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We study single spin asymmetries at one-loop accuracy in semi-inclusive DIS with a transversely
polarized hadron in the initial state. Two measurable spin observables are predicted in the framework of
QCD collinear factorization. One of the spin observables is the Sivers weighted asymmetry; another one is
the Collins weighted asymmetry. The prediction takes a form of convolutions of perturbative coefficient
functions and nonperturbative functions, which are twist-2 transversity distributions, twist-3 parton
distributions, and twist-2 and twist-3 parton fragmentation functions. These nonperturbative functions can
be extracted from measurements of the spin observables and provide valuable information of the inner
structure of hadrons. The measurements can be done in current COMPASS and JLab experiments and in
future experiments of EIC. The perturbative coefficient functions are calculated at the one-loop level. There
are collinear divergences in the calculation involving chirality-even and chirality-odd twist operators. We
find that all collinear divergences can be correctly subtracted so that the final results are finite.
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I. INTRODUCTION

Experiments of lepton-hadron scattering have provided
important information about the inner structure of hadrons.
A typical example is deeply inelastic scattering (DIS).
From DIS one can extract parton distribution functions
defined with twist-2 operators of QCD. In semi-inclusive
DIS (SIDIS) with one detected hadron in the final state, one
can learn more about the inner structure and nonperturba-
tive properties of QCD if the initial hadron is transversely
polarized. In this case, the spin-dependent part of the
differential cross section, or single spin asymmetries
(SSAs), can be predicted with parton distributions defined
with twist-3 operators as shown in [1,2], and twist-3
fragmentation functions (FFs). The twist-3 parton distri-
butions describe quark-gluon correlations inside a hadron
and contain more information about the inner structure of
hadrons than twist-2 parton distributions. In this work, we
study SSAs in SIDIS, in particular one-loop corrections of
spin observables.

Under a one-photon-exchange approximation, the had-
ronic tensor of SIDIS contains all information about the
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process. The spin-dependent part of the tensor has been
studied with collinear factorization at tree level in different
kinematic regions. In the region where the final hadron has
large transverse momentum P;, |, SSA has been studied in
[3-5], where the spin-dependent part starts at the order of ;.
At low P;, one can also employ collinear factorization
because of the large virtuality —Q? of the exchanged photon.
In this region, the spin-dependent part starting at the order of
a! is predicted as a tensor distribution of P, | as shown in [6].
This implies that the measurable effects from this part can
only be predicted when P, is integrated over with certain
weights. In this work we construct two spin observables by
integrating over P, with different weights, and we study
one-loop corrections of the two spin observables.

Various SSAs in SIDIS can be measured in the current
experiments of COMPASS [7] and JLab [8] and in future
experiments of EIC [9]. It is noted that in the low P,
region one can employ the approach of transverse-
momentum-dependent (TMD) factorization studied in
[10-12], where nonperturbative effects are described by
TMD parton distributions and TMD FFs. The relevant
phenomenology with TMD factorization for SIDIS has
been studied in [13-16]. In the framework of TMD
factorization, the SSA related to the Sivers function, which
is one of TMD parton distributions, is called “Sivers
asymmetry.” The SSA related to the Collins fragmentation
function is called “Collins asymmetry.” These two asym-
metries have already been studied in experiments by
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HERMES and COMPASS. It is found that these asymme-
tries are different from zero [17,18]. Recently, the so-called
“weighted Sivers asymmetry” has been studied by
COMPASS [19]. One of our two spin observables is, in
fact, the studied weighted Sivers asymmetry. Another one
is the weighted Collins asymmetry, because it is related to
the transverse momentum moment of the Collins fragmen-
tation function. These two asymmetries have important
implications, if they are not zero. If Sivers asymmetry is not
zero, it indicates that partons inside a hadron have nonzero
orbital angular momentum. Nonzero Collins asymmetry
indicates that partons in their fragmentation into a hadron
can have nonzero orbital angular momentum.

Without observing the spin of the final hadron, twist-3
contributions only appear in the case when the initial
hadron is transversely polarized. The spin-dependent part
of the hadronic tensor can obtain contributions from the
twist-3 parton distributions introduced in [1,2] combined
with the twist-2 quark FF. These twist-3 parton distribu-
tions and twist-2 FF are defined with chirality-even
operators. We will call these contributions “chirality-even
contributions.” Besides them, the spin-dependent part also
receives contributions from the twist-2 transversity distri-
bution introduced in [20], combined with twist-3 FFs. The
transversity distribution and twist-3 FFs are defined with
chirality-odd operators. We will call these contributions
“chirality-odd contributions.” At the leading order of «,
i.e., at a2, one of our two spin observables has only a
chirality-even contribution, while another has only a
chirality-odd contribution. Therefore, through the two
observables one can extract not only twist-3 parton dis-
tributions and fragmentation functions, but also the twist-2
transversity distribution, which is less known than other
twist-2 parton distributions. Beyond tree level, each spin
observable can have chirality-even and chirality-odd
contributions.

It is worth pointing out that there are not many results of
one-loop calculation involving twist-3 operators, while
calculations beyond tree level with only twist-2 operators
are rather standard, and many one-loop results exist. For
Drell-Yan processes with one transversely polarized hadron
in the initial state, one-loop correction of a spin observable
involving the twist-3 parton distributions has been calcu-
lated at one loop in [21]. In [22] two spin observables were
studied and their complete one-loop corrections were
derived. For SIDIS, different parts of one-loop chirality-
even correction have been studied in [23-25] for one of our
two spin observables. But the one-loop chirality-even
corrections from [23-25] are still not completed, and the
one-loop chirality-odd corrections are missing. In this work
we will give complete one-loop corrections of the two spin
observables. One-loop study of the twist-3 effect for DIS
has been performed in [26].

An interesting observation has been made for the twist-3
part of the hadronic tensor in [6]. The twist-3 part at tree

level has contributions proportional to the derivative of
8%(Py, ). The virtual corrections beyond tree level of these
contributions are completely determined by the loop
corrections of the quark form factor. Similar observation
has been also made for Drell-Yan processes in [27]. In this
work, the two spin observables are so constructed that they
receive contributions at tree level only from those con-
tributions with the derivative of 6*(P;,,) of the twist-3
parts. Then the virtual correction of the spin observables
can be obtained from the relevant results of the quark form
factor; we will mainly deal with the real correction.

Calculations involving twist-3 operators are in general
more complicated than those of twist-2. The nonperturba-
tive and perturbative effects must be separated in a gauge-
invariant way. This has been discussed in detail in [4] for
SIDIS. Unlike the twist-2 factorization, where partons can
never have zero momentum fraction, in the twist-3 fac-
torization some partons participating in hard scattering can
have zero momentum fraction. In [2] it has been shown that
there are so-called ““soft-gluon-pole contributions” in which
one gluon as a parton has zero momentum. The gluon does
not have exactly zero momentum. In fact, as shown in [28],
it is a Glauber gluon and its momentum can be neglected in
hard scattering. It is difficult to calculate the soft-gluon-
pole contributions. However, these contributions at tree
level can be related to the corresponding twist-2 contribu-
tion, as shown in [29-31]. There are so-called “master
formulas” to obtain the contributions. This will simplify
our calculation of one-loop real correction, since it is a tree-
level calculation before some final states are summed. With
the results for SIDIS in [4,29], the twist-3 calculations of
SIDIS can be performed straightforwardly.

Our paper is organized as follows. In Sec. II we introduce
our notations. We define two spin observables and derive
the tree-level results. In Secs. III and IV we give the one-
loop corrections for the chirality-odd and chirality-even
contributions, respectively. In these sections, we also
perform the subtraction of the collinear contributions.
The collinear singularities will be subtracted into various
parton distributions and FFs. The final results are finite. In
Sec. V we give our final results. Section VI is our summary.
In the Appendix we list perturbative coefficient functions of
our one-loop corrections.

II. NOTATIONS AND TREE-LEVEL RESULTS

We consider the semi-inclusive process
e(k) + h(P,s) = e(k')+ (P, + X, (1)

where the initial hadron £ is a spin-1/2 one with the spin
vector s. We will consider the case that the polarization of
particles in the final state is not observed or summed over
and the initial electron is unpolarized. At the leading order
of QED, the process is described by the hadronic tensor
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d*x .
WH = zx:/Welq')%P,S J”(x)|Ph,X>

X (Py, X|J*(0)[P, 5), 2)

with ¢ = k — k' as the momentum of the virtual photon
emitted from the initial electron. We will consider the
process in the kinematic region with Q% = —g* > Acp.
In this region one can use the concept of QCD factorization
to predict W*¥ in the form of convolutions with perturbative
coefficient functions, various parton distributions, and FFs.
We are interested in the transverse-spin-dependent part of
WH . In this part, twist-3 parton distributions and twist-3
FFs are involved.

To define parton distributions and FFs, it is convenient to
use the light-cone coordinate system. In this system a
vector a* is expressed as a* = (a*,a",d,) = ((a® + a*)/
V2,(a® = a®)V2,a",a*) and @ = (a')? + (a?)? =
—a, -a,;. We introduce two light-cone vectors as [V =
(1,0,0,0) and n* = (0, 1,0, 0). With these two vectors one
can define

d =g —n'lt —nlk, ¢l = eaﬁ””lanﬂ. (3)
We take the initial hadron moving in the z direction with the
momentum P* = (P*,0,0,0). The initial hadron is trans-
versely polarized with s# = (0,0, s, s ). At twist-2 there
is one parton distribution related to the transverse spin. It is
the transversity distribution introduced first in [20]:

di _;op+ _
[ re Psslpn 0)1P.s.)
1
:W(M‘SM'Phl(X)JF'“)ﬁ, (4)

where ij stand for Dirac indices and color indices and - - -
denote irrelevant terms. Here and in the following we
suppress gauge links between field operators for brevity. x
is the momentum fraction carried by the quark. This
distribution is defined with the operator which is chirality
odd. Hence, the contributions to W involving h; will
always be combined with chirality-odd FFs.

At twist-3 there are two transverse-spin-dependent par-
ton distributions defined with quark-gluon-quark correla-
tions. They are the so-called Efremov-Teryaev-Qiu-
Sterman (ETQS) matrix elements in [1,2]:

da . R
/ ldﬂz e—llz(xz—xl)P —idix P
4

X (P, s |[wr;(4n)g, G (An)y;(0)|P,s )
1 . ..
= Z[y_]jisﬁ_TF(xlvxz) +Z[l757 ;s Talxy, xp) + -+,

(5)

s P 117
where | is defined as ¥ =¢€/"s,, and --- denote

irrelevant terms. The two twist-3 parton distribution func-
tions have the property

TF(x19x2) = TF(X27X1)’TA(X1»X2) = _TA(xz»xl)- (6)

Replacing the field-strength tensor operator in Eq. (5) with
the covariant derivative D], one can define the other two
twist-3 distributions. There are three twist-3 distributions
defined with a product of two quark field operators. Two of
them are given in [3], and one of them is defined in [6].
These twist-3 distributions can be expressed with the two
defined in Eq. (5) [3.6].

Four twist-3 distributions can be defined with purely
gluonic operators [32]. One of them can be defined as

Tg) (X1, x)3%

: b
_ 9 Giap [ d01dYs ip (s, () i)
Pt dr

X (P, s |G (yin)GPH (yan) GEHP(0)[P,s ). (7)

Replacing i f4°¢ with d**¢ one obtains the definition of Tg).

Besides these two distributions Tg “)the other two twist-3

distributions are defined by replacing g, .5 with €,,4 in
Eq. (7). However, the contributions with these two twist-3
distributions do not appear in the two spin observables
studied in this work. For the matrix elements with f**¢ one
has

Tg)<x1vx2) = —Tg)(—?% —xl)’
TS (x1,x0) = T (03, x1). (8)

Similar relations can be derived for distributions defined
with 4%,

To define FFs, we assume that the produced hadron
moves in the —z direction with the momentum
P, = (0, P;.0,0). From two-parton correlations we define

00 = [ s O 01X (2, X15 €0

= % [52(kL)(7+P;a<Z) +2(2)
Yoo, (2) - iﬁy/ip;éa(z)%(;z(m .‘

where ij stand for Dirac indices and color indices and k™ is
fixed as P /z. d(z) is the standard twist-2 FF [33]. &, &, and
&, are of the twist-3 type. é and é; were first introduced in
[34]. From three-parton correlations one can define three
twist-3 FFs. Two of them are
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. z gS dAda - i Pl . _ -
Ep(z1,22) = 2 / T ek ““ZTr(OIW 71w (0) [Py X) (P X[ (24 1) G (4,1)[0).

Zz >gs 6MICMZ oM Pyl-

EG(ZpZZ): 4(N%—1)d_2 (2”)

with 1/z3 = 1/z; — 1/z;. Through charge conjugation of the
operator in £y, one can define anther FF £}, which is for
fragmentation with an antiquark. Similarly, one can define
an additional FF E;, by replacing ¢,G#(1,[) with
P, D! (A1 ) However, this function is completely deter-
rmned by E and & [35]. &(z) and &, 5(z) have the support
|z| < 1. For z > 0, these FFs are for fragmentation of a
quark. £ ;(z1,2,) has the support [36]

0<z,<1 or zp<z <oo. (11)
In [36] it was shown that these functions are zero at z; = z,
or 1/z; =0; i.e.,, no parton in these FFs can have zero
momentum fraction.

All introduced twist-3 FFs are chirality odd. The
functions e, é;, and e, are real, while ERG is complex
in general. If there are no final-state interactions, ¢; and &,
are zero and £ r.F.c 1s real. It was shown in [35] that there
are relations among these twist-3 FFs. In our notations
they are

dz “
/ Lp ImEg(z;,22)
s
= 22589 Zz) —¢/(22),

d 1 A
(2 —Zz/ Zl ReEF<Z1’ZZ)‘ (12)

In this work, we will take ¢; and ¢ as redundant in
calculations of one-loop corrections.
The standard variables for the considered process are

Xp = Q2 y:U Zn —
B=ap.g ok’ "

PP,
P-qg’

(13)

It is convenient to take the frame for the process in which
the initial hadron moves in the z direction, and the virtual
photon moves in the —z direction. In this frame, the relevant
momenta are given by

P*~ (PF,0,0,0),
PZJ_ = g‘j_yPhU' (14)

¢ =(q".47.0,0),
Py = (P}, Py, Pl Phy),
To simplify notations, we will give our results for QCD

with one flavor quark, and its electric charge fraction is set
to be 1. It is easy to generalize our results to the case of

wPi Y “Tr(Op (A )iyy 1, Ty (0)|PyX) (PyX|G“(4:1)[0),  (10)
X

|
multiflavor quarks and to implement the real electric
charges.

In [6] the transverse-spin-dependent part of W*¥ at tree
level has been derived. The symmetric and twist-3 part of
WH is given by

W =

xgP - qaz(PhJ_)((szP + '3
+ (2x5P + q)*5 ) hy (xp) (2z189(z1) — 2/(z1))
52(Phi)[TF(xB’xB) (Zh)g}i o

g3 = g% (xp)ep(z,)]. (15)

e
P
oP), |

+2(d0% -

This expression is explicitly U(1)-gauge invariant in the
frame because of ¢/| = 0. Although the two transverse
tensors ¢, and ¢/ from Eq. (3) are used here, the above
result is covariant because the two transverse tensors can be
defined covariantly:

1 - -
gL =g = p (PP PP,

= e, P=xgPtq  (16)
Beyond tree level, Eq. (15) receives corrections starting at
the order of «,. In the derivation of the result in [6] it is
found that the virtual correction to the derivative part of
hadronic tensors is determined by the correction of the
quark form factor. Based on this result, the virtual correc-
tion to the second line in Eq. (15) is determined by the
correction of the quark form factor.

The kinematics of the process has been discussed in
detail in [16,37]. The differential cross section is given by

do o’y

= L
deddehdl//d2PhL 4Z}1Q4 g

we, o (17)

where y is the azimuthal angle of the outgoing lepton. L*
is the leptonic tensor:

o= 2(k"k" + KK* — k- K g"). (18)
In principle one can measure the differential cross section
in Eq. (17) to detect the twist-3 effects or SSAs, because at
twist-3 W# is predicted as a tensor distribution, indicated
by the S-function 6%(P),| ) and its derivative. This implies
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that measurable quantities can only be predicted when one
integrates in Eq. (17) over P;; with some weights depend-
ing on P;, . We can define these measurable quantities or
observables as weighted differential cross sections as

do(O) a’y
= dyd®P,, OL,, W™, (19
drpdydz, 45,00 | W POb M 19)

with O as a weight depending on P, k’, and s,. We will
use dimensional regularization with d = 4 — ¢ to regularize
divergences; Eq. (19) should be understood as in d-dimen-
sional space-time. In our final results, one can set d = 4
because these results finite. In this work we will study two
spin observables. They are defined with the weights

Oy =Py, -3,

1 Q*y-1)

O, =Py, -k K\ -5
2= Lpo- 22

These two weights are proportional to P . To clarify the
meaning of these two observables, we take a frame in
which the initial hadron moves in the z direction and the
virtual photon moves in the —z direction. In this frame we
denote the azimuthal angle between the lepton plane and
the observed hadron A’ in the final state as ¢, and the
azimuthal angle between the lepton plane and the trans-
verse spin as ¢,. The two weights are related to these
azimuthal angles as

O1 = —|Py||s 1| sin(¢; — &),

1- .
0, = —szszDthSﬂ sin(¢, + o). (21)

It is noted that nonzero Sivers or Collins asymmetry
indicates that the azimuthal-angle distribution has a
nonzero contribution proportional to sin(¢;, — ¢)
sin(¢, + ¢,), respectively. Therefore, the differential cross
section in Eq. (19) with the weight O, or O, is propo-
rtional to the coefficient in the front of sin(¢, — ¢) or
sin(¢p, + ¢,) in the azimuthal-angle distribution, respec-
tively. Hence, our two spin observables are weighted Sivers
or Collins asymmetry. We note that one can construct
observables beyond the two given in this work, as shown,
e.g., in [6].

Substituting the two weights into Eq. (19), it is easy to
find that only the part of W# in Eq. (15) with the derivative
of 5*(P;,,) will contribute to the two spin observables. For
given O;,, the integration over y can be performed
trivially:

[ i 0, =200 -Yugt + ¥iPPOPL 5
/dl//L””(92 =270, <PZJ_§J_ + P, ¥

T4 29‘1Phl SJ_) (22)
The above integrals should be understood as in
d-dimensional space-time; i.e., dy should be understood
as dQ,_,. Our final results are obtained by taking d = 4.
With d = 4 we have for Y,

Yu=L(=yP+1). ¥, =25(2-ypr2-2y)

M = yz ’ L Qz ’
1 2

Y, _ | zyf) . (23)

With the tree-level result of the twist-3 part of W* in
Eq. (15), we have the results for the two observables:

do(Oy) a*yz, /dxdz
= Y 2 6(1—-x)6(1-2
ST = s [ a1 -n601-2)

x [d(2)Tp(x.2) (1= €/2) = ehy (x)25(2)].

do(0,) 2 2 /dXdZ
_ s = Y —5(1—-x
drgdydz, ma’yz,ls 7Y, X (1-%)
2
x 8(1=2)2h;(x)ey(z) (3 —6—2_6), (24)
with
~_ B A Zh
, 25
B= i== (25)

From Eq. (24) it is observed that, with ¢ = 0, the first
observable only receives a chirality-even contribution, while
the second one only receives a chirality-odd contribution.
In Eq. (24) we have not included the contribution from
the charge-conjugated partonic process. This can be easily
added to Eq. (24) through charge conjugation. The two
observables have different dimensions in mass because the
weights O, , are of different mass dimensions. As a result,
there are different powers of Q2 in the two observables.

We will study one-loop corrections of these two observ-
ables. As discussed before, the virtual correction is deter-
mined by the quark form factor. We will only need to
calculate the real corrections.

III. ONE-LOOP CHIRALITY-ODD CORRECTION

In this section we study one-loop chiral-odd corrections.
They are from those diagrams which have the general
patterns given in Fig. 1. In Fig. 1, the bubbles in the lower
part of the diagrams represent the parton correlation given by
the transversity distribution as in Eq. (4). In Fig. 1(a), the
upper bubbles denote two parton correlations of fragmenta-
tion, while in Figs. 1(b) and 1(c) they stand for corresponding
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FIG. 1.

three-parton correlations. The boxes in the middle of Fig. 1
represent various parton scatterings. Contributions from
complex conjugated diagrams of Figs. 1(b) and 1(c) should
also be included. In our case, we only need to consider the
real corrections. Hence, there is always one parton crossing
the cut in the middle boxes. The virtual corrections are
obtained as mentioned before.

Patterns of diagrams for chiral-odd contributions to W#*. The broken lines are the cuts.

In Fig. 1 we can in the first step make the projection
for the lower bubbles with %;(x) as given in Eq. (4).
The projection can be done in a frame in which
the initial hadron moves in the z direction, while the
final hadron moves in an arbitrary direction. After
the projection, the contributions from Figs. I(a) and
1(b) are

1 dx v
W, :—/th(x)/d4kar{7'SM'kaM’fu( a kp)Tha(kp) ),

2N

1 d‘x a,ura a,
Wl = [ S [ el sup -k ME ki T3 B ) (26)

with I'j, 1, for the upper bubbles given as

4
Frai(ky) = / L itk S 0l (0) 1Py, X) (P XI7,(8)10),

(2m)* X
d'éd's,

k) = [ i

where ij stand for Dirac and color indices. M/ and M}}*

stand for the boxes in the middle of Figs. 1(a) and 1(b),
respectively. The contribution from Fig. 1(c) takes a similar
form. k, is the momentum of the quark from the lower
bubbles and it is given by k, = xP. We note that the
projection, as given by the (- - -) in Eq. (4), can be written in
a covariant form. After the projections from the lower
bubbles, we can do projections from the upper bubbles in a
frame in which the final hadron moves in the —z direction.

To find the contributions involving twist-3 parts of the
upper bubbles, one needs to perform collinear expansion
for the parts represented by the middle boxes. The
expansion includes the expansion of momenta carried by
the parton lines connecting the boxes with the bubbles and
projecting out perturbative parts from the middle boxes
with the different parts of upper bubbles. We note that there
are contributions at leading twist from Fig. 1(a). In general
it is nontrivial to find the contributions at the next-to-
leading twist if there are loops in the middle box. At twist-3
one of the two quark lines entering the upper bubble

F TR TIEN 0lyr(0) | Py, X) (P, X [:(6)GP(€1)(0), (27)

|
represents the bad component of the quark field. This
component should be eliminated with the QCD equation of
motion (see [38] and references therein). Since we deal
here, in fact, only with tree-level diagrams with a parton
crossing the cut before its momentum is integrated over, the
separation is rather easy. One can simply use the twist-3
part in the two-parton correlation in Eq. (9) for the upper
bubble in Fig. 1(a). The diagrams represented by the middle
box in Fig. 1(a) at the considered order of a, are given in
Fig. 2. It is well known that the existence of the transverse-
spin part requires the existence of final-state interactions in
SIDIS or the nonzero absorptive part in scattering ampli-
tudes. In the contributions of Fig. 1(a) at the order of «a, the
middle box cannot have an absorptive part. The final-state
interactions can only appear in fragmentation.

The contributions from Figs. 1(b) and 1(c) are of the twist-3
or higher twist types. Because FFs from three-parton corre-
lations have the support given in Eq. (11) and are zero if any
parton carries zero momentum fraction, one finds at the
order of a, that the amplitudes of parton scatterings,
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FIG. 2. Diagrams for chiral-odd contributions, represented by the middle box in Fig. 1(a). Black dots denote the insertion of the

operator of the electromagnetic current.

represented by the left or right parts of middle boxes, have no
imaginary part, i.e., no physical cut. This is in contrast to
chiral-even contributions studied in the next section.
Therefore, the needed final-state interactions only appear in
FFs. The diagrams represented by the middle box in Figs. 1(b)
and 1(c) are then given by Figs. 3 and 4, respectively.

The calculation is rather straightforward. One needs to
perform the collinear expansion in the frame where the final
hadron moves in the —z direction. One essentially expands
parton momenta k;, and k,, around the direction of P}, and
takes the large components of quark fields in the upper
bubble of Fig. 1(b). Details about the expansion can be
|

found in [2,3]. We first calculate W* from Fig. 1 with
diagrams given explicitly in Figs. 2-4. The U(1) gauge
invariance is checked. From Fig. 1(a) we obtain contribu-
tions involving ¢, and ;. We use the relation in Eq. (12) to
express &; with &, and E. With the obtained W, we can
calculate our spin observables. Since there is only one
parton in the intermediate state, the length of P, is fixed as

22, 0?

A

Py Py =— (1-%)(1-2). (28)
Therefore, the integration over P,, in Eq. (19) can be

performed easily. We have then the chiral-odd real corrections

e a0ty /dxdz 2
= F h é —8YyCr—6(1-%)8(1 -2 x,2
Dxpdydzs e 102 s |°Fp s 1(x)q 2(2) mCr (1=2)6(1 =2) + Ap(.2)
d . .
+2/%[ImEF(Zle)AlaF(fcvz,fl)+ImEG(Zle)AlaG()ACv2,21)]}’
1
do(0,) gty /dxdz 8 2\2 2
= FpY h —25(2)=Cr|| -2 - 3=)5(1 -%)5(1 -2
i = pEoY [ M el ;0| (2(2) +37)a0 -8 -9
2 2z 2 2% dz, .
s(1-%)= S(1=2) 2| +25(2) Aspp(%.2) +2 | =L | ImE (2,
0 =8) S g 31 =92 |+ el A8 +2 [ (a2
2 N,22+2%—2—21> 4 )
X (=6(1=%)2(Cp(2 -2, —1) — =" — | —— 4+ A p (%, 2,2
(6 ( X)Z< FZ=21=1) -3 G-z)0-2))i% 20 (%, 2.21)
. 2 4Cp(z-1)?
ImEg(z;.2)( 8(1 - %)= o6(%:2,2 : 29
#imo(a. o) (001 -0 22 FED s iz )|} 29
I I I I I 1
I I I | 1
I I I
I I 1
I I I 1
I I I I I 1
I I I I I 1
I I | I 1 I
I I | I 1 I
I I oy I I
I I I
I 1 1 I
I I I I § 1 I
I I 1 I 1 I
FIG. 3. Diagrams for chiral-odd contributions, represented by the middle box in Fig. 1(b).
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FIG. 4. Diagrams for chiral-odd contributions, represented by the middle box in Fig. 1(c).

where the poles of 1/e stand for collinear or IR divergences.
These divergences come from the momentum region where
the unobserved parton in the intermediate state is soft or
collinear to the initial or final hadron. These divergences
will be canceled by those in the virtual parts or subtracted
into parton distributions or FFs as we will show. The
integrating ranges of x, z, and z; are given by

1 1 ©
/dx:/ dx, /dz:/ dz, /dzlz/ dzy.
Xp Zp b4
(30)

In Eq. (29) we have already neglected those terms which
are proportional to ¢ and will not contribute to our final
results. Fp and Z; are given by

Agu\ 2 1 b4
Fp= £ , 2, =2, 31
= (&) w0
|
d6<01> o
deddeh Div o
d0<02> 2

2
= za,0y|s | |“Y,F
dxpdydz|pi h%s J’| J_| 2 D(
1

with p. as the scale associated with collinear divergences.
In Eq. (29) we have listed divergent contributions explic-
itly. The finite parts are given by functions .A’s, which can
be found in the Appendix.

As discussed before, the virtual correction to the deriva-
tive part of the hadronic tensor, and hence to our observ-
ables, is given by the correction of the quark form factor.
The correction is well known. The virtual part can be
simply obtained by multiplying our tree-level results in
Eq. (24) with the factor

1+ a;i" Fp [—2 (i)z _3 (2> - 8] +O(@). (32)

€

Summing the divergent part in the real and virtual part,
we have the divergent parts of one-loop chirality-odd
corrections:

26(1—%) 238( —A)) A /dzl[ 2%
_ _ +68(1 - 2 mEr (7, 2) —=
(-2,  (i-%, ) 209 o [mEreaz Ty
NL.22+2%—2—21> . 2Cp(2—-1)2 H
X|Cr(z—=2—-1)—— = ’ = + ImE )= . 33
( rE=2-1) -3 G-2)0-2) 6(z1 Z)Nc(l+z1—z) (33)

In the sums, the infrared divergences are canceled. The remaining divergences are collinear ones. The one-loop correction to
our first spin observables is finite. The correction to the second observable contains collinear divergences.

It should be noted that the contributions from exchanging collinear partons are, in fact, already included in the parton
distributions and FFs of the tree-level results in Eq. (24), or they are already contained in the lower and upper bubbles in
Fig. 5. In order to avoid double counting, we should subtract these contributions from the one-loop corrections calculated in
the above. The subtraction at one-loop level can be easily done with the replacement in the tree-level results in Eq. (24):

hi(x) = hi(x) = Ak (x),  25(x) = &5(x) — A8y(x), (34)
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FIG. 5. Patterns of diagrams for chiral-even contributions to W#*. The broken lines are the cuts.

and the contributions which need to be subtracted are

do(O)  mzya?
dxpdydz, Q7
do{0,)
dxgdydz,

Yuls i Pe(Ah(xp)ey(z;) + hi(xp)A2y(z)).

= —nz,ya? o5 [*(4 = 3€)(Ahy (xp)ey(zn) + hi(xp)Aey(z))). (35)

These contributions should be added in our final results to avoid the double counting.

In the case with dimensional regularization for collinear divergences of massless partons, the quantities Az, and Ae, are
determined by the evolution of /; and é,, respectively. The evolution of twist-3 FFs has been studied in [38—40]. The
evolution of /; can be found in [41]. The evolution of e can be found in [38,40]. According to these results, A/, and Aey

are given by
Ahy (xp) _g—( §+1n:;’:;> /%CF<&+%5(1—2)>}11@)
(-2 n )Py @ )
Ay(zy) _;‘—ﬂ( i 1n:;’;2%> /%{éa(z)CFQI _22)++%5(1 —2)) —/i—zll [ImEF(zl,z)

~ o NCA2+A2_2_2 R C 2_12
X = ‘ <CF(Z_Z]_1)__ZZ1—1 +ImEG(zl,Z)M

z—21 2 (2—21)(1—21) NC(1+21—2)
a 2 e'u? . A N
= ——+111—2 (F3®€3+.FF®EF+.7:G®EG)(Z}1), (36)
2z \ € 4

|
where the poles in e stand for collinear divergence IV. ONE-LOOP CHIRALITY-EVEN CORRECTION
and p is the renormalization scale. In Eq. (36) we have
introduced four evolution kernels P, ,, Fy, Fp, and Fg
for a short notation. Taking the derivative of Ah; and
Aey with respect to Iny, one obtains the evolution of £,

In this section we study the one-loop chirality-even
corrections. As discussed before, we only need to calculate
the real correction. The virtual correction is given by the
one-loop correction of the quark form factor. The chirality-

and &, respectively. . . . even contributions involve twist-2 parton FFs and twist-3
S'ubstl.tutlng the results 1n'Eq. (36) into the. contri-  parton distributions of the initial hadron.
butions in Eq. (35) and adding them to the divergent In the case of quark fragmentation, the contributions are

part of the one-loop corrections in Eq. (33), one can from these diagrams, whose general structure can be repre-
realize that the divergences represented by the poles in ¢ sented by Fig. 5. To calculate, e.g., the contribution from

are canceled. The final results of chirality-odd contri-  Fig. 5(a), one can in the first step project out the contribution
butions are finite. We will present the final results  of the twist-2 quark FF from the upper bubble. After the
in Sec. V. projection, the contribution to W#* can be written as
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dz

WH|s, = /Zti—_éa(z)/ddkaddkgTr{y-Ph/\/lg'(’l”m(ka,kg,kb)l“gf(ka,kg)}gaﬂ, (37)

with I's, for the lower bubble in Fig. 5(a) given as

' dUEd, o e
T (kaoky) _/ (Zn)zd_ge Sakatityky

X (P.s [;(0)G*P(&)wi(€a)IP.si).  (38)

and MS” standing for the middle box in Fig. 5(a). In the
above contribution, the collinear expansion relevant to the
produced hadron is performed, and the momentum carried
by the quark lines between the middle box and the upper
bubble is given by k, = P,/z. k, and k, are the momenta
carried by the quark and gluon lines, respectively, in the
lower left part of Fig. 5(a).

At the order we consider, there is always one parton
contained in the middle boxes crossing the cut. Unlike the
case of chiral-odd contributions studied before, where the
final-state interactions only appear in parton fragmenta-
tion, the final-state interactions in chirality-even contri-
butions can only appear in the middle boxes, i.e., in the
hard scatterings. This is due to the fact that twist-2 parton
FFs do not contain final-state interactions. The amplitudes
represented by the left parts of the middle boxes have a
nonzero absorptive part, or the left parts contain a
physical cut implicitly. Because of the cut, one of the
parton lines in the lower left part of the diagrams in Fig. 5
|

|
can carry zero momentum. The resulting contributions
are called “soft-quark” or “soft-gluon-pole contribu-
tions.” There are contributions in which none of the
parton lines carry zero momentum. These contributions
are called “hard-pole contributions.” There is also the
case that the final hadron is produced through gluon
fragmentation. In this case, there are types of diagrams
similar to Fig. 5.

How to make the collinear expansion in a gauge-
invariant way has been studied in detail in [4], and how
to calculate the soft-gluon-pole contributions with the
master formulas can be found in [29-31]. Employing
these techniques, various contributions can be calculated
in a straightforward way. Therefore, we will not give
details about how these calculations are done. We first
discuss the contributions of hard poles. For the case of
quark fragmentation, the hard scattering part represented
by the middle box in Fig. 5(a) is given by the diagrams
in Fig. 6, where the quark propagators with a short bar
imply the cut for the absorptive part; i.e., only the
absorptive part of the propagators is taken into account.
The dispersive part will not contribute. Figure 6 stands
for two cases; the final hadron can be produced from
quark or gluon fragmentation. The contributions from
Fig. 6 are

2 R 2\ 2
= LnYX %y |SJ_|2FD / dijz {d(Z) |:YMTF(X’ XB) <2NC (E) 5(1 — )%)5(1 - 2)

A

22 2 1—|—5c>
)+

—Ncé(] —Z)gm

a2 . . 4
+ Yy Ta(x,xp)N.6(1 = 2) - + Tp(x,x5) A1pg (%, 2) + Ta(x, x5) By (%, Z)]

2
5(1—&)E(2—2z+z2)

(39)

do(O,)
dxpdydzy |pig 6 40°
1+2(N2=1)2
— L”,g(l -3
ZN. € (1-
2+ N2(1-2)
g Y, Tr(x, _
#000) | T sl 25
T Ay (5:2) + Ta )9
do(0;,)
dxpdydz, Fig.6

Here we only list the divergent results explicitly. .A4,,;(%,2) and B,,;(%,2) for i = g, g are finite functions given in the
Appendix. In the following, we will give various contributions in the same way as Eq. (39). From Fig. 6 our second

observable receives no contributions.

There are partonic processes as the forward scattering in which a gg pair participates as indicated by Fig. 5(b). Their
contributions are given by Fig. 7. These are hard-pole contributions. The contributions from Fig. 7 are
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@ © 0

FIG. 6. Feynman diagrams for the hard-pole contribution with quark or gluon fragmentation.

do(0)
dxgdydz,

Fig.7

do(0,)

dxgdydz,

Fig.7

1

a’a; dxdz | » 2
= s,y [ {d<z> [—— VT (xp — x.x5) 281 = 2)(1 = 25)
Xz N . €

c

1 2 R A .
+ N YyTa(xg —x,xp) E(S(l - Z)} + Tr(xg = x,x5)(d(2)Cy (%,

)

2

- &(_Z)CIFQ()AC’ 2)) + Talxg — x, XB)(a(Z)Cqu(JACv 2) - a(—Z)Cqu(fv 2))}

2
Zya-a; dxdz A R
BT 5 Y [ T = 0 0) @)

- a(—z)cm(ffv 2)) + Ta(xp = x, xB)(a(Z)CZDq(jZ’ Z) - a(_Z)CIDZ/()AC7 2))}

(40)

In the above contributions, one of variables of twist-3 parton distributions 7'z o (x;, x,) is negative, and its absolute value is
the momentum fraction of the antiquark. The antiquark FF is given by —d (—=2z). The contributions from Fig. 7 to our second
observable are nonzero but finite.

There are soft-pole contributions in which one of initial partons carries zero momentum. This parton can be a gluon or
quark. The soft-gluon-pole contributions can be calculated conveniently with the master formulas found in [29-31]. From
the type of diagrams of Fig. 5(a), there are soft-gluon-pole contributions. They are given by diagrams in Fig. 8. In Fig. 8, the
diagrams of the first row are for quark fragmentation; those in the second row are for gluon fragmentation. The total

contributions from Fig. 8 are

A

(a)

Hmlibe

(b) () (d)

FIG. 7. Feynman diagrams for the hard scattering represented by the middle part of Fig. 5(b). Their contributions are hard pole with
quark or antiquark fragmentation.
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(©) G @ (h)

FIG. 8. Feynman diagrams for the hard scattering represented by the middle part of Fig. 5(a). Their contributions are of the soft-gluon-
pole type. Diagrams in the first (second) row show quark (gluon) fragmentation.

do(0) uyetay /dxdz . 1 2\ 2 ) A
| = a4oz LIF Trp(x.x){d Y -2)(=) 8(1-2)8(1 -

d.Xdeth Fig.8 4-Q2 |SL| b Xz F(x .X') (Z) 2NC M <€ ) € ( .X) ( Z)

2 142 2 1+#

———— 01 =%+ —F——F—0(1 -2 D, (3.2

e(l1-2), ( x)+€(1—5c)+ ( Z)>+ 1q(% Z)}

i) | Ne 2 % 5 82 IR

+9(2) ?YM —;5(1—x)(2—2z+z) +Dy,(%.2)] ¢,

do(0,) _ )
dxpdydz, Fig.8

Our second observable does not receive contributions from Fig. 8.

From the type of diagram in Fig. 5(b), there are soft-quark-pole contributions. The diagrams are given in Fig. 9. There are
contributions involving quark, antiquark, and gluon fragmentation functions. The contributions from gluon fragmentation
are represented by the diagrams in the second row. Those from antiquark fragmentation are given by the first and third rows.
Contributions with quark fragmentation are from all three rows of Fig. 9. But the contributions from the second row cancel
those from the complex conjugated diagrams of the third row. This is because the diagrams in the third row are from the
second row by cutting the unobserved parton lines in different ways. It is easy to show the cancellation. Therefore, the
contributions of quark fragmentation are only from the first row. We have

do{O,) Zyatay dxdz | « o A o a
dendsdes = 507 5. P / A AR (3,008 1y (8.2) + T (=2 0)8 18, (2. 2)]
- Zi(_Z)[TF(O,X)(g]Fq(%, 2) + TA(O, x)gIAq(-%v 2)]
+ 9(2)[Tr(x, 0)E1ry(%,2) + Ta(x,0)E144(%, 2)] }
de(O,) wmyatag /dxdz . . A o s
— =L = Y Tr(— Tr(—
drgdydzyiigo n Re e d(2)[TF(=x,0)E54(%,2) + Ta(=x,0)E004 (%, 2)]

- ZZ(—z)[TF(O,x)Squ(fc, 2) 4+ Ta(0,x)E504(%. 2)]

T R)ITr(x. 0)Eary (8.2) + T (x. 0)Exs, (3.2)] } (42)

The soft-quark-pole contributions are finite.
At the order we consider, there are contributions involving gluonic twist-3 parton distributions defined in Eq. (7). These
contributions are represented by the type of diagram specified in Fig. 5(c). Since there are three gluons exchanged between
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=
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FIG.9. Feynman diagrams for the hard scattering represented by the middle part of Fig. 5(b). Their contributions are of the soft-quark-
pole type.

the middle box and the lower bubble, the Bose symmetry should be kept. For this it is convenient to use the symmetric
notation in [31,32,42] for the twist-3 gluonic matrix elements in the calculation and to express the final result with the
gluonic distributions in Eq. (7). In the symmetric notation, the matrix element of the twist-3 gluonic operator can be
parametrized as

iSQS d/,{l d/,{z il
—-— €

1 P +idy (xy—xp ) PT <P, SJ_|G“’+(I(/11I’l)GC’H(/‘Lle)Gb'Jr/}(O)|Pv SJ_>

Pt 2r 2r;
N, i
D e R ey A (43)

where all indices a, f, and y are transverse. From Bose symmetry and covariance, the two tensors take the form

01 (x1.x,) = =2i[0(x1. x,) g5 + O(x5.x, — )35 + O(x1.x; — x,)g7"F].
NP (x1,x5) = =2i[N(x1, %) g8 = N(xp, %5 — )¢5 = N(xp,x; = %)g7°% ], (44)

with the properties of the function O and N
O(x1,%;) = O(x3,x1), O(x1,x;) = O(=x,—x3), N(x1,x;) = N(xp,x1), N(x1,x;) = =N(=x;,—x).  (45)
The functions O and N are related to those defined in Eq. (7) as

T (x1.%2) = 22((d = 2)N(x1. %) = N(x2. 35 = x1) = N(x1, 1 = X)),
Tg)@%xz) =2x((d = 2)O(x1,x;) + O(xp, %, — x1) + O(x1, x| = x3)). (46)

It should be noted that the relations depend on d = 4 — ¢. It will affect the subtraction discussed later.
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I

I

|
(b)
FIG. 10. Feynman diagrams for the hard scattering represented by the middle part of Fig. 5(c). Their contributions are of the soft-
gluon-pole type.

With the symmetric notation, the middle box of Fig. 5(c) is given by diagrams in Fig. 10. The contributions from Fig. 5(c)
are of the soft-gluon-pole type, i.e., one of the three gluon lines carries zero momentum. One can use the so-called master
formula in [29-31] to calculate the twist-3 contributions. From Fig. 10 we have

do(Oy) yala 5 /dxdz N {
dor =1z S1l7Fp(—4 d O(x,x) + N(x, O(x,0) = N(x,0
dxpdydzy|gg, 407 s Fp(=4m) x’z ()4 (O(x.x) + N(x,x) + O(x.0) = N(x,0))
2
X [YMgé(l —2)(1 =28 +282) + Y. F11.(3,2)] + Yar (O(x, x) + N(x, X)) F 1414 (£, 2)
+ Y(0(x.0) = N(x.0) Fyyy_ (& z)},
do(0,) myaag /dxdz . 452
dipdyday |y & 4 - - 47
dxpdydzy|pig 10 |51 |*Yy(—4x) o d(z)(0O(x,0) = N(x,0)) 3 (47)

We observe that the contribution from Fig. 10 to our second observable is finite.

The real part of one-loop chirality-even correction to our observables is the sum of the contributions listed in Egs. (39)-
(42) and (47). The virtual part, as mentioned before, is obtained by multiplying our tree-level results in Eq. (24) by the factor
in Eq. (32). Since our second observable at tree level does not contain a chirality-even part, its virtual part of the chirality-
even part is zero. Adding all divergent contributions together, we obtain the sum

do(0) mydlag, /dxdz 2 A .
dendvdorl . YyF —-= 1-%)T
dxpdydzy |piy 20° 5. ¥uFp xz € (1 = 2)Tr(x, x)(Pyy(2)d(2)

P,y (2)3(2)) + (1 - 2)A(2) [(qu@) - %ﬁ _Na(1 - @) Te(x,%)

70 Ta(xp,x)+ N, Ta(xp,xp —x)

. 1 X A
+ N (1 =2%)Tr(xp,xg — x) _Z(l — 2% +23%)T g (x, x)} },

do(0,)

_— =0, 48
dxgdydzy|piy ( )

with the standard splitting functions

2
Pu®) = Ce (5 + 300 -2)).

2-274+7°

qu (Z) =Cp Z

(49)
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In Eq. (48) and in our final results, the contributions from
gluonic twist-3 distributions can be conveniently expressed
by two combinations T (x;,x,) of gluonic twist-3 dis-
tributions. They are defined as

d
= Tg)(xl,xz) + T(G)(Xl,.Xz).

T (x1,x2) (50)

In Eq. (48) the divergent gluonic contribution is only
related to Tg, (x,x), which are given by those twist-3
gluonic distributions in Eq. (44) as

Tgy(x,x) =2x[2(0(x,x) + N(x,x) + O(x,0)

~ N(x.0)) —e(O(x.x) + N(x.x))].  (51)

Inspecting Eq. (48), we find that our second observable is
finite, while the first one is divergent. The divergence is
represented by the single pole in €. The divergence of the
double pole in the real and virtual part is canceled in the
|

do(Oy) _ﬂzhya a;
dxpdydz,, Q?
do(O,)
dxgdydz,

sum. The divergence in Eq. (48) comes from the exchanged
parton in the kinematic region of momentum, which is
collinear to the initial hadron A or the final A’. This
divergent contribution from the collinear region is, in fact,
already included in the tree-level result of the chiral-even
part of our first observable in Eq. (24), i.e., in the twist-3
parton distributions and twist-2 parton FFs. Therefore, this
divergent contribution needs to be subtracted to avoid a
double counting.

The subtraction can be done by the replacement in the
chirality-even part of the tree-level results in Eq. (24):
Tr(x,x) = Tp(x,x) = ATp(x,x),

d(z) = d(z) — Ad(z).

(52)

The contributions which should be added in the final results
for the subtraction are

s Py (1= ) 00T ) + 200 AT, (i 30

(53)

In dimensional regularization for regularizing all divergences, the quantities Ad(z) and AT (x, x) are determined by the
evolution kernels. The evolution kernel of the quark fragmentation function is well known. The evolution of Tz (x, x) is

studied in [43—48]. At one-loop level we have

a7pn) = 2 (2w g + [P Epyorate + 5 (1un
LRSI EUER L RS
# a0 - T o] |
- (—Z+ln:;7;>(f ® Ty + Fay ® Ty + F, ® T, )(x).
ai) = 2 (-2 [Lir, 00 + Puite)
= <—€3 +1In :;’;) (P ® d+Pyy ® 3)(x). (54)

with z = x/£. In the above we define five convolutions
F’s and P’s for short notations. u is the renormalization
scale. u,. is the scale related to collinear divergences.
The derivative of AT (x,x) with respect to u gives the
evolution kernel of Tr(x,x) derived. Adding the contri-
butions in Eq. (53) to our calculated one-loop correction,
we find that the chirality-even part of the one-loop
correction is finite.

The chirality-even corrections to our first observable
have been studied in [23-25]. In [24] the contributions from

Fig. 10 are obtained, where there is a soft-gluon-pole
contribution involving the derivative of N(x,x) or N(x,0)
with respect to x, and the derivative of O(x, x) or O(x,0).
These derivative terms can be eliminated by integration by
part. We note that there is an integration over Pj, in
Eq. (19) for our spin observables. With the master formulas
in [29-31], such derivative terms are eliminated automati-
cally through the integration over P;, . This also holds for
the case of T (x, x), where there is a derivative contribution
of Tg(x,x) in [23]. In [23] the contributions from
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Figs. 6 and 8 are obtained, but without the contributions
from T (x, x,). In [25] the contributions with Ty (x1, x,)
from Figs. 6 and 8 and the contributions from Fig. 7 are
included. However, the soft-quark-pole contributions are
still missing. In all these works, only the first term with ¢/”
in the first equation in Eq. (22) is taken into account, and
the contributions from the second term with Y; are not
considered. It is true that the second term with Y; does not
contribute at tree level. But it will contribute beyond tree
level. Except for these missing contributions, our results
agree with those in [23-25]. The missing contributions with
Y, and the soft-quark-pole contributions are included in
this work; they are finite.

V. FINAL RESULTS

As mentioned in previous sections, the evolutions of
involved parton distributions and FFs take the forms of
convolutions. We denote these evolutions as

do(Oy)  mzya?
dxpdydz, Q7
0 . a

- dIn p (hy(xp)ey(zn)) — Py

+%a(2h)/%((l —3)2 +322)(3T g (x, x) —2TG_(x,0))} +

do(O,)
dxgdydz,
Sa;
2

th1<xB>éa<zh>} n

51 Y s [a<zh>TF<xB,xB> -4

< Crf

A

od(z o ~ A

alr(uz = (Py ®d+ Py, ®9)(2).
oT X, X Ay
;%ﬂ)—;(fq®TF+qu®TA+‘7:Q®TG+)(x)’

Ohy(x o

af—n(,,)‘;‘m ® )&,

dey(z)  ay 5 F F

dlnp :;(f8®€0+fF®EF+JTG®EG)(Z)'

(55)

The definitions of the convolutions can be found in
Eqgs. (36) and (54). With these notations we can write
our final results in the form that is explicitly # independent
at one-loop level:

1. ey 0O

5 HEM(TF(vaxB)&(Zh»

5d(z,)Tr(xg, x5) — 6l (x5)25(z1))

do(O))p
dxgdydz;,’

5 >3\ 9 N
= 2myls P |20y o) = (1025 +3) 1 (i)t

do(O,)
dxgdydz,’

(56)

where the last term with the subindex F in the result of our two observables is the sum of all finite contributions from sets of

diagrams studied in previous sections. The sums are

2
do(Ovr _ 2y o == {h1<x> {éa(Z)Alga(A’ 2)

dxgdydz,,

40?

dz p AN 2 s
+2 [ Ly (21,2) A (5:2.20) + (212 Aol )
1

XZ

+ Ta(xpg = x,x5)Cipg (%, 2) + Tp(x, x)Dy4 (%, 2) + Tr(=x,0)E 5, (%, 2)
ooay 1 oAy ] . A
+ Ta(=x,0)81a4(%.2) + ;TG+(X’ x)F gy (%.2) + ;TG—(va)flg—(x’Z)]

—d(=2)[Tr(xp — x.x5)Cirg(%.2) + Ta(xp — x.x5)Cipg (%, 2)
+ Tr(0,x)E175(X,2) + Ta(0,x)Ea5(%, 2)]
+ 9(2)[Tr(x, xp) Aing(%,2) + Ta(x, x5)Bijg(1, 2)

T (6, 0)Dyy(5:2) + T (. 0)E 1y (5. 2) + T (3. 0)E 1y (2. 2)] }
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do{Oy))r  zpa,0’y 5,2 / dxdz
= s
dxgdydz, 4 L

{mwenerdun(i

d n A
+2 / S (ImEp(z1.2) Aor (3. 2.21) + ImEG(zl,z)Az(;G()?,ﬁ))]

{1

+ Zl(z) |:TF(xB - X, xB)CZFq()AC’ 2) + TA(XB - X, xB>C2Dq()AC’ 2)

+ TF<—X, O)Ezpq (3%, 2) + TA(—X, O>€2Aq (5\6, 2) +

232

B (o) 42T o>>}

- 21(—2) [Tr(xp —x, xB)Cqu()AC’ 2) + Talxp — x, XB)Cqu()ACa z)

+ T¢(0, x)gqu()AC’z) + Ta(0, x)SlM(fc,E)]

9T (6, 0)Eary (5. 2) + T (x,0)Ena, (& z)]}. (57)

Equations (56) and (57) are our main results. The pertur-
bative functions A’s, B’s, C’s, and &’s are given in the
Appendix. In Eq. (24) and the results in this section, the
contributions from charge-conjugated parton processes are
not included. They can be obtained from our results with
charge conjugation.

VI. SUMMARY

In this work we have studied two spin observables of
SIDIS in which the initial hadron is transversely polarized.
They are weighted differential cross sections corresponding
to Sivers or Collins asymmetry, respectively. These asym-
metries have been measured in experiments already. In fact,
one of the studied observables is weighted Sivers asym-
metry, while another is weighted Collins asymmetry. In
collinear factorization they take factorized forms as con-
volutions of perturbative coefficient functions with twist-3
parton distributions combined with twist-2 FFs or twist-2
transversity distributions combined with twist-3 FFs. The
perturbative coefficient functions have been calculated at
the one-loop level in this work. The collinear divergences
are correctly subtracted so that these functions are finite.
With our results, the spin observables or SSAs are predicted
more precisely than with tree-level results. The spin
observables studied here can already be measured in
current COMPASS and JLab experiments, and in future
experiments at EIC.

It is interesting to note that at tree level our first
observable is predicted only with the ETQS matrix
element and the twist-2 quark FF, and the second
observable is predicted only with the twist-2 transversity
distribution and one of the twist-3 quark FFs. This implies
that through the measurement of these observables, it is
possible to determine these nonperturbative quantities at

[

tree-level accuracy. However, at one-loop level more twist-
3 parton distributions and FFs are involved. To determine
all involved parton distributions and FFs, one has to
combine theoretical and experimental results from other
processes, like Drell-Yan processes and inclusive single
hadron production at hadron-hadron collisions, where the
involved parton distributions and FFs also appear in
theoretical predictions. This requires more studies both
in theory and experiment.
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APPENDIX: THE FINITE PART OF WEIGHTED
CROSS SECTIONS

We list here all functions appearing in the finite part of
our results. We define two functions

L= (M=2) e

(A1)

The functions in the chirality-odd contributions in Eq. (29)
are

Aiso = 8YyCr (5(1 - %)
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Y 1
Ay = =0 [chzl<—322 FE( +4) = 22) — 2 - 2) 26 - D2)
2(2-21) N,
A2 1
-5(1 —2)2 ; (ZCF21(22—2221 +2+21+2 —2)—N—(2+2, —22—2%)>]
1 = c

Q%Y %2 [ an a1, an an | oa ]
— 2Cpz21(z1—=2) ——(z=1)(xZ2=321+ 21) |, A3
2x%(2_21)(22_221 _22] +21) F 1( 1 ) NC( )( 1 1) ( )
2Cp(2—1)? < Q%Y (2 - 1)2) 2Crx(2-1)
Ao = =Yyo(1 =%) — " — | Yu + T i s a2
loG wé )Nc(Zl +1-32) M 2x3 2(2-2))(kz2-%2, - 221+ 2y)
o )%22% +%(8 -32%2, + 222% + 2z — 22%) +(-1)%2,(2 - 2)’ (A4)

N (&2, - 22 +22,+2-12))

Arpy = SCF{—é(l —%)6(1-2) +6(1 —%) <L+(2) + (-2,

4 B2 -2-2
_ S(1— 0 =L (5)(1 =2 55 1)
Apor = 5—5-6( x)[ +(&)( Z)Z<CF(Z G- 2 (2-z2)(1-12)

Z— 11
1 (Cp A2 n R .
—g 7(32 -3z (Zl+1)+2Z(Z1+1)—221)—

x 22(35% — 2223 — 33 4 582 — 52, +2))} iz

1 N2=1, o o U,
N 2132 +22°(1 - 2%)) +%2(21 - 22, -2)

+3(22-3)5(2-2)) + 22 - 1)2%)}, (A6)

(1-2)

21 —2)

A

Ao =2Cp8(1 = 2)[Lo(2)(1 = 2)(22 = 2)2 + (32 = 32 + 22, + 2)] N (]
4Cri2 (2 —1)2
1-%),(2-2))(32-%%, — 22, + %))
22+ 8(2° =322, + 2882 4+ 22, - 220) + (2 - 1)°2,(3, - 2)
N (&2, —22+22,+2-2)) '

(A7)

The functions in the chirality-even contributions in Eqs. (39)—(42) and (47) are

1+2(N2-1)

Aipg(2.2) = YM[ N S(1-3)(L,(2)(14+2*)—2+1)+N.5(1-2)

x L_(%)(1+%) +

L4+3(N2—1) 14322
+2(NZ-1) + X2 } (A8)

AN, (1-%).(1-2),

1+ 5(N2—1 42— 1
Bipg(%.2) = Yy [N65(1—2)L_(x)(;%—1)+ +eNe-1) &2 ) ]
+

AN, (1-%),(1-2 (A9)
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JMMQj):YMFU—%X—LA@U—2XZ—2@+?

Cirg(3.2) = Yoy [i <5(1 CHL_(®)(1 = )(1 —28) 4 U2

Cipg(£,2) = =Yy {— (5(1 —HL_(®)(1-%

2% —1)(z—1)

1
2

232 2% 41

1—2)TXN3(1—2)+2

(2% —1)(22> =2z + 1)},

A
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Cirg(X,2) = =Yy [(

N.2?

222 -25+1

-1 2(22
Dy, (%.2) = 27{YM [5(1 - %) <L+(2)(1 +2%) +(Z(1_—2)
¢ +
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(1-%),(1-2), 2xg o
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51Fq(5C72) =
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A A\ 1 YM 22 An o n 22 YLQZA a 2
Epg(%.2) = =3 (2R 42k HR - 27) - R(E-1)(2 1) ), (A26)
ZN.\ Z X3
PN YM a 22 PPN
Eing(X,2) = -5 (3 + 27— 2%2), (A27)
Z°N,
1
Erpg(X.2) = 7282 - 1)(28 - 1), (A28)
ZN,
N | PPN
52Aq(X, Z) 2N62x(z_1>’ (A29)
1
52&—1(56,2) -—2%(z-1)(2x - 1), (A30)
2N,
. s | PPN
52Az](X,Z) 2N62x(z_1>’ (A31)
Earg(£,2) = ———28(5 = 1)(22 - 1), (A32)
o s L
Exng(%.2) _ﬁchx(Z_l)’ (A33)
. . . . o o 1 =28 -2z 4232 +272
P (3.2) =(L-@)(1=3) 4 D31 = 2)(1 =20+ 28) 4 801 -2) 4 0 I (As
)+
1 —2% —2% 4 2% + 272
Fun(2.2) = L_(R)(1 = 2)8(1 — 2)(1 — 2% + 2&2) + 8(1 — 2) + xzz(f z)x < (A35)
BERVAS
R 0% (1-%)%
Fio(%2) :x—zg (A36)
5 2

The perturbative functions F,, and F,_ in Eq. (57) for the gluonic contributions are determined by F . and F;, as

1

Frge(8.2) = 5 Yu(Fin-(8.2) =3F 1y (1.2) = Vi F1u(8.2) Frgo(8.2) = YauFun-(2.2) = Yo Fuwy (1.2). - (A37)
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