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In this work we study temporal quantum correlations, quantified by Leggett-Garg (LG) and LG-type
inequalities, in the B and K meson systems. We use the tools of open quantum systems to incorporate the
effect of decoherence which is quantified by a single phenomenological parameter. The effect of CP
violation is also included in our analysis. We find that the LG inequality is violated for both B and K meson
systems, the violation being most prominent in the case of K mesons and least for Bs system. Since the
systems with no coherence do not violate LGI, incorporating decoherence is expected to decrease the
extent of violation of LGI and is clearly brought out in our results. We show that the expression for the LG
functions depends upon an additional term, apart from the experimentally measurable meson transition
probabilities. This term vanishes in the limit of zero decoherence. On the other hand, the LG-type parameter
can be directly expressed in terms of transition probabilities, making it a more appropriate observable for
studying temporal quantum correlations in neutral meson systems.
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I. INTRODUCTION

Quantum correlations (QCs), existing between two or
more parties [1,2], are bestowed with properties unique to
the quantum world and are of pivotal importance in
quantum information science. The study of QCs not only
unveils the fundamental traits responsible for the distinction
of the quantum mechanically correlated systems from those
attributed with a joint classical probability distribution [3],
it also helps in devising efficient ways of carrying out the
tasks of quantum communication and computation [4–6].
Among the most celebrated notions in quantum physics

are nonlocality [7], entanglement [1], quantum discord
[8,9], and teleportation fidelity [10,11]. These spatial
quantum correlations (SQCs) have enhanced our under-
standing of nature at the fundamental level and at the same
time have provided efficacious solutions in the develop-
ment of the theory of quantum information. The SQCs
mentioned above have been studied in many systems, viz.,
optical systems [12–18], NMR [19–21], neutrino oscilla-
tion [22–25], B and K meson systems [26]. Of the above
listed SQCs, Bell nonlocality is the strongest and Bell
inequalities are considered to be the oldest tool for
detecting entanglement [27].
The temporal quantum correlations (TQCs) arising from

the sequential measurements on a system at different times,
have also been considered as promising candidates in

discerning the quantum behavior from the classical.
Leggett and Garg inequalities (LGIs) [28] are among the
well known TQCs, violation of which is a witness of
quantum coherence in the system. LGIs have been a topic
of study in various theoretical works [29–35] including, in
recent times, neutrino oscillations [25,36,37] and studied
experimentally in systems like superconducting qubits
[38,39], photons [40–43], and NMR [44–46].
Leggett Garg inequalities are based on the concept of

macrorealism (MR) and noninvasive measurability (NIM).
MR means that the system which has available to it two
or more macroscopically distinct states, pertaining to an
observable Q̂, always exists in one of these states irre-
spective of any measurement performed on it. NIM states
that, in principle, we can perform the measurement without
disturbing the future dynamics of the system [34]. MR
and NIM put limits on certain combinations of the two
time correlation functions Cij ¼ h ˆQðtiÞ ˆQðtjÞi. Quantum
systems, however, violate these limits. The simplest form of
LGI is the one involving three measurements performed at
t0, t1 and t2 (t2 > t1 > t0)

K3 ¼ C01 þ C12 − C02; ð1Þ

such that −3 ≤ K3 ≤ 1. The maximum quantum value of
K3 for a two level system in 3

2
[28] and has been found to

hold for any system, irrespective of the number of levels, as
long as the measurements are given by just two projectors
Π� [47], a fact revealed in several studies [32,48–50].
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It was shown in [51] that in the limit N → ∞, the LGI can
be violated up to its maximum algebraic sum.
The autocorrelation C12 turns out to contain a non-

measurable quantity and hence reduces the efficacy of
Eq. (1) from the experimental point of view. Such limi-
tations of the two time correlations have been discussed in
detail in [52–55], and a different approach was developed
which involves replacing the NIM by a weaker condition
called stationarity. This avoids the need of performing the
measurement at the intermediate time t1 by replacing C12

by C01, thus leading to an easily testable Leggett-Garg type
inequality (LGtI)

K̃3 ¼ 2C01 − C02 ≤ 1: ð2Þ
The following set of assumptions [34] are considered
important for applying stationarity to a system: (i) macro-
scopic realism, (ii) the conditional probability Pðψ ; tþ
t0jψ ; t0Þ of finding the system in state ψ at time tþ t0 given
that it was in state ψ at time t0, should be invariant under
the time translation, Pðψ ; tþ t0jψ ; t0Þ ¼ Pðψ ; tjψ ; 0Þ,
(iii) Markovianity and (iv) that the system is prepared in
state ψ at time t ¼ 0.
In this work, we study the LG and LG-type inequalities

in the B and K meson systems. The effect of decoherence is
included by using the formalism of open quantum systems.
Decoherence, here, is modeled by a single phenomeno-
logical parameter [56] which represents the interaction
between the one-particle system and its environment. The
environment can be attributed to quantum gravity effects
[57–64] or it can be due to detector background itself. Apart
from decoherence, we also include the effects of CP
violation. We find that the LG inequality is violated for
both B and K meson systems. Apart from the experimen-
tally measurable meson transition probabilities, we show
that the LG function depends upon an additional term
which vanishes in the limit of zero decoherence. The
LG-type parameter on the other hand can be directly
expressed in terms of transition probabilities.
The plan of this work is as follows. In the next section,

we discuss the time evolution of B and K meson systems
treated as open quantum systems. In Sec. III, we derive the
LG and LG-type inequalities for these systems. In Sec. IV,
we present our results. Finally, in Sec. V, we make our
conclusions.

II. B AND K MESONS AS OPEN
QUANTUM SYSTEMS

In this section, we introduce our formalism for the study
of B and K mesons as open quantum systems.

A. Kraus representation

Kraus representation [65], describes the time evolution
of an open quantum system, which is not necessarily
unitary unlike the evolution of a closed quantum system.

Real physical systems are always entangled with their
ambient environment, alternatingly addressed as the res-
ervoir. Kraus representations are very convenient for
handling a number of practical problems of open system
dynamics [66–71]. Consider a large system S comprising of
two subsystems Sa and Sb. At a given time t, let the
quantum states corresponding to S, Sa and Sb be repre-
sented by ρðtÞ, ρaðtÞ and ρbðtÞ, respectively. Then ρaðtÞ ¼
TrbfρðtÞg and ρbðtÞ ¼ TrafρðtÞg. Since the total system is
unitary, its evolution is given by

ρðtÞ ¼ UðtÞρð0ÞU†ðtÞ; ð3Þ

where UðtÞ is a unitary operator. The evolution of system
Sa will look like

ρaðtÞ ¼ TrbfUðtÞρð0ÞU†ðtÞg: ð4Þ
If it is possible to recast Eq. (4) in the following form

ρaðtÞ ¼
X
i

EiðtÞρað0ÞE†
i ðtÞ; ð5Þ

such that
P

iEiðtÞE†
i ðtÞ ¼ 1, then the evolution of ρaðtÞ has

a Kraus representation and is completely positive.

B. Time evolution of B/K mesons

We describe briefly the time evolution of BoðKoÞ meson
system. Since both Bo and Ko share the same scheme of
dynamics, we discuss only Bo system and the results, with
appropriate notational changes, will be applicable to the Ko

system. The states of the total system, including the meson
and the vacuum j0i, introduced in order to incorporate the
effect of decay in the meson system, reside in the Hilbert
space given by the direct sum HB0 ⊕ H0 [56,72,73]
spanned by the orthonormal vectors jB0i, jB̄0i and j0i

jB0i¼

0
B@
1

0

0

1
CA; jB̄0i¼

0
B@
0

1

0

1
CA; j0i¼

0
B@
0

0

1

1
CA: ð6Þ

Here B0 stands for B0
d/B

0
s mesons. The mass eigenstates

fjBLi; jBHig are related to the flavor eigenstates fjBoi;
jB̄oig by the equations

jBLi ¼ pjBoi þ qjB̄oi; jBHi ¼ pjBoi − qjB̄oi; ð7Þ
with jpj2 þ jqj2 ¼ 1. The time evolution is given by a
family of completely positive trace preserving maps forming
a one parameter dynamical semigroup. The complete pos-
itivity requires the time evolution of a state of the system
being represented by the operator-sum representation [65]

ρðtÞ ¼
X
i¼0

EiðtÞρð0ÞE†
i ðtÞ; ð8Þ
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where the Kraus operators have the following form

E0 ¼ j0ih0j;

E1 ¼ E1þðjB0ihB0j þ jB̄0ihB̄0jÞ þ E1−

�
p
q
jB0ihB̄0j þ q

p
jB̄0ihB0j

�
;

E2 ¼ E2

�
pþ q
2p

j0ihB0j þ pþ q
2q

j0ihB̄0j
�
;

E3 ¼ E3þ
pþ q
2p

j0ihB0j þ E3−
pþ q
2q

j0ihB̄0j;

E4 ¼ E4

�
jB0ihB0j þ jB̄0ihB̄0j þ p

q
jB0ihB̄oj þ q

p
jB̄0ihB0j

�
;

E5 ¼ E5

�
jB0ihB0j þ jB̄0ihB̄0j − p

q
jB0ihB̄0j − q

p
jB̄0ihB0j

�
:

Here the coefficients are

E1� ¼ 1

2
½e−ð2imLþΓLþλÞt/2 � e−ð2imHþΓHþλÞt/2�; ð9aÞ

E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re½p−qpþq�

jpj2 − jqj2
 
1 − e−ΓLt − ðjpj2 − jqj2Þ2 j1 − e−ðΓþλ−iΔmÞtj2

1 − e−ΓHt

vuut !
; ð9bÞ

E3� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Re½p−qpþq�
ðjpj2 − jqj2Þð1 − e−ΓHtÞ

s
½1 − e−ΓHt � ð1 − e−ðΓþλ−iΔmÞtÞðjpj2 − jqj2Þ�; ð9cÞ

E4 ¼
e−ΓLt/2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−λt

p
; ð9dÞ

E5 ¼
e−ΓHt/2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−λt

p
: ð9eÞ

A meson initially in state ρB0ð0Þ ¼ jB0ihB0j or ρB̄0ð0Þ ¼ jB̄0ihB̄0j, after time t, evolves to

ρB0ðtÞ ¼ 1

2
e−Γt

0
BBBBB@

ach þ e−λtac ðqpÞ�ð−ash − ie−λtasÞ 0

ðqpÞð−ash þ ie−λtasÞ
���� qp
����2ach − e−λtac 0

0 0 ρ33ðtÞ

1
CCCCCA; ð10Þ

and

ρB̄0ðtÞ ¼ 1

2
e−Γt

0
BBBBBB@

���� pq
����2ðach − e−λtacÞ ðpqÞð−ash þ ie−λtasÞ 0

ðpqÞ�ð−ash − ie−λtasÞ ach þ e−λtac 0

0 0 ρ̃33ðtÞ

1
CCCCCCA
: ð11Þ
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Here, ach (ash) and ac (as) stand for the hyperbolic
functions cosh½ΔΓt

2
� (sinh½ΔΓt

2
�) and the trigonometric func-

tions cos ½Δmt� (sin ½Δmt�), respectively. p and q are
defined in Eq. (7). ΔΓ ¼ ΓL − ΓH is the difference of
the decay width ΓL (for Bo

L) and ΓH (for Bo
H). Γ ¼ 1

2
ðΓL þ

ΓHÞ is the average decay width. The mass difference
Δm ¼ mH −mL, where mH and mL are the masses of
Bo
H and Bo

L states, respectively. The strength of the
interaction between the one particle system and its envi-
ronment is quantified by λ, the decoherence parameter [74].
The elements ρ33ðtÞ and ρ̃33ðtÞ are known functions of B
physics parameters, not used in this work. In the following
section, we use this formalism to develop the LGI and LGtI
for the meson systems.

III. TEMPORAL QUANTUM CORRELATIONS
IN B/K SYSTEMS

A. Leggett Garg inequality

Leggett Garg inequalities, often referred to as the
temporal Bell inequalities, place bounds on certain combi-
nations of the two time autocorrelations Cij, defined in
terms of the joint probabilities as [28,75,76]

Cij ¼ pðþtiÞqðþtjjþtiÞ − pðþtiÞqð−tjjþtiÞ
− pð−tiÞqðþtjj−tiÞ þ pð−tiÞqð−tjj−tiÞ; ð12Þ

where pðatiÞ is the probability of obtaining the result a ¼
�1 at ti, and qðbtjjatiÞ is the conditional probability of
getting result b ¼ �1 at time tj, given that result a ¼ �1

was obtained at ti. To find the probabilities involved in
Eq. (12), we define the projector Π� related to the eigen-
space of the dichotomic operator Q̂, such that the proba-
bility of obtaining outcome a at time ti is

pðatiÞ ¼ TrfΠaρðtiÞg ¼ Tr

�
Πa
X
μ

KμðtiÞρð0ÞK†
μðtiÞ

�
:

ð13Þ

The density matrix corresponding to the measurement
result a obtained at “ti” is given by the von Neumann rule

ρaðtiÞ¼
ΠaρðtiÞΠa

TrfΠaρðtiÞg
¼Πa

P
μKμðtiÞρð0ÞK†

μðtiÞΠa

pðatiÞ
; ð14Þ

this state evolves until tj, when the state of the system looks

like
P

νKνðtj − tiÞρaðtiÞK†
νðtj − tiÞ, so that the probability

of obtaining outcome b at time tj, given that awas obtained
at time ti, is given by

qðbtjjatiÞ ¼
TrfΠb

P
ν;μKνðtj − tiÞΠaKμðtiÞρð0ÞK†

μðtiÞΠaK†
νðtj − tiÞg

pðatiÞ
: ð15Þ

A generic term in the right-hand side of Eq. (12) becomes

pðatiÞqðbtjjatiÞ ¼ Tr

�
Πb
X
ν

Kν;μðtj − tiÞΠaKμðtiÞρð0ÞK†
μðtiÞΠaK†

νðtj − tiÞ
�
: ð16Þ

With some algebra, we can show that the two time correlations turn out to be [76]

Cij ¼ 1 − 2pðþt1Þ − 2pðþt2Þ þ 4Re½gðti; tjÞ�; ð17Þ

where

gðti; tjÞ ¼ Tr

�
ΠþX

ν

Kνðtj − tiÞΠþρðtiÞK†
νðtj − tiÞ

�
: ð18Þ

We consider a dichotomic quantity Q ¼ �1 for our three level system, such that each level is associated with a definite
value of Q. Assigning the same value of Q to different states is irrelevant from the macrorealistic point of view and does not
change the bounds of Eq. (1) [51]. Let us assume that at time t ¼ 0, the meson was in state ρB̄0 . This state evolves to ρB̄0ðtiÞ at
time ti and is given by Eq. (11). We define the dichotomic operator Π ¼ Πþ − Π− ¼ ΠB0 − ðΠB̄o þ Π0Þ, where
Πx ¼ jxihxj. Now

pðþtiÞ ¼ TrfΠþρB̄0
ðtiÞg ¼ ½ρB̄0

ðtiÞ�11 ¼ jp/qj2 e
−Γti

2

�
cosh

�
ΔΓti
2

�
− e−λti cosðΔmtiÞ

	
: ð19Þ

NAIKOO, ALOK, and BANERJEE PHYS. REV. D 97, 053008 (2018)

053008-4



Thus, pðþtiÞ ¼ PB̄0B0ðtiÞ is the transition probability from
state ρB̄0 to ρB0 at time ti. With the assumption of equal time
measurements t2 − t1 ¼ t1 − 0 ¼ Δt, we have the follow-
ing expression for C12

C12 ¼ 1 − 4PB̄0B0ðΔtÞ þ 4Re½gðΔtÞ�; ð20Þ

with

gðt1; t2Þ ¼ 2PB̄0B0ðΔtÞPB̄0B̄0ðΔtÞþ
����pq
����2 e−2ΓΔtðe−2λΔt − 1Þ

4
:

ð21Þ

Here PB̄0B̄0ðΔtÞ and PB̄0B0ðΔtÞ are the survival and
transition probabilities, respectively, for the meson which
started in state ρB̄0 ¼ jB̄0ihB̄0j at time t ¼ 0. The survival
probability of B̄o has the following form:

PB̄0B̄0ðtÞ ¼ e−Γt

2

�
cosh

�
ΔΓt
2

�
þ e−λt cosðΔmtÞ

	
: ð22Þ

The LG function finally becomes

K3 ¼ 1 − 4PB̄0B0ðΔtÞ þ 8PB̄0B0ðΔtÞPB̄0B̄0ðΔtÞ
þ jp/qj2e−2ΓΔtðe−2λΔt − 1Þ: ð23Þ

CP violation implies that jp/qj ≠ 1. The above developed
formalism also applies to the K meson case with some
notational changes. The CP violating parameter for K
mesons ϵ can be expressed in terms of p and q by the
following relation ϵ ¼ p−q

pþq.

B. Leggett Garg type inequality

The assumption of noninvasive measurability makes it
difficult to test the Leggett Garg inequality experimentally.
Different measurement strategies like negative outcome
measurement, delayed choice measurement, weak mea-
surements [38,40,77–79] have been devoted to this effect.
Another formalism developed in [52,53], replacing the
assumption of non-invasive measurability by “stationarity,”
leads to easily testable inequalities using projective (von
Neumann) measurements. According to the stationarity
assumption, the conditional probability qðti; tjÞ to find a
system in state j at time tj, if it was in state i at time ti only
depends on the time difference tj − ti, and is expected to
hold not only for idealized closed quantum systems, but
also in open quantum systems subjected to purely
Markovian noise at a rate γ such that the two time
correlations are exponentially damped by a factor
γðt2 − t1Þ [55]. The full set of assumptions (i)–(iv), for
the stationarity to hold for a system, as given in Sec. I, turns
out to be applicable in the context of K and B meson
systems. Given that the state of the meson at time t ¼ 0 is

jB̄oi, it can be shown that Markovian dynamics described
by the Kraus operators in Sec. II lead to the time translation
invariance of the conditional probability, i.e., PðB̄o; tþ
t0jB̄o; t0Þ ¼ PðB̄o; tjB̄o; 0Þ. With the assumption of statio-
narity, the Leggett Garg type inequality, Eq. (2), becomes

K̃3 ¼ 1 − 4PB̄oBoðΔtÞ þ 2PB̄oBoð2ΔtÞ: ð24Þ

Therefore, a knowledge of the transition probabilities
at times Δt and 2Δt would allow one to compute K3

according to Eq. (24), such that K̃3 > 1 shows the
nonclassical nature of the neutral meson oscillations.
It should be noted that Eq. (24) is expressed completely
in terms of directly measurable quantities such as transition
probabilities unlike Eq. (23), which contains a term
(jp/qj2e−2ΓΔtðe−2λΔt − 1Þ), apart from the survival and
transition probabilities. However, it can be seen that in
the limit of neglecting decoherence effects, Eq. (23), can
also be expressed directly in terms of survival and transition
probabilities.
The experiments on the B0ðK0Þ meson systems involve

determination of their flavor at the time of production or
decay. This is done by analyzing the flavor specific decays.
For e.g., a B0

d meson can decay into a positron (or a μþ), a
neutrino and a hadron with a branching ratio of ∼0.1. This
semileptonic decay is induced by the quark level transition
b̄ → c̄lþνl, with l ¼ e, μ. On the other hand, the corre-
sponding decay of a B̄0

d meson results in an electron (or a
μ−) in the final state. Thus, in general, the charge of the
final state lepton is same as the charge of the decaying
quark. This is known as the ΔB ¼ ΔQ rule for the
semileptonic decays of B mesons and is assumed in most
of the experimental analysis. Hence, the charge of the final
state lepton in the semileptonic decays of a neutral meson
usually determines the flavor of that meson at the time
of decay.
The process of determination of the initial flavor of a

neutral meson is called tagging. This is achieved by making
use of the rule of associated production. The mesons are
produced either by strong or electromagnetic interactions
and hence a quark is always produced in association with
its antiquark as flavor is conserved in these interactions.
Thus, if a quark q is detected at one end of the detector then
at the quark at the other end has to be q̄. Now if a charged
meson is produced in association with a neutral meson,
then the decay of the charged meson determines the flavor
of the neutral meson at production. This is so because the
charged meson cannot oscillate. The survival and oscil-
lation probability of the neutral meson can then be
measured by identifying the charge of the lepton in its
semileptonic decay. If two entangled neutral mesons are
produced, as in the eþe− colliders by the process
eþe− → ϒð4SÞ → B0

dB̄
0
d, then detecting the flavor specific

final state of one meson, say at time t1, determines the
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flavor of that meson as well as the other meson at that time
t1. The oscillation probability of the tagged meson is then
determined by identifying its final flavor specific state.

IV. RESULTS AND DISCUSSION

The left panel of Fig. 1 shows the variation of the LG
function K3, as a function of the dimensionless quantity
Δt/τK . It can be seen from the figure that the LG inequality
is violated for about Δt ¼ τK . The middle and right panels
of Fig. 1 depict the variation of the LG function for the Bd
and Bs mesons, respectively. One can see that the violation
in the Bd meson system sustains for about Δt ¼ τBd

while
for the Bs meson system the violation is roughly for
Δt ≈ 0.5τBs

. The maximum violation of LGI occurs around
Δt ≈ 0.41τK , Δt ≈ 0.37τBd

and Δt ≈ 0.037τBs
for K, Bd

and Bs meson systems, respectively.
The figures clearly bring out the point that from the

genesis of its decay [73], the meson systems violate the
upper threshold value of K3 ¼ 1, indicative of quantum
behavior, and quickly fall below one. The K3 value for K
meson remains above one longest while Bs does it for the
shortest time. In addition, the Bs meson exhibits an addi-
tional recurrence behavior. In order to have an under-
standing of this recurrence behavior, we rewrite Eq. (23) as

K3 ¼ 1þ jp/qj2½2e−ðΓþλÞΔt cosðΔmΔtÞ
− e−2ðΓþλÞΔt cosð2ΔmΔtÞ − 2e−ΓΔt coshðΔΓΔt/2Þ
þ e−2ΓΔt coshðΔΓΔtÞ�: ð25Þ

One can then see that the oscillating behavior in the case
of Bs meson system could be attributed to the mass term
Δm [Eq. (25)], which plays the role of frequency, and is
more than 35 times the corresponding value for the Bd
meson system.

From Eq. (24), we find that the LG-type inequality is in
terms of the transition probabilities only. Fig. 2 shows the
deviation of the LG-type function, K̃3 (24), from the LG-
function (K3). It is clear from the figure that the deviation is
very small. Thus, a study of the LG inequality in mesons,
using K̃3, Eq. (24), in terms of experimentally measurable
quantities would be well justified. Eq. (24) demands the
knowledge of the transition probabilities at Δt and 2Δt, for
example, (0.5τK , τK) for the K meson system.
Looking at the form of Eq. (23), it can be seen that

the only nonmeasurable term in the equation is
jp/qj2e−2ΓΔtðe−2λΔt − 1Þ; we call this term DB and DK
for the case of Bmeson and K meson systems, respectively.
In the limit of zero decoherence, λ → 0, DB/K → 0,
rendering the LG function, Eq. (23), in terms of measurable
survival and transition probabilities

K3ðλ¼0Þ¼1−4PB̄0B0ðΔtÞþ8PB̄0B0ðΔtÞPB̄0B̄0ðΔtÞ: ð26Þ

The variation of DB and DK with Δt/τK/BdðsÞ is shown in
Fig. 3. It is obvious from the figure that these terms are
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FIG. 1. The left, middle and right panels of the figure depict the LG functionK3 plotted with respect to the dimensionless quantityΔt/τ
for the K, Bd and Bs mesons, respectively. Here Δt is the time between successive measurements and τ is the mean lifetime of respective
mesons. Dashed and solid curves correspond to the cases with and without decoherence, respectively. For the K system, the mean
lifetime is τK ¼ 1.7889 × 10−10 s. Also, Γ ¼ 5.59 × 109 s−1, ΔΓ ¼ 1.1174 × 1010 s−1, λ ¼ 2.0 × 108 s−1 and Δm ¼ 5.302 × 109 s−1

[80]. Here we used ReðϵÞ ¼ 1.596 × 10−3 and jϵj ¼ 2.228 × 10−3 [81]. For the Bd system, τBd
¼ 1.518 × 10−12 s, Γ ¼ 6.58 × 1011 s−1,

ΔΓ ¼ 0, λ ¼ 0.012 × 1012 s−1 and Δm ¼ 0.5064 × 1012 s−1 [82]. The CP violating parameter used here is j qp j ¼ 1.010 [82]. Finally,

for the Bs meson, τBs
¼ 1.509 × 10−12 s, Γ ¼ 0.6645 × 1012 s−1, ΔΓ ¼ 0.086 × 1012 s−1, λ ¼ 0.012 × 1012 s−1 and Δm ¼ 17.757 ×

1012 s−1 [82]. The value of the CP violating parameter here is q
p ¼ 1.003 [82]. As we do not have any experimental bound on the

decoherence parameter λ for the Bs system, we assume it to be the same as that of the Bd system.
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FIG. 2. Plot of the difference of LG-function K3 and LG-type
function K̃3 in the case of K meson system. The various
parameters used are the same as in Fig. 1.
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small compared with the maximum value attained by the
LG function K3.

V. CONCLUSION

In this work, we study the violation of LG and LG-type
inequalities in B and K mesons within the framework of
open quantum systems. It is found that LGI is violated in
both K and B meson systems. This violation lasts for a
longer time in the case of K mesons as compared to that of
B mesons. In the case of B meson systems, the violation
lasts longer for Bd mesons as compared to the Bs system.
We show that the LG function K3, apart form the

measurable survival and transition probabilities, contains
a nonmeasurable term which is small compared to the
maximum value attained by it and vanishes in the approxi-
mation of zero decoherence. Since systems with no
coherence do not violate LGI, the effect of decoherence
should result in decreasing the extent of the violation, as
observed in Fig. 1. Further, it is highlighted in this work
that the LG-type function, unlike LG function, can be
expressed completely in terms of experimentally measur-
able quantities. Hence, LG type inequality is seen to be
more suitable for understanding the nature of temporal
quantum correlations in meson systems.
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