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We study single spin asymmetries at one-loop accuracy in semi-inclusive DIS with a transversely
polarized hadron in the initial state. Two measurable spin observables are predicted in the framework of
QCD collinear factorization. One of the spin observables is the Sivers weighted asymmetry; another one is
the Collins weighted asymmetry. The prediction takes a form of convolutions of perturbative coefficient
functions and nonperturbative functions, which are twist-2 transversity distributions, twist-3 parton
distributions, and twist-2 and twist-3 parton fragmentation functions. These nonperturbative functions can
be extracted from measurements of the spin observables and provide valuable information of the inner
structure of hadrons. The measurements can be done in current COMPASS and JLab experiments and in
future experiments of EIC. The perturbative coefficient functions are calculated at the one-loop level. There
are collinear divergences in the calculation involving chirality-even and chirality-odd twist operators. We
find that all collinear divergences can be correctly subtracted so that the final results are finite.
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I. INTRODUCTION

Experiments of lepton-hadron scattering have provided
important information about the inner structure of hadrons.
A typical example is deeply inelastic scattering (DIS).
From DIS one can extract parton distribution functions
defined with twist-2 operators of QCD. In semi-inclusive
DIS (SIDIS) with one detected hadron in the final state, one
can learn more about the inner structure and nonperturba-
tive properties of QCD if the initial hadron is transversely
polarized. In this case, the spin-dependent part of the
differential cross section, or single spin asymmetries
(SSAs), can be predicted with parton distributions defined
with twist-3 operators as shown in [1,2], and twist-3
fragmentation functions (FFs). The twist-3 parton distri-
butions describe quark-gluon correlations inside a hadron
and contain more information about the inner structure of
hadrons than twist-2 parton distributions. In this work, we
study SSAs in SIDIS, in particular one-loop corrections of
spin observables.
Under a one-photon-exchange approximation, the had-

ronic tensor of SIDIS contains all information about the

process. The spin-dependent part of the tensor has been
studied with collinear factorization at tree level in different
kinematic regions. In the region where the final hadron has
large transverse momentum Ph⊥, SSA has been studied in
[3–5], where the spin-dependent part starts at the order of αs.
At low Ph⊥ one can also employ collinear factorization
because of the large virtuality−Q2 of the exchanged photon.
In this region, the spin-dependent part starting at the order of
α0s is predicted as a tensor distribution ofPh⊥ as shown in [6].
This implies that the measurable effects from this part can
only be predicted when Ph⊥ is integrated over with certain
weights. In this work we construct two spin observables by
integrating over Ph⊥ with different weights, and we study
one-loop corrections of the two spin observables.
Various SSAs in SIDIS can be measured in the current

experiments of COMPASS [7] and JLab [8] and in future
experiments of EIC [9]. It is noted that in the low Ph⊥
region one can employ the approach of transverse-
momentum-dependent (TMD) factorization studied in
[10–12], where nonperturbative effects are described by
TMD parton distributions and TMD FFs. The relevant
phenomenology with TMD factorization for SIDIS has
been studied in [13–16]. In the framework of TMD
factorization, the SSA related to the Sivers function, which
is one of TMD parton distributions, is called “Sivers
asymmetry.” The SSA related to the Collins fragmentation
function is called “Collins asymmetry.” These two asym-
metries have already been studied in experiments by
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HERMES and COMPASS. It is found that these asymme-
tries are different from zero [17,18]. Recently, the so-called
“weighted Sivers asymmetry” has been studied by
COMPASS [19]. One of our two spin observables is, in
fact, the studied weighted Sivers asymmetry. Another one
is the weighted Collins asymmetry, because it is related to
the transverse momentum moment of the Collins fragmen-
tation function. These two asymmetries have important
implications, if they are not zero. If Sivers asymmetry is not
zero, it indicates that partons inside a hadron have nonzero
orbital angular momentum. Nonzero Collins asymmetry
indicates that partons in their fragmentation into a hadron
can have nonzero orbital angular momentum.
Without observing the spin of the final hadron, twist-3

contributions only appear in the case when the initial
hadron is transversely polarized. The spin-dependent part
of the hadronic tensor can obtain contributions from the
twist-3 parton distributions introduced in [1,2] combined
with the twist-2 quark FF. These twist-3 parton distribu-
tions and twist-2 FF are defined with chirality-even
operators. We will call these contributions “chirality-even
contributions.” Besides them, the spin-dependent part also
receives contributions from the twist-2 transversity distri-
bution introduced in [20], combined with twist-3 FFs. The
transversity distribution and twist-3 FFs are defined with
chirality-odd operators. We will call these contributions
“chirality-odd contributions.” At the leading order of αs,
i.e., at α0s , one of our two spin observables has only a
chirality-even contribution, while another has only a
chirality-odd contribution. Therefore, through the two
observables one can extract not only twist-3 parton dis-
tributions and fragmentation functions, but also the twist-2
transversity distribution, which is less known than other
twist-2 parton distributions. Beyond tree level, each spin
observable can have chirality-even and chirality-odd
contributions.
It is worth pointing out that there are not many results of

one-loop calculation involving twist-3 operators, while
calculations beyond tree level with only twist-2 operators
are rather standard, and many one-loop results exist. For
Drell-Yan processes with one transversely polarized hadron
in the initial state, one-loop correction of a spin observable
involving the twist-3 parton distributions has been calcu-
lated at one loop in [21]. In [22] two spin observables were
studied and their complete one-loop corrections were
derived. For SIDIS, different parts of one-loop chirality-
even correction have been studied in [23–25] for one of our
two spin observables. But the one-loop chirality-even
corrections from [23–25] are still not completed, and the
one-loop chirality-odd corrections are missing. In this work
we will give complete one-loop corrections of the two spin
observables. One-loop study of the twist-3 effect for DIS
has been performed in [26].
An interesting observation has been made for the twist-3

part of the hadronic tensor in [6]. The twist-3 part at tree

level has contributions proportional to the derivative of
δ2ðPh⊥Þ. The virtual corrections beyond tree level of these
contributions are completely determined by the loop
corrections of the quark form factor. Similar observation
has been also made for Drell-Yan processes in [27]. In this
work, the two spin observables are so constructed that they
receive contributions at tree level only from those con-
tributions with the derivative of δ2ðPh⊥Þ of the twist-3
parts. Then the virtual correction of the spin observables
can be obtained from the relevant results of the quark form
factor; we will mainly deal with the real correction.
Calculations involving twist-3 operators are in general

more complicated than those of twist-2. The nonperturba-
tive and perturbative effects must be separated in a gauge-
invariant way. This has been discussed in detail in [4] for
SIDIS. Unlike the twist-2 factorization, where partons can
never have zero momentum fraction, in the twist-3 fac-
torization some partons participating in hard scattering can
have zero momentum fraction. In [2] it has been shown that
there are so-called “soft-gluon-pole contributions” in which
one gluon as a parton has zero momentum. The gluon does
not have exactly zero momentum. In fact, as shown in [28],
it is a Glauber gluon and its momentum can be neglected in
hard scattering. It is difficult to calculate the soft-gluon-
pole contributions. However, these contributions at tree
level can be related to the corresponding twist-2 contribu-
tion, as shown in [29–31]. There are so-called “master
formulas” to obtain the contributions. This will simplify
our calculation of one-loop real correction, since it is a tree-
level calculation before some final states are summed. With
the results for SIDIS in [4,29], the twist-3 calculations of
SIDIS can be performed straightforwardly.
Our paper is organized as follows. In Sec. II we introduce

our notations. We define two spin observables and derive
the tree-level results. In Secs. III and IV we give the one-
loop corrections for the chirality-odd and chirality-even
contributions, respectively. In these sections, we also
perform the subtraction of the collinear contributions.
The collinear singularities will be subtracted into various
parton distributions and FFs. The final results are finite. In
Sec. V we give our final results. Section VI is our summary.
In the Appendix we list perturbative coefficient functions of
our one-loop corrections.

II. NOTATIONS AND TREE-LEVEL RESULTS

We consider the semi-inclusive process

eðkÞ þ hðP; sÞ → eðk0Þ þ h0ðPhÞ þ X; ð1Þ

where the initial hadron h is a spin-1/2 one with the spin
vector s. We will consider the case that the polarization of
particles in the final state is not observed or summed over
and the initial electron is unpolarized. At the leading order
of QED, the process is described by the hadronic tensor
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Wμν ¼
X
X

Z
d4x
ð2πÞ4 e

iq·xhP; sjJμðxÞjPh; Xi

× hPh; XjJνð0ÞjP; si; ð2Þ

with q ¼ k − k0 as the momentum of the virtual photon
emitted from the initial electron. We will consider the
process in the kinematic region with Q2 ¼ −q2 ≫ Λ2

QCD.
In this region one can use the concept of QCD factorization
to predictWμν in the form of convolutions with perturbative
coefficient functions, various parton distributions, and FFs.
We are interested in the transverse-spin-dependent part of
Wμν. In this part, twist-3 parton distributions and twist-3
FFs are involved.
To define parton distributions and FFs, it is convenient to

use the light-cone coordinate system. In this system a
vector aμ is expressed as aμ ¼ ðaþ; a−; a⃗⊥Þ ¼ ðða0 þ a3Þ/ffiffiffi
2

p
; ða0 − a3Þ/ ffiffiffi

2
p

; a1; a2Þ and a⃗2⊥ ¼ ða1Þ2 þ ða2Þ2 ¼
−a⊥ · a⊥. We introduce two light-cone vectors as lμ ¼
ð1; 0; 0; 0Þ and nμ ¼ ð0; 1; 0; 0Þ. With these two vectors one
can define

gμν⊥ ¼ gμν − nμlν − nνlμ; ϵμν⊥ ¼ ϵαβμνlαnβ: ð3Þ

We take the initial hadron moving in the z direction with the
momentum Pμ ¼ ðPþ; 0; 0; 0Þ. The initial hadron is trans-
versely polarized with sμ ¼ ð0; 0; s1⊥; s2⊥Þ. At twist-2 there
is one parton distribution related to the transverse spin. It is
the transversity distribution introduced first in [20]:

Z
dλ
4π

e−ixλP
þhP; s⊥jψ̄ iðλnÞψ jð0ÞjP; s⊥i

¼ 1

4NcPþ ðγ⊥ · s⊥γ · Ph1ðxÞ þ � � �Þji; ð4Þ

where ij stand for Dirac indices and color indices and � � �
denote irrelevant terms. Here and in the following we
suppress gauge links between field operators for brevity. x
is the momentum fraction carried by the quark. This
distribution is defined with the operator which is chirality
odd. Hence, the contributions to Wμν involving h1 will
always be combined with chirality-odd FFs.
At twist-3 there are two transverse-spin-dependent par-

ton distributions defined with quark-gluon-quark correla-
tions. They are the so-called Efremov-Teryaev-Qiu-
Sterman (ETQS) matrix elements in [1,2]:

Z
dλ1dλ2
4π

e−iλ2ðx2−x1ÞPþ−iλ1x1Pþ

× hP; s⊥jψ̄ iðλ1nÞgsGþμðλ2nÞψ jð0ÞjP; s⊥i

¼ 1

4
½γ−�jis̃μ⊥TFðx1; x2Þ þ

1

4
½iγ5γ−�jisμ⊥TΔðx1; x2Þ þ � � � ;

ð5Þ

where s̃μ⊥ is defined as s̃μ⊥ ¼ ϵμν⊥ s⊥ν and � � � denote
irrelevant terms. The two twist-3 parton distribution func-
tions have the property

TFðx1; x2Þ ¼ TFðx2; x1Þ; TΔðx1; x2Þ ¼ −TΔðx2; x1Þ: ð6Þ
Replacing the field-strength tensor operator in Eq. (5) with
the covariant derivative Dμ

⊥, one can define the other two
twist-3 distributions. There are three twist-3 distributions
defined with a product of two quark field operators. Two of
them are given in [3], and one of them is defined in [6].
These twist-3 distributions can be expressed with the two
defined in Eq. (5) [3,6].
Four twist-3 distributions can be defined with purely

gluonic operators [32]. One of them can be defined as

TðfÞ
G ðx1; x2Þs̃μ

¼ igsfabcg⊥αβ

Pþ

Z
dy1dy2
4π

e−iP
þðy2ðx2−x1Þþy1x1Þ

× hP; s⊥jGa;þαðy1nÞGb;þμðy2nÞGc;þβð0ÞjP; s⊥i: ð7Þ

Replacing ifabc with dabc one obtains the definition of TðdÞ
G .

Besides these two distributions Tðf;dÞ
G , the other two twist-3

distributions are defined by replacing g⊥αβ with ϵ⊥αβ in
Eq. (7). However, the contributions with these two twist-3
distributions do not appear in the two spin observables
studied in this work. For the matrix elements with fabc one
has

TðfÞ
G ðx1; x2Þ ¼ −TðfÞ

G ð−x2;−x1Þ;
TðfÞ
G ðx1; x2Þ ¼ TðfÞ

G ðx2; x1Þ: ð8Þ
Similar relations can be derived for distributions defined
with dabc.
To define FFs, we assume that the produced hadron

moves in the −z direction with the momentum
Pμ
h ¼ ð0; P−

h ; 0; 0Þ. From two-parton correlations we define

ΓjiðkÞ ¼
Z

d4ξ
ð2πÞ4 e

−iξ·k
X
X

h0jψ jð0ÞjPhXihPhXjψ̄ iðξÞj0i

¼ δðkþÞ
zd−3P−

h

�
δ2ðk⊥ÞðγþP−

h d̂ðzÞ þ êðzÞ

þ σ−þêIðzÞÞ − iγþγμ⊥P−
h ê∂ðzÞ

∂
∂kμ⊥ δ2ðk⊥Þ

�
ji

þ � � � ; ð9Þ

where ij stand for Dirac indices and color indices and k− is
fixed as P−

h /z. d̂ðzÞ is the standard twist-2 FF [33]. ê, êI , and
ê∂ are of the twist-3 type. ê and êI were first introduced in
[34]. From three-parton correlations one can define three
twist-3 FFs. Two of them are
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ÊFðz1; z2Þ ¼ −
zd−32 gs

2ðd − 2ÞNc

Z
dλ1dλ2
ð2πÞ2 e−iλ1P

−
h /z1−iλ2P

−
h /z3

X
X

Trh0jiγ−γ⊥μψð0ÞjPhXihPhXjψ̄ðλ1lÞG−μðλ2lÞj0i;

ÊGðz1; z2Þ ¼ −
zd−32 gs

4ðN2
c − 1Þ

2

d − 2

Z
dλ1dλ2
ð2πÞ2 eiλ1P

−
h /z1−iλ2P

−
h /z2

X
X

Trh0jψ̄ðλ1lÞiγ−γ⊥μTaψð0ÞjPhXihPhXjGa;−μðλ2lÞj0i; ð10Þ

with 1/z3 ¼ 1/z2 − 1/z1. Through charge conjugation of the
operator in ÊF, one can define anther FF ÊF̄, which is for
fragmentation with an antiquark. Similarly, one can define
an additional FF ÊD by replacing gsG−μðλ2lÞ with
P−
hD

μ
⊥ðλ2lÞ. However, this function is completely deter-

mined by ÊF and ê∂ [35]. êðzÞ and êI;∂ðzÞ have the support
jzj < 1. For z > 0, these FFs are for fragmentation of a
quark. ÊF;Gðz1; z2Þ has the support [36]

0 < z2 < 1 or z2 < z1 < ∞: ð11Þ

In [36] it was shown that these functions are zero at z1 ¼ z2
or 1/z1 ¼ 0; i.e., no parton in these FFs can have zero
momentum fraction.
All introduced twist-3 FFs are chirality odd. The

functions ê, êI, and ê∂ are real, while ÊF;G is complex
in general. If there are no final-state interactions, êI and ê∂
are zero and ÊF;F̄;G is real. It was shown in [35] that there
are relations among these twist-3 FFs. In our notations
they are

z22

Z
dz1
z1

P
1

z2 − z1
ImÊFðz1; z2Þ

¼ 2z2ê∂ðz2Þ − êIðz2Þ;

êðz2Þ ¼ z22

Z
dz1
z1

P
1

z2 − z1
ReÊFðz1; z2Þ: ð12Þ

In this work, we will take êI and ê as redundant in
calculations of one-loop corrections.
The standard variables for the considered process are

xB ¼ Q2

2P · q
; y ¼ P · q

P · k
; zh ¼

P · Ph

P · q
: ð13Þ

It is convenient to take the frame for the process in which
the initial hadron moves in the z direction, and the virtual
photon moves in the−z direction. In this frame, the relevant
momenta are given by

qμ ¼ ðqþ; q−; 0; 0Þ; Pμ ≈ ðPþ; 0; 0; 0Þ;
Pμ
h ¼ ðPþ

h ; P
−
h ; P

1
h⊥; P2

h⊥Þ; Pμ
h⊥ ¼ gμν⊥ Phν: ð14Þ

To simplify notations, we will give our results for QCD
with one flavor quark, and its electric charge fraction is set
to be 1. It is easy to generalize our results to the case of

multiflavor quarks and to implement the real electric
charges.
In [6] the transverse-spin-dependent part of Wμν at tree

level has been derived. The symmetric and twist-3 part of
Wμν is given by

Wμν ¼ 2

xBP · q
δ2ðPh⊥Þðð2xBPþ qÞμs̃ν⊥

þ ð2xBPþ qÞνs̃μ⊥Þh1ðxBÞð2zhê∂ðzhÞ − êIðzhÞÞ

− z2h
∂

∂Pρ
h⊥

δ2ðPh⊥Þ½TFðxB; xBÞd̂ðzhÞgμν⊥ s̃ρ⊥

þ 2ðgμν⊥ s̃ρ⊥ − gμρ⊥ s̃ν⊥ − gνρ⊥ s̃μ⊥Þh1ðxBÞê∂ðzhÞ�: ð15Þ

This expression is explicitly Uð1Þ-gauge invariant in the
frame because of qμ⊥ ¼ 0. Although the two transverse
tensors gμν⊥ and ϵμν⊥ from Eq. (3) are used here, the above
result is covariant because the two transverse tensors can be
defined covariantly:

gμν⊥ ¼ gμν −
1

P · P̄
ðPμP̄ν þ PνP̄μÞ;

ϵμν⊥ ¼ 1

P · P̄
ϵαβμνPαP̄β; P̄ ¼ xBPþ q: ð16Þ

Beyond tree level, Eq. (15) receives corrections starting at
the order of αs. In the derivation of the result in [6] it is
found that the virtual correction to the derivative part of
hadronic tensors is determined by the correction of the
quark form factor. Based on this result, the virtual correc-
tion to the second line in Eq. (15) is determined by the
correction of the quark form factor.
The kinematics of the process has been discussed in

detail in [16,37]. The differential cross section is given by

dσ
dxBdydzhdψd2Ph⊥

¼ α2y
4zhQ4

LμνWμν; ð17Þ

where ψ is the azimuthal angle of the outgoing lepton. Lμν

is the leptonic tensor:

Lμν ¼ 2ðkμk0ν þ kνk0μ − k · k0gμνÞ: ð18Þ

In principle one can measure the differential cross section
in Eq. (17) to detect the twist-3 effects or SSAs, because at
twist-3 Wμν is predicted as a tensor distribution, indicated
by the δ-function δ2ðPh⊥Þ and its derivative. This implies
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that measurable quantities can only be predicted when one
integrates in Eq. (17) over Ph⊥ with some weights depend-
ing on Ph⊥. We can define these measurable quantities or
observables as weighted differential cross sections as

dσhOi
dxBdydzh

¼ α2y
4zhQ4

Z
dψd2Ph⊥OLμνWμν; ð19Þ

with O as a weight depending on Ph, k0, and s⊥. We will
use dimensional regularization with d ¼ 4 − ϵ to regularize
divergences; Eq. (19) should be understood as in d-dimen-
sional space-time. In our final results, one can set d ¼ 4
because these results finite. In this work we will study two
spin observables. They are defined with the weights

O1 ¼ Ph⊥ · s̃⊥;

O2 ¼ Ph⊥ · k0⊥k0⊥ · s̃⊥ −
1

2 − ϵ

Q2ðy − 1Þ
y2

Ph⊥ · s̃⊥: ð20Þ

These two weights are proportional to Ph⊥. To clarify the
meaning of these two observables, we take a frame in
which the initial hadron moves in the z direction and the
virtual photon moves in the −z direction. In this frame we
denote the azimuthal angle between the lepton plane and
the observed hadron h0 in the final state as ϕh and the
azimuthal angle between the lepton plane and the trans-
verse spin as ϕs. The two weights are related to these
azimuthal angles as

O1 ¼ −jPh⊥jjs⊥j sinðϕh − ϕsÞ;

O2 ¼ −Q2
1 − y
2y2

jPh⊥jjs⊥j sinðϕh þ ϕsÞ: ð21Þ

It is noted that nonzero Sivers or Collins asymmetry
indicates that the azimuthal-angle distribution has a
nonzero contribution proportional to sinðϕh − ϕsÞ or
sinðϕh þ ϕsÞ, respectively. Therefore, the differential cross
section in Eq. (19) with the weight O1 or O2 is propo-
rtional to the coefficient in the front of sinðϕh − ϕsÞ or
sinðϕh þ ϕsÞ in the azimuthal-angle distribution, respec-
tively. Hence, our two spin observables are weighted Sivers
or Collins asymmetry. We note that one can construct
observables beyond the two given in this work, as shown,
e.g., in [6].
Substituting the two weights into Eq. (19), it is easy to

find that only the part ofWμν in Eq. (15) with the derivative
of δ2ðPh⊥Þ will contribute to the two spin observables. For
given O1;2, the integration over ψ can be performed
trivially:

Z
dψLμνO1 ¼ 2πQ2ð−YMgμν þ YLPμPνÞPh⊥ · s̃⊥;

Z
dψLμνO2 ¼ 2πQ4Y2

�
Pμ
h⊥s̃ν⊥ þ Pν

h⊥s̃
μ
⊥

−
2

d − 2
gμν⊥ Ph⊥ · s̃⊥

�
: ð22Þ

The above integrals should be understood as in
d-dimensional space-time; i.e., dψ should be understood
as dΩd−2. Our final results are obtained by taking d ¼ 4.
With d ¼ 4 we have for YL;M;2

YM ¼ 1

y2
ðð1 − yÞ2 þ 1Þ; YL ¼ 4x2B

Q2
ðð2 − yÞ2 þ 2 − 2yÞ;

Y2 ¼
ð1 − yÞ2
2y4

: ð23Þ

With the tree-level result of the twist-3 part of Wμν in
Eq. (15), we have the results for the two observables:

dσhO1i
dxBdydzh

¼ π
α2yzh
Q2

YMjs⊥j2
Z

dxdz
xz

δð1− x̂Þδð1− ẑÞ

× ½d̂ðzÞTFðx;xÞð1−ϵ/2Þ−ϵh1ðxÞê∂ðzÞ�;
dσhO2i
dxBdydzh

¼ πα2yzhjs⊥j2Y2

Z
dxdz
xz

δð1− x̂Þ

×δð1− ẑÞ2h1ðxÞê∂ðzÞ
�
3− ϵ−

2

2−ϵ

�
; ð24Þ

with

x̂ ¼ xB
x
; ẑ ¼ zh

z
: ð25Þ

From Eq. (24) it is observed that, with ϵ ¼ 0, the first
observable only receives a chirality-even contribution, while
the second one only receives a chirality-odd contribution.
In Eq. (24) we have not included the contribution from
the charge-conjugated partonic process. This can be easily
added to Eq. (24) through charge conjugation. The two
observables have different dimensions in mass because the
weights O1;2 are of different mass dimensions. As a result,
there are different powers of Q2 in the two observables.
We will study one-loop corrections of these two observ-

ables. As discussed before, the virtual correction is deter-
mined by the quark form factor. We will only need to
calculate the real corrections.

III. ONE-LOOP CHIRALITY-ODD CORRECTION

In this section we study one-loop chiral-odd corrections.
They are from those diagrams which have the general
patterns given in Fig. 1. In Fig. 1, the bubbles in the lower
part of the diagrams represent the parton correlation given by
the transversity distribution as in Eq. (4). In Fig. 1(a), the
upper bubbles denote two parton correlations of fragmenta-
tion, while in Figs. 1(b) and 1(c) they stand for corresponding
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three-parton correlations. The boxes in the middle of Fig. 1
represent various parton scatterings. Contributions from
complex conjugated diagrams of Figs. 1(b) and 1(c) should
also be included. In our case, we only need to consider the
real corrections. Hence, there is always one parton crossing
the cut in the middle boxes. The virtual corrections are
obtained as mentioned before.

In Fig. 1 we can in the first step make the projection
for the lower bubbles with h1ðxÞ as given in Eq. (4).
The projection can be done in a frame in which
the initial hadron moves in the z direction, while the
final hadron moves in an arbitrary direction. After
the projection, the contributions from Figs. 1(a) and
1(b) are

Wμνj1a ¼
1

2Nc

Z
dx
x
h1ðxÞ

Z
d4kbTrfγ · s⊥γ · kaMμν

1aðka; kbÞΓ1aðkbÞg;

Wμνj1b ¼
1

2Nc

Z
dx
x
h1ðxÞ

Z
d4kbd4kgTrfγ · s⊥γ · kaMa;μνα

1b ðka; kb; kgÞΓa;β
1b ðkb; kgÞggαβ; ð26Þ

with Γ1a;1b for the upper bubbles given as

Γ1a;ijðkbÞ ¼
Z

d4ξ
ð2πÞ4 e

−iξ·kb
X
X

h0jψ jð0ÞjPh; XihPh; Xjψ̄ iðξÞj0i;

Γa;β
1b;ijðkb; kgÞ ¼

Z
d4ξd4ξ1

ð2πÞ4ð2πÞ4 e
−iξ·kb−ikg·ξ1

X
X

h0jψ jð0ÞjPh; XihPh; Xjψ̄ iðξÞGa;βðξ1Þj0i; ð27Þ

where ij stand for Dirac and color indices.Mμν
1a and Mμνα

1b
stand for the boxes in the middle of Figs. 1(a) and 1(b),
respectively. The contribution from Fig. 1(c) takes a similar
form. ka is the momentum of the quark from the lower
bubbles and it is given by ka ¼ xP. We note that the
projection, as given by the ð� � �Þ in Eq. (4), can be written in
a covariant form. After the projections from the lower
bubbles, we can do projections from the upper bubbles in a
frame in which the final hadron moves in the −z direction.
To find the contributions involving twist-3 parts of the

upper bubbles, one needs to perform collinear expansion
for the parts represented by the middle boxes. The
expansion includes the expansion of momenta carried by
the parton lines connecting the boxes with the bubbles and
projecting out perturbative parts from the middle boxes
with the different parts of upper bubbles. We note that there
are contributions at leading twist from Fig. 1(a). In general
it is nontrivial to find the contributions at the next-to-
leading twist if there are loops in the middle box. At twist-3
one of the two quark lines entering the upper bubble

represents the bad component of the quark field. This
component should be eliminated with the QCD equation of
motion (see [38] and references therein). Since we deal
here, in fact, only with tree-level diagrams with a parton
crossing the cut before its momentum is integrated over, the
separation is rather easy. One can simply use the twist-3
part in the two-parton correlation in Eq. (9) for the upper
bubble in Fig. 1(a). The diagrams represented by the middle
box in Fig. 1(a) at the considered order of αs are given in
Fig. 2. It is well known that the existence of the transverse-
spin part requires the existence of final-state interactions in
SIDIS or the nonzero absorptive part in scattering ampli-
tudes. In the contributions of Fig. 1(a) at the order of αs, the
middle box cannot have an absorptive part. The final-state
interactions can only appear in fragmentation.
The contributions fromFigs. 1(b) and1(c) are of the twist-3

or higher twist types. Because FFs from three-parton corre-
lations have the support given in Eq. (11) and are zero if any
parton carries zero momentum fraction, one finds at the
order of αs that the amplitudes of parton scatterings,

(a) (b) (c)

FIG. 1. Patterns of diagrams for chiral-odd contributions to Wμν. The broken lines are the cuts.
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represented by the left or right parts of middle boxes, have no
imaginary part, i.e., no physical cut. This is in contrast to
chiral-even contributions studied in the next section.
Therefore, the needed final-state interactions only appear in
FFs. The diagrams represented by themiddle box in Figs. 1(b)
and 1(c) are then given by Figs. 3 and 4, respectively.
The calculation is rather straightforward. One needs to

perform the collinear expansion in the frame where the final
hadron moves in the −z direction. One essentially expands
parton momenta kb and kg around the direction of Pμ

h and
takes the large components of quark fields in the upper
bubble of Fig. 1(b). Details about the expansion can be

found in [2,3]. We first calculate Wμν from Fig. 1 with
diagrams given explicitly in Figs. 2–4. The Uð1Þ gauge
invariance is checked. From Fig. 1(a) we obtain contribu-
tions involving ê∂ and êI. We use the relation in Eq. (12) to
express êI with ê∂ and ÊF. With the obtained Wμν, we can
calculate our spin observables. Since there is only one
parton in the intermediate state, the length of Ph⊥ is fixed as

Ph⊥ · Ph⊥ ¼ −
zzhQ2

x̂
ð1 − x̂Þð1 − ẑÞ: ð28Þ

Therefore, the integration over Ph⊥ in Eq. (19) can be
performed easily.Wehave then the chiral-odd real corrections

dσhO1i
dxBdydzh

����
Re

¼ zhαsα2y
4Q2

js⊥j2FD

Z
dxdz
xz

h1ðxÞ
�
ê∂ðzÞ

�
−8YMCF

2

ϵ
δð1 − x̂Þδð1 − ẑÞ þA1σ∂ðx̂; ẑÞ

�

þ 2

Z
dz1
z1

½ImÊFðz1; zÞA1σFðx̂; ẑ; ẑ1Þ þ ImÊGðz1; zÞA1σGðx̂; ẑ; ẑ1Þ�
	
;

dσhO2i
dxBdydzh

����
Re

¼ zhαsα2y
4

js⊥j2FDY2

Z
dxdz
xz

h1ðxÞ
�
−ê∂ðzÞ

8

ẑ
CF

��
−2

�
2

ϵ

�
2

þ 3
2

ϵ

�
δð1 − x̂Þδð1 − ẑÞ

þ δð1 − x̂Þ 2
ϵ

2ẑ
ð1 − ẑÞþ

þ δð1 − ẑÞ 2
ϵ

2x̂
ð1 − x̂Þþ

�
þ ê∂ðzÞA2σ∂ðx̂; ẑÞ þ 2

Z
dz1
z1

�
ImÊFðz1; zÞ

×

�
2

ϵ
δð1 − x̂Þẑ

�
CFðẑ − ẑ1 − 1Þ − Nc

2

ẑ2 þ ẑ21 − ẑ − ẑ1
ðẑ − ẑ1Þð1 − ẑ1Þ

�
4

ẑ − ẑ1
þA2σFðx̂; ẑ; ẑ1Þ

�

þ ImÊGðz1; zÞ
�
δð1 − x̂Þ 2

ϵ

4CFðẑ − 1Þ2
Ncð1þ ẑ1 − ẑÞ þA2σGðx̂; ẑ; ẑ1Þ

��	
; ð29Þ

FIG. 2. Diagrams for chiral-odd contributions, represented by the middle box in Fig. 1(a). Black dots denote the insertion of the
operator of the electromagnetic current.

FIG. 3. Diagrams for chiral-odd contributions, represented by the middle box in Fig. 1(b).
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where the poles of 1/ϵ stand for collinear or IR divergences.
These divergences come from the momentum region where
the unobserved parton in the intermediate state is soft or
collinear to the initial or final hadron. These divergences
will be canceled by those in the virtual parts or subtracted
into parton distributions or FFs as we will show. The
integrating ranges of x, z, and z1 are given by

Z
dx¼

Z
1

xB

dx;
Z

dz¼
Z

1

zh

dz;
Z

dz1 ¼
Z

∞

z
dz1:

ð30Þ

In Eq. (29) we have already neglected those terms which
are proportional to ϵ and will not contribute to our final
results. FD and ẑ1 are given by

FD ¼
�
4πμ2c
Q2

�
ϵ/2 1

Γð1 − ϵ/2Þ ; ẑ1 ¼
zh
z1

; ð31Þ

with μc as the scale associated with collinear divergences.
In Eq. (29) we have listed divergent contributions explic-
itly. The finite parts are given by functions A’s, which can
be found in the Appendix.
As discussed before, the virtual correction to the deriva-

tive part of the hadronic tensor, and hence to our observ-
ables, is given by the correction of the quark form factor.
The correction is well known. The virtual part can be
simply obtained by multiplying our tree-level results in
Eq. (24) with the factor

1þ αsCF

2π
FD

�
−2

�
2

ϵ

�
2

− 3

�
2

ϵ

�
− 8

�
þOðα2sÞ: ð32Þ

Summing the divergent part in the real and virtual part,
we have the divergent parts of one-loop chirality-odd
corrections:

dσhO1i
dxBdydzh

����
Div

¼ 0;

dσhO2i
dxBdydzh

����
Div

¼ zhαsα2yjs⊥j2Y2FD

�
2

ϵ

�Z
dxdz
xz

h1ðxÞ
�
2ê∂ðzÞCF

�
−3δð1 − x̂Þδð1 − ẑÞ

−
2δð1 − x̂Þ
ð1 − ẑÞþ

−
2x̂δð1 − ẑÞ
ð1 − x̂Þþ

�
þ δð1 − x̂Þ

Z
dz1
z1

�
ImÊFðz1; zÞ

2ẑ
ẑ − ẑ1

×

�
CFðẑ − ẑ1 − 1Þ − Nc

2

ẑ2 þ ẑ21 − ẑ − ẑ1
ðẑ − ẑ1Þð1 − ẑ1Þ

�
þ ImÊGðz1; zÞ

2CFðẑ − 1Þ2
Ncð1þ ẑ1 − ẑÞ

�	
: ð33Þ

In the sums, the infrared divergences are canceled. The remaining divergences are collinear ones. The one-loop correction to
our first spin observables is finite. The correction to the second observable contains collinear divergences.
It should be noted that the contributions from exchanging collinear partons are, in fact, already included in the parton

distributions and FFs of the tree-level results in Eq. (24), or they are already contained in the lower and upper bubbles in
Fig. 5. In order to avoid double counting, we should subtract these contributions from the one-loop corrections calculated in
the above. The subtraction at one-loop level can be easily done with the replacement in the tree-level results in Eq. (24):

h1ðxÞ → h1ðxÞ − Δh1ðxÞ; ê∂ðxÞ → ê∂ðxÞ − Δê∂ðxÞ; ð34Þ

FIG. 4. Diagrams for chiral-odd contributions, represented by the middle box in Fig. 1(c).
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and the contributions which need to be subtracted are

Δ
dσhO1i
dxBdydzh

¼ πzhyα2

Q2
YMjs⊥j2ϵðΔh1ðxBÞê∂ðzhÞ þ h1ðxBÞΔê∂ðzhÞÞ;

Δ
dσhO2i
dxBdydzh

¼ −πzhyα2Y2js⊥j2ð4 − 3ϵÞðΔh1ðxBÞê∂ðzhÞ þ h1ðxBÞΔê∂ðzhÞÞ: ð35Þ

These contributions should be added in our final results to avoid the double counting.
In the case with dimensional regularization for collinear divergences of massless partons, the quantities Δh1 and Δe∂ are

determined by the evolution of h1 and ê∂ , respectively. The evolution of twist-3 FFs has been studied in [38–40]. The
evolution of h1 can be found in [41]. The evolution of ê∂ can be found in [38,40]. According to these results, Δh1 and Δe∂
are given by

Δh1ðxBÞ ¼
αs
2π

�
−
2

ϵ
þ ln

eγμ2

4πμ2c

�Z
dx
x
CF

�
2x̂

ð1 − x̂Þþ
þ 3

2
δð1 − x̂Þ

�
h1ðxÞ

¼ αs
2π

�
−
2

ϵ
þ ln

eγμ2

4πμ2c

�
ðP⊥q ⊗ h1ÞðxBÞ;

Δê∂ðzhÞ ¼
αs
2π

�
−
2

ϵ
þ ln

eγμ2

4πμ2c

�Z
dz
z

�
ê∂ðzÞCF

�
2

ð1 − ẑÞþ
þ 3

2
δð1 − ẑÞ

�
−
Z

dz1
z1

�
ImÊFðz1; zÞ

×
ẑ

ẑ − ẑ1

�
CFðẑ − ẑ1 − 1Þ − Nc

2

ẑ2 þ ẑ21 − ẑ − ẑ1
ðẑ − ẑ1Þð1 − ẑ1Þ

�
þ ImÊGðz1; zÞ

CFðẑ − 1Þ2
Ncð1þ ẑ1 − ẑÞ

�	

¼ αs
2π

�
−
2

ϵ
þ ln

eγμ2

4πμ2c

�
ðF ∂ ⊗ ê∂ þ FF ⊗ ÊF þ FG ⊗ ÊGÞðzhÞ; ð36Þ

where the poles in ϵ stand for collinear divergence
and μ is the renormalization scale. In Eq. (36) we have
introduced four evolution kernels P⊥q, F ∂ , FF, and FG
for a short notation. Taking the derivative of Δh1 and
Δe∂ with respect to ln μ, one obtains the evolution of h1
and ê∂ , respectively.
Substituting the results in Eq. (36) into the contri-

butions in Eq. (35) and adding them to the divergent
part of the one-loop corrections in Eq. (33), one can
realize that the divergences represented by the poles in ϵ
are canceled. The final results of chirality-odd contri-
butions are finite. We will present the final results
in Sec. V.

IV. ONE-LOOP CHIRALITY-EVEN CORRECTION

In this section we study the one-loop chirality-even
corrections. As discussed before, we only need to calculate
the real correction. The virtual correction is given by the
one-loop correction of the quark form factor. The chirality-
even contributions involve twist-2 parton FFs and twist-3
parton distributions of the initial hadron.
In the case of quark fragmentation, the contributions are

from these diagrams, whose general structure can be repre-
sented by Fig. 5. To calculate, e.g., the contribution from
Fig. 5(a), one can in the first step project out the contribution
of the twist-2 quark FF from the upper bubble. After the
projection, the contribution to Wμν can be written as

(a) (b) (c)

FIG. 5. Patterns of diagrams for chiral-even contributions to Wμν. The broken lines are the cuts.
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Wμνj5a ¼
Z

dz
zd−3

d̂ðzÞ
Z

ddkaddkgTrfγ · PhM
a;μνα
5a ðka; kg; kbÞΓa;β

5a ðka; kgÞggαβ; ð37Þ

with Γ5a for the lower bubble in Fig. 5(a) given as

Γa;β
5a;ijðka;kgÞ¼

Z
ddξaddξg
ð2πÞ2d eiξa·kaþiξg·kg

×hP;s⊥jψ̄ jð0ÞGa;βðξgÞψ iðξaÞjP;s⊥i; ð38Þ

and Ma;μ
5a standing for the middle box in Fig. 5(a). In the

above contribution, the collinear expansion relevant to the
produced hadron is performed, and the momentum carried
by the quark lines between the middle box and the upper
bubble is given by kb ¼ Ph/z. ka and kg are the momenta
carried by the quark and gluon lines, respectively, in the
lower left part of Fig. 5(a).
At the order we consider, there is always one parton

contained in the middle boxes crossing the cut. Unlike the
case of chiral-odd contributions studied before, where the
final-state interactions only appear in parton fragmenta-
tion, the final-state interactions in chirality-even contri-
butions can only appear in the middle boxes, i.e., in the
hard scatterings. This is due to the fact that twist-2 parton
FFs do not contain final-state interactions. The amplitudes
represented by the left parts of the middle boxes have a
nonzero absorptive part, or the left parts contain a
physical cut implicitly. Because of the cut, one of the
parton lines in the lower left part of the diagrams in Fig. 5

can carry zero momentum. The resulting contributions
are called “soft-quark” or “soft-gluon-pole contribu-
tions.” There are contributions in which none of the
parton lines carry zero momentum. These contributions
are called “hard-pole contributions.” There is also the
case that the final hadron is produced through gluon
fragmentation. In this case, there are types of diagrams
similar to Fig. 5.
How to make the collinear expansion in a gauge-

invariant way has been studied in detail in [4], and how
to calculate the soft-gluon-pole contributions with the
master formulas can be found in [29–31]. Employing
these techniques, various contributions can be calculated
in a straightforward way. Therefore, we will not give
details about how these calculations are done. We first
discuss the contributions of hard poles. For the case of
quark fragmentation, the hard scattering part represented
by the middle box in Fig. 5(a) is given by the diagrams
in Fig. 6, where the quark propagators with a short bar
imply the cut for the absorptive part; i.e., only the
absorptive part of the propagators is taken into account.
The dispersive part will not contribute. Figure 6 stands
for two cases; the final hadron can be produced from
quark or gluon fragmentation. The contributions from
Fig. 6 are

dσhO1i
dxBdydzh

����
Fig:6

¼ zhyα2αs
4Q2

js⊥j2FD

Z
dxdz
xz

�
d̂ðzÞ

�
YMTFðx; xBÞ

�
2Nc

�
2

ϵ

�
2

δð1 − x̂Þδð1 − ẑÞ

−
1þ ẑðN2

c − 1Þ
ẑNc

2

ϵ
δð1 − x̂Þ 1þ ẑ2

ð1 − ẑÞþ
− Ncδð1 − ẑÞ 2

ϵ

1þ x̂
ð1 − x̂Þþ

�

þ YMTΔðx; xBÞNcδð1 − ẑÞ 2
ϵ
þ TFðx; xBÞA1hqðx̂; ẑÞ þ TΔðx; xBÞB1hqðx̂; ẑÞ

�

þ ĝðzÞ
�
YMTFðx; xBÞ

ẑþ N2
cð1 − ẑÞ

ẑ2Nc
δð1 − x̂Þ 2

ϵ
ð2 − 2ẑþ z2Þ

þ TFðx; xBÞA1hgðx̂; ẑÞ þ TΔðx; xBÞB1hgðx̂; ẑÞ
�	

;

dσhO2i
dxBdydzh

����
Fig:6

¼ 0: ð39Þ

Here we only list the divergent results explicitly. A1hiðx̂; ẑÞ and B1hiðx̂; ẑÞ for i ¼ q, g are finite functions given in the
Appendix. In the following, we will give various contributions in the same way as Eq. (39). From Fig. 6 our second
observable receives no contributions.
There are partonic processes as the forward scattering in which a qq̄ pair participates as indicated by Fig. 5(b). Their

contributions are given by Fig. 7. These are hard-pole contributions. The contributions from Fig. 7 are
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dσhO1i
dxBdydzh

����
Fig:7

¼ zhyα2αs
4Q2

js⊥j2FD

Z
dxdz
xz

�
d̂ðzÞ

�
−

1

Nc
YMTFðxB − x; xBÞ

2

ϵ
δð1 − ẑÞð1 − 2x̂Þ

þ 1

Nc
YMTΔðxB − x; xBÞ

2

ϵ
δð1 − ẑÞ

�
þ TFðxB − x; xBÞðd̂ðzÞC1Fqðx̂; ẑÞ

− d̂ð−zÞC1Fq̄ðx̂; ẑÞÞ þ TΔðxB − x; xBÞðd̂ðzÞC1Dqðx̂; ẑÞ − d̂ð−zÞC1Dq̄ðx̂; ẑÞÞ
	
;

dσhO2i
dxBdydzh

����
Fig:7

¼ zhyα2αs
4

js⊥j2Y2

Z
dxdz
xz

�
TFðxB − x; xBÞðd̂ðzÞC2Fqðx̂; ẑÞ

− d̂ð−zÞC2Fq̄ðx̂; ẑÞÞ þ TΔðxB − x; xBÞðd̂ðzÞC2Dqðx̂; ẑÞ − d̂ð−zÞC1Dq̄ðx̂; ẑÞÞ
	
: ð40Þ

In the above contributions, one of variables of twist-3 parton distributions TF;Δðx1; x2Þ is negative, and its absolute value is
the momentum fraction of the antiquark. The antiquark FF is given by −d̂ð−zÞ. The contributions from Fig. 7 to our second
observable are nonzero but finite.
There are soft-pole contributions in which one of initial partons carries zero momentum. This parton can be a gluon or

quark. The soft-gluon-pole contributions can be calculated conveniently with the master formulas found in [29–31]. From
the type of diagrams of Fig. 5(a), there are soft-gluon-pole contributions. They are given by diagrams in Fig. 8. In Fig. 8, the
diagrams of the first row are for quark fragmentation; those in the second row are for gluon fragmentation. The total
contributions from Fig. 8 are

(c)(b)(a)

(e)(d) (f)

FIG. 6. Feynman diagrams for the hard-pole contribution with quark or gluon fragmentation.

(b)(a) (c) (d)

FIG. 7. Feynman diagrams for the hard scattering represented by the middle part of Fig. 5(b). Their contributions are hard pole with
quark or antiquark fragmentation.
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dσhO1i
dxBdydzh

����
Fig:8

¼ zhyα2αs
4Q2

js⊥j2FD

Z
dxdz
xz

TFðx; xÞ
�
d̂ðzÞ

�
1

ẑNc
YM

�
ðϵ − 2Þ

�
2

ϵ

�
2

δð1 − x̂Þδð1 − ẑÞ

þ 2

ϵ

1þ ẑ2

ð1 − ẑÞþ
δð1 − x̂Þ þ 2

ϵ

1þ x̂2

ð1 − x̂Þþ
δð1 − ẑÞ

�
þD1qðx̂; ẑÞ

�

þ ĝðzÞ
�
Nc

ẑ2
YM

�
−
2

ϵ
δð1 − x̂Þð2 − 2ẑþ ẑ2Þ

�
þD1gðx̂; ẑÞ

�	
;

dσhO2i
dxBdydzh

����
Fig:8

¼ 0: ð41Þ

Our second observable does not receive contributions from Fig. 8.
From the type of diagram in Fig. 5(b), there are soft-quark-pole contributions. The diagrams are given in Fig. 9. There are

contributions involving quark, antiquark, and gluon fragmentation functions. The contributions from gluon fragmentation
are represented by the diagrams in the second row. Those from antiquark fragmentation are given by the first and third rows.
Contributions with quark fragmentation are from all three rows of Fig. 9. But the contributions from the second row cancel
those from the complex conjugated diagrams of the third row. This is because the diagrams in the third row are from the
second row by cutting the unobserved parton lines in different ways. It is easy to show the cancellation. Therefore, the
contributions of quark fragmentation are only from the first row. We have

dσhO1i
dxBdydzh

����
Fig:9

¼ zhyα2αs
4Q2

js⊥j2
Z

dxdz
xz

�
d̂ðzÞ½TFð−x; 0ÞE1Fqðx̂; ẑÞ þ TΔð−x; 0ÞE1Δqðx̂; ẑÞ�

− d̂ð−zÞ½TFð0; xÞE1Fq̄ðx̂; ẑÞ þ TΔð0; xÞE1Δq̄ðx̂; ẑÞ�

þ ĝðzÞ½TFðx; 0ÞE1Fgðx̂; ẑÞ þ TΔðx; 0ÞE1Δgðx̂; ẑÞ�
	
;

dσhO2i
dxBdydzh

����
Fig:9

¼ zhyα2αs
4

js⊥j2Y2

Z
dxdz
xz

�
d̂ðzÞ½TFð−x; 0ÞE2Fqðx̂; ẑÞ þ TΔð−x; 0ÞE2Δqðx̂; ẑÞ�

− d̂ð−zÞ½TFð0; xÞE2Fq̄ðx̂; ẑÞ þ TΔð0; xÞE2Δq̄ðx̂; ẑÞ�

þ ĝðzÞ½TFðx; 0ÞE2Fgðx̂; ẑÞ þ TΔðx; 0ÞE2Δgðx̂; ẑÞ�
	
: ð42Þ

The soft-quark-pole contributions are finite.
At the order we consider, there are contributions involving gluonic twist-3 parton distributions defined in Eq. (7). These

contributions are represented by the type of diagram specified in Fig. 5(c). Since there are three gluons exchanged between

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 8. Feynman diagrams for the hard scattering represented by the middle part of Fig. 5(a). Their contributions are of the soft-gluon-
pole type. Diagrams in the first (second) row show quark (gluon) fragmentation.
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the middle box and the lower bubble, the Bose symmetry should be kept. For this it is convenient to use the symmetric
notation in [31,32,42] for the twist-3 gluonic matrix elements in the calculation and to express the final result with the
gluonic distributions in Eq. (7). In the symmetric notation, the matrix element of the twist-3 gluonic operator can be
parametrized as

i3gs
Pþ

Z
dλ1
2π

dλ2
2π

eiλ1x1P
þþiλ2ðx2−x1ÞPþhP; s⊥jGa;þαðλ1nÞGc;þγðλ2nÞGb;þβð0ÞjP; s⊥i

¼ Nc

ðN2
c − 1ÞðN2

c − 4Þ d
abcOαβγðx1; x2Þ −

i
NcðN2

c − 1Þ f
abcNαβγðx1; x2Þ; ð43Þ

where all indices α, β, and γ are transverse. From Bose symmetry and covariance, the two tensors take the form

Oαβγðx1; x2Þ ¼ −2i½Oðx1; x2Þgαβs̃γ⊥ þOðx2; x2 − x1Þgβγ s̃α⊥ þOðx1; x1 − x2Þgγαs̃β⊥�;
Nαβγðx1; x2Þ ¼ −2i½Nðx1; x2Þgαβs̃γ⊥ − Nðx2; x2 − x1Þgβγ s̃α⊥ − Nðx1; x1 − x2Þgγαs̃β⊥�; ð44Þ

with the properties of the function O and N

Oðx1; x2Þ ¼Oðx2; x1Þ; Oðx1; x2Þ ¼Oð−x1;−x2Þ; Nðx1; x2Þ ¼ Nðx2; x1Þ; Nðx1; x2Þ ¼ −Nð−x1;−x2Þ: ð45Þ

The functions O and N are related to those defined in Eq. (7) as

TðfÞ
G ðx1; x2Þ ¼ 2πððd − 2ÞNðx1; x2Þ − Nðx2; x2 − x1Þ − Nðx1; x1 − x2ÞÞ;

TðdÞ
G ðx1; x2Þ ¼ 2πððd − 2ÞOðx1; x2Þ þOðx2; x2 − x1Þ þOðx1; x1 − x2ÞÞ: ð46Þ

It should be noted that the relations depend on d ¼ 4 − ϵ. It will affect the subtraction discussed later.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 9. Feynman diagrams for the hard scattering represented by the middle part of Fig. 5(b). Their contributions are of the soft-quark-
pole type.
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With the symmetric notation, the middle box of Fig. 5(c) is given by diagrams in Fig. 10. The contributions from Fig. 5(c)
are of the soft-gluon-pole type, i.e., one of the three gluon lines carries zero momentum. One can use the so-called master
formula in [29–31] to calculate the twist-3 contributions. From Fig. 10 we have

dσhO1i
dxBdydzh

����
Fig:10

¼ zhyα2αs
4Q2

js⊥j2FDð−4πÞ
Z

dxdz
x2z

d̂ðzÞ
�
ðOðx; xÞ þ Nðx; xÞ þOðx; 0Þ − Nðx; 0ÞÞ

× ½YM
2

ϵ
δð1 − ẑÞð1 − 2x̂þ 2x̂2Þ þ YLF 1Lðx̂; ẑÞ� þ YMðOðx; xÞ þ Nðx; xÞÞF 1Mþðx̂; ẑÞ

þ YMðOðx; 0Þ − Nðx; 0ÞÞF 1M−ðx̂; ẑÞ
	
;

dσhO2i
dxBdydzh

����
Fig:10

¼ zhyα2αs
4

js⊥j2Y2ð−4πÞ
Z

dxdz
x2z

d̂ðzÞðOðx; 0Þ − Nðx; 0ÞÞ 4x̂
2

ẑ
: ð47Þ

We observe that the contribution from Fig. 10 to our second observable is finite.
The real part of one-loop chirality-even correction to our observables is the sum of the contributions listed in Eqs. (39)–

(42) and (47). The virtual part, as mentioned before, is obtained by multiplying our tree-level results in Eq. (24) by the factor
in Eq. (32). Since our second observable at tree level does not contain a chirality-even part, its virtual part of the chirality-
even part is zero. Adding all divergent contributions together, we obtain the sum

dσhO1i
dxBdydzh

����
Div

¼ zhyα2αs
2Q2

js⊥j2YMFD

Z
dxdz
xz

�
−
2

ϵ

��
δð1 − x̂ÞTFðx; xÞðPqqðẑÞd̂ðzÞ

þ PgqðẑÞĝðzÞÞ þ δð1 − ẑÞd̂ðzÞ
��

Pqqðx̂Þ −
Nc

2

1þ x̂2

ð1 − x̂Þþ
− Ncδð1 − x̂Þ

�
TFðx; xÞ

þ Nc

2

1þ x̂
ð1 − x̂Þþ

TFðx; xBÞ þ
Nc

2
TΔðxB; xÞ þ

1

2Nc
TΔðxB; xB − xÞ

þ 1

2Nc
ð1 − 2x̂ÞTFðxB; xB − xÞ − 1

2x
ð1 − 2x̂þ 2x̂2ÞTGþðx; xÞ

�	
;

dσhO2i
dxBdydzh

����
Div

¼ 0; ð48Þ

with the standard splitting functions

PqqðzÞ ¼ CF

�
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�
;

PgqðzÞ ¼ CF
2 − 2zþ z2

z
: ð49Þ

(a) (b) (c) (d)

FIG. 10. Feynman diagrams for the hard scattering represented by the middle part of Fig. 5(c). Their contributions are of the soft-
gluon-pole type.
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In Eq. (48) and in our final results, the contributions from
gluonic twist-3 distributions can be conveniently expressed
by two combinations TG�ðx1; x2Þ of gluonic twist-3 dis-
tributions. They are defined as

TG�ðx1; x2Þ ¼ TðfÞ
G ðx1; x2Þ � TðdÞ

G ðx1; x2Þ: ð50Þ
In Eq. (48) the divergent gluonic contribution is only
related to TGþðx; xÞ, which are given by those twist-3
gluonic distributions in Eq. (44) as

TGþðx; xÞ ¼ 2π½2ðOðx; xÞ þ Nðx; xÞ þOðx; 0Þ
− Nðx; 0ÞÞ − ϵðOðx; xÞ þ Nðx; xÞÞ�: ð51Þ

Inspecting Eq. (48), we find that our second observable is
finite, while the first one is divergent. The divergence is
represented by the single pole in ϵ. The divergence of the
double pole in the real and virtual part is canceled in the

sum. The divergence in Eq. (48) comes from the exchanged
parton in the kinematic region of momentum, which is
collinear to the initial hadron h or the final h0. This
divergent contribution from the collinear region is, in fact,
already included in the tree-level result of the chiral-even
part of our first observable in Eq. (24), i.e., in the twist-3
parton distributions and twist-2 parton FFs. Therefore, this
divergent contribution needs to be subtracted to avoid a
double counting.
The subtraction can be done by the replacement in the

chirality-even part of the tree-level results in Eq. (24):

TFðx;xÞ→ TFðx;xÞ−ΔTFðx;xÞ; d̂ðzÞ→ d̂ðzÞ−Δd̂ðzÞ:
ð52Þ

The contributions which should be added in the final results
for the subtraction are

Δ
dσhO1i
dxBdydzh

¼ −π
zhyα2αs

Q2
js⊥j2YM

�
1 −

ϵ

2

�
½Δd̂ðzhÞTFðxB; xBÞ þ d̂ðzhÞΔTFðxB; xBÞ�;

Δ
dσhO2i
dxBdydzh

¼ 0: ð53Þ

In dimensional regularization for regularizing all divergences, the quantities Δd̂ðzÞ and ΔTFðx; xÞ are determined by the
evolution kernels. The evolution kernel of the quark fragmentation function is well known. The evolution of TFðx; xÞ is
studied in [43–48]. At one-loop level we have

ΔTFðx; xÞ ¼
αs
2π

�
−

2

ϵc
þ ln

eγμ2

4πμ2c

��
−NcTFðx; xÞ þ

Z
1

x

dz
z

�
PqqðzÞTFðξ; ξÞ þ

Nc

2

�
TΔðx; ξÞ

þ ð1þ zÞTFðx; ξÞ − ð1þ z2ÞTFðξ; ξÞ
1 − z

�
þ 1

2Nc
ðð1 − 2zÞTFðx; x − ξÞ

þ TΔðx; x − ξÞÞ − 1

2

ð1 − zÞ2 þ z2

ξ
TGþðξ; ξÞ

�	

¼ αs
2π

�
−

2

ϵc
þ ln

eγμ2

4πμ2c

�
ðF q ⊗ TF þ FΔq ⊗ TΔ þ F g ⊗ TGþÞðxÞ;

Δd̂ðxÞ ¼ αs
2π

�
−

2

ϵc
þ ln

eγμ2

4πμ2c

�Z
dξ
ξ
fPqqðzÞd̂ðξÞ þ PgqðzÞĝðξÞg

¼ αs
2π

�
−

2

ϵc
þ ln

eγμ2

4πμ2c

�
ðPqq ⊗ d̂þ Pgq ⊗ ĝÞðxÞ; ð54Þ

with z ¼ x/ξ. In the above we define five convolutions
F ’s and P’s for short notations. μ is the renormalization
scale. μc is the scale related to collinear divergences.
The derivative of ΔTFðx; xÞ with respect to μ gives the
evolution kernel of TFðx; xÞ derived. Adding the contri-
butions in Eq. (53) to our calculated one-loop correction,
we find that the chirality-even part of the one-loop
correction is finite.
The chirality-even corrections to our first observable

have been studied in [23–25]. In [24] the contributions from

Fig. 10 are obtained, where there is a soft-gluon-pole
contribution involving the derivative of Nðx; xÞ or Nðx; 0Þ
with respect to x, and the derivative of Oðx; xÞ or Oðx; 0Þ.
These derivative terms can be eliminated by integration by
part. We note that there is an integration over Ph⊥ in
Eq. (19) for our spin observables. With the master formulas
in [29–31], such derivative terms are eliminated automati-
cally through the integration over Ph⊥. This also holds for
the case of TFðx; xÞ, where there is a derivative contribution
of TFðx; xÞ in [23]. In [23] the contributions from
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Figs. 6 and 8 are obtained, but without the contributions
from TΔðx1; x2Þ. In [25] the contributions with TΔðx1; x2Þ
from Figs. 6 and 8 and the contributions from Fig. 7 are
included. However, the soft-quark-pole contributions are
still missing. In all these works, only the first term with gμν

in the first equation in Eq. (22) is taken into account, and
the contributions from the second term with YL are not
considered. It is true that the second term with YL does not
contribute at tree level. But it will contribute beyond tree
level. Except for these missing contributions, our results
agree with those in [23–25]. The missing contributions with
YL and the soft-quark-pole contributions are included in
this work; they are finite.

V. FINAL RESULTS

As mentioned in previous sections, the evolutions of
involved parton distributions and FFs take the forms of
convolutions. We denote these evolutions as

∂d̂ðzÞ
∂ ln μ ¼ αs

π
ðPqq ⊗ d̂þ Pgq ⊗ ĝÞðzÞ;

∂TFðx; xÞ
∂ ln μ ¼ αs

π
ðF q ⊗ TF þ FΔq ⊗ TΔ þ F g ⊗ TGþÞðxÞ;

∂h1ðxÞ
∂ ln μ ¼ αs

π
ðP⊥q ⊗ h1ÞðxÞ;

∂ê∂ðzÞ
∂ ln μ ¼ αs

π
ðF ∂ ⊗ ê∂ þ FF ⊗ ÊF þ FG ⊗ ÊGÞðzÞ:

ð55Þ

The definitions of the convolutions can be found in
Eqs. (36) and (54). With these notations we can write
our final results in the form that is explicitly μ independent
at one-loop level:

dσhO1i
dxBdydzh

¼ πzhyα2

Q2
js⊥j2YM

�
d̂ðzhÞTFðxB; xBÞ −

1

2
ln
eμ2

Q2

∂
∂ ln μ ðTFðxB; xBÞd̂ðzhÞÞ

−
∂

∂ ln μ ðh1ðxBÞê∂ðzhÞÞ −
αs
2π

CFð5d̂ðzhÞTFðxB; xBÞ − 6h1ðxBÞê∂ðzhÞÞ

þ αs
8π

d̂ðzhÞ
Z

dx
x2

ðð1 − x̂Þ2 þ x̂2Þð3TGþðx; xÞ − 2TG−ðx; 0ÞÞ
�
þ dσhO1iF
dxBdydzh

;

dσhO2i
dxBdydzh

¼ 2πzhyα2js⊥j2Y2

�
2h1ðxBÞê∂ðzhÞ −

�
ln

μ2

Q2
þ 3

2

� ∂
∂ ln μ ðh1ðxBÞê∂ðzhÞÞ

−
5αs
2π

CFh1ðxBÞê∂ðzhÞ
�
þ dσhO2iF
dxBdydzh

; ð56Þ

where the last term with the subindex F in the result of our two observables is the sum of all finite contributions from sets of
diagrams studied in previous sections. The sums are

dσhO1iF
dxBdydzh

¼ zhαsα2y
4Q2

js⊥j2
Z

dxdz
xz

�
h1ðxÞ

�
ê∂ðzÞA1σ∂ðx̂; ẑÞ

þ 2

Z
dz1
z1

ðImÊFðz1; zÞA1σFðx̂; ẑ; ẑ1Þ þ ImÊGðz1; zÞA1σGðx̂; ẑÞÞ
�

þ d̂ðzÞ
�
TFðx; xBÞA1hqðx̂; ẑÞ þ TΔðx; xBÞB1hqðx̂; ẑÞ þ TFðxB − x; xBÞC1Fqðx̂; ẑÞ

þ TΔðxB − x; xBÞC1Dqðx̂; ẑÞ þ TFðx; xÞD1qðx̂; ẑÞ þ TFð−x; 0ÞE1Fqðx̂; ẑÞ

þ TΔð−x; 0ÞE1Δqðx̂; ẑÞ þ
1

x
TGþðx; xÞF 1gþðx̂; ẑÞ þ

1

x
TG−ðx; 0ÞF 1g−ðx̂; ẑÞ

�

− d̂ð−zÞ½TFðxB − x; xBÞC1Fq̄ðx̂; ẑÞ þ TΔðxB − x; xBÞC1Dq̄ðx̂; ẑÞ
þ TFð0; xÞE1Fq̄ðx̂; ẑÞ þ TΔð0; xÞE1Δq̄ðx̂; ẑÞ�
þ ĝðzÞ½TFðx; xBÞA1hgðx̂; ẑÞ þ TΔðx; xBÞB1hgðx̂; ẑÞ

þ TFðx; xÞD1gðx̂; ẑÞ þ TFðx; 0ÞE1Fgðx̂; ẑÞ þ TΔðx; 0ÞE1Δgðx̂; ẑÞ�
	
;
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dσhO2iF
dxBdydzh

¼ zhαsα2y
4

js⊥j2
Z

dxdz
xz

�
h1ðxÞ

�
ê∂ðzÞA2σ∂ðx̂; ẑÞ

þ 2

Z
dz1
z1

ðImÊFðz1; zÞA2σFðx̂; ẑ; ẑ1Þ þ ImÊGðz1; zÞA2σGðx̂; ẑÞÞ
�

þ d̂ðzÞ
�
TFðxB − x; xBÞC2Fqðx̂; ẑÞ þ TΔðxB − x; xBÞC2Dqðx̂; ẑÞ

þ TFð−x; 0ÞE2Fqðx̂; ẑÞ þ TΔð−x; 0ÞE2Δqðx̂; ẑÞ þ
2x̂2

xẑ
ðTGþðx; xÞ þ 2TG−ðx; 0ÞÞ

�

− d̂ð−zÞ½TFðxB − x; xBÞC1Fq̄ðx̂; ẑÞ þ TΔðxB − x; xBÞC1Dq̄ðx̂; ẑÞ
þ TFð0; xÞE1Fq̄ðx̂; ẑÞ þ TΔð0; xÞE1Δq̄ðx̂; ẑÞ�

þ ĝðzÞ½TFðx; 0ÞE2Fgðx̂; ẑÞ þ TΔðx; 0ÞE2Δgðx̂; ẑÞ�
	
: ð57Þ

Equations (56) and (57) are our main results. The pertur-
bative functions A’s, B’s, C’s, and E’s are given in the
Appendix. In Eq. (24) and the results in this section, the
contributions from charge-conjugated parton processes are
not included. They can be obtained from our results with
charge conjugation.

VI. SUMMARY

In this work we have studied two spin observables of
SIDIS in which the initial hadron is transversely polarized.
They are weighted differential cross sections corresponding
to Sivers or Collins asymmetry, respectively. These asym-
metries have been measured in experiments already. In fact,
one of the studied observables is weighted Sivers asym-
metry, while another is weighted Collins asymmetry. In
collinear factorization they take factorized forms as con-
volutions of perturbative coefficient functions with twist-3
parton distributions combined with twist-2 FFs or twist-2
transversity distributions combined with twist-3 FFs. The
perturbative coefficient functions have been calculated at
the one-loop level in this work. The collinear divergences
are correctly subtracted so that these functions are finite.
With our results, the spin observables or SSAs are predicted
more precisely than with tree-level results. The spin
observables studied here can already be measured in
current COMPASS and JLab experiments, and in future
experiments at EIC.
It is interesting to note that at tree level our first

observable is predicted only with the ETQS matrix
element and the twist-2 quark FF, and the second
observable is predicted only with the twist-2 transversity
distribution and one of the twist-3 quark FFs. This implies
that through the measurement of these observables, it is
possible to determine these nonperturbative quantities at

tree-level accuracy. However, at one-loop level more twist-
3 parton distributions and FFs are involved. To determine
all involved parton distributions and FFs, one has to
combine theoretical and experimental results from other
processes, like Drell-Yan processes and inclusive single
hadron production at hadron-hadron collisions, where the
involved parton distributions and FFs also appear in
theoretical predictions. This requires more studies both
in theory and experiment.
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APPENDIX: THE FINITE PART OF WEIGHTED
CROSS SECTIONS

We list here all functions appearing in the finite part of
our results. We define two functions

L�ðξÞ ¼
�
lnð1 − ξÞ
1 − ξ

�
þ
� ln ξ
1 − ξ

: ðA1Þ

The functions in the chirality-odd contributions in Eq. (29)
are

A1σ∂ ¼ 8YMCF

�
δð1 − x̂Þ 1

ð1 − ẑÞþ
þ δð1 − ẑÞ x̂

ð1 − x̂Þþ

�
;

ðA2Þ
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A1σF ¼ YM

ẑðẑ − ẑ1Þ2
�
2CFẑ1ð−3ẑ2 þ ẑðẑ1 þ 4Þ − 2ẑ1Þ −

1

Nc
ẑðx̂ðẑ1 − ẑÞ þ 2ðẑ − 1Þẑ1Þ

− δð1 − x̂Þ ẑ2

ẑ1 − 1

�
2CFẑ1ðẑ2 − 2ẑẑ1 þ ẑþ ẑ21 þ ẑ1 − 2Þ − 1

Nc
ðẑþ ẑ1 − ẑ2 − ẑ21Þ

��

−
Q2YLx̂ ẑ

2x2Bðẑ − ẑ1Þðx̂ ẑ−x̂ẑ1 − ẑẑ1 þ ẑ1Þ
�
2CFẑẑ1ðẑ1 − ẑÞ − 1

Nc
ðẑ − 1Þðx̂ ẑ−x̂ẑ1 þ ẑ1Þ

�
; ðA3Þ

A1σG ¼ −YMδð1 − x̂Þ 2CFðẑ − 1Þ2
Ncðẑ1 þ 1 − ẑÞ −

�
YM þQ2YLðẑ − 1Þẑ

2x2B

�
2CFx̂ðẑ − 1Þ

ẑðẑ − ẑ1Þðx̂ ẑ−x̂ẑ1 − ẑẑ1 þ ẑ1Þ

×
x̂2ẑ21 þ x̂ðẑ3 − 3ẑ2ẑ1 þ 2ẑẑ21 þ ẑẑ1 − 2ẑ21Þ þ ðẑ − 1Þ2ẑ1ðẑ1 − ẑÞ

Ncðx̂ẑ1 − ẑ2 þ ẑẑ1 þ ẑ − ẑ1Þ
; ðA4Þ

A2σ∂ ¼ 8CF

�
−δð1− x̂Þδð1− ẑÞ þ δð1− x̂Þ

�
LþðẑÞ þ

3

ð1− ẑÞþ

�
þ x̂δð1− ẑÞ

�
2L−ðx̂Þ þ

3

ð1− x̂Þþ

�
þ 2x̂
ð1− x̂Þþð1− ẑÞþ

	
;

ðA5Þ

A2σF ¼ 4

ẑ − ẑ1
δð1 − x̂Þ

�
−LþðẑÞð1 − ẑÞẑ

�
CFðẑ − ẑ1 − 1Þ − Nc

2

ẑ2 þ ẑ21 − ẑ − ẑ1
ðẑ − ẑ1Þð1 − ẑ1Þ

�

−
1

ẑ

�
CF

2
ð3ẑ3 − 3ẑ2ðẑ1 þ 1Þ þ 2ẑðẑ1 þ 1Þ − 2ẑ1Þ −

Nc

4

1

ðẑ − ẑ1Þð1 − ẑ1Þ

× ẑ2ð3ẑ2 − 2ẑẑ21 − 3ẑþ 5ẑ21 − 5ẑ1 þ 2Þ
��

þ 4x̂ ẑ
ð1 − x̂Þþðẑ − ẑ1Þ2

×
1

ðx̂ ẑ−x̂ẑ1 − ẑẑ1 þ ẑ1Þ
�
N2

c − 1

2Nc
ẑ1ðx̂ẑ3 þ x̂ẑ2ð1 − 2ẑ1Þ þ x̂ ẑðẑ21 − 2ẑ1 − 2Þ

þ x̂ẑ1ðẑ1 þ 2Þ þ ẑ1ð3ẑ − ẑ1 − 2ÞÞ þ 1

2Nc
ðx̂2ðẑ − 1Þðẑ − ẑ1Þ2

þ x̂ð2ẑ − 3Þẑ1ðẑ − ẑ1Þ þ 2ðẑ − 1Þẑ21Þ
�
; ðA6Þ

A2σG ¼ 2CFδð1 − x̂Þ½LþðẑÞð1 − ẑÞð2ẑ − 2Þẑþ ð3ẑ2 − 3ẑþ 2ẑ1 þ 2Þ� ð1 − ẑÞ
Ncẑð1þ ẑ1 − ẑÞ

−
4CFx̂2ðẑ − 1Þ2

ð1 − x̂Þþðẑ − ẑ1Þðx̂ ẑ−x̂ẑ1 − ẑẑ1 þ ẑ1Þ

×
x̂2ẑ21 þ x̂ðẑ3 − 3ẑ2ẑ1 þ 2ẑẑ21 þ ẑẑ1 − 2ẑ21Þ þ ðẑ − 1Þ2ẑ1ðẑ1 − ẑÞ

Ncðx̂ẑ1 − ẑ2 þ ẑẑ1 þ ẑ − ẑ1Þ
: ðA7Þ

The functions in the chirality-even contributions in Eqs. (39)–(42) and (47) are

A1hqðx̂; ẑÞ ¼ YM

�
1þ ẑðN2

c − 1Þ
ẑNc

δð1 − x̂ÞðLþðẑÞð1þ ẑ2Þ − ẑþ 1Þ þ Ncδð1 − ẑÞ

× L−ðx̂Þð1þ x̂Þ þ 1þ ẑðN2
c − 1Þ

ẑNc

1þ x̂ẑ2

ð1 − x̂Þþð1 − ẑÞþ

�
; ðA8Þ

B1hqðx̂; ẑÞ ¼ YM

�
Ncδð1 − ẑÞL−ðx̂Þðx̂ − 1Þ þ 1þ ẑðN2

c − 1Þ
ẑNc

x̂ẑ2 − 1

ð1 − x̂Þþð1 − ẑÞþ

�
; ðA9Þ
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A1hgðx̂; ẑÞ ¼ YM

�
δð1 − x̂Þð−LþðẑÞð1 − ẑÞð2 − 2ẑþ ẑ2Þ − ẑ2Þ − 1þ x̂ð1 − ẑÞ2

ð1 − x̂Þþ

�
×
N2

cð1 − ẑÞ þ ẑ
ẑ2Nc

; ðA10Þ

B1hgðx̂; ẑÞ ¼ YM
N2

cð1 − ẑÞ þ ẑ
ẑ2Nc

x̂ð1 − ẑÞ2 − 1

x̂ − 1
; ðA11Þ

C1Fqðx̂; ẑÞ ¼ YM

�
1

Nc

�
δð1 − ẑÞL−ðx̂Þð1 − x̂Þð1 − 2x̂Þ þ ð1 − 2x̂Þẑ

ð1 − ẑÞþ

�
−
1

ẑ
ð2x̂ − 1Þð2ẑ2 − 2ẑþ 1Þ

�
; ðA12Þ

C1Dqðx̂; ẑÞ ¼ −YM

�
1

Nc

�
δð1 − ẑÞL−ðx̂Þð1 − x̂Þ þ ẑ

ð1 − ẑÞþ

�
þ 2ẑ2 − 2ẑþ 1

ẑ

�
; ðA13Þ

C1Fq̄ðx̂; ẑÞ ¼ −YM

�ð2x̂ − 1Þðẑ − 1Þ2
Ncẑ2

þ ð2x̂ − 1Þð2ẑ2 − 2ẑþ 1Þ
ẑ

�
; ðA14Þ

C1Dq̄ðx̂; ẑÞ ¼ −YM

�ðẑ − 1Þ2
Ncẑ2

þ 2ẑ2 − 2ẑþ 1

ẑ

�
; ðA15Þ

C2Fqðx̂; ẑÞ ¼ −
1

Nc
2x̂þ 4x̂ðẑ − 1Þ; ðA16Þ

C2Dqðx̂; ẑÞ ¼
1

Nc
2x̂ − 4x̂ðẑ − 1Þ; ðA17Þ

C2Fq̄ðx̂; ẑÞ ¼
1

Nc
2x̂

ẑ − 1

ẑ
þ 4x̂ðẑ − 1Þ; ðA18Þ

C2Dq̄ðx̂; ẑÞ ¼ −
1

Nc
2x̂

ẑ − 1

ẑ
− 4x̂ðẑ − 1Þ; ðA19Þ

D1qðx̂; ẑÞ ¼
−1
ẑNc

�
YM

�
δð1 − x̂Þ

�
LþðẑÞð1þ ẑ2Þ þ 2ðẑ2 − ẑþ 1Þ

ð1 − ẑÞþ

�
þ δð1 − ẑÞ

�
L−ðx̂Þð1þ x̂2Þ þ 2ðx̂2 − x̂þ 1Þ

ð1 − x̂Þþ

�

þ ð1 − x̂Þ2 þ ð1 − ẑÞ2 þ 2x̂ ẑ
ð1 − x̂Þþð1 − ẑÞþ

�
þ YLQ2

2x2B
x̂ ẑ

	
; ðA20Þ

D1gðx̂; ẑÞ ¼
Nc

ẑ2

�
YM

�
δð1 − x̂ÞLþðẑÞð1 − ẑÞðẑ2 þ 2 − 2ẑÞ þ δð1 − x̂Þ

× ð2ẑ2 þ 2 − 2ẑÞ þ ð1 − x̂Þ2 þ ẑ2 þ 2x̂ð1 − ẑÞ
ð1 − x̂Þþ

�
þ YLQ2

2x2B
x̂ð1 − ẑÞẑ

	
; ðA21Þ

E1Fqðx̂; ẑÞ ¼
1

ẑNc

�
YM

ẑ
ð−2x̂2 þ 2x̂ ẑþx̂ − ẑ2Þ − YLQ2

x2B
x̂ðx̂ − 1Þðẑ − 1Þ

�
; ðA22Þ

E1Δqðx̂; ẑÞ ¼
YM

ẑ2Nc
ðx̂þ ẑ2 − 2x̂ ẑÞ; ðA23Þ

E1Fq̄ðx̂; ẑÞ ¼
1

ẑNc

�
YM

ẑ
ð2x̂2 − 2x̂ ẑ−x̂þ ẑ2Þ þ YLQ2

x2B
x̂ðx̂ − 1Þðẑ − 1Þ

�
; ðA24Þ

E1Δq̄ðx̂; ẑÞ ¼
YM

ẑ2Nc
ðx̂þ ẑ2 − 2x̂ ẑÞ; ðA25Þ
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E1Fgðx̂; ẑÞ ¼ −
1

ẑNc

�
YM

ẑ
ð−2x̂2 þ 2x̂ ẑþx̂ − ẑ2Þ − YLQ2

x2B
x̂ðx̂ − 1Þðẑ − 1Þ

�
; ðA26Þ

E1Δgðx̂; ẑÞ ¼ −
YM

ẑ2Nc
ðx̂þ ẑ2 − 2x̂ ẑÞ; ðA27Þ

E2Fqðx̂; ẑÞ ¼
1

ẑNc
2x̂ðẑ − 1Þð2x̂ − 1Þ; ðA28Þ

E2Δqðx̂; ẑÞ ¼
1

ẑNc
2x̂ðẑ − 1Þ; ðA29Þ

E2Fq̄ðx̂; ẑÞ ¼ −
1

ẑNc
2x̂ðẑ − 1Þð2x̂ − 1Þ; ðA30Þ

E2Δq̄ðx̂; ẑÞ ¼
1

ẑNc
2x̂ðẑ − 1Þ; ðA31Þ

E2Fgðx̂; ẑÞ ¼ −
1

ẑNc
2x̂ðẑ − 1Þð2x̂ − 1Þ; ðA32Þ

E2Δgðx̂; ẑÞ ¼ −
1

ẑNc
2x̂ðẑ − 1Þ; ðA33Þ

F 1Mþðx̂; ẑÞ ¼ðL−ðx̂Þð1 − x̂Þ þ 1Þδð1 − ẑÞð1 − 2x̂þ 2x̂2Þ þ δð1 − ẑÞ þ 1 − 2x̂ − 2ẑþ 2x̂2 þ 2ẑ2

ẑ2ð1 − ẑÞþ
; ðA34Þ

F 1M−ðx̂; ẑÞ ¼ L−ðx̂Þð1 − x̂Þδð1 − ẑÞð1 − 2x̂þ 2x̂2Þ þ δð1 − ẑÞ þ 1 − 2x̂ − 2ẑþ 2x̂2 þ 2ẑ2

ẑ2ð1 − ẑÞþ
; ðA35Þ

F 1Lðx̂; ẑÞ ¼
Q2

x2B

ð1 − x̂Þx̂
ẑ

: ðA36Þ

The perturbative functions F 1gþ and F 1g− in Eq. (57) for the gluonic contributions are determined by F 1M� and F 1L as

F 1gþðx̂; ẑÞ ¼
1

2
YMðF 1M−ðx̂; ẑÞ − 3F 1Mþðx̂; ẑÞÞ − YLF 1Lðx̂; ẑÞ F 1g−ðx̂; ẑÞ ¼ YMF 1M−ðx̂; ẑÞ − YMF 1Mþðx̂; ẑÞ: ðA37Þ
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