4πÞ2
g
∘
A

6F2
π
ðλϵ þ 1Þ qμqi

q2 −M2
a
fabcfbcdGidM2

b

Cpoly ¼ −
1

ð4πÞ2
2g
∘
A

3F2
π
ðλϵ þ 1Þ qμqi

q2 −M2
d

fabcfbcdGidM2
b

Dpoly ¼ 1

ð4πÞ2
g
∘
A

3F2
π
ðλϵ þ 1Þ qμqi

q2 −M2
a
fabcfbcdGidM2

b

Epoly ¼ 1

ð4πÞ2
1

2
g
∘
A

�
g
∘
A

Fπ

�2�
gμi −

qμqi
q2 −M2

a

�
× fGia; ðλϵ þ 1ÞM2

bG
jbGjb − 2ðλϵ þ 2ÞGjb½δm̂; ½δm̂; Gjb��g

Fpoly ¼ −
1

ð4πÞ2 g
∘
A

�
g
∘
A

Fπ

�2�
gμi −

qμqi
q2 −M2

a

��
ðλϵ þ 1ÞM2

bG
jbGiaGjb

−
2

3
ðλϵ þ 2ÞðGjbGia½δm̂; ½δm̂; Gjb�� þ ½δm̂; ½δm̂; Gjb��GiaGjb − ½δm̂; Gjb�Gia½δm̂; Gjb�Þ

�
: ð39Þ

The conservation of the axial currents is readily checked in the chiral limit. At this point it is important to check the
cancellation of the Nc power counting violating terms shown in the polynomial terms of diagrams E and F. Such terms
cancel in the sum, as it is easy to show using the results displayed in Appendix D for the axial vector currents. One obtains:

ðEþ FÞpoly ¼ 1

ð4πÞ2 g
∘
A

�
g
∘
A

Fπ

�2�
gμi −

qμqi
q2 −M2

a

�
×

�
ðλϵ þ 1Þ 1

6
B0

�
23m0Gia þ 11

4
dabcmbGic þ 5

3
maSi

�
þ ðλϵ þ 2ÞC

2
HF

N2
c

��
1 −

NcðNc þ 6Þ
3

�
Gia

þ 11

6
ðNc þ 3ÞSiTa −

8

3
fŜ2; Giag − 4

3
SifSj; Gjag þ 11

6
Ŝ2GiaŜ2

��
ð40Þ

The quark mass dependent UV divergencies are
Oðmq=NcÞ, and the quark mass independent ones give a
term proportional toGia, i.e., to the LO term but suppressed
by a factor 1=Nc, while the rest of the terms areOð1=N2

cÞ or
higher. The cancellation mechanism clearly requires the
contributions from the wave function renormalization
factors (diagrams E), and it is rather subtle as it requires
an explicit and lengthy calculation starting from Eq. (39).
To obtain the counterterms, the relations given in
Appendix D are used. The counterterms are contained in

the Lagrangians Lð1;2;3Þ
B , and the corresponding β functions

are the ones shown in Table IV. In addition to g
∘
A, there are

seven LECs that are necessary to renormalize the axial
vector couplings for generic Nc. For Nc ¼ 3, the terms
proportional to CA

1;2;3 are linearly dependent and one can be
eliminated. At Nc ¼ 3, after considering isospin symmetry,
there are thirty four axial couplings associated with the
axial currents mediating transitions in the spin-flavor
multiplet of baryons. This means that there are twenty

seven relations among those couplings that must be
satisfied at the order of the present calculation. Such
relations are straightforward to derive with the results
provided here, and they should eventually become one
good test for their LQCD calculations. It should be noted
that in general the relations dependent on Nc explicitly.

TABLE IV. β functions for counterterms contributing to the
axial-vector currents.

LEC F2
πβ LEC F2

πβ=Λ2

g
∘
A g

∘3
A
C2
HF
3

DA
1 − 1

48
g
∘
Að36þ 23g

∘2
AÞ

CA
1 − 11

6
g
∘3
AC2

HF
Ncþ3
Nc

DA
2 − 5

144
g
∘3
A

CA
2

1
2
g
∘3
AC2

HF
1−2Nc
Nc

DA
3 ðdÞ − 1

192
g
∘
Að36þ 11g

∘2
AÞ

CA
3

8
3
g
∘3
AC2

HF
DA

3 ðfÞ 0

CA
4

8
3
g
∘3
AC2

HF
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The one-loop corrections to the axial currents are such
that they do not contribute to the Goldberger-Treiman
discrepancies (GTD) [71]. The discrepancies are given by
terms in the Lagrangian of Oðξ3Þ, namely:

Lð3Þ
B ¼ � � � þ iB†ðgGTD½∇i; χ̃a−�Gia þ g0GTD∂iχ0−SiÞB: ð41Þ

As noted in [71] there are three LECs determining the spin
1=2 GTD in SUð3Þ. The 1=Nc expansion shows that those
LECs are actually determined by the two shown above,
which also determine the GTDs of the decuplet baryons.
The following observations are important: if the non-

analytic contributions to the corrections to the axial
couplings are disregarded, the corrections OðNcÞ and
OðN0

cÞ to the matrix elements in S ¼ 1=2 and 3=2 baryons
due to the counterterms are as expected Oðp2Þ, i.e.,
proportional to quark masses. On the other hand the terms
independent of quark masses are Oð1=NcÞ, i.e., spin
symmetry breaking is suppressed byOð1=N2

cÞ with respect
to the leading order, as it was noted long ago [72]. This
indicates that the effects of spin-symmetry breaking are
more suppressed than the SUð3Þ symmetry breaking ones
[32,33,73]. It is important to note that at tree level NNLO
the axial couplings satisfy some Nc independent relations.
For the case of ΔY ¼ 0 couplings within the baryon octet
and decuplet, in the I ¼ 1 case the first relation below
follows, and in the I ¼ 0 (η channel) case there are GMO
and ES relations, namely:�
gA
gV

�
πΔ

þ 3

5

�
gA
gV

�
πΞ�

−
8

5

�
gA
gV

�
πΣ�

¼ 0

2ðgηNA þ gηΞA Þ − 3gηΛA − gηΛA ¼ 0

gηΣ
�

A − gηΔA ¼ gηΞ
�

A − gηΣ
�

A ¼ gηΩA − gηΞ
�

A ð42Þ

These relations are only violated by finite nonanalytic
terms. Additional relations are straightforward to derive for
other couplings, such as those involving the ΔY ¼ �1 and
the octet to decuplet off diagonal ones. Such relations will
be a good tool to check results obtained in LQCD
calculations of the axial couplings.
At LO and using ðgAgVÞπN ¼ 1.267� 0.004 for the

nucleon, it follows that ðgAgVÞKNΛ ¼ 0.760, ðgAgVÞKNΣ ¼
−0.253, and ðgAgVÞKΣΞ ¼ ðgAgVÞπN , to be compared with the
ones obtained from semileptonic hyperon decays [74]
0.718� 0.015, −0.340� 0.017 and 1.32� 0.20, respec-
tively. The NLO SUð3Þ breaking corrections are evidently
necessary. On the other hand, the coupling gNΔ

A is at LO
equal to gA, while its phenomenological value extracted
from the width of the Δ assuming a vanishing GTD is equal
to 1.235� 0.011 [34,35], which shows a remarkably small
breaking of the spin-symmetry. This seems to be in line
with what was discussed above, namely that spin symmetry
breaking is suppressed with respect to SUð3Þ breaking by

one extra order in 1=Nc. In the following subsections, the
results for the axial couplings are confronted with recent
LQCD calculations.

A. Fits to LQCD results

While LQCD calculations of the axial coupling of
the nucleon have a long history, calculations involving
hyperons and including the decuplet baryons are very
recent. Indeed, the first such calculations were carried
out by C. Alexandrou et al. [55], where the axial couplings
associated with the two neutral ΔS ¼ 0 currents for
transitions within the octet and within the decuplet baryons
were obtained. They used a twisted mass Wilson action
adapted to 2þ 1þ 1 flavors (the calculation includes
charmed baryons). The results in [55] show the a similar
recurring issue in LQCD calculations of the nucleon’s axial
coupling, which turn out to be from 5% to 10% smaller than
the physical value. Recent calculations of gNA have been
able to give consistent results [75], but those calculations
are still missing for hyperons and the baryon decuplet.
In this subsection, the results [55], are fitted with the

effective theory. The LECs that can be fitted with these
results are g

∘
A; δg

∘
A (which is a 1=Nc correction to g

∘
A and

needed for a counterterm), and CA
1;3; D

A
1;2;3. Using the

definition of couplings in Eq. (37), the results shown
above for the UV divergencies of the one-loop contribu-
tions imply that δgaBB

0
A ðUVdivÞ=gaBB0

A ¼ OðCHF=NcÞ þ
Oðmq=NcÞ. At LO, gaBB

0
A ¼ gNA ¼ 1.267� 0.004. The

relations between the couplings gaBB
0

A and the ones dis-
played in [55] are the following,

hB8jAi¼03jB8i ¼
1

2
gB8

A

hB10jAi¼03jB10i ¼
1

6
gB10

A

hB8jAi¼08jB8i ¼
1

2
ffiffiffi
3

p gB8

8

hB10jAi¼08jB10i ¼
1

6
ffiffiffi
3

p gB10

8 ; ð43Þ

where B8;10 is an octet (decuplet) baryon with spin
projection þ1=2, and the couplings on the RHS are those
used in [55] and displayed in Tables IV and V of that
reference. The LQCD results are given for several values of
Mπ by keeping ms approximately fixed. The values of Mπ

for the different cases are given in Table I of [55], and the
correspondingMK is determined using the physical masses
by the LO relation:M2

K ¼MK
2
physþ 1

2
ðM2

π −Mπ
2
physÞ, which

corresponds to keeping ms fixed. While for general Nc, the
nine terms associated with the LECs in Table IVare linearly
independent, at Nc ¼ 3, the term associated with CA

2

becomes linearly dependent with the LO term, and thus

its effects are absorbed into δg
∘
A. In the case of the LQCD
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results being fitted here, there is an additional linear
dependency, namely that of the term CA

4 which becomes
linearly dependent with the term CA

3 . So the fit will involve

seven NLO LECs in addition to g
∘
A. The results of the fits

are shown in Table V. The LO fit, which involves only

fitting the LO value of g
∘
A, shows a remarkably good

approximation to the full set of the LQCD results. This is
clearly aided by the very small dependency on Mπ of the
LQCD results. It also shows the very good approximate
spin-flavor symmetry that relates axial couplings in the
octet and decuplet. The LO fit implies that gNA ¼ 1.13 for
the physical pion mass. A fit where only tree contributions
are included up to the NNLO gives a very precise
description of the LQCD results. Indeed, turning off some
of the LECs as indicated in Table V provides a consistent
fit, and corresponds in this case to gNA ¼ 1.15. Note that in

this case δg
∘
A, which is required to cancel an UV divergency

proportional to the leading term, can be turned off, as it is
only required when the loop contributions are included.
The full NLO fit is more complicated. Although the

implemented consistency with the 1=Nc expansion gives an
important reduction of the nonanalytic contributions, these
are still significant. The most significant issue in this case

becomes the determination of the LO g
∘
A. If it is used as a

fitting parameter, then the fit naturally drives it down to
small values, suppressing the nonanalytic contributions.
Such a situation is unrealistic, and therefore an strategy is
needed. The problem originates in the need to renormalize

g
∘
A, as there is an UV divergency proportional to the LO

term of the axial current. This is performed using δg
∘
A,

which is suppressed by one power in 1=Nc with respect to

g
∘
A. Fixing both the LO g

∘
A and the counterterm would thus

require information at different values of Nc, which is not

accessible at present. One possible approach is to fix g
∘
A to

the value obtained with the LO fit, and then fit the higher-
order LECs. This however fails because the resulting fit has
too large a χ2. Another strategy is to input several different

values of g
∘
A, and determine an approximate range for it

based of obtaining a χ2 that is acceptable. Finally, a
different strategy can be used involving additional observ-

ables: for instance, as mentioned earlier, the value for g
∘
A

could be obtained by matching to ΔGMO, giving a value for

g
∘
A=Fπ , which in ΔGMO should be taken at LO. In that case,

and in the physical case one obtains g
∘
A ∼ 1.15 when

Fπ ¼ 93 MeV. This however cannot be used for the
present LQCD results, because they have the mentioned
issue of extrapolating to too low of a value for gNA at the
physical point. In that case a correspondingly smaller value

should be used, namely g
∘
A ∼ 1.05 or so. The NLO fit with

such an input for g
∘
A is almost consistent, and is shown in

Table V for three different input values. The extrapolation
of those fits to the physical Mπ give a rather low value,
gNA ∼ 0.97. This value is increased if only the LQCD results
in [55] for the nucleon are included, namely gNA ∼ 1.05. The
effective theory is also checked to fit the most recent results
on gNA [75], where the LQCD result agrees with the physical
value. Clearly, it is necessary to await additional lattice
calculations of the octet and decuplet axial couplings in
order to have a thorough test of the effective theory vis-á-
vis LQCD.
Ultimately, in order to have the LECs in BChPT × 1=Nc

fully determined, a global analysis involving LQCD
calculations of a complete set of observables is necessary.
This requires the LQCD determination of the quark mass
dependencies of the observables, and also the possibility of
results for different values of Nc, which is a more difficult
task, but which has already been initiated with the baryon
masses for two flavors [58], and which has been analyzed
with the effective theory [59].

VI. SUMMARY

Chiral symmetry and the expansion in 1=Nc are two
fundamental aspects of QCD. The former is known to play
a crucial role in light hadrons, and there are multiple
indications that the latter is also important, in particular for
baryons. In the context of effective theories, it is therefore
crucial to incorporate those two aspects of QCD consis-
tently. This is possible with the combined chiral and 1=Nc
expansions. In the present work that framework for baryons
in SUð3Þ was implemented using the ξ-expansion. The
renormalization to one-loop for baryon masses and currents
were presented for generic Nc, and LQCD results for
masses and axial couplings were analyzed. This work

TABLE V. LECs obtained by fitting to the LQCD results presented in Tables IVand Vof Ref. [55]. The results correspond to making
the choices Λ ¼ μ ¼ mρ. In the NLO full fits CHF ¼ 250 MeV, and g

∘
A is given as input, displaying fits for three different values.

Fit χ2dof g
∘
A δg

∘
A

CA
1 CA

2 CA
3 CA

4 DA
1 DA

2 DA
3 DA

4

LO 3.9 1.35 ... ... ... ... ... ... ... ... ...
NLO Tree 0.91 1.42 ... −0.18 ... ... ... ... 0.009 ... ...
NLO Full 1.08 1.02 0.15 −1.11 0. 1.08 0. −0.56 −0.02 −0.08 0.

1.13 1.04 0.08 −1.17 0. 1.15 0. −0.59 −0.02 −0.09 0.
1.19 1.06 0. −1.23 0. 1.21 0. −0.62 −0.03 −0.09 0.
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serves as a basis for further applications, where it is
expected that the improved convergence of the effective
theory will have a significant impact, which should be
particularly important in the case of three flavors.
In the case of three flavors, there are numerous parameter

free relations that hold at tree level NNLO in the ξ
expansion, such as GMO, ES, and various other relations
for σ terms and axial couplings. Those relations have
calculable corrections given solely by the nonanalytic loop
contributions, thus providing useful tests for the accuracy
of the effective theory and also serving as control tests of
LQCD results through those same relations.
It is important to emphasize the importance of the

decuplet in the effective theory, which has a key role in
taming the nonanalytic contributions and thus improving
the convergence, as it is clearly manifested in particular in
the axial couplings. This improvement in the behavior of
the effective theory when it is made consistent with the
1=Nc expansion permeates other observables, such as the
mass relations and vector charges, as well as virtually any
other observable, such as in pion-nucleon scattering, in
Compton scattering, etc.
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APPENDIX A: SPIN-FLAVOR ALGEBRA AND
OPERATOR BASES

The 4N2
f − 1 generators of the spin-flavor group

SUð2NfÞ consist of the three spin generators Si, the
N2

f − 1 flavor SUðNfÞ generators Ta, and the remaining

3ðN2
f − 1Þ spin-flavor generators Gia. The commutation

relations are

½Si; Sj� ¼ iϵijkSk; ½Ta; Tb� ¼ ifabcTc; ½Ta; Si� ¼ 0;

½Si; Gja� ¼ iϵijkGka; ½Ta; Gib� ¼ ifabcGic;

½Gia; Gjb� ¼ i
4
δijfabcTc þ i

2Nf
δabϵijkSk þ i

2
ϵijkdabcGkc:

ðA1Þ

In representations with Nc indices (baryons), the gen-
erators Gia have matrix elements OðNcÞ on states with
S ¼ OðN0

cÞ. A contracted SUð6Þ algebra is defined by the
generators fSi; Ia; Xiag, where Xia ¼ Gia=Nc. In large Nc,
the generators Xia become semiclassical as ½Xia; Xjb� ¼
Oð1=NcÞ, and have matrix elements Oð1Þ between
baryons.
The symmetric irreducible representation of SUð6Þ

with Nc Young boxes decomposes into the following
SUð2Þspin ×SUð3Þ irreducible representations: ½S;ðp;qÞ� ¼
½S;ð2S;1

2
ðNc−2SÞÞ�, S ¼ 1=2;…; Nc=2 (assumed Nc is

odd). The baryon states are then denoted by jSS3; YII3i.
Clearly the spin S of the baryons determines its SUð3Þ
irreducible representation.
Some useful details about the contents of SUð3Þ mul-

tiplets are in order. For a given irreducible representation
ðp; qÞ, the range of hypercharge is

Yminðp;qÞ ¼ −
2pþ q

3
≤ Y ≤ Ymaxðp;qÞ ¼

pþ 2q
3

ðA2Þ

Defining:

Ȳðp; qÞ ¼ Ymaxðp; qÞ − q

Ȳ 0ðp; qÞ ¼ Yminðp; qÞ þ q; ðA3Þ

where Ȳ > Ȳ 0 if p > q, and viceversa. The possible isospin
values for a given Y are as follows:

if p ≥ q∶ IðYÞ ¼

8>><>>:
if Y ≥ Ȳ∶ 1

2
ðp − Ymax þ YÞ;…; 1

2
ðpþ Ymax − YÞ

if Ȳ 0 ≤ Y < Ȳ∶ 1
2
ðp − Ymax þ YÞ;…; 1

2
ðpþ Ymax þ Y − 2ȲÞ

if Ymin ≤ Y < Ȳ 0∶ 1
2
ðqþ Ymin − YÞ;…; 1

2
ðqþ Y − YminÞ

if q ≥ p∶ IðYÞ ¼

8>><>>:
if Y ≥ Ȳ 0∶ 1

2
ðp − Ymax þ YÞ;…; 1

2
ðpþ Ymax − YÞ

if Ȳ ≤ Y < Ȳ 0∶ 1
2
ðpþ 2Ȳ 0 − Ymax − YÞ;…; 1

2
ðpþ Ymax − YÞ

if Ymin ≤ Y < Ȳ∶ 1
2
ðqþ Ymin − YÞ;…; 1

2
ðqþ Y − YminÞ
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1. Matrix elements of spin-flavor generators

The SUð6Þ algebra involved in the calculations is quite
lengthy and laborious, and therefore it is useful to provide
basic details that are of help in implementing it. Here the
matrix elements of the SUð6Þ generators are summarized.
Detailed presentations are given in Refs. [64,76]. In general

the matrix elements of a SUð2Þspin × SUð3Þ tensor operator
between baryons of the form jSS3; RYII3i, where R is the
irreducible representation of SUð3Þ to which the state
belongs, will be given according to the Wigner-Eckart
theorem in terms of reduced matrix elements and Clebsch-
Gordan coefficients as follows:

hS0S03; R0Y 0I0I03jOll3
R̃ Ỹ Ĩ Ĩ3

jSS3; RYII3i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2S0 þ 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

dimR0p hSS3;ll3jS0S03i

×
X
γ

hS0; R0jjOl
R̃
jjS; Riγ

�
R R̃

YII3 Ỹ Ĩ Ĩ3

���� R0

Y 0I0I03

	
γ

; ðA4Þ

where for R0 ¼ ðp; qÞ, dimðR0Þ ¼ 1
2
ðpþ 1Þðqþ 1Þð2þ pþ qÞ, and γ is a multiplicity index associated to R0 when the

SUð3Þ Clebsch-Gordan series of the direct product R ⊗ R̃ → R0 contains R0 more than once. Matrix elements of the spin-
flavor generators between baryon states in the spin-flavor symmetric representation are then given by

hS0S03; Y 0I0I03jSmjSS3; YII3i ¼ δSS0δYY 0δII0δI3I03

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þ

p
hSS3; 1mjS0S03i

hS0S03; Y 0I0I03jTyii3 jSS3; YII3i ¼ δSS0δS3S03
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimð2S; 1
2
ðNc − 2SÞÞ

q hSjjTjjSi

×

� ð2S; 1
2
ðNc − 2SÞÞ ð1; 1Þ
YII3 yii3

���� ð2S; 12 ðNc − 2SÞÞ
Y 0I0I03

	
γ¼1

hS0S03; Y 0I0I03jGm;yii3 jSS3; YII3i ¼
hSS3; 1mjS0S03iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2S0 þ 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimð2S; 1
2
ðNc − 2SÞÞ

q
×
X
γ¼1;2

hS0jjGjjSiγ
� ð2S; 1

2
ðNc − 2SÞÞ ð1; 1Þ
YII3 yii3

���� ð2S; 12 ðNc − 2SÞÞ
Y 0I0I03

	
γ

ðA5Þ

In the conventions of Ref. [64], for states ðp ¼ 2S; q ¼ 1
2
ðNc − 2SÞ, the reduced matrix elements of the SUð6Þ generators

read [64]:

hS0jjTjjSi ¼ δSS0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Sþ 1ÞðNc − 2Sþ 2ÞðNc þ 2Sþ 4ÞðNcðNc þ 6Þ þ 12SðSþ 1ÞÞp
4
ffiffiffi
6

p

hS0jjGjjSiγ¼1 ¼

8>>>>><>>>>>:
if S ¼ S0 þ 1∶ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4S2−1ÞððNcþ2Þ2−4S2ÞððNcþ4Þ2−4S2Þ

p
8
ffiffi
2

p

if S ¼ S0 − 1∶ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4SðSþ2Þþ3ÞðNc−2SÞðNc−2Sþ2ÞðNcþ2Sþ4ÞðNcþ2Sþ6Þ

p
8
ffiffi
2

p

if S ¼ S0∶ ðNcþ3Þð2Sþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ1ÞðNc−2Sþ2ÞðNcþ2Sþ4Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6NcðNcþ6Þþ12SðSþ1Þ

p

hS0jjGjjSiγ¼2 ¼ −δSS0
ð2Sþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNc − 2SÞðNc þ 2Sþ 6ÞððNc þ 2Þ2 − 4S2ÞððNc þ 4Þ2 − 4S2Þ

p
8
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcðNc þ 6Þ þ 12SðSþ 1Þp ðA6Þ

In the case of the generators G and T, γ ¼ 1, 2 because R0 appears twice in the Clebsch Gordan series of R ⊗ R̄ → R0

when R ¼ R0 ¼ ðp; qÞ and R̄ ¼ ð1; 1Þ. In the case of T, the matrix element for γ ¼ 2 vanishes by definition.

2. Bases of spin-flavor composite operators

Here the bases of 2- and 3-body spin-flavor operators along with important operator relations relevant to this work
are given.
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There are operator relations which are valid for matrix
elements in the symmetric irreducible representation of
SUð6Þ. The first ones are relations for 2-body operators
[57], and are shown in Table VI. The relations in Ref. [57]
are for general Nf, and the correspondence for Nf ¼ 3

given here is as follows (left Ref. [57], right Table VI):
0 → 1, s̄s → 27, āsþ s̄a → 10þ 10, while there is no
term āa for Nf ¼ 3.
The following identities follow from Table VI, namely

from the (0, 1) relations:

Ĝ2 ¼ 1

4

�
3

4
NcðNc þ 6Þ − 5

3
S2
�

T̂2 ¼ 1

4

�
NcðNc þ 6Þ

3
þ 4Ŝ2

�
; ðA7Þ

from the (0, 8) relations:

dabcfGib; Gicg ¼ 3

4
ðNc þ 3ÞTa −

7

6
fSi; Giag

dabcfTb; Tcg ¼ −
ðNc þ 3Þ

3
Ta þ 2fSi; Giag; ðA8Þ

and from the (1, 8) relations:

ϵijkfabcfGia;Gjbg¼ ðSkTc− ðNcþ3ÞGkcÞ

dabcfTa;Gibg¼ 2dabcTaGib¼ 1

3
ðSiTcþðNcþ3ÞGicÞ

fabcfTb;Gicg¼ ϵijkfSj;Gkag; ðA9Þ

while the rest of the identities are explicit in
Table VI. Making use of these relations, the basis
of 2-body operators can be chosen to be as shown in
Table VII:
Making use of the basis of 2-body operators, some

lengthy work leads to building the basis of 3-body
operators with l ¼ 0, 1. That basis is displayed in
Table VIII:

TABLE VI. 2-body identities for the SUð6Þ generators acting on the irreducible representation ðNc; 0; 0; 0; 0; 0Þ.
Relation SUð2Þspin × SUð3Þ
2Ŝ2 þ 3T̂2 þ 12Ĝ2 ¼ 5

2
NcðNc þ 6Þ ðl ¼ 0; 1Þ

dabcfGia; Gibg þ 2
3
fSi; Gicg þ 1

4
dabcfTa; Tbg ¼ 2

3
ðNc þ 3ÞTc (0, 8)

fTa;Giag ¼ 2
3
ðNc þ 3ÞSi (1, 1)

1
3
fSi; Tag þ dabcfTb;Gicg − ϵijkfabcfGjb; Gkcg ¼ 4

3
ðNc þ 3ÞGia (1, 8)

−12Ĝ2 þ 27T̂2 − 32Ŝ2 ¼ 0 (0, 1)
dabcfGib; Gicg þ 9

4
dabcfTb; Tcg − 10

3
fSi; Giag (0, 8)

4fGia; Gibg27 ¼ fTa; Tbg27 (0, 27)
dabcfTb;Gicg ¼ 1

3
ðfSi; Tag − ϵijkfabcfGjb; GkcgÞ (1, 8)

ϵijkfGja; Gkbg10þ10 ¼ ðfacddbcefTd; GiegÞ10þ10 (1, 10þ 10)

fGia; Gjagl¼2 ¼ 1
3
fSi; Sjgl¼2 (2, 1)

dabcfGia; Gjbgl¼2 ¼ 1
3
fSi; Gjagl¼2 (2, 8)

TABLE VII. 2-body basis operators.

2-body operator ðl;RÞ
Ŝ2 (0, 1)
fSi; Sjgl¼2 (2, 1)
fSi; Tag (1, 8)
fSi; Giag (0, 8)
ϵijkfSj; Gkag (1, 8)
fSi; Gjagl¼2 (2, 8)

fTa;Gibg10þ10 (1, 10þ 10)

fTa; Tbg27 (0, 27)
fGia; Gjbgð2;27Þ (2, 27)
fTa;Gibg27 (1, 27)

TABLE VIII. Operators of interest in the 3-body basis up to
l ¼ 1.

3-body operator ðl;RÞ
TaŜ2 (0, 8)

fTa; fSi; Gibgg10þ10 (0, 10þ 10)

fTa; fSi; Gibgg27 (0, 27)
SiŜ2 (1, 1)
fTa; fTb; Tcg27g (0, 8 ⊗ 27)
SifTa; Tbg27 (1, 27)
fSj; fGia; Gjbgð2;27Þg (1, 27)

fŜ2; Giag (1,8)

ϵijkfSj; fTa; Gkbgg10þ10 (1, 10þ 10)

ϵijkfSj; fTa; Gkbgg27 (1, 27)
fGia; fTb; Tcg27g (1, 8 ⊗ 27)
fGia; fSj; Gjbgg (1, 8 ⊗ 8)
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APPENDIX B: BUILDING BLOCKS FOR THE
EFFECTIVE LAGRANGIANS

In the symmetric representations of SUð6Þ the baryon
spin-flavor multiplet consists of the baryon states in the
SUð3Þ irreducible representations ðp¼2S;q¼ 1

2
ðNc−2SÞÞ,

where S is the baryon spin. This permits a straightforward
implementation of the nonlinear realization of chiral
SULð3Þ × SURð3Þ on the spin-flavor multiplet. The baryon
spin-flavor multiplet is given by the field B, where the
components of the field have well defined spin, and
therefore also are in irreducible representations of SUð3Þ.
Defining as usual the Goldstone boson fields πa,

a ¼ 1;…; 8, through the unitary parametrization u ¼
expði πaTa

Fπ
Þ (note that in the fundamental representation

Ta ¼ λa=2, with λa the Gell-Mann matrices), for any
isospin representation one defines a nonlinear realization
of chiral symmetry according to [3,4]:

ðL;RÞ∶ u ¼ u0 ¼ Ruh†ðL;R; uÞ ¼ hðL; R; uÞuL†; ðB1Þ

where ðL; RÞ is a SULð3Þ × SURð3Þ transformation. This
equation defines h, and since h is a SUð3Þ transformation
itself, it can be written as h ¼ expðicaTaÞ. The chiral
transformation on the baryon multiplet B is then given by

ðL;RÞ∶ B ¼ B0 ¼ hðL;R; uÞB: ðB2Þ

On the other hand, spin-flavor transformations of interest
are the contracted ones, namely those generated by
fSi; Ia; Xia ¼ 1

Nc
Giag. While the isospin transformations

act on the pion fields in the usual way, and the spin
transformations must be perfomed along with the corre-
sponding spatial rotations. The transformations generated
by Xia are defined to only act on the baryons.
The effective baryon Lagrangian can be expressed in the

usual way as a series of terms which are SULð3Þ × SURð3Þ
invariant (upon introduction of appropriate sources; see for
instance [77] for details). The fields in the effective
Lagrangian are the Goldstone bosons parametrized by
the unitary SUð3Þ matrix field u and the baryons given
by the symmetric SUð6Þ multiplet B.
The building blocks for the effective theory consist of

low-energy operators composed in terms of the GB fields,
derivatives and sources (chiral tensors), and spin-flavor
composite operators (spin-flavor tensors).

The low-energy operators are the usual ones, namely,

Dμ ¼ ∂μ − iΓμ;

Γμ ¼ Γ†
μ ¼ 1

2
ðu†ði∂μ þ rμÞuþ uði∂μ þ lμÞu†Þ;

uμ ¼ u†μ ¼ u†ði∂μ þ rμÞu − uði∂μ þ lμÞu†;
χ ¼ 2B0ðsþ ipÞ; χ� ¼ u†χu† � uχ†u;

Fμν
L ¼ ∂μlν − ∂νlμ − i½lμ;lν�;

Fμν
R ¼ ∂μrν − ∂νrμ − i½rμ; rν�; ðB3Þ

where Dμ is the chiral covariant derivative, s and p are
scalar and pseudoscalar sources, and lμ and rμ are gauge
sources. It is convenient to define the SUð3Þ singlet and
octet components of χ� using the fundamental SUð3Þ
irreducible representation, namely:

χ0� ¼ 1

3
hχ�i

χ̃� ¼ χ� − χ0� ¼ χ̃a�
λa

2
ðB4Þ

FIG. 5. Interaction vertices from the LO Lagrangians.M is the
quark mass matrix.

P
σ indicates sum over the corresponding

permutations.
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Displaying explicitly the quark masses,

χþ ¼ 4B0Mq þ � � � : ðB5Þ

The three quark mass combinations, namely SUð3Þ singlet,
isosinglet, and isotriplet are, respectively, defined to be

m0 ¼ 1

3
ðmu þmd þmsÞ; m8 ¼ 1ffiffiffi

3
p ðmu þmd − 2msÞ;

m3 ≡ ðmu −mdÞ: ðB6Þ

The spin-flavor operators were discussed in Appendix A.
The leading-order equations of motion are used in the

construction of the higher-order terms in the Lagrangian,
namely, iD0B¼ðCHF

Nc
SðSþ1Þþ c1

2Λ χ̂þÞB, and ∇μuμ ¼ i
2
χ−.

1. Interaction vertices and currents at LO

The interaction vertices and the currents derived from the
LO Lagrangian and needed for the one-loop calculations
are given here for convenience. The interactions are
depicted in Fig. 5, the vector currents in Fig. 6 and the
axial-vector currents in Fig. 7.

APPENDIX C: LOOP INTEGRALS

The one-loop integrals needed in this work are provided here. The definition gddk≡ ddk=ð2πÞd is used.
The scalar and tensor one-loop integrals are

Iðn; α;ΛÞ≡
Z gddk k2n

ðk2 − Λ2Þα ¼ ið−1Þn−α 1

ð4πÞd2
Γðnþ d

2
ÞΓðα − n − d

2
Þ

Γðd
2
ÞΓðαÞ ðΛ2Þn−αþd

2

Iμ1;…;μ2nðα;ΛÞ≡
Z gddk kμ1 � � � kμ2nðk2 − Λ2Þα ¼ ið−1Þn−α 1

ð4πÞd2
1

4nn!

Γðα − n − d
2
Þ

ΓðαÞ ðΛ2Þn−αþd
2 ×
X
σ

gμσ1μσ2 � � � gμσ2n−1μσ2n

¼ 1

4nn!

Γðd
2
Þ

Γðnþ d
2
Þ Iðn; α;ΛÞ

X
σ

gμσ1μσ2 � � � gμσ2n−1μσ2n ; ðC1Þ

where σ are the permutations of f1;…; 2ng.
The Feynman parametrizations needed when heavy propagators are in the loop are as follows:

1

A1 � � �AmB1 � � �Bn
¼ 2mΓðmþ nÞ

Z
∞

0

dλ1 � � � dλm
Z

1

0

dα1 � � � dαnδð1 − α1 − � � � − αnÞ

×
1

ð2λ1A1 þ � � � þ 2λmAm þ α1B1 þ � � � þ αnBnÞmþn ; ðC2Þ

where the Ai are heavy particle static propagators denominators, and the Bi are relativistic ones.

FIG. 6. Vertices involving the vector currents from the LO
Lagrangians.

FIG. 7. Vertices involving the axial-vector currents from the LO
Lagrangians.
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The integration over a Feynman parameter λ is of the general form:

JðC0; C1; λ0; d; νÞ≡
Z

∞

0

ðC0 þ C1ðλ − λ0Þ2Þ−νþd
2dλ; ðC3Þ

which satisfies the recurrence relation:

JðC0; C1; λ0; d; νÞ ¼
−λ0ðC0 þ C1λ

2
0Þ1−νþ

d
2 þ ð3þ d − 2νÞJðC0; C1; λ0; d; ν − 1Þ
ðd − 2νþ 2ÞC0

JðC0; C1; λ0; d; νÞ ¼ C0

d − ν

d − 2νþ 1
JðC0; C1; λ0; d; νþ 1Þ þ λ0

d − 2νþ 1
ðC0 þ C1λ

2
0Þ

d
2
−ν: ðC4Þ

Integrals with factors of λ in the numerator are obtained by using

JðC0; C1; λ0; d; ν; n ¼ 1Þ≡
Z

∞

0

ðλ − λ0Þn¼1ðC0 þ C1ðλ − λ0Þ2Þ−νþd
2dλ

¼ −
1

2C1ðd2 þ 1 − νÞ ðC0 þ C1λ
2
0Þ

d
2
þ1−ν; ðC5Þ

and the recurrence relations

JðC0; C1; λ0; d; ν; nÞ ¼
1

C1

ðJðC0; C1; λ0; d; ν − 1; n − 1Þ − C0JðC0; C1; λ0; d; ν; n − 2ÞÞ: ðC6Þ

For convenience, in some of the calculations for the currents, the following integral is defined:

J̃ðC0; C1; λ0; d; ν; nÞ≡ JðC0; C1; λ0; d; ν; nÞ þ λ0JðC0; C1; λ0; d; νÞ ðC7Þ

For the calculations in this work, the following integrals are needed at d ¼ 4 − 2ϵ:

JðC0; C1; λ0; d; 3Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
C0C1

p
 
π

2
þ arctan

 
λ0

ffiffiffiffiffiffi
C1

C0

s !!

JðC0; C1; λ0; d; 2Þ ¼
1

d − 3
ðλ0ðC0 þ C1λ

2
0Þ

d
2
−2 þ ðd − 4ÞC0JðC0; C1; λ0; d; 3ÞÞ

JðC0; C1; λ0; d; 1Þ ¼
1

d − 1
ðλ0ðC0 þ C1λ

2
0Þ

d
2
−1 þ ðd − 2ÞJðC0; C1; λ0; d; 2ÞÞ ðC8Þ

1. Specific integrals

Here a summary of relevant one-loop integrals for the calculations in thiswork is provided for the convenience of the reader.
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(1) Loop integrals involving only relativistic propagators

Ið0; 1;MÞ ¼ −
i

ð4πÞd2 Γ
�
1 −

d
2

�
Md−2

Ið0; 2;MÞ ¼ i

ð4πÞd2 Γ
�
2 −

d
2

�
Md−4

Ið1; 1;MÞ ¼ i

ð4πÞd2
d
2
Γ
�
−
d
2

�
Md

Ið1; 2;MÞ ¼ −
i

ð4πÞd2
d
2
Γ
�
1 −

d
2

�
Md−2

Kðq;Ma;MbÞ≡
Z gddk 1

ðk2 −M2
a þ iϵÞððkþ qÞ2 −M2

b þ iϵÞ ¼
Z

1

0

dαIð0; 2;ΛðαÞÞ

Kμðq;Ma;MbÞ≡
Z gddk kμ

ðk2 −M2
a þ iϵÞððkþ qÞ2 −M2

b þ iϵÞ ¼
Z

1

0

dαðα − 1ÞqμIð0; 2;ΛðαÞÞ

Kμνðq;Ma;MbÞ≡
Z gddk kμkν

ðk2 −M2
a þ iϵÞððkþ qÞ2 −M2

b þ iϵÞ

¼
Z

1

0

dα

�
ð1 − αÞ2qμqνIð0; 2;ΛðαÞÞ þ gμν

d
Ið1; 2;ΛðαÞÞ

�
; ðC9Þ

where:

ΛðαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αM2

a þ ð1 − αÞM2
b − αð1 − αÞq2

q
(2) Loop integrals involving one heavy propagator

Hðp0;MÞ≡
Z gddk 1

ðp0 − k0 þ iϵÞðk2 −M2 þ iϵÞ

¼ 2i

ð4πÞd2 Γ
�
2 −

d
2

�
JðM2 − p02 ; 1; p0; d; 2Þ

Hijðp0;MÞ≡
Z gddk kikj

ðp0 − k0 þ iϵÞðk2 −M2 þ iϵÞ

¼ −
i

ð4πÞd2 g
ijΓ
�
1 −

d
2

�
JðM2 − p02 ; 1; p0; d; 1Þ

Hijμðp0;Ma;Mb; qÞ≡
Z gddk kiðkþ qÞjð2kþ qÞμ

ðp0 − k0 þ iϵÞðk2 −M2
a þ iϵÞððkþ qÞ2 −M2

b þ iϵÞ

¼ i
4

ð4πÞd2
Z

1

0

dα

�
−
1

2
Γ
�
3 −

d
2

�
qiqjαð1 − αÞ

× ðð1 − 2αÞqμJðC0; C1; λ0; d; 3Þ − 2gμ0J̃ðC0; C1; λ0; d; 3; 1ÞÞ

þ Γ
�
2 −

d
2

�
ðð−ð1 − 2αÞgijqμ þ 2ðαgμiqj − ð1 − αÞgμjqiÞÞJðC0; C1; λ0; d; 2Þ

þ 2gijgμ0J̃ðC0; C1; λ0; d; 2; 1ÞÞ
�
; ðC10Þ

where:
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C0 ¼ αM2
a þ ð1 − αÞM2

b − p02 − 2ð1 − αÞp0q0 − ð1 − αÞðαq2 þ ð1 − αÞq02Þ
C1 ¼ 1

λ0 ¼ p0 þ ð1 − αÞq0: ðC11Þ

The polynomial pieces of the integrals are as follows:

Hðp0;MÞpoly ¼ i
ð4πÞ2 2p

0ðλϵ þ 2Þ

Hijðp0;MÞpoly ¼ i
ð4πÞ2

p0

3

�
ð3M2 − 2p02Þλϵ þ 7M2 −

16

3
p02
�

Hij0ðp0;Ma;Mb; qÞpoly ¼
i

6ð4πÞ2 ðð2q
iqj þ q2gijÞλϵ þ q2gij − 3ðλϵ þ 1ÞðM2

a þM2
bÞgij

þ 3ðλϵ þ 2Þð2p0 þ q0Þ2gijÞ; ðC12Þ

where the UV divergency is given by the terms proportional to λϵ ≡ 1=ϵ − γ þ log 4π, where d ¼ 4 − 2ϵ.

APPENDIX D: USEFUL OPERATOR REDUCTIONS

The reductions of multi-body spin-flavor operators which appear in the polynomial contributions of the one-loop
corrections to the self-energy and the currents require some lengthy work, and are therefore provided here. The reductions
are only valid for matrix elements between states in the totally symmetric irreducible representation of SUð6Þ. In the
following δm̂ contains only the hyperfine term.
(1) Self-energy:

½½δm̂; Gia�; Gia� ¼ CHF

Nc

�
7

2
Ŝ2 −

3

8
NcðNc þ 6Þ

�
½½δm̂; ½δm̂; Gia��; Gia� ¼

�
CHF

Nc

�
2
�
4Ŝ4 − ðNcðNc þ 6Þ − 18ÞŜ2 − 3

2
NcðNc þ 6Þ

�
½½δm̂; ½δm̂; ½δm̂; Gia���; Gia� ¼

�
CHF

Nc

�
3

ð36Ŝ4 − ð5NcðNc þ 6Þ − 36ÞŜ2 − 3NcðNc þ 6ÞÞ

M2
aGiaGia ¼ 2B0

�
m0Ĝ2 þma

�
−

7

24
fSi; Giag þ 3

16
ðNc þ 3ÞTa

��
M2

a½½δm̂; Gia�; Gia� ¼ 4
CHF

Nc
B0

�
8

3
m0Ŝ2 þ 5

12
mafSi; Giag

�
− 4M2

aGiaGia ðD1Þ
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(2) Vector currents:

Gia½δm̂; ½δm̂; Gia�� ¼
�
CHF

Nc

�
2
�
3

4
NcðNc þ 6Þ þ

�
1

2
NcðNc þ 6Þ − 9

�
Ŝ2 − 2Ŝ4

�
½δm̂; Gia�½δm̂; Gia� ¼ −Gia½δm̂; ½δm̂; Gia��

GibTa½δm̂; ½δm̂; Gib�� ¼ −½δm̂; Gib�Ta½δm̂; Gib�

¼
�
CHF

Nc

�
2
�
3ðNc þ 3ÞSiGia

þ
�
3

4
ðNcðNc þ 6Þ − 6Þ þ 1

2
ðNcðNc þ 6Þ − 30ÞŜ2 − 2Ŝ4

�
Ta

�
½½Ta; Gib�; ½δm̂; ½δm̂; Gib��� ¼ −½½Ta; ½δm̂; Gib��; ½δm̂; Gib��

¼ 2½δm̂; Gib�Ta½δm̂; Gib� − fTa; ½δm̂; Gib�½δm̂; Gib�g

fabcfbcdM2
bT

d ¼ 6B0

�
m0Ta þ 1

4
dabcmbTc

�
M2

bG
ibTaGib ¼ 2B0

�
m0

�
Ĝ2 −

9

8

�
Ta þ 1

2
mb

�
1

2
fTa;

3

8
ðNc þ 3ÞTb −

7

24
SiGibg − 3

4
dabcTc

��
M2

b½½Ta; Gib�; Gib� ¼ 9

2
B0

�
m0Ta þ 1

4
mbdabcTc

�
ðD2Þ

(3) Axial-vector currents:

GjbGia½δm̂; ½δm̂; Gjb�� þ H:c: ¼
�
CHF

Nc

�
2
�
3

2
NcðNc þ 6ÞGia þ

�
1

2
NcðNc þ 6Þ − 14

�
fŜ2; Giag

− fŜ2; fŜ2; Giagg þ 3

2
ðNc þ 3ÞSiTa þ 2SiSjGja

�
½δm̂; Gjb�Gia½δm̂; Gjb� ¼

�
CHF

Nc

�
2
�
−
1

2

�
3þ 1

2
NcðNc þ 6Þ

�
Gia

þ 1

2

�
13 −

1

2
NcðNc þ 6Þ

�
fŜ2; Giag þ 1

2
fŜ2; fŜ2; Giagg − 5

4
ðNc þ 3ÞSiTa

�
facdfbcdM2

cGib ¼ 6B0

�
m0δab þ 1

4
mcdabc

�
Gib

M2
bG

jbGiaGjb ¼ 1

2
fGia;M2

bG
jbGjbg − B0

12

�
23m0Gia þmb

�
5

3
δabSi þ 11

4
dabcGic

��
ðD3Þ
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