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Baryon chiral perturbation theory combined with the 1/N, expansion is implemented for three flavors.
Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according
to the &-expansion, in which the 1/N, and the low-energy power countings are linked according to
1/N. = O(€) = O(p). The renormalization to O(£) necessary for the mentioned observables is provided,
along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.
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I. INTRODUCTION

The low-energy effective theory for baryons is a recur-
rent topic in low-energy QCD, which has evolved through
different approaches and improvements. The original
version of baryon chiral perturbation theory (ChPT) [1]
gave rise to different versions of baryon effective field
theories based on effective chiral Lagrangians [2-4],
starting with the relativistic version [5,6] or baryon
ChPT (BChPT), followed by the nonrelativistic version
based in an expansion in the inverse baryon mass [7-10] or
heavy baryon ChPT (HBChPT), and by manifestly Lorentz
covariant versions based on the IR regularization scheme
[11-13], which allow for an explicit implementation of the
low-energy power counting. In all those versions of the
baryon effective theory a consistent low-energy expansion
can be implemented. A key issue, which became apparent
quite early, was the convergence of the low-energy expan-
sion. Being an expansion that progresses in steps of O(p),
in contrast to the expansion in the pure Goldstone boson
sector where the steps are O(p?), it is natural to expect a
slower rate of convergence. However, a key factor affecting
the convergence has to do with the relatively small mass
gap between the spin 1/2 and 3/2 baryons. In the context
of BChPT, it was realized in [14] that the inclusion of the
spin 3/2 degrees of freedom improves the convergence of
the one-loop contributions to certain observables such as
the #-N scattering amplitude and the axial currents and
magnetic moments. There have been since then numerous
works including spin 3/2 baryons [15-24]. The explan-
ation of those improvements was obtained through the
study of baryons in the large N, limit of QCD [25], where
in that limit a dynamical spin-flavor symmetry emerges
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[26-29], which requires the inclusion of the higher spin
baryons in the effective theory and leads to a better behaved
low-energy expansion. In the large N, limit, baryons
behave very differently than mesons [30], in particular
because their masses scale like O(N,) (they are the heavy
sector of QCD) and the z-baryon couplings are O(1/N..).
Those properties were shown to demand, for consistency
with z-baryon scattering at large N, that at large N,
baryons must respect the mentioned dynamical contracted
spin-flavor symmetry SU(2N), N, being the number of
light flavors [26-29], which is broken by effects ordered in
powers of 1/N,. and in powers of the quark mass
differences. The inclusion of the consistency requirements
of the large N, limit into the effective theory came naturally
through a combination of the 1/N_. expansion and
HBChHPT [31], which is the framework followed in the
present work. The study of one-loop corrections in that
framework was first carried out in Refs. [31-33] and more
recently in [34,35]. In the combined theory, the 1/N, and
chiral expansions do not commute [36]: the reason is the
baryon mass splitting scale of O(1/N,.) (A —N mass
difference), for which it becomes necessary to specify its
order in terms of the low-energy expansion. Thus the 1/N ..
and chiral expansions must be linked. Particular emphasis
will be given to the specific linking in which the baryon
mass splitting is taken to be O(p) in the chiral expansion,
and which will be called the &-expansion. Following
Refs. [31-34], in the present work the framework for
HBChHPT x 1/N. is extended to three flavors. The renorm-
alization necessary for the baryon masses, and the vector
charges and axial-vector currents is implemented to one-
loop, i.e., O(£). As it had been done in the case of two
flavors [34], the present work gives all results at generic
values of N, i.e., all formulas presented have been derived
for general N, and therefore detailed analyses of N,
dependencies can be carried out.

© 2018 American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.054010&domain=pdf&date_stamp=2018-03-14
https://doi.org/10.1103/PhysRevD.97.054010
https://doi.org/10.1103/PhysRevD.97.054010
https://doi.org/10.1103/PhysRevD.97.054010
https://doi.org/10.1103/PhysRevD.97.054010

I. P. FERNANDO and J. L. GOITY

PHYS. REV. D 97, 054010 (2018)

The significant progress in lattice QCD (LQCD) calcu-
lations of baryon observables [37-39] provides opportu-
nities for further testing and understanding low-energy
effective theories of baryons, which in turn can serve to
understand the LQCD results themselves. The determina-
tion of the quark mass dependence of the various low-
energy observables, such as masses, axial couplings,
magnetic moments, electromagnetic polarizabilities, etc.,
are of key importance for testing the effective theory, in
particular its range of validity in quark masses, as well as
for the determination of its low-energy constants (LECs).
Lattice results for N and A as well as hyperon masses
[40—48] (results of the last reference are used in the present
work), the axial coupling g, of the nucleon [49-54] and a
subset of the axial couplings of the octet and decuplet
baryons [55] at varying quark masses can be analyzed with
the effective theory, as presented in this work.

This work is organized as follows. In Sec. II, the
framework for the combined 1/N,. and HBChPT expan-
sions is described. Section III presents the evaluation of the
baryon masses to O(&£3), Sec. IV presents the corrections to
the vector charges, and Sec. V the corrections to the axial
couplings. In both Secs. III and V, applications to LQCD
results are presented. Finally, a summary is given in
Sec. VI. Several appendixes present useful material needed
in the calculations, namely, Appendix A on spin-flavor
algebra, Appendix B on tools to build the chiral
Lagrangians, Appendix C on the one-loop integrals, and
Appendix D on reduction formulas of composite operators.

II. COMBINED BARYON CHIRAL
PERTURBATION THEORY AND 1/N. EXPANSION
FOR THREE FLAVORS

In this section, the framework for the combined 1/N,
and chiral expansions in baryons is presented in some detail
along similar lines as in the original works [31-33] and the
more recent work [34,35]. The symmetries that constrain
the effective Lagrangian in the chiral and large N limits are
chiral SU; (N ;) x SUg(N ), which is a Noether symmetry,
and contracted dynamical spin-flavor symmetry SU(2N)
[26—29].1 N is the number of light flavors, where in this
work Ny =3. In the limit N.— oo, the spin-flavor
symmetry requires baryon states to fill degenerate multip-
lets of SU(6). In particular, the ground state (GS) baryons
belong into a symmetric SU(6) multiplet. At finite N, the
spin-flavor symmetry is broken by effects suppressed by
powers of 1/N ., and the mass splittings in the GS multiplet
between the states with spins S 4 1 and § are proportional
o (S+1)/N,.. The effects of finite N, are then imple-
mented as an expansion in 1/N. in the effective
Lagrangian. Because baryon masses are proportional to
N,, it becomes natural to use the framework of HBChPT

'See also Appendix A.

[7,56], where the expansion in inverse powers of the baryon
mass becomes part of the 1 /N . expansion. The framework
used here follows that of Refs. [31,32,34].

The dynamical contracted SU(2N,) symmetry results
from the requirement of large N. consistency of baryon
observables [26—29],2 in particular the requirement that the
Born contribution to the Goldstone boson-baryon (GB-
baryon) scattering amplitude be finite as N. — oo. The
constraint emerges because the GB-baryon coupling is
O(y/N,), and therefore cancellations between crossed
diagrams must occur. The 35 generators of SU(6) and
their commutation relations are the following:

Si: SU(2) spin generators,
T: SU(3) flavor generators,

G spin-flavor generators

[Si, 87 = ieiiksk
[Ta’ Tb] — ifabcTc
[Si, Ta] — O, [Si, Gja] — i€ijkaa, [Ta,Gib] — l'fachic

[Gia,Gjb] — £5ijfdbCTC +£5ab€ijksk —l—ié‘ijkdabCch.
4 6 2
(1)

The generators G'“ have coherent matrix elements, i.e.,
matrix elements that scale as N, between baryons of spin
S = O(N?). These generators are the ones that represent
the spatial components of axial-vector currents at the
leading order in the 1/N, expansion. A contracted
SU(6) symmetry, which is the actual dynamical symmetry
in large N, is generated by the Algebra where G is
replaced by X = G“/N,. The ground state baryons
belong to the totally symmetric spin-flavor irreducible
representation with N, spin-flavor indices, and consist of
states with spin § =1/2,...,N./2 (assuming N, to be
odd). For a given spin S, the corresponding SU(3) multiplet
is (p.q) = (28,3 (N.—25)) in the usual Young tableau
notation. For N, = 3, the states are the physical S = 1/2
octet and S = 3/2 decuplet.

In HBChPT, the baryon field, denoted by B, represents
the spin-flavor multiplet where its components are sorted
out by spin and flavor, that is, the entries in B have well
defined spin, and therefore they are in irreducible repre-
sentations of SU(3).

Implementing chiral symmetry follows the well known
scheme of the nonlinear realization on the matter fields.
Representing the Goldstone boson octet by

u = e T/Fx, (2)

the nonlinear transformation law is implemented,

“See also Appendix A.
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Ruh™(L,R,u) = h(L,R, u)uL", (3)

where L (R) is a transformation of SU;(3) (SUg(3)).
h(L,R, u) is then a SU(3) flavor transformation. One can,
therefore, define the usual chiral transformations on the
baryon fields according to

(L.R): B=h(L,R,u)B, (4)

where obviously the nonlinear transformation /4 acts on the
different components of B with the corresponding SU(3)
irreducible representation. Chiral transformations do not
commute with SU(6), but they leave the commutation
relations unchanged. The chiral covariant derivative D, B is
then given by

D,B=0,B-il,B,
1 . .
r,= 3 (uT(lf)ﬂ +r,)u+u(io, + lﬂ)uT), (5)

where [, = v, —a, and r, = v, + a, are gauge sources.
Another building block is the axial Maurer-Cartan one-
form:

u, = u' (i0, +r,)u—u(id, +1,)u’,
(L,R): u, = h(L,R,u)u,h"(L,R, u). (6)

Both I', and u, belong to the SU(3) Algebra, and are
written in the general form X = X“7T“. When acting on the
different components of the field B, 7¢ is obviously taken
in the corresponding SU(3) irreducible representation.
The scalar and pseudoscalar densities are collected into

x =2By(s+ip)
XY+ = u'I')(u"' + u;ﬂ'u
)((i = <)(i>
Je= 24T (7)
where s and p are the scalar and pseudoscalar sources, and

eventually s is set to be the quark mass matrix.
The field strengths associated with the gauge sources are

FI = v — v — ifem, ),
P = o — 0 — i, 1)
FY = uFPu" £ u"FiTu. (8)

Since contracted SU(6) is not a Noether symmetry,
its role in the effective Lagrangian is to primarily con-
strain couplings. For instance, at the leading order, one
such constraint is that the GB-baryon couplings are

determined by a single coupling ;A. The effective
Lagrangian will be explicitly invariant under rotations

and chiral transformations and the QCD discrete sym-
metries P and 7. The Lagrangian consists of terms which
are the product of tensors containing the GB and source
fields (chiral tensor operators) with terms which are
composite spin-flavor tensor operators built with products
of SU(6) generators. The N, power assigned to a term in
the Lagrangian is determined by the spin-flavor operator
according to N!™", where n is the number of factors of
SU(6) generators involved in the operator. In general, the
chiral tensor operators carry hidden N_. dependencies
through the factors of 1/F, accompanying the GB field
operators, where F, = O(y/N.). Matrix elements of the
spin-flavor operators carry additional N, dependencies, as
is the case of operators where factors of the generators G“
appear, which lead to additional factors of N, in the matrix
elements. Following this approach, the Lagrangian terms
are organized in powers of the chiral and 1/N_. expansions.
The 1/N. expansion naturally leads to the HBChPT
expansion, as the large mass of the expansion is taken to
be the spin-flavor singlet component of the baryon masses,
namely My = N_.mg (my can be considered here to be a
LEC defined in the chiral limit and which will have itself an
expansion in 1/N,).

Bases of spin-flavor tensor operators are built using the
tools in Appendix A, and requires in general lengthy
algebraic work. In the Appendix, only the bases needed
in this work are provided.

In order to ensure the validity of the OZI rule for the
quark mass dependency of baryon masses, namely, that
the nonstrange baryon mass dependence on m; is O(N?),
the following combination of the source y, is defined:

X=X+ +NCXg—’ )

which is O(N,.) but has dependence on m, which is O(N?)
for al states where the strangeness is O(N?).

For convenience, a scale A is introduced, which can be
chosen to be a typical QCD scale, in order to render most of
the LECs dimensionless. In the calculations, A = m,, will
be chosen.

The lowest-order Lagrangian is [31]

, o e Crpg
cy —Bf<iDO+gAume—ﬂsz+iA >B. (10)

N. N

The kinetic term is O(pN?), and the terms involving GBs
(when the vector and axial vector sources are turned off)
start with the Weinberg-Tomozawa term which is
O(p/N,). The second term gives in particular the axial
vector current and the GB-baryon interaction. g, is the axial
coupling in the chiral and large N, limits (it has to be
rescaled by a factor 5/6 to coincide with the usual axial

coupling as defined for the nucleon, i.e., ) = g, = %E}A).
Because the matrix elements of G are O(N.), the

054010-3



I. P. FERNANDO and J. L. GOITY

PHYS. REV. D 97, 054010 (2018)

GB-baryon coupling is O(y/N,). This strong coupling at
large N. demands the constraints of SU(6), which will
allow for N, consistency at higher orders in the effective
theory. The third term gives the SU(3) singlet mass
splittings between baryons of different spins, and it is
O(p°/N.). The fourth term gives the contributions of
quark masses to the baryon masses, it is O(p*N..) and gives

U(3) breaking effects which are O(p?N?). This indicates
a first issue with the interchange of chiral and large N,
limits. As it becomes evident at the NLO due to the
nonanalytic terms of loop corrections, the limits do not
commute, and for that reason it becomes necessary to make
a choice: the choice made here is that 1 /N, is counted as a
quantity of order p: 1/N.= O(p) = O(£), which is
coined as the & expansion. The Lagrangian is now organ-
ized in powers of &. If the N, dependencies of the matrix

elements of the spin-flavor operators are disregarded, 553‘)
is O(&).

The construction of higher-order Lagrangians is accom-
plished making use of the tools provided in Appendixes A

With this, the O(£2) Lagrangian is given by’:

. 1 wi\ =
E(z) — Bf _ 1 D2
B 2N .my AT

CA A
mSzTa
TN, N

c c

1 Wr\ ~ CH
e D2 —2.0
2N g A) 0N

and B. In this work, the Lagrangians of O(¢£2) and O(&)
are needed. Throughout, the spin-flavor operators appear-
ing in the effective Lagrangians will be scaled by the
appropriate powers of 1/N . in such a way that all LECs are
of zeroth order in N.. The 1/N, power of a Lagrangian
term with n, pion fields is given by [57], n — 1 —k + ”7”,
where the spin-flavor operator is n-body (7 is the number of
factors of SU(6) generators appearing in the operator), and
k takes into account the N, dependency of the spin-flavor
matrix elements. The last term, n,/2, stems from the factor
(1/F,)" carried by any term with n, GB fields.
For convenience, the following definitions are used:

. Cupg €14
om = S ——
MENC T oA
iDy = iD — 5. (11)

Note that 6/ gives rise to mass splittings between baryons
which are O(1/N.) or O(p?).

A+

z]k m{S/ Gka}

+ ko€ FY Sk + K €K F GR - pg 08T + py F G

GlaD +

NC N2

ulS'T*D; +

5 V,u8 ST + 7,V,ul G +

v (12)

n

where additional terms not explicitly displayed are not needed in the present work. Note that there are also O(£?) terms
stemming from the 1/N, suppressed terms in the LECs of the lower-order Lagrangian. Similar comments apply to the
higher-order Lagrangians. Such terms require knowledge of the physics at N. > 3 to be determined, which can in principle
be obtained using LQCD results at varying N [58,59].

Similarly, the O(&%) Lagrangian needed here is given by

(3) _ h A 4 h2 2 2 h 02 h i ia
v = BT(N A3X++FS VAL T NA 1 N, NAYH (816
(4 (& o
m SQ Gza laStS]Gja
+N2 { Y+ % N2
DA . DA D3(d DA(f R
+A_;Z3-ume +A_§ mSl j\( )dabc a lelC 3(2 )fabc)(iusztc

i
+ ge[Dis Fiiol + oy N—€”kF“ G“Dy + _FﬁquD +-

(13)

e

3The notation for the LECs used here differs from the ones used in ordinary BChPT due to the unification of terms demanded by the
1/N, expansion. The notation aims at distinguishing classes of terms in the Lagrangian, e.g., spin-independent mass terms, spin-
dependent mass terms, axial-vector couplings, etc. The identification of some of the LECs with those used in ordinary versions of
BChPT are straightforward.
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In this work, some terms O(&*) are needed for sub-
tracting UV divergencies, but they are beyond the order of
the present calculations and can be consistently eliminated.
Through the calculation of the one-loop corrections to the
self energies and the vector and axial vector currents, the
functions associated with the LECs that affect those
quantities are determined.

The terms in the effective Lagrangian are constrained in
their N, dependence by the requirement of the consistency
of QCD at large N,. This constraint is in the form of a lower
bound in the power in 1/N . for each term in the Lagrangian.
This leads in particular to constraints on the N, dependencies
of the ultra-violet (UV) divergencies of loop corrections,
which have to be subtracted by the corresponding counter-
terms in the Lagrangian. The UV divergencies are neces-
sarily polynomials in low momenta p (derivatives), in y,
and other sources, and in 1/N, (modulo factors of 1/+/N.
due to 1/F, factors in terms where GBs are attached).
Therefore, the structure of counterterms is independent of
any linking between the 1 /N . and chiral expansions. For this
reason, in order to determine the UV divergencies, the large
N, and low-energy limits can be taken independently. For a
connected diagram with np external baryon legs, n, external
GB legs, n; vertices of type i which have np_baryon legs and
n, GB legs, and L loops, the following topological relations
hold [60,61]:

L=1+I+1Ig-) n.
2lp +ng = Zni”Bi’ 21, +n, = Znin,,[_, (14)

where I, is the number of GB propagators and Iz the
number of baryon propagators.

The chiral or low-energy order of a diagram, where v, is
the chiral power of the vertex of type i, is then given by [61]

_ "B g,
_2_7+2L+Zni<yp'+7_2>’ (15)

Note that np, is equal to 0 or 2 in the single baryon sector.

On the other hand, the 1/N,. power of a connected
diagram is determined by looking only at the vertices: the
order in 1/N, of a vertex of type i is given by v + '%,
where v, is the order of the spin-flavor operator. Thus, the
1/N. power of a diagram, upon use of the third Eq. (14), is
given by

n
vy :?”+I,,+Zn,-1/0i, (16)

where n, is the number of external pions, and v, the 1/N,.
order of the spin-flavor operator of the vertex of type i.
Since vy, can be negative (due to factors of G'“ in vertices),
there are individual diagrams with v = negative and

violating large N, consistency. When the latter occurs,

> l
>

A 4
y

FIG. 1. One-loop contribution to baryon self energy.

there must be other diagrams that cancel those violating
terms. This will be clearly seen in the calculations pre-
sented here.

One can determine now the nominal counting of the
one-loop contributions to the baryon masses and currents.
The LO baryon masses are O(N,), with hyperfine mass
splittings that are O(1/N,) and SU(3) symmetry breaking
mass splittings that are O(p?). The one-loop correction
shown in Fig. 1 has: (L=1,ng=2,n,=0,n; =2,
vo, = —l.ng, =2,v, =1) giving v, =3 as it is well
known, and v = —1 Since there is only one possible

diagram, this w111 be consistent if it contributes O(N,) to
the spin-flavor singlet component of the masses, it must
contribute at O(1/N.) or higher to the hyperfine splittings,
and at O(N?) to SU(3) breaking. Indeed, this will be shown
to be the case. For the vector and axial-vector currents, the
one-loop diagrams are depicted in Figs. 2 and 3, respec-
tively. Taking as example the axial currents, at tree level it is
O(N,), and the sum of the diagrams cannot scale as a
higher power of N,.. Performing the counting for the
individual diagrams one obtains: v,(j) =2 for j=
1,. 4andy1():—2 j=1, 23and1/1(4):O.
Thus a cancellation must occur of the O(N?) terms when

the contributions to the axial currents by the different
diagrams are added, as it will be shown to be the case.

——————r e
/7N L4 N
[ | ! !
\ / \ 4
SR ~%
Py .
A g.a A ag.a
A B
;7 \ ;o \
{ !
[ X
I I i
A g.a A q.a
C
- T T
’/ \ Py N\ /
Ky— w 7
P N C
A g.a A g.a
b : E

FIG. 2. Diagrams contributing to the 1-loop corrections to the
vector charges.
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> >
\ 7N
/ | / \
| \
\ // N
%Y
P : P 1
A gia é)
X Lia
A "\ 4 B
-~
7 \
: ®
) .
A gia
<
4 \
® L
Dy .
A gia
-~
s \
I N
X—
1) :
/:\ q,ia
FIG. 3.

One can consider the case of two-loop diagrams, in
particular diagrams where the same GB-baryon vertex
Eq. (10) appears four times. For the self-energy, the chiral
power is v,(j) =35, and individual diagrams give
Vi = —2. Thus a cancellation among the different dia-

c

grams must therefore occur. A comment is here in order: in
Refs. [34,59], the wave function renormalization factor was
included in defining the baryon mass, but that is not correct
as in includes an incomplete inclusion of the two-loop
contributions. In all cases, and as shown in this work, the
diagrams that invoke the wave function renormalization
factors play a key role in such cancellations.

Using the linked power counting &, O(1/N,.) = O(p) =
O(&), the & order of a given Feynman diagram will then be
equal to v, +UN% as given by Egs. (15) and (16), which

upon use of the topological formulas Eq. (14) leads to
n][
ve=1+3L++ Zni(yoi +u, —1).  (17)

The &-power counting of the UV divergencies is obvious
from the earlier discussion. At one-loop the masses have
O(&%) and O(&%) counterterms, while the axial currents will

12 1/’\ By ;
\ -
\ ] ’ ‘\
IN_ é() J
&
: A
A dia e
! C D
-~
4 \
{
7, é
}\q,ia
_
4 \
1 L
Aq,ia
-
l/ »
7, é()
Aq,ia

Diagrams contributing to the 1-loop corrections to the axial vector currents.

have O(&) and O(£?) counterterms. To two loops there are
in addition O(&*) and O(&), and O(&) and O(&)
counterterms for masses and axial currents, respectively.
The noncommutativity of limits is manifested in the finite
terms where the GB masses and/or momenta, and om
appear combined in nonanalytic terms, and are therefore
sensitive to the linking of the two expansions. The &
expansion corresponds to not expanding such terms at all.

III. BARYON MASSES

In this section, the baryon masses are analyzed to order
53, or next-to-next-to-leading order (NNLO), in the limit of
exact isospin symmetry. To that order, one must include the
one-loop contribution depicted in Fig. 1 with the vertices

from Eg ) given in Appendix B. The contribution to the
self-energy is then given by

534 : ia iar‘(l_%>
SZI_IOOP = lF—izzZI Z G PnG (4”)%,

x J(1,0, Mg = (pg — 6m,,)>. 1, py — m,),
(18)
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where n indicates the possible intermediate baryon states in
the loop, P,, are the corresponding spin-flavor projection
operators, the loop integral J is given in Appendix C, ém,,
is the residual mass of the baryon in the propagator, i.e. 6/
in Eq. (11) evaluated for that state n, M, is the mass of the
Goldstone boson in the loop (throughout the Gell-Mann-
Okubo (GMO) mass relation M; = (4M% —M3)/3 is
used), and p, is the energy of the external baryon. In
the & expansion, the SU(3) breaking effects in ém, are
O(&?), and thus they can be neglected, i.e., one can simply
use 5 — %32 which is O(€). In the specific evaluation

G 99

of 6Z_j40p for a given baryon state denoted by “in”, py =
Smi, + po, where P, is the kinetic energy O(p?/N.). The
noncommutativity of the 1/N, and chiral expansions of
course resides in the nonanalytic terms of the loop integral

|

through their dependence on the ratios of the small scales
(6m,, — 6my, )/ M. Notice that when the one-loop integrals
are written in terms of the residual momentum Jp,, they do
not depend on the spin-flavor singlet piece of /. p, is
naturally associated with iD°. The one-loop contribution to
the wave function renormalization factor is given by
871 _ioop = 8—’;}521_]0@&0_) o- Appendixes A and D provide

all the necessary elements for the evaluation of the spin-
flavor matrix elements in Eq. (18). The explicit final
expressions for the self energy are straightforwardly calcu-
lated using those elements, and are not given explicitly
because they are too lengthy.

The correction to the baryon mass is given by setting
po = 0 in the self-energy correction, and the mass of the
baryon state |S, Y1) then reads

C _
my(S.Y. 1) = Nomg + —2ES(S + 1) = =1 (N, + 28)M2 — 2SM%) + 6mb *P+CT (8. v, 1), (19)

N, 2A

where S is the strangeness, smy (S, Y. 1) is the
contribution from the one-loop diagram in Fig. 1 and CT
denotes counterterm contributions. From both types of
contributions, there are O(£?) and O(£) terms, and the
calculation is exact to the latter order, as can be deduced

|

[
from the previous discussion on power counting. Note that
in LO the LEC Cyg is equal to the hyperfine splitting M, —
My in the real world N, = 3.

The ultraviolet divergent pieces of the self energy can be
brought to have the following form:

o 2
Ae [ ga I | o . 2
Uv _ € 2 iaia 2 ia ia 3
521—100p - (471_)2 (F_ﬂ> (pOMaG G +§Ma[[5m’G ]’G ] _ng
5 1 1 o 4 ia ia 1 A 4 A ia ia
—po?([6, G*], G| = po (5. [, G]], G*] = 3 (8. [3vn, [, G]]], G ]>, (20)

where 1, = 1/€ — y + log4x. Using the SU(3) singlet and octet components of the quark masses, m° and m“, the meson

mass-squared matrix can be written as:

1
M2ab — 2B0 <5abm0 + Edabcmc> , (21)

and therefore,

MW =

for any symmetric 8 x8 tensor W. In terms of M, and Mg, one has m®=1(2m+m,) =

Sa 2 (n 8a 2(=M3+M3)
m* = 6 == (m — my) = 0% —~A—=
( S) \/§BO

V3

M2ab Wab’ (22)

_ 2ME+ME
65,

0 and

In order to obtain from Eq. (21) the counterterms necessary to renormalize the mass and wave function, one
uses the results in Appendix D. The explicit UV divergent and polynomial (in 1/N, m,, p,) terms of the self-energy are the

given by
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o

STPOy =

() (G G o-)e

+ <—2{S", G} + % (N, + 3)T“> m“)

8 C; 1 . .
+ <3 + /1€> A?SF (—NC(NC +6) + 3 (36 = 5N (N, + 6))8% + 1254)

+Po((1 +ﬂ€>Bo<<——

2

5. 7 3
N.(N.+6) + —52) mO—+ (E{S’, G} =S (Ne + 3)T”> m)

+(2+4) Cii <§NC(NC +6) + (=18 + N.(N, +6))8* — 4S4>> } (23)

N:

where terms of higher powers in p, have been disre-
garded. A few observations on §ZP°Y are in order: (1) the
contributions to the spin-flavor singlet component of the
masses is O(p>N?) and proportional to Cyp, the spin-
symmetry breaking is O(1/N2), and the SU(3) breaking
is O(p*/N.), (2) the UV divergencies in the mass are
produced by the contribution of the partner baryon in the
loop, i.e. baryon of different spin, and is therefore
determined by the mass splitting, ie., by Cygr, and
(3) the contributions to 6Z are suppressed by powers
of 1/N_, but with two exceptions, namely, there is a spin-
flavor singlet contribution proportional to m° which is
O(N,) and a term proportional to m® which is O(N?).
The term O(N,) in 8Z is of key importance for the
mechanism of cancellations of 1/N,. power counting
violating terms, as it is shown later in the analysis of
the one-loop contributions to the currents.

The counterterms for renormalizing the masses and
wave functions are O(£?) and O(&) (all contributions
O(&*) are consistently dropped) and involve terms that

appear in ﬁg ) with higher-order terms in 1/N_. in the
LECs and terms in 53'3). To renormalize, the LECs
are written as: X:X(ﬂ)ﬁ—wﬂxﬂe, where p is the

TABLE 1. functions for mass renormalization.

LEC FiB/ g

Ny 7 Nfé Cir
365N, (Ne+6

) _ 1 N_+3 ACyr

Cy % (2N + 9)ACHF

C3 0

hy - l_/\2 C;IF

hy 0

hy L ACH

renormalization scale and the beta-functions fy necessary
to renormalize the masses are given in Table I. The reader
can easily work out the renormalization of the wave
functions.

Finally, the nonanalytic contributions to 6Z are

1 ;]A ? ia ia
@y (F_> 2 G PG

SENA =

2 M?
X p()_ém <M3_§(p0_6mn) >10g -

MZ (pO _5mn)2)%

2
3
X <7z +2 arctan(

%sz _pfnz 6mn>2>>

(24)

At tree level, and up to order £, baryon masses satisfy
the GMO and Equal Spacing (ES) relations, which hold
unchanged at arbitrary N, The deviations from these
relations are given by the nonanalytic terms in the self-
energy; i.e., they are calculable to the one-loop order,
and in the strict large N, limit they are O(p3/N,) and
O(p*/N?). The calculated deviations compare to the
observed ones as follows: GMO: (3m, + myz) — 2(my +
mz) = Agmo = Th: (g} /F,)? x 2.4210° MeV? vs Exp:
25.8 MeV, and ES: mg —2ms +mpy = Agg =
(Y /F,)?* x (-3.7210%) MeV? vs —4+7 MeV, where
for the theoretical evaluation Cygp = my — my was used.
Note that using the physical g = 1.267 £0.004 and
F, =93 MeV, the value of Agyo turns out to be
significantly larger than the physical one. When studying
the axial couplings, it will be found that the LO value of
the axial coupling is smaller than the physical one. In
fact, Agyo could be used in determining the ratio gy /F,
at LO. Expanding Agyo in the strict large N, limit one
obtains:
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g \(2x 2 1. \?
_ _ A e 3 _ a3~ 2 _tan)?
sano == (521 ) (5 (w32 - J5 (w2 - 302 )')

Cyr 4M3 — M; 4M% — I M3
My log| —=——") = M2log| — 73—
Ton, < K °g< M2 o8\ T a2

+O(1/N?).

For the physical Mg and M, the shown expansion is within
30% of the exact result, and the expansion gives a good
approximation for N, > 5. Note the large cancellations that
appear within the first line and within the second line of the
equation, and also the tendency to cancel between the first
and second lines. In the physical case and not expanding in
1/N,, it is found that the numerical dependency of Agmo
on Cyr is not very significant. One also observes that only
43% of Agmo is contributed by the octet baryons in the
loop, and thus the decuplet contribution is very important.
Agmo 1s therefore an important observable for assessing
whether the decuplet baryons ought to be included or not in
the effective theory; as indicated earlier, this however

depends on the value the LO EyA, which to be independently
determined requires the analysis of other observables,
namely the axial currents. Along the same lines Agg can
be analyzed, although in this case the experimental un-
certainty is rather large.

o

2
h212 gda 271'
Agr = —=— M2 may V¥
RTAN, K+(4;;F,, 9 K

(ST

N.,-3 5CHr\2\:
_ Ve 3M2— HF
o Plm-(3))

3
2

7 — 2 arctan

3CyE 240

(25)

[

Disregarding the term proportional to £, in £§ ) Eq. (13),
which gives SU(3) breaking in the hyperfine splittings, one
additional relation follows, first found by Giirsey and
Radicati [62], namely:

Agr = mg —my- — (ma - mz) =0,

Exp: 21 +£7 MeV, (26)

which relates SU(3) breaking in the octet and decuplet, and
which is valid for arbitrary N,.. The deviation from that
relation (26) is due to SU(3) breaking effects in the
hyperfine interaction that splits 8 and 10 baryons, and
such deviation starts with the term proportional to 4, which
is O(p?/N.). In addition, the one-loop contributions to it
are free of UV divergencies and the nonanalytic terms when
expanded in the large N, limit give contributions O(1/N2).
To one-loop:

(9Nc—43)ﬂ ) 3CHF 2 %
M2 —
+ 72 K N,

5 CHF

Ney/ Mg — (5)?

Cc

3Ckr\ 2\
+10| M% - <HF> ) arctan
N N,

h, 12 37 (gaCur\
= 2 0 - )+ () (o -

AN, N, \ 4zF,

where the last line corresponds to strictly expanding in the
large N, limit. For the physical M ;, Mg, and Cy, the 1/N,,
expansion of Agg is, however, only reasonable for N, > 8:
clearly the nonanalytic dependency in 1/N, is important,
showing the need for the combined & expansion in the
physical case, similarly to what occurs for Agyo. Still, the
understanding of the smallness of the deviation is con-
nected with the 1/N,. expansion. Finally, it is important to
emphasize, as indicated earlier, that all the relations are not
explicitly dependent on N, and their deviations are sup-
pressed by powers of 1/N, at large N..

/M%( _ (31(5,1;{}:)2 Nc

M,[)+O(

+—3C]3_IplogM%( - (Mg - M,)

lOg(MK/M”)>’ (27)

N

[
The o-terms are obtained following the Hellman-

Feynman theorem, o3, = m,Omp/Om,, where m, can

be taken to be 7, my, or the SU(3) singlet and octet com-
ponents of the quark masses, namely m® = (27 + m,)/3
and m® = 2/+/3(/i — m,). Naturally they will satisfy the
same relations discussed above for the masses. In par-
ticular, o terms associated with the same m, are related
via those relations and their deviations are calculable as
described before for the masses. In addition to the GMO and
ES relations, the following tree level O(&?) relations hold,
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TABLE II.

Results for LECs: the ratio E]A /F, =0.0122 MeV~! is fixed by using Agyo. The first row is the fit to
LQCD octet and decuplet baryon masses [48] including results for M, <

303 MeV (dof = 50), and second row is

the fit including also the physical masses (dof = 58). Throughout the y = A = m,,.

){gof mg [MCV] CHF [MCV] C Cy h2 h3 ]’14

0.47 221(26) 215(46) —1.49(1) —-0.83(5) 0.03(3) 0.61(8) 0.59(1)

0.64 191(5) 242(20) —1.47(1) —0.99(3) 0.01(1) 0.73(3) 0.56(1)
Onm, = ;n_ﬁ; (=4(N. = D)oy + (Ne + 3)ons + 3(Ne = 1)osy)

M
OAm; — % (_4(Nc
m

Osm, — ﬁ (_4(Nc

m,
OAm; — g (_4(Nc -

m
Os*m, = S_I’h (_<Nc

Several of these relations are poorly satisfied. The
deviations are calculable and given by the nonanalytic
contributions to one-loop. In the physical case N. = 3,
those deviations are numerically large for the first, third,
and fourth relations above. This in particular affects the
nucleon strangeness ¢ term, and thus indicates that its
estimation from arguments based on tree level relations is
subject to important corrections [63]. In terms of the octet
components of the quark masses, in addition to GMO
and ES relations one finds:

(Nc + 3)GAm8 + 3(Nc - l)meg
= 29
—S(N 3)0/\7}18 + 5( )szS + 4N Uz*mt%
o = )
Am? 4(Nc _ 3)

(30)

where it can be readily checked that they are well
defined for N, — 3 as the numerators on the RHS are
proportional to (N, —3). These relations are violated at
large N, as O(p’N{). For both relations in the limit

N. — oo, one finds LHS — RHS—@( )(MK M,)x

(M% — M2) + O(1/N,). Thus they are not as precise as
the GMO and ES relations.

Finally, if the LEC constant 45 vanishes, one extra tree-
level relation related to Eq. (26) follows, namely,
—03,8) =0 (31)

Oz — (Ogys

mS - Gz*ms

which is only violated at large N, as O(1/N2), and thus
expected to be very good.

= 3)onm + (N,
= 3)onm + (Ne+ 3)onm +
Doy —5(N

—3)(4oam + 50An

—=5)opnm +3(Ne = 1)osy)
(3Nc - ll)o'zm)
—3)(oam — Osp) + 4N 05 5)

= 505;) +4(N. = 2)055). (28)

To complete this section, fits to the octet and decuplet
baryon masses including results from LQCD are presented.
This in particular allows for exploring the range of validity
of the calculation as the quark masses are increased. The
mass formula for the fit is*:

my = Nomo + 05— Shp, 20 B
_1\;’22‘/\)?+A2 8- 2]\;’:‘[\;2151‘(;"“
+ dmy %, (32)
where, in the isospin symmetry limit, y9 — 4Bym°,

74 — 8By5®md, and 7. — 4By(m3T® + N.m°). The fits
at N, = 3 cannot obviously give the N, dependence of
LECs. LECs of terms that depend on quark masses can be
more completely determined by fits that include the LQCD
results for different quark masses, e.g., ¢, and the various
I's. For this reason, such combined fits are presented here,
in Table II and in Fig. 4. Also, some LECs are redundant at
N, = 3, and are thus set to vanish for the fit. The constant
c3 is also set to vanish as it turns out to be of marginal
importance for the fit. A test of mass relations is shown in
Table III.

The study of the fits show that at fixed Mg ~ 500 MeV,
the physical plus LQCD results up to M, ~ 300 MeV can

*A useful formula for the term proportional to h, is [64]:
SiIG™ = \}_(%IZ —182 LN (N +6)+F(N +3)Y-27?) =
16\/—(1212 458* +35(2-S)), where S is the strangeness.

This term is responsible for the tree-level mass splitting between
A and Z.
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TABLE III. Deviations from mass relations in MeV. Here Agg; = mg —2my +m, and Agg =
meo- — 2m5~ -+ Myx.
M, Mg Acmo Acr Ags) Agsa

[MeV] Exp/LQCD Th Exp/LQCD Th Exp/LQCD Th Exp/LQCD Th
139 497 31+42 46 23 £30 38 -6+ 30 -14 -94+30 -14
213 489 75 £70 33 0£72 29 —-40 £97 —11 9.2 £+83 —11
246 499 124 £ 77 30 -7+£75 25 —46 £+ 101 —11 23 + 86 —11
255 528 133 £ 89 37 —-12+94 26 -32 4125 —14 29 £+ 108 —14
261 524 139 +99 35 24 +103 25 —29 + 138 —-13 -3+119 —13
302 541 77 £ 87 32 —-14+94 23 =30+ 125 —-13 46 £ 108 —13

be fitted with natural size LECs. The LEC &, which enters
in Agg is best determined by fixing it using Agg in the
physical case, and then the rest of the LECs are determined
by the overall fit. In this way, the deviations of the
mass relations are one of the predictions of the effective
theory, and can therefore be used as a test of LQCD
calculations. At present the errors in the LQCD calculations
are relatively large, and thus such a test is not yet very
significant.

IV. VECTOR CURRENTS: CHARGES

In this section, the one-loop corrections to the vector
current charges are calculated. The analysis is similar to
that carried out in [65], except that in that reference
higher-order terms in 1/N, in the GB-baryon vertices
were included. In the & expansion and the order consid-
ered here, such higher-order terms are not required. At
lowest order the charges are simply given by the
generators 7¢, the one-loop corrections are UV finite,

1300+

1150f 1 13500
1100} 1 l 1 1250} ” ]
1300}
% { ! > =
3 10sor I 1 2 1200} I 13 1
= - o [
S 1000k 1S = 1250
1150}
950’¥ ; 1200
1100}
900 F . . . ] . . . . . . . .
150 200 250 300 150 200 250 300 150 200 250 300
My [MeV] My [MeV] My [MeV]
1400F 1 1600F 1 lesof
1380} ] 1600F
1500 ]
= 1360} 1z = 1550f
= [ 1 2 1400} - 15 1500F "
v 1340 g 3
=
| |
1450f .
1320 1 1500l
1400f-
1300 1 LS I
. . . . 1200 . . . L . . . .
150 200 250 300 150 200 250 300 150 200 250 300
My [MeV] My [MeV] My [MeV]
1750}
1650
= = 1700}
%
= 1600 1z {
in ]
= = 1esof
1550—f
1600
1500 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
150 200 250 300 150 200 250 300
My [MeV] M, [MeV]

FIG. 4. Baryon masses vs M, obtained from the combined fit (second row of Table II). The bands correspond to the 67% and
95% confidence intervals. The red points with error bars are from the LQCD calculations [48], and the squares are the theoretical values

for the values of M, and My of the corresponding data point.
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and since up to O(&) the Ademollo-Gatto theorem  diagrams at g — 0. In that limit, the UV divergencies as

(AGT) is satisfied, the corrections to the charges are well as the finite polynomial terms in quark masses and o7

unambiguously given at one-loop. cancel in each of the two sets of diagrams, A + B, and
The one-loop diagrams are shown in Fig. 2, and the C+ D+ E, as required by the AGT. The results for the

corrections to the charges are obtained by evaluating the  diagrams are the following:

|

i
A=— abc bchdI 07 l,M

i

B=—
4F2

febe foedTd (2K (g, My, M) + 4¢°K° (g, M}, M) + 4K (q, M, M)

1 N
C= 5 {Tav 5Z1—loop}

o 2
[ 9a ib jb !
p—i(%) S Gop, 1P, G Hyj(po = 6m,y . My) — H, — o, M
l(Fn:> nIan Pnz Pnl qdo — 5mnz + 5mnl ( t](pO mn] b) l]<p0 + 90 mnz b))
o 2
_ [ 9a be ib jic
b= (F_ﬂ> fa ;G PnGj HijO(pO - 5mn’ q, Mb’ MC)’ (33)

where the integrals K, K¥, K**, H;; and H;, are given in Appendix C. Since the temporal component of the current can only
connect baryons with the same spin, g, is equal to the SU(3) breaking mass difference between them plus the kinetic energy
transferred by the current, which are all O(p?), and can be neglected: the limit g, — O must then be taken in the end.
Diagram D indeed requires a careful handling of that limit in the cases when the denominator vanishes. The same is the case
for diagram F in the axial-vector currents in next section. The U(1) baryon number current is used to check the calculation:
only diagrams C + D contribute, and as required cancel each other.

The UV divergent and polynomial pieces contributed by the diagrams are the following:

de+11
Apoly — Z¢€ _—_ fabc pbed 2 d
(47)? 2F,2,f FrM,
de+1 1 1
Bpo]y — _ e _—~  rabc bchd M2 7
(22 ( ”+6">
1 (g\"1 o . .
Ccroly = 22N T, (A, + D)M2G?P G —2(A, + 2)G™ [, [6/, G
o (2) St o (3 +2)G? o, 61, G}
ppoly — 1 -a_A QEZG”"P TP, Gib 1
(4n)* \F,) 34 mEMT g — 6my,, + 6m,
X {(pO - 5mn])(3(ﬁe + I)Mlz; - 2()“6 + 2)(p0 - 5mn,)2 - {p() — Po + 40,5’"”[ - 5mn2})}
N
= L) {34 + DM2GPTG™? +2(A, + 2)([6r1, [6in, GPP)| TG
ar (2) 30+ DMEGPTYG 4203+ 2) (00 51, G
+ G851, [8im, G — [8im, GPP|T%[61, G™*])}
1 (g \ i . . o y o
EPY = — n) (F—A> S GPPUG (24 + ¢*g7) + g7 = 397 (A + 1) (M}, + M)
- (’15 + 2) (‘smin - 25mn + 5m0ut)2)}
o 2.
=TTz 94 i{((ZQ’qf+q29”)/1e—ng”)[T",G’b]G’b+3(/1e+ M1, G"], G|
(4m)* \F,) 6
=32 +2)([[T, G™), [6m, [, GP|]] + [[6/n, G™], [T, [67r, GP]]]) }, (34)
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where in the evaluations py — om;, and pg + gy — Mgy
Combining the polynomial pieces and using that [671, T%] =
(671, G?] = [6im, GPT*G™®] = 0 lead to the result:

et1 g
(47)? 4F2

(A + B =

de=3(a:\ "L
(C+D+E)PY = @7 (f%) T (35)

As required by the AGT, when ¢ — 0 the UV divergen-
cies and polynomial terms vanish for all the SU(3) vector
charges of the baryon spin-favor multiplet. The calculation
of the finite nonanalytic contributions has been carried out
in previous work [65], and will not be revisited here.
The only counterterm required is the one proportional to

ge in Eq. (13), where f,, :W@—Ef‘), and which

provides the only analytic contribution to the octet and
decuplet charge radii up to the order of the calculation.
More details will be presented elsewhere in a study of the
form factors of the vector currents. In the context of the
charge form factors, studies implementing the 1/N.
expansion for extracting the long distance charge distribu-
tion of the nucleon has been carried out in Refs. [66—69].

V. AXTAL COUPLINGS

The axial vector currents are studied to one-loop. At the
tree level the axial vector currents have two contributions,

The results for the one-loop diagrams are the following:

9a

A=—¢' 22
'2F2

fuhcfcthidI(Q 17 Mb)

_ EA q"q;
6F2 q> — M?>

_ 204 d'a
3F; q* — M;

gn q'q;

namely the contact term and the GB pole ones, and

reads
q"q; >
q* — M

In the nonrelativistic limit, or equivalently large N, limit, the
time component of the axial vector current is suppressed
with respect to the spatial components. The couplings
associated with the latter are analyzed below to O(&?).

At the leading order, the axial couplings are all given in
terms of g,. For N, =3: F = g,/3, D = g,/2, and the
axial coupling in the decuplet baryons is H = ga /6.

The one-loop diagrams contributing at that order are
shown in Fig. 3.

The matrix elements of interest for the axial currents are
(B'|A’|B) evaluated at vanishing external 3-momentum.
The axial couplings gB®" are conveniently defined by

v —ii0-{- 6

6

(B'|A[B) = g} = (B'|G"[B), (37)

which are O(N?). The O(N,.) of the matrix elements of the
axial currents is due to the operator G'“. The factor 6/5
mentioned earlier is included so that g}V at N, = 3 exactly

corresponds to the usual nucleon g4, which has the value
1.267 £ 0.004 [70].

f“thCdbGidI(O, 1’ Mb)

fabCdebGidI(O, 1’ Mb)

D= fahcfcthidI(O, 1’ Mh)

3F;q* - M;

1o q"q;
E:—  ——
2gA<gil qz_Mﬁ

q"q;

) {va 521—loop}

1

o 2
. o [ ga ib i kb
F=ilg -—12 g, (& G*P, G“P, G
l<g7 q2 _M3>9A <F ) Z " " 90 — 5mnz + 5mn1

T/ nyny

x (Hj(po — dm,, , My) — Hji(po + qo — m,,,, M)

(38)

The corresponding polynomial terms of these one-loop contributions are
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1 g )
poly — L 4 rabe pbed (vid § g2
A (4”)221;%(’16"'1)9‘:]0 f7UGM,
0. ! q qi abc £bc i
Broly — _ ( )26F2( .+ ) 2 Mafbfb deMi
0 ! 29 q 4qi abc £bed (i
Cply:_(4 )23T/;( +1)— fbfbdeM2
1 gA q ‘qi
proly — i abe bed (yid Mz
EPoly — 1 o 9 _ qﬂ%
F, M2
X {Gm ( 4 >M2Gbejb 2(/1 +2)Gfb[5m [5m G/b]]}
g ” i . . .
Fpoly — ng <g_> <d: _ 251 qi 2) ((/1é + I)M%GJbGzanb
q — Mu
-3 (,16 +2)(G*G[5m, |61, GIP]] + [671, [671, GP]|GGI® — [sim, GIP)G 57, Gfb])> : (39)

The conservation of the axial currents is readily checked in the chiral limit. At this point it is important to check the
cancellation of the N, power counting violating terms shown in the polynomial terms of diagrams E and F. Such terms
cancel in the sum, as it is easy to show using the results displayed in Appendix D for the axial vector currents. One obtains:

o 2
1 o (ga q"q;
E + F)Pl — JA 99
(E+F) (47r>29A<Fﬂ) <97 7 - M?

1 opia AL 5 Chr
X (e + 1) g Bo 23m°GY +—=d®mP G +-2meS" | + (2 +2) 77 {1 -

N.(N.+6 .
C(§+ )>Gla

11 T R N § IPUR
g (Ne+3)ST ~ g{52, G} =388 G} + 6S2G"‘S2)) (40)

The quark mass dependent UV divergencies are
O(m,/N.), and the quark mass independent ones give a
term proportional to G, i.e., to the LO term but suppressed
by a factor 1/N ., while the rest of the terms are O(1/N?) or
higher. The cancellation mechanism clearly requires the
contributions from the wave function renormalization
factors (diagrams E), and it is rather subtle as it requires
an explicit and lengthy calculation starting from Eq. (39).
To obtain the counterterms, the relations given in
Appendix D are used. The counterterms are contained in

the Lagrangians Eg ’2'3), and the corresponding f functions

are the ones shown in Table I'V. In addition to ;]A, there are
seven LECs that are necessary to renormalize the axial
vector couplings for generic N.. For N, = 3, the terms
proportional to C/?,zs are linearly dependent and one can be
eliminated. At N, = 3, after considering isospin symmetry,
there are thirty four axial couplings associated with the
axial currents mediating transitions in the spin-flavor
multiplet of baryons. This means that there are twenty

seven relations among those couplings that must be
satisfied at the order of the present calculation. Such
relations are straightforward to derive with the results
provided here, and they should eventually become one
good test for their LQCD calculations. It should be noted
that in general the relations dependent on N, explicitly.

TABLE IV. f functions for counterterms contributing to the
axial-vector currents.

LEC F2 LEC F7p/N\?

Ia o e Dy — 4594(36 +23g)
Cﬁ‘ 11 03 CIZ—IF NN+3 D? 124 ;}i

c3 04 Chp 152 D5(d) — L5 0a(36 + 11G3)
4 8 gaChp D4 (f) 0

Cﬁ 3 QAC%F
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The one-loop corrections to the axial currents are such
that they do not contribute to the Goldberger-Treiman
discrepancies (GTD) [71]. The discrepancies are given by
terms in the Lagrangian of O(£), namely:

3 . i ~alvia i i
LY =+ B (gorp [V, ]G + g0y 0SB, (41)

As noted in [71] there are three LECs determining the spin
1/2 GTD in SU(3). The 1/N,. expansion shows that those
LECs are actually determined by the two shown above,
which also determine the GTDs of the decuplet baryons.

The following observations are important: if the non-
analytic contributions to the corrections to the axial
couplings are disregarded, the corrections O(N,) and
O(N?) to the matrix elements in S = 1/2 and 3/2 baryons
due to the counterterms are as expected O(p?), i.e.,
proportional to quark masses. On the other hand the terms
independent of quark masses are O(1/N,.), i.e., spin
symmetry breaking is suppressed by O(1/N?2) with respect
to the leading order, as it was noted long ago [72]. This
indicates that the effects of spin-symmetry breaking are
more suppressed than the SU(3) symmetry breaking ones
[32,33,73]. It is important to note that at tree level NNLO
the axial couplings satisfy some N, independent relations.
For the case of AY = 0 couplings within the baryon octet
and decuplet, in the / =1 case the first relation below
follows, and in the / = 0 ( channel) case there are GMO
and ES relations, namely:

A 3 =" 8 x*
B35 -
gv 5 \gv 5 \gv

2(g +g ) =3g =gt =0

gA - gA = gA_ - gA = gA — i (42)
These relations are only violated by finite nonanalytic
terms. Additional relations are straightforward to derive for
other couplings, such as those involving the AY = 41 and
the octet to decuplet off diagonal ones. Such relations will
be a good tool to check results obtained in LQCD
calculations of the axial couplings.

At LO and using (%)™ =1.267+£0.004 for the
nucleon, it follows that (9)KNA = 0.760, (4)FN> =

—0.253, and (%)**= = ()™, to be compared with the

ones obtained from semileptonic hyperon decays [74]
0.718 £ 0.015, —0.340 £ 0.017 and 1.32 4 0.20, respec-
tively. The NLO SU(3) breaking corrections are evidently
necessary. On the other hand, the coupling g* is at LO
equal to g4, while its phenomenological value extracted
from the width of the A assuming a vanishing GTD is equal
to 1.235 + 0.011 [34,35], which shows a remarkably small
breaking of the spin-symmetry. This seems to be in line
with what was discussed above, namely that spin symmetry
breaking is suppressed with respect to SU(3) breaking by

one extra order in 1/N,. In the following subsections, the
results for the axial couplings are confronted with recent
LQCD calculations.

A. Fits to LQCD results

While LQCD calculations of the axial coupling of
the nucleon have a long history, calculations involving
hyperons and including the decuplet baryons are very
recent. Indeed, the first such calculations were carried
out by C. Alexandrou et al. [55], where the axial couplings
associated with the two neutral AS =0 currents for
transitions within the octet and within the decuplet baryons
were obtained. They used a twisted mass Wilson action
adapted to 2+ 1+ 1 flavors (the calculation includes
charmed baryons). The results in [55] show the a similar
recurring issue in LQCD calculations of the nucleon’s axial
coupling, which turn out to be from 5% to 10% smaller than
the physical value. Recent calculations of g} have been
able to give consistent results [75], but those calculations
are still missing for hyperons and the baryon decuplet.

In this subsection, the results [55], are fitted with the
effective theory. The LECs that can be fitted with these
results are ;A,cS;A (which is a 1/N, correction to ;A and
needed for a counterterm), and C{;,D{,;. Using the
definition of couplings in Eq. (37), the results shown
above for the UV divergencies of the one-loop contribu-
tions imply that 8¢iPF (UVdiv)/¢iB = O(Cyp/N,.) +

O(m,/N,). At LO, g8 = Q’:1267i0004 The

aBB

relations between the couplings g and the ones dis-

played in [55] are the following,

1
(Bg|A="|Bg) = 3 ~ gy

1 g
(B19|A=%|Byg) = 69A10

) 1
B AtZOSB — By
(Bs| |Bs) —zfgs
(B1o|A=%|Byg) = 6\/-95”’, (43)

where Bgjy is an octet (decuplet) baryon with spin
projection +1/2, and the couplings on the RHS are those
used in [55] and displayed in Tables IV and V of that
reference. The LQCD results are given for several values of
M, by keeping m, approximately fixed. The values of M,
for the different cases are given in Table I of [55], and the
corresponding M is determined using the physical masses
by the LO relation: M = My +35(Mz =M% ), which
corresponds to keeping m, fixed. While for general N, the
nine terms associated with the LECs in Table IV are linearly
independent, at N. =3, the term associated with Cj
becomes linearly dependent with the LO term, and thus

its effects are absorbed into SEJA. In the case of the LQCD
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TABLE V. LECs obtained by fitting to the LQCD results presented in Tables IV and V of Ref. [55]. The results correspond to making
the choices A = y = m,. In the NLO full fits Cyr = 250 MeV, and g, is given as input, displaying fits for three different values.

Fit Kot 9a 34 cl & & C; D} D} D5 D}

LO 3.9 135

NLO Tree 091 142 -0.18 .. 0.009

NLO Full 108 102 015  -LII 0. 108 0. —056 -0.02 -0.08 0
113 104 008  -117 0. 115 0. —059 -0.02 009 0
119 106 0. -123 0. 121 0. —0.62 —0.03 009 0

results being fitted here, there is an additional linear
dependency, namely that of the term C4 which becomes
linearly dependent with the term C4. So the fit will involve

seven NLO LECs in addition to §A. The results of the fits
are shown in Table V. The LO fit, which involves only

fitting the LO value of g¢,, shows a remarkably good
approximation to the full set of the LQCD results. This is
clearly aided by the very small dependency on M, of the
LQCD results. It also shows the very good approximate
spin-flavor symmetry that relates axial couplings in the
octet and decuplet. The LO fit implies that ¢/ = 1.13 for
the physical pion mass. A fit where only tree contributions
are included up to the NNLO gives a very precise
description of the LQCD results. Indeed, turning off some
of the LECs as indicated in Table V provides a consistent
fit, and corresponds in this case to g} = 1.15. Note that in

this case 5§A, which is required to cancel an UV divergency
proportional to the leading term, can be turned off, as it is
only required when the loop contributions are included.
The full NLO fit is more complicated. Although the
implemented consistency with the 1/, expansion gives an
important reduction of the nonanalytic contributions, these
are still significant. The most significant issue in this case
becomes the determination of the LO E]A. If it is used as a
fitting parameter, then the fit naturally drives it down to
small values, suppressing the nonanalytic contributions.
Such a situation is unrealistic, and therefore an strategy is
needed. The problem originates in the need to renormalize
ga, as there is an UV divergency proportional to the LO

term of the axial current. This is performed using 804,
which is suppressed by one power in 1/N, with respect to
ga- Fixing both the LO g4 and the counterterm would thus
require information at different values of N, which is not
accessible at present. One possible approach is to fix BA to
the value obtained with the LO fit, and then fit the higher-
order LECs. This however fails because the resulting fit has
too large a y%. Another strategy is to input several different

values of &A, and determine an approximate range for it
based of obtaining a y> that is acceptable. Finally, a
different strategy can be used involving additional observ-

. . . o
ables: for instance, as mentioned earlier, the value for g4

could be obtained by matching to Agyo, giving a value for
ga/ F ., which in Agyo should be taken at LO. In that case,

and in the physical case one obtains §A~ 1.15 when
F, =93 MeV. This however cannot be used for the
present LQCD results, because they have the mentioned
issue of extrapolating to too low of a value for ¢} at the
physical point. In that case a correspondingly smaller value

should be used, namely E}A ~ 1.05 or so. The NLO fit with

such an input for ;A is almost consistent, and is shown in
Table V for three different input values. The extrapolation
of those fits to the physical M, give a rather low value,
g\ ~0.97. This value is increased if only the LQCD results
in [55] for the nucleon are included, namely gX ~ 1.05. The
effective theory is also checked to fit the most recent results
on g [75], where the LQCD result agrees with the physical
value. Clearly, it is necessary to await additional lattice
calculations of the octet and decuplet axial couplings in
order to have a thorough test of the effective theory vis-4-
vis LQCD.

Ultimately, in order to have the LECs in BChPT x 1/N,
fully determined, a global analysis involving LQCD
calculations of a complete set of observables is necessary.
This requires the LQCD determination of the quark mass
dependencies of the observables, and also the possibility of
results for different values of N, which is a more difficult
task, but which has already been initiated with the baryon
masses for two flavors [58], and which has been analyzed
with the effective theory [59].

VI. SUMMARY

Chiral symmetry and the expansion in 1/N, are two
fundamental aspects of QCD. The former is known to play
a crucial role in light hadrons, and there are multiple
indications that the latter is also important, in particular for
baryons. In the context of effective theories, it is therefore
crucial to incorporate those two aspects of QCD consis-
tently. This is possible with the combined chiral and 1/N .
expansions. In the present work that framework for baryons
in SU(3) was implemented using the &-expansion. The
renormalization to one-loop for baryon masses and currents
were presented for generic N., and LQCD results for
masses and axial couplings were analyzed. This work

054010-16



BARYON CHIRAL PERTURBATION THEORY COMBINED ...

PHYS. REV. D 97, 054010 (2018)

serves as a basis for further applications, where it is
expected that the improved convergence of the effective
theory will have a significant impact, which should be
particularly important in the case of three flavors.

In the case of three flavors, there are numerous parameter
free relations that hold at tree level NNLO in the &
expansion, such as GMO, ES, and various other relations
for o terms and axial couplings. Those relations have
calculable corrections given solely by the nonanalytic loop
contributions, thus providing useful tests for the accuracy
of the effective theory and also serving as control tests of
LQCD results through those same relations.

It is important to emphasize the importance of the
decuplet in the effective theory, which has a key role in
taming the nonanalytic contributions and thus improving
the convergence, as it is clearly manifested in particular in
the axial couplings. This improvement in the behavior of
the effective theory when it is made consistent with the
1/N. expansion permeates other observables, such as the
mass relations and vector charges, as well as virtually any
other observable, such as in pion-nucleon scattering, in
Compton scattering, etc.
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APPENDIX A: SPIN-FLAVOR ALGEBRA AND
OPERATOR BASES

The 4Nj% — 1 generators of the spin-flavor group
SU(2N) consist of the three spin generators S', the
N% — 1 flavor SU(N/) generators T, and the remaining

3(N% — 1) spin-flavor generators G*. The commutation
relations are

[Si, S]] — i€iijk, [Ta Tb] fabcTc [Ta Sl} — O,
[Si, Gja] — i€ijkaa, [Ta th] fachtc
) ) I .. i . .
Gza, G]b — 5l abc T¢ _5ab l.]kSk = t.]kdathkc‘
[ ] 1 f +on 5 4o 5¢€

!
(A1)

In representations with N, indices (baryons), the gen-
erators G have matrix elements O(N.) on states with
S = O(N?). A contracted SU(6) algebra is defined by the
generators {S’, 14, X'}, where X'* = G'*/N,. In large N,
the generators X'“ become semiclassical as [X%, X/*] =
O(1/N.), and have matrix elements O(1) between
baryons.

The symmetric irreducible representation of SU(6)
with N, Young boxes decomposes into the following
SU(2)gpin X SU(3) irreducible representations: [S, (p,q)] =
S, (28.3(N.=28))], S=1/2,....N./2 (assumed N, is
odd). The baryon states are then denoted by |SS3, Y11I3).
Clearly the spin S of the baryons determines its SU(3)
irreducible representation.

Some useful details about the contents of SU(3) mul-
tiplets are in order. For a given irreducible representation
(p, q), the range of hypercharge is

2p+q p+2q
Ymin(p’ q) = 3 < Y < Ymax(p Q) 3 (A2)
Defining:

Y(p.q) = Yuu(P.q) —q

Y'(p.q) = Yuin(p. q) + g (A3)

where Y > Y’ if p > ¢, and viceversa. The possible isospin
values for a given Y are as follows:

if Y2V 5(p=Ymu+Y) s 3(P+ Vi = Y)
if p2q: [(Y)=¢if V<Y<V 3(p=Ymu +Y) o5 (P4 Vinax + ¥ = 27)
if Yon <Y <Y: i@+ Yon—Y)od(@+Y = Yiin)
if Y>2V:i(p=—Yuu+Y). . 3(p+ Yo —7Y)
ifg>p: I(Y)=qif Y<Y<V: i (p+2V =Yuu=Y) o s(P+ Yix = Y)
if Yo <Y<Y Hg+Ymn—Y), ... (g+Y = Yiin)
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1. Matrix elements of spin-flavor generators

The SU(6) algebra involved in the calculations is quite
lengthy and laborious, and therefore it is useful to provide
basic details that are of help in implementing it. Here the
matrix elements of the SU(6) generators are summarized.
Detailed presentations are given in Refs. [64,76]. In general

the matrix elements of a SU(2),;, x SU(3) tensor operator
between baryons of the form |SS;, RYII5), where R is the
irreducible representation of SU(3) to which the state
belongs, will be given according to the Wigner-Eckart
theorem in terms of reduced matrix elements and Clebsch-
Gordan coefficients as follows:

1
S'S. R'Y'T'TL| 0% |SSs, RYILS) = SSs.,££5]S'S"
< 3 3| RYII3| 3 3> 2S/+1 d1mR’< 3 3| 3>
R R R
x§ S, R'||O0%||S, R . A4
y< 107 >7<Y113 Y11, Y/1/1/3>7 (a4)

where for R' = (p.q). dim(R') = (p +

1)(g+1)(2+ p+ q), and y is a multiplicity index associated to R’ when the

SU(3) Clebsch-Gordan series of the direct product R ® R — R’ contains R’ more than once. Matrix elements of the spin-
flavor generators between baryon states in the spin-flavor symmetric representation are then given by

(S5, Y'I'I5|S™|SS3, Y1I3) = S558yy S1rdr,r,/ S(S + 1)(SS3, 1m|S'S)

(S'S5, Y'T'I,|T5|SS;, YI5) = 5505,

: (s|1713)

(5/83. VI 15| G553, Y113) =

\/dim(2S, L(N, - 25))
o (540 -29)

YIl,
(S5, 1m|S'S})

(1,1)

yii3

(25.3(N, -25)) >
Y'I't, -

y=1.2

<(2S,%(Nc —25))

V2S T+ 1\/dim(2S, L(N, -25))
x Y (SIGIS),

(28,3 (N, = 25))
Y'I'r,

(1,1)

YII, yiis

>y (A5)

In the conventions of Ref. [64], for states (p = 25, g = 1 (N, — 25), the reduced matrix elements of the SU(6) generators

V@2S+1)(N, =28 +2)(N. +25 +4)(N.(N. +6) + 125(S + 1))

46

V(S 1) (N +2)2—4S2) (N . +4)2—45?)

8v2

\/(48(5+2)+3)(N.~28)(N,~25+2)(N . +25+4)(N . +25+6)

8v2

(NA43)(25+1)4/S(S+1) (N ~25+2)(N,+25+4)

read [64]:
(S'NIT]IS) = bss
it S=8+1: -
(S'Gl[S),=y =4 if S=8-1: -
if §=5"

/6N (N +6)+128(5+1)

(25 + 1)y/(N, = 28)(N, + 25+ 6)((N, + 2)* = 455 (N, + 42 — 45?)

(A6)

('1Gl[S),=2 = —bss

8vV2\/N.(N.+6) +125(S+ 1)

In the case of the generators G and T, y = 1, 2 because R’ appears twice in the Clebsch Gordan series of R ® R — R’
when R =R’ = (p,q) and R = (1, 1). In the case of T, the matrix element for y = 2 vanishes by definition.

2. Bases of spin-flavor composite operators

Here the bases of 2- and 3-body spin-flavor operators along with important operator relations relevant to this work

are given.
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TABLE VL

2-body identities for the SU(6) generators acting on the irreducible representation (N, 0,0, 0,0, 0).

Relation

SU(2)spin X SU(3)

282 4+ 377 + 126* =3N (N, + 6)

de{Gia,G"} +2{S",G*} +1a®{T%, T} =2 (N, + 3)T*

{19.G"*} =3(N. +3)§

%{Si, Tu} + dabc{Tb7 Gic} _ €ijkfabc{Gjb, ch} — % (Nc + 3)Gia

—12G% + 2777 - 328 = 0

d”bC{Gib, Gic} + %ddbc{Tb, Tc} _ 1370{51" Gia}
4{Giuz7 Gib}27 — {T“, Tb}27

d“bc{Tb, Gic} — %({S!7 Ta} _ eijkfabc{Gjb’ ch})
€ijk{Gja’ Gkb}10+ﬁ — (facddbce{Td’ Gie})10+m
{Gia’ Gja}f:Z — %{Si, Sj}f:Z

dabc{Gia’ Gjb}f:Z — %{Si, Gja}f:2

(£=0,1)
0, 8)
(1,1
1,8
0, 1)
0, 8
(0, 27)
(1,8

(1, 10 + 10)
2,1
2,8

There are operator relations which are valid for matrix
elements in the symmetric irreducible representation of
SU(6). The first ones are relations for 2-body operators
[571, and are shown in Table VI. The relations in Ref. [57]
are for general Ny, and the correspondence for N, =3
given here is as follows (left Ref. [57], right Table VI):
01, 55 » 27, as + s5a — 10 + 10, while there is no
term aa for Ny = 3.

The following identities follow from Table VI, namely
from the (0, 1) relations:

~ 1/3 5
A _TQ
G 4(4NC(NC+6) 3S>

A 1/N.(N.+6 A
T2_Z(7C( . )+4S2>, (A7)
from the (0, 8) relations:
b ( ib e 3 7. .
a0 G, Gy = (N, +3)T* — {5, G}
N.+3 o
gave o, 7oy — —Ne £3) — Ve 4 o(si iy, (A8)
TABLE VII. 2-body basis operators.
2-body operator (¢,R)
§? 0, 1)
(51, s7ye=2 PIR))
(s, 79} (1, 8)
{87, G} 0, 8)
ciik (S, Gt (1, 8)
{Si7 Gja}f:Z (2, 8)7
{Ta7 Gib}10+ﬁ (l, 10 + 10)
{T°, T"}* 0, 27)
{Gie, GI"}(227) (2, 27)
{Ta7 Gih}27 (1’ 27)

and from the (1, 8) relations:

€ijkfabc{Giu’Gjb} — (Sch _ (Nc +3)ch)
. . 1, . .
dabc{Ta’th} :ZdabcTanb:g(StTC+<NC+3>Glc>

fabC{Th,GiC}:€ijk{Sj,Gka}, (A9)

while the rest of the identities are explicit in
Table VI. Making use of these relations, the basis
of 2-body operators can be chosen to be as shown in
Table VII:

Making use of the basis of 2-body operators, some
lengthy work leads to building the basis of 3-body
operators with # =10, 1. That basis is displayed in

Table VIII:

TABLE VIII. Operators of interest in the 3-body basis up to
=1

3-body operator (¢,R)
Tas'z (, 8)_
{T4.{5, Gib}}l%ﬁ 0, 10 + 10)
{T.{8",G"}}7 (0, 27)
§i8? (1,1
{Te.AT". )77} 0, 8 ®27)
Si{Ta, Th}27 1, 27)
(87, {Gia, GIPy 22y (1, 27)
{82, Gie} 1.8
ik {Si {14, Gkb}}10+ﬁ (1, 10 + 10)
eUk{ST {T?, G} {1, 27)
{Gia’ {Tb, Tc}27} (1, 8 ® 27)
{G, {8/, G*}} (1,8®8)
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APPENDIX B: BUILDING BLOCKS FOR THE
EFFECTIVE LAGRANGIANS

In the symmetric representations of SU(6) the baryon
spin-flavor multiplet consists of the baryon states in the
SU(3) irreducible representations (p =2S,q=3(N.—25)),
where S is the baryon spin. This permits a straightforward
implementation of the nonlinear realization of chiral
SU;(3) x SUR(3) on the spin-flavor multiplet. The baryon
spin-flavor multiplet is given by the field B, where the
components of the field have well defined spin, and
therefore also are in irreducible representations of SU(3).

Defining as usual the Goldstone boson fields z¢,
a=1,...,8, through the unitary parametrization u =

exp(i”;—T“) (note that in the fundamental representation

T =27/2, with A% the Gell-Mann matrices), for any
isospin representation one defines a nonlinear realization
of chiral symmetry according to [3,4]:

(L,R): u=u'= Ruh"(L,R,u) = h(L,R,u)ulL’, (B1)

where (L,R) is a SU;(3) x SUR(3) transformation. This
equation defines A, and since & is a SU(3) transformation
itself, it can be written as h = exp(ic?T*). The chiral
transformation on the baryon multiplet B is then given by

(L.R): B =B = h(L.R.u)B. (B2)

On the other hand, spin-flavor transformations of interest
are the contracted ones, namely those generated by
{8, 14, X1a = NLUGZ'“}. While the isospin transformations
act on the pion fields in the usual way, and the spin
transformations must be perfomed along with the corre-
sponding spatial rotations. The transformations generated
by X are defined to only act on the baryons.

The effective baryon Lagrangian can be expressed in the
usual way as a series of terms which are SU (3) x SU(3)
invariant (upon introduction of appropriate sources; see for
instance [77] for details). The fields in the effective
Lagrangian are the Goldstone bosons parametrized by
the unitary SU(3) matrix field « and the baryons given
by the symmetric SU(6) multiplet B.

The building blocks for the effective theory consist of
low-energy operators composed in terms of the GB fields,
derivatives and sources (chiral tensors), and spin-flavor
composite operators (spin-flavor tensors).

The low-energy operators are the usual ones, namely,

D,=0,-il},
[y . .

r,=Ij= E(lﬂ (i0, + r)u+u(id, +¢,)u’),
U, = up, = u(i0, + r,)u—u(id, + £,)u’,

X =2By(s +ip).
Fy = orer — over — i[er, ¢,
Fl =0 = o —i[r*, 1],

xe=utyu’ £uytu,

(B3)

where D, is the chiral covariant derivative, s and p are
scalar and pseudoscalar sources, and ¢, and r, are gauge
sources. It is convenient to define the SU(3) singlet and
octet components of y* using the fundamental SU(3)
irreducible representation, namely:

{rs)

XL =

Q| =

a

Te=x+—21 :)?17

N 7/
klal\ / koas
X
ksas / \ kqay
/7 N

— ﬁ pon (BQ<M/\""1)\"'”2)\””3 )\(Ln4> _ lk’” kqu)\a”‘y )\u@][}\uda, )\uq>)

202

] — %kicza
\ /
\ 7
kiaq % A koas
N7
2 — QLFWIUCE) _ k?)fala2b Th
|
\ 1kaas
\ /
LEN 4 P
N ; X .
" — 0}7& Zg f Cayy fa{,zangc k(szﬂ

FIG. 5. Interaction vertices from the LO Lagrangians. M is the
quark mass matrix. Y indicates sum over the corresponding
permutations.
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kb koc
- ) > - —b—®—b—
A _ if"’"'(kl + k2>/‘ A = guT*
fapa i qua
/ \ /
kb
/ k‘lb\ /kgu
_._Q:(L._ — %gm/nbv(;u‘ 2 — ﬁglmfum:fbdez*d
A ?
i qua A

i qua

FIG. 6. Vertices involving the vector currents from the LO
Lagrangians.

Displaying explicitly the quark masses,
24 =4BoM, + - (BS)

The three quark mass combinations, namely SU(3) singlet,
isosinglet, and isotriplet are, respectively, defined to be

8 _

(m, + my + my), m — (my, + my —2my),

L»Jl»—
S,_
[O8)

—~

m, = my). (B6)
The spin-flavor operators were discussed in Appendix A.
The leading-order equations of motion are used in the

construction of the higher-order terms in the Lagrangian,

namely, iDyB = (%S(S—{— 1)+5x7+)B,and V,u# =Ly _.
|

qua

LTS SIRTIe —_ 0 - - 77(5“[’]7,,1]}
\ :k;a) ,
4
kl{n A *
N ksas 71 fuba fbu 20k,
3]
qua
/
kb /
= _g;/()l%fub( fnbrT<
= —§49uG"
qua A
iqua
\ /
klb\ /kg(’

o1 ce phed yid
= HAﬁymfmf G

qua

FIG. 7. Vertices involving the axial-vector currents from the LO
Lagrangians.

1. Interaction vertices and currents at LO

The interaction vertices and the currents derived from the
LO Lagrangian and needed for the one-loop calculations
are given here for convenience. The interactions are
depicted in Fig. 5, the vector currents in Fig. 6 and the
axial-vector currents in Fig. 7.

APPENDIX C: LOOP INTEGRALS

The one-loop integrals needed in this work are provided here. The definition % = d’k/(2r)? is used.

The scalar and tensor one-loop integrals are

L I T(n+9)l(a—n-9) g
I ’ 9A = ddki =i _1 n-a 2 A2 n—a-+5
(I’l a ) (kZ _ AZ)a l( ) (4”_)% F(%)F (Z) ( ) 2
-k 1 1 Ila-n-19) .
JH s Hon ,A ddk ﬂl Hon __ 5 —1)r—« A2 n—a+§ .
(a ) / (k2 )a l( ) (4]7,')% 4"1’” F(a) ( ) X ;gﬂ”lﬂ”z g””znq”ﬁzn
1 @
4’1”! F(l’l + n @, A Zg”ﬂﬂdz " Gy oy, (Cl)
where ¢ are the permutations of {1, ...,2n}.
The Feynman parametrizations needed when heavy propagators are in the loop are as follows:
! —?T(+)/mﬂ M//Uz da,5(1 )
A - -AB,---B, meenfen m | e ddy a a,
1
) C2
“ AL+t DAy + A By + -+ @By (€2)

where the A; are heavy particle static propagators denominators, and the B; are relativistic ones.
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The integration over a Feynman parameter A is of the general form:
J(Co. Cy. 20, d,v) = /O°°(cO 4 Cy (= 20)2)
which satisfies the recurrence relation:
—20(Co 4+ C L)' + (3 +d = 20)J(Cy, Cy, Ao, dyv — 1)

(d—2v+2)C,

d—l/ }40
TV HCy.Crdgdiy 1) 40
d—2 117 G Crlpdvt )+ o e

J(Co, C17/107 d, l/) =
J(Co, Cl,lo, d, I/) = Co
Integrals with factors of 4 in the numerator are obtained by using

J(Cy,Ci Ag d,v,n=1)= /m(/1 —20)"=1(Co + C, (A= 29)?) ™ *5dA
0

1 d
- C +C/12 —+1—1/’
2C1(g+1—u)( 0 Ciho)

and the recurrence relations

1
J(Co,Cl,ﬂo,d,U,n) :C_(‘](CO’Ch/lO?d’V_ 1,}’1— 1) - Co.](CO,Cl,)«(),d,l/,l’l —2))
1

For convenience, in some of the calculations for the currents, the following integral is defined:
j(Co, Cl, ﬂo, d, v, I’l) = J(Co, Cl? )«0, d, v, T’l) + ﬂoJ(Co, Clv /10, d, l/)

For the calculations in this work, the following integrals are needed at d = 4 — 2e:

1 /1 C1
J(Cy,Ci,49,d,3) = ——=| = tan| Aoy [ =
( 0 10 ) m<2+arcan< 0 C0>>

1
J(Co.C1,4.d.2) = -3 (A0(Co + C1A3)E2 + (d = 4)CoJ (Co, C1, 4o, d,3))

1
J(Co,Cy,4.d. 1) = i1 (20(Co + 125" + (d = 2)J(Co, €1, 4o, d. 2))

1. Specific integrals

(Co+ C ).

(C4)

(C5)

(Co)

(C7)

Here a summary of relevant one-loop integrals for the calculations in this work is provided for the convenience of the reader.
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(1) Loop integrals involving only relativistic propagators

10,1, M) ——M—’)dr<1—g>MH
)2
d

i
10.2.M) = ——1(2 =%\ pa+
0200 = 1 ( 2)
11,1, M) = ’(_151 (—%)M"

(47)22
1(1,2,M) = _(4;7;)%’%[%1 —%I>Md‘2
— 1 1
K(q,Ma,Mb)E/ddk(k2_M3+i€)((k+q)2_M%+l€ /O dal(0,2, A(a)
K'(q.M,. M) = /Jde(kz M+ ie)((llzﬂ—i- =M+ i0) /01 da(a—1)g"1(0,2,A(a))
N P
k(g Mo My) = /ddk (K2 = M2 + ie)((k + q)> — M3 + ie)

— /)1 da<(1 —a)’q"q*1(0,2, A(a)) + %1(1, 2, A(a))> ,

where:

Ala) = \/aMg + (1 —a)M? — a(1 — a)¢?
(2) Loop integrals involving one heavy propagator

— I
H(p’.M) = [ dk
(P, M) / (p° = K+ ie) (k2 = M + ie)

2 d
_ (4_7;)%;(2 —§>J(M2 —p%.1,p°.d.2)

kik/
(p° = kO +ie)(k*> — M? + ie)

HI(p°, M) = dk

i d 2
= (4ﬂ)dgljr<]—§>J(M2—p0,1,po,d,])

K'(k+ q)/ (2k + q)*
(p° — kO + i) (K* — M2 + ie)((k + q)* — M3 + ie)

— i(4i)g/ol da{—%l“(.% _§> q'q’a(l —a)

x (1 =2a)g"J(Cy, Cy, Ao, d,3) —2¢"°J(Cy, Cy, A, d,3, 1))

Hb(p0, My My q) = [ dik

(25 (=1 = 205" + 2(a"e) = (1 P g D(Co. .o .2

+ zgijgij(CO’ Cl’/l()’ d’z’ 1))}7

where:
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Co=aM?+ (1—a)M} — p* —2(1 —a)p°q® — (1 - a)(ag® + (1 — a)q")
c =1
ho= PO+ (1 - ) (i)

The polynomial pieces of the integrals are as follows:

4r)?
(47)?

H(p* MY = = 2p°(3, +2)

—~

Hij(pO, M)poly =

0 16
% <(3M2 —2p")A +TM? — 3p0'>

1)’ (24'¢" + ¢*9") A + ¢ g7 = 3(A + 1)(M2 + M3) g

H7(p® My My, ) = o

+3(Ae +2)(2° + ¢°)*g"), (C12)

where the UV divergency is given by the terms proportional to 4, = 1/e¢ — y + log 4z, where d = 4 — 2e.

APPENDIX D: USEFUL OPERATOR REDUCTIONS

The reductions of multi-body spin-flavor operators which appear in the polynomial contributions of the one-loop
corrections to the self-energy and the currents require some lengthy work, and are therefore provided here. The reductions
are only valid for matrix elements between states in the totally symmetric irreducible representation of SU(6). In the
following o671 contains only the hyperfine term.

(1) Self-energy:

i iy G (T3
], Gia] = ~8 " N.(N.+6
o, G, G = 3t (25' NN+ >)
CHF

[[87, [61h, G']], G'] = (N )2 <4S4 — (N.(N, +6) —18)8* — %NC(NC + 6))

c

([8im, |6, [67, G4]]], G'] = (%)3(3634 — (5N.(N,. +6) —36)8? = 3N (N, + 6))

Cc

- . 7 o3
M2G“G™ = 2B, (mOG2 +me (—ﬁ {87.G"} + e (N + 3)T“>>

o C 8 o2, S o .
MG (5. ], G| = 4% By <§ m0§? + = m*{S', G’“}) —AM2G G (D1)
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(2) Vector currents:

) ) 2 1 N N
Ga[sim, [sim, G'*]| = (CHF> (é N (N.+6) + (E Ne¢(N, +6) — 9) §2 - ZS4>

N.) \4
[, Gi4)[8/, G'] = =G|/, [5im, G4
G4 [sm, [6m, G™]| = —[sm, G™*1T*[5im, G
= 3(N. +3)S'G™
(NL.) <( )

4

n (§ (N.(N. +6)-6)

2
(7. G™]. [, 3. G| = —([[T. [8ih. G™]]. [1. G™]]

1 o n
+ = (N,(N, 4 6) —30)8* - 254> T“)

= 2[5, G| T/, G™*] — {T°, [5/, G*][5/, G*]}

1
fabcbedMde — 6BO (mOTa + Z dabcmch>

o ro 9 1, /1 3 T wiipr 3
M2G™*T*G" = 2B, (mo <G2 - —) T +—~m" (5 {14~ (N, +3)T" - —5'G"} - ZdabfTC>)

M%[[T“, sz], Glh] — gBO <m0Ta + thdah(jTL'>

(3) Axial-vector currents:

N, ) \2

o ‘ Cur\2 /(3 . 1 .
G/*Gi[sin, [8in, GI*)] + H.c. = < HF) <—NC(NC +6)G™ + (ENC(NC +6) — 14) {82, G}

o ‘ Cur\2/ 1 1 .
(671, GIP1G ™[5, GIP] = <ﬂ> (—— (3 +5NNe +6)>G"‘

N,
1

) 1 .
fquthdM%Glh — 6B0 (m()éah + Z mcdubc> Glh

8 8 24
(D2)
A A . 3 . R
— {828, G} + (N +3)8T + ZS’S/G/“)
2
1 2 i 1 2 Q2 i 5 j
5 (133NN +6) {86} + {87 {8, G}} = (N, +3)8'T
B, . 5 11 .
22 0ia b | = sab i —~ jgabc ric D
5 (swom (23054 Laner)) oo

N -
MG GG = Z{G", M}G"' G} ~
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