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We investigate the Sivers asymmetry in the pion-induced single polarized Drell-Yan process in the
theoretical framework of the transverse momentum dependent factorization up to next-to-leading
logarithmic order of QCD. Within the TMD evolution formalism of parton distribution functions, the
recently extracted nonperturbative Sudakov form factor for the pion distribution functions as well as the
one for the Sivers function of the proton are applied to numerically estimate the Sivers asymmetry in
the π−p Drell-Yan at the kinematics of the COMPASS at CERN. In the low b region, the Sivers function in
b-space can be expressed as the convolution of the perturbatively calculable hard coefficients and the
corresponding collinear correlation function, of which the Qiu-Sterman function is the most relevant one.
The effect of the energy-scale dependence of the Qiu-Sterman function to the asymmetry is also studied.
We find that our prediction on the Sivers asymmetries as functions of xp, xπ , xF and q⊥ is consistent with
the recent COMPASS measurement.
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I. INTRODUCTION

The Sivers function [1] is a transverse momentum
dependent (TMD) parton distribution function (PDF),
which describes the asymmetric distribution of unpolarized
quarks inside a transversely polarized nucleon through the
correlation between the quark transverse momentum and
the nucleon transverse spin. Because of its time-reversal-
odd (T-odd) property, the Sivers function plays an impor-
tant role in the understanding of the transverse spin
structure of the nucleon [2] within the twist-2 approxima-
tion of QCD parton model. It can also give rise to the
single-spin asymmetry in various high energy scattering
processes. During the last decade, the Sivers asymmetry in
semi-inclusive deep inelastic scattering (SIDIS) has been
measured by the HERMES [3,4], COMPASS [5–8], and
Jlab Hall A [9] Collaborations. The data from these
experiments were utilized by several groups [10–15] to
extract the quark Sivers functions of the proton. However,
the TMD framework of QCD predicts that the T-odd PDFs
present generalized universality, i.e., the sign of the Sivers
function measured in Drell-Yan process should be opposite
to its sign measured in SIDIS [16–18]. The verification of
this sign change [19–24] is one of the most fundamental

tests of our understanding of the QCD dynamics and the
factorization scheme, and it is also the main pursue of the
existing and future Drell-Yan facilities [25–30].
Very recently, the COMPASS Collaboration has reported

the first measurement of the Sivers asymmetry in the
pion-induced Drell-Yan process, in which a π− beam
was scattered off the transversely polarized NH3 target
[25]. The polarized Drell-Yan data from COMPASS,
together with the previous measurement of the Sivers
effect in theW- and Z-boson production from p↑p collision
at relativistic heavy ion collider (RHIC) [30], provide the
first evidence of the sign change of the Sivers function. The
COMPASS experiment has the unique advantage to explore
the sign change of the Sivers function since it has almost
the same setup [8,25] for SIDIS and Drell-Yan process,
which may reduce the uncertainties in the extraction of the
Sivers function from the two kinds of measurements. An
important issue in the comparison of observables between
the SIDIS and Drell-Yan-type processes is that the typical
energy scales for existing SIDIS facilities are quite different
from those for the existing and planned hadron-hadron
collision facilities. To obtain reliable theoretical estimate
of the Sivers asymmetry, the evolution effects must be
included. Since most of the data accumulated by the
COMPASS Collaboration are at low transverse momentum
of the dilepton pair, a natural choice for the analysis is
TMD factorization, which is valid in the region where q⊥ is
much smaller than the hard scale Q.
The main purpose of this work is to apply the TMD

factorization to present a detailed phenomenological analy-
sis of the Sivers asymmetry in the pion induced Drell-Yan
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process. Particularly, we take into account the TMD
evolution for both the pion distribution functions and
the proton distribution functions. In the TMD formalism
[31–34], the differential cross section can be separated to
the hard scattering factors and the well-defined TMD PDFs
or fragmentation functions (FFs). At some fixed energy
scale, one may express the TMD PDFs or FFs as con-
volutions of their collinear counterparts and the perturba-
tively calculable C-coefficients. Specifically, the Sivers
function in the coordinate space (conjugate to the trans-
verse momentum space through Fourier transformation) in
the perturbative region can be written as the convolution of
the C-coefficients and the corresponding collinear corre-
lation functions, among which Qiu-Sterman matrix element
is the most relevant one as the Qiu-Sterman function
Tq;Fðx; xÞ appears in the leading order (in the αs expansion
of QCD) contribution for the structure function W̃α

UTðQ; bÞ
[35], and consequently it may provide the main contribu-
tion to the single spin asymmetry. Other twist-3 correlation
functions appear in the next-to-leading order corrections for
the structure function W̃α

UT [35] and are ignored in our
study. Therefore, we will consider the Qiu-Sterman func-
tion as the source of the corresponding collinear correlation
function of Sivers function. After solving the evolution
equations, the evolution from one energy scale to another
energy scale is realized by an exponential factor, the so-
called Sudakov form factor [32,33,36], which can be
separated into a perturbatively calculable part SP and a
nonperturbative part SNP. In this study, we take all the
C-coefficients and the perturbative Sudakov form factors
up to the next-to-leading logarithmic (NLL) accuracy to get
reliable results. The nonperturbative Sudakov form factors
can not be calculated directly and are usually parameterized
from experimental data. In Ref. [37], the nonperturbative
Sudakov form factor corresponding to the pion distribution
functions was extracted by using the unpolarized π−N
Drell-Yan data from the E615 experiment [38,39] at
FermiLab. Here we apply the same parameterized result
to estimate the Sivers asymmetry in the pion induced Drell-
Yan at COMPASS. On the other hand, the Sivers effects in
SIDIS, pp Drell-Yan and W=Z-production have been
studied extensively in Refs. [15,22,40,41], in which differ-
ent parametrizations for the nonperturbative Sudakov form
factor corresponding to the Sivers function of the proton
were proposed. In this work we adopt the expression of SNP
from Ref. [22]. For consistency we also take the para-
metrization from Ref. [22] for the collinear counterpart of
the Sivers function, the so-called Qiu-Sterman function.
The rest of the paper is organized as follows. In Sec. II,

we present the theoretical framework for the Sivers
asymmetry in the pion induced transversely polarized
Drell-Yan process within the TMD factorization. In
Sec. III, we numerically calculate the Sivers asymmetry
for the underlying process at the kinematics of COMPASS
Collaboration using the framework set up in Sec. II. We
summarize the paper in Sec. IV.

II. FORMALISM OF THE SIVERS
ASYMMETRY IN DRELL-YAN

In this section, following the procedure in Ref. [33], we
review the necessary setup of the TMD factorization to
obtain the theoretical expression of the Sivers asymmetry in
the pion-induced Drell-Yan process:

π−ðPπÞ þ pðPp; SpÞ → γ�ðqÞ þ X → lþðlÞ þ l−ðl0Þ þ X;

ð1Þ

where Pπ , Pp and q represent the momenta of the π−

meson, the proton and the virtual photon, respectively. Sp is
the four-vector of the target polarization. In contrast to the
SIDIS process, q is a timelike vector in Drell-Yan process,
namely,Q2 ¼ q2 > 0, withQ2 the invariant mass square of
the lepton pair. We adopt the following kinematical
variables [26,32] to express the experimental observables

s ¼ ðPπ þ PpÞ2; xπ ¼
Q2

2Pπ · q
; xp ¼ Q2

2Pp · q
;

xF ¼ 2qL=s ¼ xπ − xp; τ ¼ Q2=s ¼ xπxp;

y ¼ 1

2
ln
qþ

q−
¼ 1

2
ln
xπ
xp

; ð2Þ

where s is the total center-of-mass (c.m.) energy squared;
xπ and xp are the Bjorken variables of the pion and nucleon,
respectively; qL is the longitudinal momentum of the
virtual photon in the c.m. frame of the incident hadrons;
xF is the Feynman x variable; and y is the rapidity of the
lepton pair. Thus, xπ and xp can be expressed as functions
of xF, τ and of y, τ

xπ=p ¼ �xF þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ 4τ

p
2

; xπ=p ¼ ffiffiffi
τ

p
e�y: ð3Þ

The transverse single spin asymmetry for the unpolar-
ized π− scattering off the transversely polarized proton
Drell-Yan process can be defined as [22]

AUT ¼ d4Δσ
dQ2dyd2q⊥

�
d4σ

dQ2dyd2q⊥
; ð4Þ

where d4σ
dQ2dyd2q⊥

and d4Δσ
dQ2dyd2q⊥

stand for the spin-averaged

and spin-dependent differential cross section, respectively,
and q⊥ is the transverse momentum of the dilepton.
In general, it is convenient to solve the TMD evolution

effects in the b-space which is conjugate to q⊥. Thus, the
structure functions in Drell-Yan process are usually
expressed in the b-space as products of hard scattering
factor and distribution functions in the b-space. The
physical observables can be obtained through a Fourier
transform from the b-space to the q⊥.
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The spin-averaged differential cross section can be
written as [32]

d4σ
dQ2dyd2q⊥

¼ σ0

Z
d2b
ð2πÞ2 e

iq⃗⊥·b⃗W̃UUðQ; bÞ þ YUUðQ; q⊥Þ;

ð5Þ

where σ0 ¼ 4πα2em
3NCsQ2 is the cross section at the tree level,

W̃UUðQ; bÞ is the spin-independent structure function in
the b-space which contains all-order resummation results
and dominates in the low q⊥ region (q⊥ ≪ Q); while the
YUU term provides necessary correction at q⊥ ∼Q.
Hereafter, we will use the terms with a tilde to denote
the quantities in b-space.
The spin-dependent differential cross section has the

form [22,35,41]

d4Δσ
dQ2dyd2q⊥

¼ σ0ϵ
αβ
⊥ Sα⊥

Z
d2b
ð2πÞ2

× eiq⃗⊥·b⃗W̃β
UTðQ; bÞ þ Yβ

UTðQ; q⊥Þ: ð6Þ

Similarly, W̃UTðQ; bÞ is the spin-dependent structure func-
tion in b-space and dominates at q⊥ ≪ Q, while Yβ

UT
provides correction for the single polarized process at
q⊥ ∼Q. The antisymmetric tensor ϵαβ⊥ is defined as
ϵαβμνPμ

πPν
p=Pπ · Pp, and S⊥ is the transverse polarization

vector of the proton target. As we always focus on the
region q⊥ ≪ Q, we will neglect the Y-terms and will only
consider the W-terms on the right-hand side (r.h.s.) of
Eqs. (5) and (6).
According to the TMD factorization [32,33], the struc-

ture functions can be expressed as the product of the well
defined TMD PDFs and the process/scheme-dependent
hard factors. Therefore, the structure functions W̃UUðQ; bÞ
and W̃UTðQ; bÞ can be written as

W̃UUðQ; bÞ ¼ HUUðQ; μÞ
X
q;q̄

e2qf̃1q̄=πðxπ; b; μ; ζFÞ

× f̃1q=pðxp; b; μ; ζFÞ; ð7Þ

W̃α
UTðQ; bÞ ¼ HUTðQ; μÞ

X
q;q̄

e2qf̃1q̄=πðxπ; b; μ; ζFÞ

× f̃⊥αðDYÞ
1Tq=p ðxp; b; μ; ζFÞ: ð8Þ

Here, f̃1q=H is the unpolarized distribution function in the
b-space with the soft factor subtracted in the definition of
the TMD distribution functions. f̃⊥α

1Tq=pðxp; b; μ; ζFÞ is the
subtracted Sivers function for proton in the b-space, which
is defined as [22]

f̃⊥αðDYÞ
1Tq=p ðx; b; μ; ζFÞ ¼

Z
d2k⊥e−ik⃗⊥·b⃗

kα⊥
Mp

f⊥ðDYÞ
1T;q=pðx; k⊥; μÞ;

ð9Þ

where the superscript DY denotes that the quark Sivers
function is the one in the Drell-Yan process, and it satisfies

the relation f⊥ðDYÞ
1T;q=p ¼ −f⊥ðDISÞ

1T;q=p .
In Eqs. (7) and (8), HUUðQ; μÞ and HUTðQ; μÞ are the

factors associated with the corresponding hard scattering,
μ is the renormalization scale in the case of the collinear
PDFs, and ζF is the energy scale serving as a cutoff to
regularize the light-cone singularity of the TMD dis-
tributions. We note that, in the above definition the soft
factors have been absorbed into the definition of the TMD
PDFs, and the way to subtract the soft factor in the
distribution function depends on the regulating scheme
for the light-cone singularity [31,33]. In literature, two
different schemes are usually applied: the Collins-11
scheme [33] and the Ji-Ma-Yuan scheme [34,42], which
yield scheme-dependent hard factors HUUðQ; μÞ and
HUTðQ; μÞ. However, after combining with TMD PDFs,
the final results of the physical observables should be
scheme independent.

A. The spin-averaged differential cross section

The general expression for the unpolarized structure
function W̃UU in terms of the unpolarized TMD PDF f̃1q=H
for the pion and proton in the b-space is given in Eq. (7).
For the evolution effect of the TMD PDFs, there are two
energy dependencies that should be solved, one is the ζF-
dependence and the other is the μ-dependence. The former
dependence is encoded in the Collins-Soper (CS) [33]
equation as

∂ ln f̃1ðx; b; μ; ζFÞ
∂ ffiffiffiffiffi

ζF
p ¼ K̃ðb; μÞ; ð10Þ

while the latter one is derived from the renormalization
group equation as:

dK̃
d ln μ

¼ −γKðαsðμÞÞ; ð11Þ

d ln f̃1ðx; b; μ; ζFÞ
d ln μ

¼ γF

�
αsðμÞ;

ζ2F
μ2

�
; ð12Þ

with K̃ the CS evolution kernel, and γK and γF the
anomalous dimensions. The solutions of these evolution
equations have been studied in details in Ref. [33]. Here,
we only discuss the final result. The overall solution
structure for f̃1ðx; b; μ; ζFÞ is the same as that for the
Sudakov form factor. Namely, the energy evolution of
TMDs from a initial energy μ to another energy Q is
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encoded in the Sudakov-like form factor S by the expo-
nential form expð−SÞ

f̃ðx; b;QÞ ¼ F × e−S × f̃ðx; b; μÞ; ð13Þ

where F is the hard factor depending on the scheme one
chooses, while the solution structure is independent on the
scheme. Hereafter, we set μ ¼ ffiffiffiffiffi

ζF
p ¼ Q and express

fðx; b; μ ¼ Q; ζF ¼ Q2Þ as fðx; b;QÞ for simplicity.
Since the transverse momentum dependence of the

experimental observable can be determined by the
b-dependence of the structure function through Fourier
transformation, it is quite important to understand the
b-dependence of the TMD functions. In the large b region,
the dependence is nonperturbative because the operators
are separated by a large distance and should contain the
nonperturbative functions that can be extracted from
the experimental data. While in the small b region, the
b-dependence of the TMDs is perturbatively calculable
and can be expressed in terms of the corresponding
collinear distribution functions. A matching procedure
must be introduced to combine the perturbative calculation
at small b with the nonperturbative fits at large b. With
a parameter bmax serving as the boundary between pertur-
bative and nonperturbative region, a b-dependent function
b� is defined to have the property b� ≈ b at low values of b
and b� ≈ bmax at large b values. The typical value of bmax is
chosen around 1 GeV−1 such that b� is always in the
perturbative region. There are several different b� pre-
scriptions in literature [43,44]. In this work we adopt
the original prescription introduced in Ref. [32] as
b� ¼ b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2=b2max

p
.

With the introduction of the b� prescription, the
Sudakov-like form factor S in Eq. (13) can be separated
into the perturbatively calculable part and the nonpertur-
bative part

S ¼ SP þ SNP: ð14Þ

The perturbative part of S has the form

SPðQ; bÞ ¼
Z

Q2

μ2b

dμ̄2

μ̄2

�
Aðαsðμ̄ÞÞ ln

Q2

μ̄2
þ Bðαsðμ̄ÞÞ

�
: ð15Þ

The coefficients A and B in Eq. (15) can be expanded as a
αs=π series:

A ¼
X∞
n¼1

AðnÞ
�
αs
π

�
n
; ð16Þ

B ¼
X∞
n¼1

BðnÞ
�
αs
π

�
n
: ð17Þ

In this work, we take AðnÞ up to Að2Þ and BðnÞ up to Bð1Þ
within the NLL accuracy [32,35,45–48]:

Að1Þ ¼ CF; ð18Þ

Að2Þ ¼ CF

2

�
CA

�
67

18
−
π2

6

�
−
10

9
TRnf

�
; ð19Þ

Bð1Þ ¼ −
3

2
CF: ð20Þ

For the nonperturbative form factor SNP associated with
the unpolarized TMD PDF of the proton, a parametrization
has been proposed in Ref. [49] to study the unpolarized pp
Drell-Yan process:

SNP ¼ g1b2 þ g2 ln
b
b�

ln
Q
Q0

þ g3b2ððx0=x1Þλ þ ðx0=x2ÞλÞ:

ð21Þ

At the initial scale Q2
0¼ 2.4GeV2 with bmax ¼ 1.5 GeV−1,

x0 ¼ 0.01 and λ ¼ 0.2, the parameters in Eq. (21) are
fitted to the experimental data to get the values g1 ¼ 0.212,
g2 ¼ 0.84, g3 ¼ 0. Since the nonperturbative form factors
SNP for quarks and antiquarks satisfy the following
relation [50]

SqNPðQ; bÞ þ Sq̄NPðQ; bÞ ¼ SNPðQ; bÞ; ð22Þ

and both the initial hadrons in the collision process are
nucleons, the SNP associated with the TMD distribution
function of the initial protons can be expressed as

S
f1q=p
NP ðQ; bÞ ¼ g1

2
b2 þ g2

2
ln

b
b�

ln
Q
Q0

: ð23Þ

In Ref. [37], we fit the nonperturbative Sudakov-like
form factor SNP for the pion distribution function from the
π−N Drell-Yan data [38,39] with the following form

S
f1q=π
NP ¼ gπ1b

2 þ gπ2 ln
b
b�

ln
Q
Q0

: ð24Þ

The parameters gπ1 and gπ2 are fitted at the initial energy
scale Q2

0¼ 2.4GeV2 with bmax ¼ 1.5GeV−1 as gπ1 ¼ 0.082
and gπ2 ¼ 0.394. The perturbative form factors SP for
quarks and antiquarks have the relation of [50]

SqPðQ; b�Þ ¼ Sq̄PðQ; b�Þ ¼ SPðQ; b�Þ=2: ð25Þ

When b is in the perturbative region 1=Q ≪ b ≪ 1=Λ,
the TMD distribution function at fixed energy in b-space
can be expressed as the convolution of perturbatively
calculable hard coefficients and the corresponding collinear
PDFs [31,51]

f̃1q=Hðx; b; μÞ ¼
X
i

Cq←i ⊗ fi=H1 ðx; μÞ; ð26Þ
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where ⊗ stands for the convolution in the momentum
fraction x

Cq←i ⊗ fi=H1 ðx; μÞ≡
Z

1

x

dξ
ξ
Cq←iðx=ξ; b; μ; ζFÞfi=H1 ðξ; μÞ;

ð27Þ

and fi=H1 ðξ; μÞ is the collinear PDF of i flavor in hadronH at
the energy scale μ, which could be a dynamic scale related

to b� by μb ¼ c0=b�, with c0 ¼ 2e−γE and γE ≈ 0.577 the
Euler constant [31]. In addition, the sum

P
i runs over

parton flavors. Here, the b� prescription prevents αsðμbÞ
from hitting the so-called Landau pole at large b regime. In
particular, the C-coefficients in Eq. (26) are universal
among different schemes and initial hadrons. With all
the ingredients presented above, we can rewrite the
unpolarized distribution function f1 in the b-space as a
function of x, b, and Q,

f̃1q=pðx; b;QÞ ¼ e−
1
2
SPðQ;b�Þ−S

f1q=p
NP ðQ;bÞF ðαsðQÞÞ

X
i

Cq←i ⊗ fi=p1 ðx; μbÞ; ð28Þ

f̃1q=πðx; b;QÞ ¼ e−
1
2
SPðQ;b�Þ−S

f1q=π
NP ðQ;bÞF ðαsðQÞÞ

X
i

Cq←i ⊗ fi=π1 ðx; μbÞ: ð29Þ

Substituting Eq. (28) into Eq. (7), we express the spin-averaged structure function as

W̃UUðQ;bÞ ¼ HUUðQ; μÞ
X
q;i;j

e2qF ðαsðQÞÞCq←i ⊗ f1i=pðxp; μbÞF ðαsðQÞÞ

× Cq̄←j ⊗ f1j=πðxπ; μbÞe−ðS
f1q=p
NP þS

f1q=π
NP þSPÞ; ð30Þ

where S
f1q=p
NP , S

f1q=π
NP and SP are given in Eqs. (23), (24) and (15), respectively. Therefore, the spin-averaged differential cross

section can be cast into

d4σ
dQ2dyd2q⊥

¼ σ0
2π

Z
∞

0

dbbJ0ðq⊥bÞW̃UUðQ;bÞ; ð31Þ

We note that the factors HUUðQ; μÞ and F ðαsðQÞÞ relating to the hard scattering are scheme-dependent. If we absorb
them to the definition of the C-coefficients, the cross section in Eq. (31) can be arranged as

d4σ
dQ2dyd2q⊥

¼ σ0
2π

Z
∞

0

dbbJ0ðq⊥bÞ
X
q;i;j

e2qC0
q←i ⊗ f1i=pðxp; μbÞC0

q̄←j ⊗ f1j=πðxπ; μbÞe−ðS
f1q=p
NP þS

f1q=π
NP þSPÞ; ð32Þ

with the new C-coefficients having the form [52]

C0
q←q0 ðx; b; μbÞ ¼ δqq0

�
δð1 − xÞ þ αs

π

�
CF

2
ð1 − xÞ þ CF

4
ðπ2 − 8Þδð1 − xÞ

��
; ð33Þ

C0
q←gðx; b; μbÞ ¼

αs
π
TRxð1 − xÞ: ð34Þ

B. The spin-dependent differential cross section

In this subsection, we present the theoretical framework
of the spin-dependent differential cross section in the πN
Drell-Yan contributed by the Sivers function, following the
procedure in Ref. [22]. The general expression of the
structure function W̃UT is given in Eq. (8). The evolution

functions for the Sivers function in the b-space f̃⊥αðDYÞ
1Tq=p

follow the same ones in Eqs. (10), (12) and the solution

structure can also be written in the same form as that in
Eq. (13). The Sudakov form factor in the perturbative
region for the Sivers function is exactly the same as the one
for the unpolarized distribution function [22,35,48,53,54].
In Ref. [22], the authors proposed a nonperturbative

Sudakov form factor in the evolution formalism, which can
lead to a good description of the transverse momentum
distribution for different processes such as SIDIS, DY
dilepton and W/Z boson production in pp collisions.
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The nonperturbative Sudakov form factor SNP in Ref. [22]
for the Sivers function has the form

SSivNP ¼
�
gSiv1 þ gSiv2 ln

Q
Q0

�
b2; ð35Þ

where the parameter gSiv1 is relevant to the averaged
intrinsic transverse momenta squared gSiv1 ¼ hk2s⊥iQ0

=
4 ¼ 0.071 GeV2, and gSiv2 being 1

2
g2 ¼ 0.08 GeV2.

Similar to what has been done to the unpolarized
distribution function in Eq. (26), in the low b region, the

Sivers function f̃⊥αðDYÞ
1Tq=p can be also expressed as the con-

volution of perturbatively calculable hard coefficients and
the corresponding collinear correlation functions as [35,41]

f̃⊥αðDYÞ
1Tq=p ðx; b; μÞ ¼

�
−ibα

2

�X
i

ΔCT
q←i ⊗ fð3Þi=pðx0; x00; μÞ:

ð36Þ

Here, ΔCT
q←i stands for the hard coefficients, and

fð3Þi=pðx0; x00Þ denotes the twist-three quark-gluon-quark or
trigluon correlation functions, among which the transverse
spin-dependent Qiu-Sterman matrix element Tq;Fðx0; x00Þ
[55–57] is the most relevant one. As shown in Eq. (6) in
Ref. [35], in the small b region the Qiu-Sterman function

Tq;Fðx; xÞ (corresponding to the case x0 ¼ x00) appears in
the leading order (in the αs expansion) contribution in
Eq. (36):

f̃⊥αðDYÞ
1Tq=p ðx; bÞjLO ¼

�
−ibα

2

�
Tq;Fðx; xÞ: ð37Þ

Thus Tq;Fðx; xÞ may provide the main contribution to the
Single spin asymmetry. Other twist-3 correlation functions
appear in the next-to-leading order corrections for the
structure function W̃α

UT [35] and are ignored in our study.
The relation between the Qiu-Sterman function Tq;Fðx; xÞ
and the quark Sivers function is given by [35,41]

Tq;Fðx; xÞ ¼
Z

d2k⊥
jk2⊥j
Mp

f⊥DY
1Tq=pðx; k⊥Þ ¼ 2Mpf

⊥ð1ÞDY
1Tq=p ðxÞ;

ð38Þ

which is proportional to the first transverse moment of the

Sivers function f⊥ð1Þ
1Tq=pðxÞ. Therefore, in the following we

use the relation in Eq. (38) to model the x-dependence of
the Sivers function in terms of the phenomenological
information available on the Qiu-Sterman function.
Similar to what has been done in the last subsection, the
scheme-dependent hard factors are absorbed into the
C-coefficients definition, leading to [35,41]

ΔCT
q←q0 ðx; b; μbÞ ¼ δqq0

�
δð1 − xÞ þ αs

π

�
−

1

4Nc
ð1 − xÞ þ CF

4
ðπ2 − 8Þδð1 − xÞ

��
; ð39Þ

where Cq̄←j is given in Eq. (33). Now we can express the Sivers function in b-space as

f̃⊥1T;q=pðx; b;QÞ ¼ b2

2π

X
i

ΔCT
q←i ⊗ Ti;Fðx; x; μbÞe−SsivNP−1

2
SP ; ð40Þ

and in the transverse momentum space as

k⊥
Mp

f⊥1T;q=pðx; k⊥;QÞ ¼
Z

∞

0

db
b2

2π
J1ðk⊥bÞ

X
i

ΔCT
q←i ⊗ f⊥ð1Þ

1T;i=pðx; μbÞe−S
siv
NP−

1
2
SP : ð41Þ

In the c.m. frame of colliding hadrons, we adopt a convenient coordinate system to choose the unpolarized π− beam to
move along theþz direction, the transverse polarized proton along the−z direction, the spin vector S⊥ along the y direction.
This is consistent with the choice of the COMPASS experiments [25]. We can rewrite the spin-dependent differential cross
section in Eq. (6) as

d4Δσ
dQ2dyd2q⊥

¼ σ0ϵ
αβSα⊥

Z
d2b
ð2πÞ2 e

iq⃗⊥·b⃗W̃β
UTðQ; bÞ

¼ σ0ϵ
αβ
⊥ Sα⊥

Z
d2b
ð2πÞ2

�
−ibβ

2

�X
q;i;j

e2qΔCT
q←iTi;Fðxp; xp; μbÞ × Cq̄←j ⊗ f1;j=πðxπ; μbÞe−ðSSivNPþS

f1q=π
NP þSPÞ

¼ σ0
4π

Z
∞

0

dbb2J1ðq⊥bÞ
X
q;i;j

e2qΔCT
q←iTi;Fðxp; xp; μbÞCq̄←j ⊗ f1;j=πðxπ; μbÞe−ðSSivNPþS

f1q=π
NP þSPÞ: ð42Þ
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III. NUMERICAL CALCULATION

In this section, we present the numerical calculation of
the Sivers asymmetry ASiv

UT in π−p↑ → μþμ− þ X at the
kinematics of COMPASS Collaboration using the frame-
work introduced above.
In order to obtain the numerical estimate of the denom-

inator of the asymmetry given in Eq. (32), we adopt
the NLO set of the CT10 parametrization [58] (central
PDF set) for the unpolarized distribution function f1ðxÞ of
the proton. For the unpolarized PDF of the pion meson, we
use the NLO SMRS parametrization [59]. To estimate the
numerator of the asymmetry in Eq. (6), we adopt a recent
parametrization [22] for the Qiu-Sterman functions
Tq;Fðx; x; μÞ extracted from the Sivers asymmetry in SIDIS:

Tq;Fðx;x;μÞ ¼Nq
ðαqþ βqÞðα

αq
q þβ

βq
q Þ

α
αq
q β

βq
q

xαqð1− xÞβqfq=pðx;μÞ;

ð43Þ
with the free parameters given in Table 1 in Ref. [22]. As an
approximation, the values of the strong coupling αs are
obtained at 2-loop order as

αsðQ2Þ ¼ 12π

ð33 − 2nfÞ lnðQ2=Λ2
QCDÞ

×

�
1 −

6ð153 − 19nfÞ
ð33 − 2nfÞ2

ln lnðQ2=Λ2
QCDÞ

lnðQ2=Λ2
QCDÞ

	
; ð44Þ

where nf ¼ 5 and ΛQCD ¼ 0.225 GeV. We note that the
running coupling in Eq. (44) satisfies αsðM2

ZÞ ¼ 0.118.
We still need to know the energy dependence of the

Qiu-Sterman function Tq;Fðx; x; μÞ for calculating the
spin-dependent differential cross section (42). We adopt
two different approaches to deal with the scale depen-
dence of Tq;F for comparison. The first one (we label it as
set 1) is to assume that Tq;F is proportional to the usual
unpolarized collinear PDF at any scale, that is, Tq;F follows
the DGLAP evolution as that of f1, like the choice in
Ref. [22]. The second one (we label it as set 2) is to adopt
the parametrizations in Eq. (43) at the initial scale
(Q2

0 ¼ 2.4 GeV2) and then evolve it to another scale Q
through QCD evolution using the evolution equation
for Tq;F. The evolution of Tq;F has been studied extensively
in literature [41,60–68]. In the second choice, for our

FIG. 1. Subtracted Sivers function for the up quarks in Drell-Yan in b-space (upper panels) and k⊥-space (lower panels), at energies:
Q2 ¼ 2.4 GeV2 (solid lines), Q2 ¼ 10 GeV2 (dashed lines) and Q2 ¼ 100 GeV2 (dotted lines). The left and right panels plot the result
of set 1 and set 2, respectively.
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purpose, we only consider the homogenous terms [the
terms containing Tq;Fðx; xÞ] in the evolution kernel as an
approximation:

PQS
qq ≈ Pf1

qq −
Nc

2

1þ z2

1 − z
− Ncδð1 − zÞ; ð45Þ

where Pf1
qq being the evolution kernel of the unpolarized

PDF

Pf1
qq ¼ 4

3

�
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�
: ð46Þ

In Ref. [69], similar choice (keeping the homogenous
terms) was also adopted for the twist-3 fragmentation
function Ĥð3Þ in the study of the Collins asymmetry.
To solve the QCD evolution numerically, we resort

to the QCD evolution package HOPPET [70,71] and we
custom the code to include the splitting function in
Eq. (45). Using Eqs. (40) and (41), we apply the two
choices for the scale dependence of Tq;F to calculate
the b-dependent and k⊥-dependent Sivers function in

Drell-Yan at different energy scales (we take the
results of the u-quark Sivers function at fixed x ¼ 0.1
as an example): Q2 ¼ 2.4 GeV2, Q2 ¼ 10 GeV2 and
Q2 ¼ 100 GeV2.
The numerical results are plotted in Fig. 1, in which the

left panels show the results from the assumption that
Tq;Fðx; x; μÞ is scaled as the collinear PDF f1ðx; μÞ, and
the right panels depict the Sivers function calculated
from the evolution kernel in Eq. (45). We find that the
evolution effect is significant, i.e., it changes the shape
and the size of the Sivers function at different Q values.
It also drives the peaks of the b-dependent curves to the
lower b region and the peak of k⊥-dependent curves to
higher k⊥ region. This indicates that the perturbative
Sudakov form factor dominates in the low b region at
higher energy scales and the nonperturbative part of the
TMD evolution becomes more important at lower energy
scales. Furthermore, generally the size of the Sivers
function in set 2 is larger than that in set 1. Besides, the
k⊥ tendency of the Sivers function in the two sets is
different, namely, at larger Q2 the sivers function in set 1
fall more slowly with increasing k⊥ than that in Set 2.

FIG. 2. The Sivers asymmetry for π− scattering off transversely polarized proton Drell-Yan process as functions of xp (upper left), xπ
(upper right), xF (lower left) and q⊥ (lower right), compared with the COMPASS data [25]. The solid lines represent Sivers asymmetry
with the Qiu-Sterman functions Tq;Fðx; x;QÞ being proportional to the unpolarized PDF f1ðx;QÞ. The dashed lines depict Sivers
asymmetry considering Qiu-Sterman functions evolving through the splitting function in Eq. (45).
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The COMPASS Collaboration at CERN has performed the first measurement of the Sivers asymmetry in the π−N
Drell-Yan process [25], using a π− beam with Pπ ¼ 190 GeV colliding on a polarized NH3 target [25,26], which can
serve as a transversely polarized nucleon target. The kinematical range covered at COMPASS in this measurement is as
following

0.05 < xN < 0.4; 0.05 < xπ < 0.9; 4.3 GeV < Q < 8.5 GeV; s ¼ 357 GeV2; −0.3 < xF < 1: ð47Þ

We apply Eqs. (4), (32) and (42) to calculate the Sivers
asymmetry ASiv

UT in the π−p Drell-Yan at the kinematics
of COMPASS and plot the results in Fig. 2. To make
the TMD factorization valid, the integration over the
transverse momentum q⊥ is performed in the region of
0 < q⊥ < 2 GeV, which is the same as the cut in Ref. [41].
The upper panels of Fig. 2 show the asymmetries as
functions of xp (left panel) and xπ (right panel); and the
lower panels depict the xF-dependent and q⊥-dependent
asymmetries, respectively. Among the plots, the dashed
lines corresponds to the asymmetries obtained from
the DGLAP evolution for Tq;Fðx; x; μÞ, while the solid
lines represent the results from the second choice of
the evolution for Tq;Fðx; x; μÞ, i.e., the one using the
approximated kernel in Eq. (45) from the initial scale
Q2

0 ¼ 2.4 GeV2. As a comparison, we also show the
experimental data measured by the COMPASS Collab-
oration [25] with error bars in Fig. 2.
As shown in Fig. 2, in all the cases the Sivers asymmetry

in the π−p Drell-Yan from our calculation is positive. The
size of the asymmetry is around 0.05 to 0.10. This result is
consistent with the COMPASS measurement shown in
Fig. 5 of Ref. [25] within the uncertainties of the asym-
metry. We also find that the asymmetry from the Sivers
function in set 2 is more sizable than the one from set 1, and
is more closer to the central values of the asymmetry
measured by COMPASS. This is because that the Sivers
function in set 2 is larger than the Sivers function in set 1.
Furthermore, compared to the asymmetry from set 1, the
asymmetry from set 2 has a fall at larger q⊥, which is more
compatible to the shape of q⊥-dependent asymmetry of
measured by the COMPASS Collaboration. In conclusion,
our analysis demonstrates that, combining the previous
analysis of unpolarized pion TMD PDFs and that of the
proton Sivers function within the TMD factorization and
evolution, can lead to the Sivers asymmetry in π−N Drell-
Yan which is consistent with the COMPASS measurement.

IV. CONCLUSION

In this work, we applied the formalism of the TMD
factorization to study the Sivers asymmetry in the pion

induced Drell-Yan process that is accessible at COMPASS.
We took into account the TMD evolution of the pion
unpolarized distribution function as well as the proton
Sivers function. For the former one, we carried out the
nonperturbative Sudakov form factor of the pion TMD
distributions extracted from the unpolarized πN Drell-Yan
data, while for the latter one, we adopted a parametrization
of the nonperturbative Sudakov form factor that is universal
and can describe the data of SIDIS, DY dilepton and W/Z
boson production in pp collisions. We applied two differ-
ent ways to treat the energy dependence of the Qiu-Sterman
function which is proportional to first k⊥ moment of the
Sivers function. The first one is to assume the Qiu-Sterman
function has the same scale dependence of the collinear
unpolarized PDF, and the second one is to take the
parametrization at the initial energy Q0 and evolve it to
another energy through an approximate evolution kernel for
the Qiu-Sterman function containing the homogenous
terms. We then calculated the Sivers asymmetry in πp
Drell-Yan process at COMPASS as functions of the
kinematical variables xp, xπ , xF and q⊥. We find that
the Sivers asymmetry calculated from the TMD evolution
formalism is consistent with the COMPASS measurement.
Furthermore, different treatments on the scale dependence
of the Qiu-Sterman function yield different sizes and shapes
of the asymmetries. Specifically, the calculation using an
approximate evolution kernel for Tq;F seems more com-
patible to the COMPASS data than the one using the
DGLAP evolution. Our study shows that, besides the TMD
evolution effect, the scale dependence of the Qiu-Sterman
function will play a role in the interpretation of the
experimental data, and it should also be considered in
the phenomenological studies.
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