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The observation of Higgs pair production at high-energy colliders can give evidence for the presence of a
triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In
the context of general models for new physics, double Higgs production processes can receive
contributions from many possible beyond-Standard-Model effects. This dependence must be understood
if one is to make a definite statement about the deviation of the Higgs field potential from the Standard
Model. In this paper, we study the extraction of the triple Higgs coupling from the process eþe− → Zhh.
We show that, by combining the measurement of this process with other measurements available at a
500 GeV eþe− collider, it is possible to quote model-independent limits on the effective field theory
parameter c6 that parametrizes modifications of the Higgs potential. We present precise error estimates
based on the anticipated International Linear Collider physics program, studied with full simulation. Our
analysis also gives new insight into the model-independent extraction of the Higgs boson coupling
constants and total width from eþe− data.
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I. INTRODUCTION

The discovery of the Higgs boson in 2012 [1,2] closed
one chapter in our understanding of elementary particle
physics but opened another. The observation of this
particle, at a relatively low mass and with large couplings
to W, Z, and heavy fermions, confirmed the picture of the
Standard Model that masses originate in the vacuum
expectation value of a scalar field. At the same time, this
observation deepened the mysteries associated with this
particle, and also offered a path to solving these mysteries
through precision measurements of the Higgs boson’s
properties.
The goal of this paper is to develop methods for the

precision extraction of Higgs boson couplings using
effective field theory to represent the most general effects
of new physics on the Higgs boson. Effective field theory
(EFT) has been applied to the theory of a Higgs boson in
many papers, for example, Refs. [3–5] and has been
adopted as a canonical framework for analyzing Higgs
boson measurements at the LHC [6]. Still, we feel that the

full power of this formalism is not appreciated. The reason
for this is that a fully general treatment of EFT brings in a
very large number of free parameters. It has not been clear
how to constrain all of these parameters simultaneously
from experimental measurements [7].
In this paper, we will show that this problem can be

solved by making use of the large number of observables
that can be measured with high precision at future eþe−

colliders. In our analysis, we analyze the extension of the
Standard Model (SM) by the addition of ten effective
operators that describe the most general new physics effects
on the couplings of the Higgs boson to theW, Z, and γ and
the light leptons. We show how to determine the coef-
ficients of these operators systematically. We apply this
method to solve an important problem involving the
measurement of the Higgs boson self-coupling. We also
present formulas that extend this method to a general,
model-independent approach to the extraction of Higgs
boson couplings from data.
The specific aim of this paper is to solve the following

problem for the Higgs boson self-coupling: the Higgs
boson self-coupling is predicted by the SM. The exper-
imental test of this prediction is of great importance both
for our basic understanding of electroweak symmetry
breaking and for the linkage of this issue to other questions
such as Higgs CP violation and electroweak baryogenesis
[8]. If the SM were exact except for a perturbation that
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changes the triple Higgs coupling, it would be possible to
measure this coupling by observing a change in the rate of
double Higgs production. This measurement has been
studied in some detail for gg → hh at hadron colliders
[9–11], for eþe− → Zhh [12] and for the vector-boson
fusion processes eþe− → νν̄hh [12,13], and ud → duhh
[11]. In some cases, future experiments would be highly
sensitive to a deviation of the rate from the SM prediction.
A series of papers, beginning with Ref. [14], have even
discussed extracting the triple Higgs coupling from single
Higgs production measurements, through its effects in loop
diagrams. However, the assumption that the triple Higgs
coupling is altered by some effect of new physics while all
other Higgs boson couplings remained unchanged is
extremely artificial. It is more likely that new physics
alters many of the couplings of the Higgs boson and alters
the rate of single and double Higgs production through
many different vertices. But how, then, can we distinguish
the effects of changes in the Higgs boson potential from
perturbations induced by other new physics effects?
This question has hardly been studied in the literature,

and its resolution is not straightforward. Reference [15]
studied the influence of a second operator perturbation of
the SM and showed that this effect can be distinguished
from a change in the triple Higgs coupling by studying the
dependence of the double Higgs production cross section
on mðhhÞ at center-of-mass energies well above threshold.
References [16–18] studied the process gg → hh at proton
colliders and suggested measurements beyond the total
cross section measurements that discriminate contributions
of different operators. Reference [19] studied the discrimi-
nation of loop effects of the triple Higgs coupling in single
Higgs processes from other EFT effects. In all of these
cases, the extension of the method to high precision and to
general new physics perturbations seems very challenging.
The best way to attack this problem is to enumerate all

possible new physics effects that influence the cross section
for double Higgs production and to constrain them one by
one in a systematic way, leaving, at the end, only the triple
Higgs coupling as a free parameter. In this paper, we
explain how to do that through the use of the EFT
parametrization of possible deviations from the SM. We
concentrate on the extraction of the triple Higgs coupling
from the rate of the reaction eþe− → Zhh, which can be
measured already at a 500 GeV eþe− collider. Effects on
the eþe− → Zhh cross section from dimension-six EFT
operators have been studied previously in Ref. [20].
Our analysis will involve a total of 17 EFT operator

coefficients. Of these, one is the parameter c6 that shifts the
triple Higgs coupling, nine others govern the couplings
among vector bosons, leptons, and the Higgs boson, while
another seven appear in other Higgs decay amplitudes that
will enter our analysis. This seems at first sight extremely
complex, but we will see that each coefficient has its place
and can be constrained in a physically apparent way.

The outline of this paper is as follows. In Sec. II, we set
up our formalism for the EFT analysis of Higgs and vector-
boson process. We present a basic strategy for our analysis
by writing the potentially measurable vector-boson, lepton,
and Higgs couplings in terms of EFT coefficients. We
justify the restriction to this parameter set and discuss some
approximations we make to simplify the analysis. And, we
present our method for including the constraints on the EFT
coefficients coming from precision electroweak measure-
ments. In Sec. III, we present the constraints from mea-
surements of eþe− → WþW− at future eþe− colliders and
describe these constraints quantitatively using the results of
full-simulation studies for the International Linear Collider
(ILC). This process has previously been analyzed in an EFT
formalism, using LEP and LHC results, in Refs. [21,22]. In
Sec. IV, we discuss the effect of the expected measurements
of Higgs branching ratios to γγ, γZ, and μþμ− at the LHC.
In Sec. V, we explain how the measurement of the cross

section, angular distribution, and polarization asymmetry
for eþe− → Zh constrain the EFT parameters. An EFT
analysis of the total cross section for this process has
previously been given in Ref. [5]. We will show that these
measurements supply the missing pieces of information
needed to constrain the full set of nine operators respon-
sible for new physics effects in vector-boson, lepton, and
Higgs couplings.
In principle, this should be enough information to extract

the triple Higgs coupling parameter c6 from the measure-
ment of the cross section for eþe− → Zhh. However, in
practice, the constraint turns out not to be strong enough.
We can find additional constraints on the EFT parameters
by studying the other major single Higgs production
process available at eþe− colliders: the W fusion process
eþe− → νν̄h. This reaction has a larger cross section than
eþe− → Zh at 500 GeV, and it also depends strongly on the
EFT parameters. However, in this case, there is no specific
Higgs boson tag and so the cross section cannot be
measured in a model-independent way. To make use of
this process, we will need also to study the Higgs decay
partial widths. These also have expansions in EFT param-
eters. These bring in another seven parameters beyond our
original set, but in the end, all of the parameters can be
strongly constrained.
Thus, in Sec. VI, we work out formulas in terms of EFT

parameters for the total cross section for eþe− → νν̄h. In
Sec. VII, we present the EFT formulas for the various
Higgs boson partial widths. This formalism provides the
basis not only to determine the shift of the triple Higgs
coupling but also to develop a method for determining the
full set of Higgs boson couplings in a model-independent
way. The implications of this formalism for Higgs coupling
determination at eþe− colliders will be presented in a
companion paper [23].
Finally, in Sec. VIII, we present the dependence of the

cross section for eþe− → Zhh in terms of our full set of
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parameters. We estimate the error on the prediction of the
total cross section for this reaction due to uncertainties from
all new physics effects except for the variation of the triple
Higgs coupling. This estimate makes use of projections for
the accuracy of high-precisionmeasurements of singleHiggs
processes expected to be carried out at the ILC [24–26]. We
estimate that this uncertainty in the total cross section will be
2.4%, corresponding to a 5% systematic uncertainty in the
determination of the triple Higgs coupling. This is attrac-
tively small and should be subdominant to expected stat-
istical and direct experimental systematic errors.
Section IX presents our conclusions. Appendix A sum-

marizes the formulas used in our fit. Appendix B specifies
the inputs to the fit in more detail.

II. EFFECTIVE FIELD THEORY FORMALISM

In this paper, we represent the effects of new physics by
writing an extension of the SM as an effective field theory.
The SM is already the most general theory with operators of
dimension four or lower, SUð3Þ × SUð2Þ ×Uð1Þ gauge
invariance, the known spectrum of quarks and leptons, and
one SUð2Þ-doublet Higgs field. If new physics effects are
due to new heavy particles of mass at least M, their effects
can be represented by adding operators of dimension six.
The effects of these operators are suppressed by factors
1=M2. For M > 500 GeV, as suggested by LHC results,
these factors already push the size of the most general new
physics effects below the current sensitivity of LHC Higgs
measurements. Effects of operators of dimension eight and
higher are suppressed by additional powers of 1=M2, and
we will neglect them in this discussion.
The restriction to dimension-six operator perturbations

leaves a great deal of freedom. For the SMwith one fermion
generation, there are a total of 84 independent dimension-
six operators that can be added to the Lagrangian. Of these,
eight are baryon-number violating and, of the remainder, 59
are CP conserving while 17 are CP violating [27,28].
Fortunately, not all of these operators contribute to the

processes of interest in a given study. For the goals of this
paper, a subset of 17 of these operators will suffice for a
general analysis. These are divided into a set of ten
governing vector-boson, lepton, and Higgs boson cou-
plings and another set of seven, which will be introduced in
Sec. VII, needed for other possible Higgs decays.

A. Operator basis

One aspect of the study of the dimension-six effective
operators is that there are many possible choices of basis. In
this paper, we will study processes that involve only light
leptons, electroweak gauge bosons, and Higgs bosons.
Thus, we should choose an operator basis that is convenient
for analyzing this particular system. We choose a basis that
includes the minimum number of operators that include
only gauge fields and Higgs fields, using the equations of
motion to convert purely bosonic operators to operators that
include quark and lepton fields. Some operators that
involve the lepton fields must also be included in the
analysis. The use of equations of motion to make these
reductions and other aspects of the EFT formalism were
explained in Refs. [27,29–32] and many other papers. A
very convenient choice for our analysis is the “Warsaw”
basis put forward in Ref. [27]. In the CP-conserving case,
this basis contains only seven operators containing only the
W, Z, and Higgs boson fields, and another three relevant
operators containing lepton fields. We will slightly rear-
range the pure Higgs operators, as is done in the “SILH”
basis [3,4], for convenience in the analysis. In the CP-
violating case, another four operators need to be included.
In this section, we will present the basic formalism and

notation for these operators. We generally follow the
conventions of Ref. [33], which in turn are based on
Refs. [3,4]. The same basis was used (with slightly different
notation) in Ref. [5].
Our analysis will use ten CP-conserving operators from

the Warsaw basis of dimension-six operators. We will
denote these as

ΔL ¼ cH
2v2

∂μðΦ†ΦÞ∂μðΦ†ΦÞ þ cT
2v2

ðΦ†D
↔μ

ΦÞðΦ†D
↔

μΦÞ − c6λ
v2

ðΦ†ΦÞ3 þ g2cWW

m2
W

Φ†ΦWa
μνWaμν þ 4gg0cWB

m2
W

Φ†taΦWa
μνBμν

þ g02cBB
m2

W
Φ†ΦBμνBμν þ g3c3W

m2
W

ϵabcWa
μνWbν

ρWcρμ þ i
cHL

v2
ðΦ†D

↔μ
ΦÞðL̄γμLÞ þ 4i

c0HL

v2
ðΦ†taD

↔μ
ΦÞðL̄γμtaLÞ

þ i
cHE

v2
ðΦ†D

↔μ
ΦÞðēγμeÞ: ð1Þ

The parameter c6 shifts the Higgs potential. The other parameters express different possible new physics effects. The
operators in Eq. (1) must be defined at a specific momentum scale. We take this scale to be close to 500 GeV.
The four dimension-six CP-violating operators can be written as

ΔLCP ¼ þ g2c̃WW

m2
W

Φ†ΦWa
μνW̃aμν þ 4gg0c̃WB

m2
W

Φ†taΦWa
μνB̃μν þ g02c̃BB

m2
W

Φ†ΦBμνB̃μν þ g3c̃3W
m2

W
ϵabcWa

μνWbν
ρW̃cρμ: ð2Þ
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Operators involving gluon fields are not needed for our
analysis, and so do not appear in Eqs. (1) and (2). All of the
parameters ci and c̃i are dimensionless.
Other bases for the dimension-six operators include

additional bosonic operators called OW and OB. When
these operators are eliminated using the equations of
motion, the operators OHL, O0

HL, and OHE, with a
Higgs current and a lepton current, are generated. These
terms containing lepton fields play an surprisingly impor-
tant role in our analysis. They cannot be ignored.
The notation of these equations requires some explan-

ation.Wa
μν and Bμν are the Yang-Mills field-strength tensors

for SUð2Þ and Uð1Þ. Dμ is the gauge-covariant derivative,
ta ¼ σa=2, and

Φ†D
↔

μΦ ¼ Φ†DμΦ −DμΦ†Φ;

Φ†taD
↔

μΦ ¼ Φ†taDμΦ −DμΦ†taΦ: ð3Þ

The tilded field strengths in Eq. (2) are

W̃a
μν ¼

1

2
ϵμνλσWaλσ; B̃μν ¼

1

2
ϵμνλσBλσ: ð4Þ

Finally, we will write

s2w ¼ sin2θw ¼ g02

g2 þ g02
; c2w ¼ cos2θw ¼ g2

g2 þ g02
;

ð5Þ

in terms of the SUð2Þ ×Uð1Þ couplings in the Lagrangian.
The renormalization prescription that we will use for the
couplings and the weak mixing angle will be given in
Sec. II C below.

B. Simplifications

Our analysis will include a number of simplifications
that we will now enumerate. None of these simplifications
has a significant effect on our final answers. We will
explain how the analysis given here can be systematically
improved to relax some of these simplifying assumptions.
First, we will work at the tree level and strictly to linear

order in the dimension-six operator coefficients. For the
central values in the fit, we will assume that the SM is
precisely valid and the EFT coefficients in Eq. (1) are zero.
We will primarily be concerned with the sensitivity of

eþe− experiments to values of the ci of 1% and below. It is
possible that some of the ci could be larger, even of order 1,
consistent with current data. That would be a wonderful
situation. But in this paper we are trying to probe the limits
of sensitivity of future experiments. We estimate correc-
tions to the linear approximation in the ci in a manner
consistent with this viewpoint. That is, effects quadratic in
the ci should be of order 10−4, effects due to operators of

dimension eight should be of order 10−4, and effects of
electroweak radiative corrections to the terms linear in the
ci, including operator mixing of dimension-six operators,
should be of order αw=π · 1%. Then we may neglect effects
of all three of these types in the analysis presented here.
It has been pointed out in Ref. [20] that some terms of

order cI are enhanced by factors proportional to s=m2
Z. We

will see such enhancements appearing in our analysis.
However, we will see that the uncertainties on the corre-
sponding EFT coefficients are extremely small, such that
the corrections that include these enhancement factors are
still restricted to be of order 1%. Explicit examples will be
discussed in Secs. V and VIII.
Since we are concerned with such small corrections to

the Standard Model predictions for Higgs cross sections
and decay rates, comparisons to data should use high-
precision Standard Model calculations of the cross sections
and rates. In this paper, we will compute Standard Model
rates only to the tree level. This will suffice for estimating
the sensitivity to the new physics corrections that we
consider in this paper. An actual experimental analysis
will need to combine our formulas with Standard Model
predictions computed at least to one-loop order, and, in
most cases, to two-loop order, in electroweak corrections.
Our analysis will involve all coefficients in Eq. (1) other

than the coefficient c6 that shifts the triple Higgs coupling.
In this analysis, we will not need to assume that c6 is small,
though we will ignore effects of c6 in loop diagrams
[proportional to λ2c6=ð4πÞ2]. This is important to note,
because models of electroweak baryogenesis expect values
of c6 of order 1 [8], and the expected error on c6 from the
ILC is 27% [12,34]. If c6 were indeed of order 1%, along
with the other ci coefficients, its effect would not be
measurable at the ILC or at any other proposed collider.
One might ask if it is consistent to have c6 of order 1 while
the other EFT coefficients are extremely small. Some
examples of models with this property were given in
Refs. [17,35,36], and in Sec. 2.3 of Ref. [19]. More likely,
corrections from the new physics that modifies c6 will also
shift the parameters such as cH and cWW in Eq. (1) to
nonzero values of order a few percent. These shifts might
be the first indication of a correction to the Higgs sector
Lagrangian. The shifts will not affect our error estimate for
c6, though they will of course alter the value of c6 that is
extracted from the cross section for double Higgs
production.
Second, we will ignore some possible dimension-six

operator corrections involving the light leptons. We will
consider the three coefficients cHL, c0HL, cHE as indepen-
dent free parameters. Taking this prescription, we are
explicitly not assuming that the dimension-six corrections
are “oblique” (in the language of Ref. [37]) or “universal”
(in the language of Ref. [29]). However, we will assume
electron-muon-tau universality. We will need, first, the
constraint c0HLðμÞ ¼ c0HLðeÞ, to use GF together with
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constraints from precision electroweak measurements
involving electrons only. This assumption can be tested
by measuring the equality of the W boson branching ratios
to μ and e using the sample of almost 3 × 107 W pairs
available at the 500 GeV ILC. We will also use the equality
of the Z left-right asymmetry Al for e and τ, since we will
use a value of Al with contributions from Ae and Aτ.
(Dropping this equality has only a minor effect on our
results.) This assumption can be tested through measure-
ments of eþe− → lþl− at 500 GeV. A more complete
Lagrangian would also include a four-fermion operator due
to new physics that contributes directly to GF. However,
this operator is already constrained to have a Λ scale above
8.5 TeV by LEP 2 data [38], and this constraint will become
much stronger when data on eþe− → μþμ− at 500 GeV
becomes available. In our discussion of the vector-boson,
lepton, and Higgs interactions, we will also ignore leptonic
terms that are mass suppressed, including the dimension-
six operators that correct the lepton-Higgs couplings and
lepton–gauge boson magnetic moment couplings. The
lepton terms that correct the Higgs couplings will appear
in Sec. VII. A more general analysis could incorporate
more of these additional parameters and the reactions that
constrain them.
In this paper, we will avoid observables that involve the

operators similar to the last two lines of Eq. (1) that include
quark currents. There is a very large number of these
operators, two for each quark flavor. Eventually, in
Sec. VII, we will need to consider these operators, but
only in two specific linear combinations. When we refer to
these operators later in the paper, we will call the corre-
sponding coefficients cX, c0X.
Third, we will ignore the effects of the CP-violating

operators in Eq. (2). We will consider only CP-invariant
observables, and so the effects of these operators on our
observables will be of order c2I . Actually, it is possible to
constrain the coefficients c̃WB and c̃3W below the percent
level through the study of eþe− → WþW− [39] and to
constrain c̃WW and c̃BB to the few-percent level through
constraints from h → γγ and eþe− → Zh. We will present
these latter constraints in Secs. IVand V. At this level, these
coefficients would give negligible contributions to our
analysis.

C. On-shell renormalization

We then restrict ourselves to the SM Lagrangian plus the
perturbation (1), considered in linear order. Our analysis of
vector-boson, lepton, and Higgs couplings then contains 14
parameters—the four SM parameters, which we will take to
be g, g0, v, and a Higgs coupling λ̄, and the ten parameters in
Eq. (1) (including c6). The dimension-six operator coef-
ficients alter the SM expressions for precision electroweak
observables and thus shift the appropriate values for the
Standard Model couplings. In our analysis, we will deal
with this by allowing the shifts of g, g0, v and λ̄ from their

SM values to be free parameters in our fit. In this tree-level
analysis, it is useful to think of g and the other couplings—
and the parameters sw and cw—as bare values set by fitting
an expression that includes the SM expectations and
corrections perturbative in the ci to a set of measurements.
This defines an on-shell renormalization procedure.
Using the notation

δA ¼ ΔA
A

; ð6Þ

we will write expressions for the deviation of observables
from their SM predictions as linear combinations of the
coefficients cI and the deviations (6) of the SM parameters.
A list of all of the expressions of this type entering our fit is
given in Appendix A.
Another approach to on-shell renormalization is given

by the S, T formalism [37]. We will sketch the formulas for
S, T renormalization with EFT parameters in Appendix C.
The operators (1) also renormalize the kinetic terms of

the SM fields. The contributions in Eq. (1) give shifts of the
SM kinetic terms

L ¼ −
1

2
Wþ

μνW−μν · ð1 − δZWÞ −
1

4
ZμνZμν · ð1 − δZZÞ

−
1

4
AμνAμν · ð1 − δZAÞ þ

1

2
ð∂μhÞð∂μhÞ · ð1 − δZhÞ;

ð7Þ

with

δZW ¼ ð8cWWÞ;
δZZ ¼ c2wð8cWWÞ þ 2s2wð8cWBÞ þ s4w=c2wð8cBBÞ;
δZA ¼ s2wðð8cWWÞ − 2ð8cWBÞ þ ð8cBBÞÞ;
δZh ¼ −cH: ð8Þ

We will rescale the boson fields to remove these factors
from the kinetic terms. Then the δZ factors will appear in
the vertices that we write below. The field-strength renorm-
alization for the Higgs field, proportional to cH, plays a key
role in our analysis and in the general theory of Higgs
couplings [40,41]. It is important to note that the mass
eigenstates Z and A are not altered by the addition of
Eq. (1). The cT term shifts the mass of the Z eigenstate
without mixing it with the A. However, Eq. (1) does induce
a kinetic mixing between Z and A,

ΔL ¼ 1

2
δZAZAμνZμν; ð9Þ

with
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δZAZ ¼ swcw

�
ð8cWWÞ −

�
1 −

s2w
c2w

�
ð8cWBÞ −

s2w
c2w

ð8cBBÞ
�
:

ð10Þ

We will treat this effect in perturbation theory.
The masses of the bosons are then given by

m2
W ¼ g2v2

4
ð1þ δZWÞ;

m2
Z ¼ ðg2 þ g02Þv2

4
ð1 − cT þ δZZÞ;

m2
h ¼ 2λ̄v2ð1þ δZhÞ ð11Þ

where

λ̄ ¼ λ

�
1þ 3

2
c6

�
: ð12Þ

It is useful to take λ̄ as a basic coupling, since the Higgs
quartic coupling λ and the dimension-six coefficient c6
appear only in this combination until we actually encounter
the triple Higgs coupling in our analysis. The formulas (11)
are not precise for the absolute values of the masses without
the inclusion of loop corrections. However, the differential
relations

δmW ¼ δgþ δvþ 1

2
δZW;

δmZ ¼ c2wδgþ s2wδg0 þ δv −
1

2
cT þ 1

2
δZZ;

δmh ¼
1

2
δλ̄þ δvþ 1

2
δZh ð13Þ

are accurate for small deviations.
To expand other precision electroweak observables, it is

useful to expand expressions built from the bare couplings

δsw ¼ −c2wðδg − δg0Þ;
δcw ¼ s2wðδg − δg0Þ: ð14Þ

The physical electric charge is expanded as

δe ¼ δð4παðm2
ZÞÞ1=2 ¼ s2wδgþ c2wδg0 þ

1

2
δZA: ð15Þ

The Fermi constant obtains a contribution from one of the
Higgs-lepton current-current operators. It also receives
contributions ð1þ δZWÞ from the W mass and coupling
that cancel between the numerator and denominator. Then

δGF ¼ 1 − 2δvþ 2c0HL: ð16Þ

In writing the Z boson couplings of the light leptons, it is
convenient to include the contribution due to the AZ kinetic

mixing in Eq. (9), as shown in Fig. 1. Then the left- and
right-handed charged lepton couplings are

gL ¼ g
cw

��
−
1

2
þ s2w

��
1þ 1

2
δZZ

�
−
1

2
ðcHL þ c0HLÞ

− swcwδZAZ

�
;

gR ¼ g
cw

�
ðþs2wÞ

�
1þ 1

2
δZZ

�
−
1

2
cHE − swcwδZAZ

�
:

ð17Þ

The W coupling to leptons is given by

gW ¼ g

�
1þ c0HL þ 1

2
δZW

�
: ð18Þ

In Sec. II E, we will introduce Z coupling to WþW−. Its
value is

gZ ¼ gcw

�
1þ 1

2
δZZ þ sw

cw
δZAZ

�
: ð19Þ

The differentials of these expressions are written in
Appendix A.

D. Precision electroweak constraints

The five parameters mW , mZ, mh, αðmZÞ, GF constrain
independent combinations of the four Standard Model
couplings and the dimension-six coefficients. Most of
the power of the precision electroweak constraints on
our parameter set is given by adding two further, very
precise, measurements from Z physics. We choose these to
be Γl, the partial width of the Z to a lepton, and Al, the
left-right asymmetry of the Z coupling to leptons. All
dimension-six corrections to these coefficients are already
incorporated into gL and gR, so the differentials of these
parameters are given in terms of Eq. (17) by

δΓl ¼ δmZ þ 2
g2LδgL þ g2RδgR

g2L þ g2R
;

δAl ¼ 4g2Lg
2
RðδgL − δgRÞ
g4L − g4R

: ð20Þ

FIG. 1. Contributions to gL, the left-handed electron coupling
to the Z, including the effects of contact interactions and AZ
kinetic mixing. The contributions to gR have a similar structure.
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Note that no dimension-six operators involving quarks
enter an analysis based on these observables.
The values that we will use here for the precision

electroweak observables, and their errors, are the current
values, from Ref. [42]. For the Al, we take the value
corresponding to the average of sin2θlepteff presented in
Sec. 7.3.4 of Ref. [43]. These values are shown in Table I.
For the analysis in Sec. VII, we will need to make use of

the measurements of the total width of the Z andW. So we
include those current values also in Table I.
Our analysis will benefit from improvements in some of

the precision electroweak parameters that we expect to see
in the era of eþe− experiments. The uncertainties on mW
measurements are expected to be improved to 5 MeV
already at the LHC [44]. The ILC is expected to improve
the error on the Higgs boson mass to 15 MeV by recoil
mass fitting of eþe− → Zh events in which the Z decays to
leptons [45]. It is not so easy to obtain a very precise direct
measurement of the W total width. Today, this width is
known only to 2% accuracy. However, with the use of
constraints from other precision electroweak observables
and measurements of eþe− → WþW−, our EFT formalism
predicts the partial width ΓðW → lνÞ to an accuracy
of 0.06%. Using the large statistics available at the
ILC—3 × 107 pairs—it will be possible to apply a tag-
and-probe method to make a very precise measurement of
the branching ratio BRðW → lνÞ. We then expect that the
total width ΓW can be known to better than 0.1%. Running
an eþe− collider at the Z resonance to create at least 109 Z
bosons would be expected to improve the errors on Al
and Γl by an order of magnitude [46]. However, we will
not make use of that possibility in the estimates given in
this paper.

E. W, Z, and Higgs boson vertices

Starting from the Lagrangian (1) and using the prescrip-
tions in Sec. II C, we can work out expressions for the

various coupling constants that appear in the W and Higgs
interactions.
The three-boson vertices involving the W boson are

canonically written [47]

ΔLTGC ¼ igV

�
VμðŴ−

μνWþν − Ŵþ
μνW−νÞ þ κVWþ

μ W−
ν V̂

μν

þ λV
m2

W
Ŵ−ρ

μ Ŵþ
ρνV̂

μν

�
; ð21Þ

where V ¼ A or Z and

V̂μν ¼ ∂μVν − ∂νVμ ð22Þ

is the linear part (only) of the field-strength tensor. Note
that we have absorbed the constant in front of the first term
in Eq. (21) into the overall coupling gA or gZ. Then this
formula has six parameters. Of these gA must be equal to
the physical electron charge e in Eq. (15), since this is also
the charge of the W. It is a simple exercise to verify this
explicitly. We define the charge gZ to include the effect of
AZ kinetic mixing, as shown in Fig. 2. Then the charge gZ
is given by

gZ ¼ gcw

�
1þ 1

2
δZZ þ sw

cw
δZAZ

�
: ð23Þ

The remaining parameters are given by

TABLE I. Values and uncertainties for precision electroweak observables used in this paper. The values are taken
from Ref. [42], except for the averaged value of Al, which corresponds to the averaged value of sin2 θeff in Ref. [43].
The best -fit values are those of the fit in Ref. [42]. For the purpose of fitting Higgs boson couplings as described in
Sec. VII, we use improvements in some of the errors expected from the LHC [44] and ILC [45]. The improved
estimate of the W width is obtained from ΓW ¼ ΓðW → lνÞ=BRðW → lνÞ.
Observable Current value Current σ Future σ SM best-fit value

α−1ðm2
ZÞ 128.9220 0.0178 (same)

GF (10−10 GeV−2) 1166378.7 0.6 (same)
mW (MeV) 80 385 15 5 80 361
mZ (MeV) 91 187.6 2.1 91 188.0
mh (MeV) 125 090 240 15 125 110
Al 0.14696 0.0013 0.147937
Γl (MeV) 83.984 0.086 83.995
ΓZ (MeV) 2495.2 2.3 2494.3
ΓW (MeV) 2085 42 2 2088.8

FIG. 2. Contributions to gZ, the coupling of the Z boson to
WþW−, including in particular the effect of AZ kinetic mixing.
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κA ¼ 1þ ð8cWBÞ;

κZ ¼ 1 −
s2w
c2w

ð8cWBÞ;

λA ¼ λZ ¼ −6g2c3W: ð24Þ

Because of the relations between these expressions, the
measurement of the WWA and WWZ vertices contribute
three (not five) additional constraints on our 14 variables.
We will work out the form of these constraints in Sec. III.
In a similar way, we will write the Lagrangian for the

Higgs boson and its coupling to vector bosons in a
canonical form as

ΔLh¼
1

2
∂μh∂μh−

1

2
m2

hh
2−ð1þηhÞλ̄vh3þ

θh
v
h∂μh∂μh

þð1þηWÞ
2m2

W

v
Wþ

μ W−μhþð1þηWWÞ
m2

W

v2
Wþ

μ W−μh2

þð1þηZÞ
m2

Z

v
ZμZμhþ1

2
ð1þηZZÞ

m2
Z

v2
ZμZμh2

þζWŴ
þ
μνŴ

−μν
�
h
v
þ1

2

h2

v2

�
þ1

2
ζZẐμνẐ

μν

�
h
v
þ1

2

h2

v2

�

þ1

2
ζAÂμνÂ

μν

�
h
v
þ1

2

h2

v2

�
þζAZÂμνẐ

μν

�
h
v
þ1

2

h2

v2

�
:

ð25Þ

The six parameters in the first two lines of this equation are
given to first order in the EFT coefficients by

ηh ¼ δλ̄þ δv −
3

2
cH þ c6;

θh ¼ cH;

ηW ¼ 2δmW − δv −
1

2
cH;

ηWW ¼ 2δmW − 2δv − cH;

ηZ ¼ 2δmZ − δv −
1

2
cH − cT;

ηZZ ¼ 2δmZ − 2δv − cH − 5cT: ð26Þ

The four parameters in the last two lines are given by

ζW ¼ δZW ¼ ð8cWWÞ;

ζZ ¼ δZZ ¼ c2wð8cWWÞ þ 2s2wð8cWBÞ þ
s4w
c2w

ð8cBBÞ;

ζA ¼ δZA ¼ 8s2wðð8cWWÞ − 2ð8cWBÞ þ ð8cBBÞÞ;

ζAZ ¼ δZAZ ¼ swcw

�
ð8cWWÞ −

�
1 −

s2w
c2w

�
ð8cWBÞ

−
s2w
c2w

ð8cBBÞ
�
: ð27Þ

It is important to note that Eq. (25) contains a second
structure for the triple Higgs vertex, with coefficient θh. In
double Higgs production, this term cannot be separated
from the Standard Model triple Higgs coupling except by
high statistics measurements of the mðhhÞ distribution.
In our analysis, this contribution will be fixed by the
determination of cH through precision measurements of
single Higgs production.
The Lagrangian (1) also contains contact interactions

between the Z, Higgs, and lepton fields,

ΔLeehZ

¼ −
g

2cw
ðcHL − c0HLÞðν̄LγμνLÞZμ

�
1þ 2

h
v
þ h2

v2

�

−
g

2cw
ðcHL þ c0HLÞðēLγμeLÞZμ

�
1þ 2

h
v
þ h2

v2

�

−
g

2cw
ðcHEÞðēRγμeRÞZμ

�
1þ 2

h
v
þ h2

v2

�

þ gffiffiffi
2

p ðc0HLÞðēLγμνLW−μ þ ν̄LγμeLWþμÞ
�
1þ 2

h
v
þ h2

v2

�
:

ð28Þ

We will discuss the use of Eqs. (25) and (28) to construct
expressions for the cross sections for eþe− → Zh and
eþe− → Zhh in Secs. V and VI. The effects of the contact
interactions in Eq. (28) on these reactions have previously
been studied in Ref. [20], where it was pointed out that the
coefficients typically appear in the form ci · s=m2

Z.

III. CONSTRAINTS FROM e + e− → W +W −

We now discuss the constraints on the dimension-six
coefficients coming frommeasurements of eþe− → WþW−.
The constraints coming from the LEP and LHC experiments
have been discussed already in Refs. [21,22]. However,
future eþe− experiments will have additional advantages.
Since eþe− → WþW− is the process with the largest cross
section in high-energy eþe− annihilation, very high statistics
will be available. By making use especially of the mode in
which one W decays hadronically and one decays leptoni-
cally, the full kinematics of theWþW− production and decay
can be reconstructed for each event. Changing the beam
polarization from e−Le

þ
R to e−Re

þ
L is an order-1 effect. Using all

of these handles, it is possible to probe very accurately for the
effects of modifications of the Standard Model.
At the tree level, the amplitudes for eþe− → WþW− are

derived from the diagrams shown in Fig. 3. Typically, the
predictions of these diagrams (with higher-order electro-
weak corrections) are compared to data by assuming that
the vertices between leptons and gauge bosons have
exactly the SM form while the WWA and WWZ vertices
can contain additional terms induced by new physics.
In the EFT, there are relations within the full set of
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phenomenological parameters present in Eq. (21). These
relations, which follow from the SUð2Þ × Uð1Þ gauge
invariance of the full theory [48], are written in our
notation as gA ¼ e and

ðκZ − 1Þ ¼ −
s2w
c2w

ðκA − 1Þ; λZ ¼ λA: ð29Þ

Then the three parameters gZ, κA, λA are extracted from the
data. The most incisive projections of the capabilities of
future eþe− colliders to extract these parameters were done
using thismethod byMarchesini [49] andRosca [50]. These
studies used full simulation with the ILD detector model at
the ILC. The precise uncertainties expected at 500GeVwith
the expected 4 ab−1 data sample, including their correla-
tions, are given in Appendix B.
The assumption that the SM lepton–gauge boson vertices

are unmodified is justified to a certain extent by the strength
of the precision electroweak constraints on those vertices,
but it is not completely consistent as an expansion in the
dimension-six EFT coefficients. This point was made
explicitly by Falkowski and Riva in Ref. [21], although
they neglected this effect in their analysis for the practical
reason that it is unimportant in fitting LEP and LHC data.
For higher-accuracy measurements, one should in principle
fully refit the experimental data with a formula that includes
all of the terms linear in dimension-six coefficients. Here
we propose a simplified treatment of this issue. It is well
appreciated that the process eþe− → WþW− is especially
sensitive to new physics corrections because the helicity
amplitudes for this process contain terms proportional to
the cI coefficients enhanced by s=m2

W. So, we will propose
definitions of effective values of gZ, κZ, and λZ that agree
with the standard definitions when the precision electro-
weak constraints are exact and otherwise include the
deviations from SM precision electroweak predictions
proportional to cIs=m2

W .
To do this, we compute the high-energy limit of the

helicity amplitudes for eþe− → WþW− for the case in
which both W bosons have longitudinal polarization. For
both possible beam polarization states, the results have the
form

iM → −i sin θ
s

2m2
W
AL;R: ð30Þ

For e−Re
þ
L , the neutrino diagram does not contribute and

we find

AR ¼ e2κA þ gRgZκZ: ð31Þ

For e−Le
þ
R , all three diagrams contribute and we find

AL ¼ e2κA þ gLgZκZ −
g2W
2
: ð32Þ

It is easy to check that both quantities (31) and (32) vanish
when the coupling constants take their SM values (includ-
ing κA ¼ κZ ¼ 1). Note that both amplitudes are indepen-
dent of λA and λZ. The λ parameters multiply a different
s=m2

W term that appears in the helicity amplitudes for the
production of two transversely polarized W bosons.
We propose, then, to use the following quantities to

express the constraints on the cI from eþe− → WþW−:

ðgZ;eff − 1Þ ¼ 1

g2c2w

�
2ΔAL − ΔAR

�
;

ðκA;eff − 1Þ ¼ 1

g2

�
2ΔAL þ c2w − s2w

s2w
ΔAR

�
;

λA;eff ¼ λA: ð33Þ

The right-hand sides of Eq. (33) can be expanded in terms
of the variations of SM parameters and the cI . The
expansions are written out in Appendix A. These formulas
can be considered to be the quantities constrained by the
analyses of Refs. [49,50]. The measurements of W vertices
at the LHC should be compared to similar formulas that
involve the cHX parameters for the various quark species
that participate in the observed processes.

IV. CONSTRAINTS FROM h → γγ AND h → γZ

We have now explained how to constrain ten combina-
tions of the 14 parameters in our analysis. Before we come
to precision Higgs physics in eþe− collisions, there is one
more important constraint that we can apply.
The Higgs boson decays h → γγ and h → Zγ receive

their first SM contributions at the one-loop level. In both
cases, these contributions are very small. However, both
decays receive tree-level contributions from the dimension-
six Lagrangian, proportional to the coefficients ζA and ζAZ
in Eq. (25). If these decays are observed to have rates close
to their SM values, the parameters ζA and ζAZ are con-
strained to have values that are small fractions of the
already suppressed SM decay amplitudes [51]. Already, the
constraints from the LHC on h → γγ are quite strong.
Eventually, the measurement of these modes will provide
an extremely strong constraint on the parameter cBB and a
significant constraint on the parameter cWB.
We now analyze this point in more detail. The h → γγ

decay amplitude has the form

FIG. 3. Feynman diagrams contributing to the amplitudes for
eþe− → WþW−.
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iM ¼ iAðqμ1 · qν2 − qν1q
μ
2Þϵ�1μϵ�2ν: ð34Þ

The ζA term contributes an extra factor

ΔA ¼ 2ζA
v

: ð35Þ

Then

δΓðh → γγÞ ¼ 4
ζA
v

�
m3

h

64πΓðh → γγÞjSM

�
1=2

¼ 526ζA: ð36Þ

In a similar way, we find

δΓðh → ZγÞ ¼ 4
ζAZ
v

�
m3

hð1 −m2
Z=m

2
hÞ3

32πΓðh → ZγÞjSM

�
1=2

¼ 290ζAZ: ð37Þ

We must add to these expressions the variation of the SM
predictions for the decay widths with respect to the SM
parameters. The complete expressions are given in
Appendix A. We omit loop-suppressed corrections from
the cI coefficients. In fact, Eqs. (36) and (37) are by far the
dominant effects.
It is not possible to measure absolute Higgs decay widths

at the LHC, because there is no strategy to obtain the total
Higgs width to high accuracy. But, it is possible to measure
ratios of branching ratios from which the total Higgs width
cancels out. Since the measurement of each Higgs boson
final state at the LHC requires its own strategy, measure-
ments of ratios of branching ratios are typically limited by
the separate systematic errors from production and detec-
tion of the two processes that are compared. The only
exceptions of which we are aware are the ratios

BRðh → ZZ� → 4lÞ
BRðh → γγÞ ;

BRðh → ZγÞ
BRðh → γγÞ ;

BRðh → μþμ−Þ
BRðh → γγÞ : ð38Þ

These ratios all involve rare decay modes in which the
Higgs can be reconstructed as a resonance, so they can be
detected in the major production mode gg → h at low
Higgs boson pT . The ATLAS Collaboration has estimated
that the first of these ratios can be measured to 3.6%
accuracy in the full LHC program with 3000 fb−1 [52]. We
believe that, with an analysis specifically designed to
cancel systematic errors, it will be possible to reach the
statistics-limited accuracy of 2%. This means that the
combination of cI coefficients in ζA will be constrained
to 10−4 accuracy. For the more difficult decays to Zγ and
μþμ−, ATLAS has estimated eventual accuracies in these
ratios of 31% and 12%, respectively [52,53]. These

measurements can be converted to partial width measure-
ments when the absolute partial width Γðh → ZZ�Þ is
measured at future eþe− colliders.
A CP-violating contribution to the h → γγ decay from

the operators in Eq. (2) would give a strictly additive
contribution to the total rate of h → γγ decay. A constraint
of 2% on deviations from the SM in Γðh → γγÞ would then
place a constraint on the c̃BB coefficient in Eq. (2) at about
1%. This is a strong enough constraint that this CP-
violating coefficient can be ignored in our analysis.

V. CONSTRAINTS FROM e+ e − → Zh

At this point, all of the original 13 parameters are
strongly constrained except for cWW and the parameter
cH that appears only in Higgs decays. In this section, we
explain how to determine them through the study of the
process eþe− → Zh. Our results for the total cross section
in eþe− → Zh are similar to those in Ref. [5], but we also
consider other observables of this process.
It is important to recall here that the parameter cH

appears in the normalization of all Higgs couplings through
the field-strength renormalization (8). Thus, it is not
possible to determine cH unambiguously without measur-
ing an absolute Higgs production or decay rate.
Measurements of σ · BR are not sufficient. The total cross
section for eþe− → Zh can be measured by tagging a Z
boson at the correct energy to be recoiling against a Higgs
boson without the need for any information from the Higgs
decay products. Thus, in principle, it provides a way to
measure cH. In the EFT formalism, there are complications
from the fact that other EFT parameters also affect the size
of the cross section. We will discuss the untangling of this
parameter dependence at the end of this section and again
in Sec. VIII.
The amplitudes for the reaction eþe− → Zh have a very

simple form. For each initial polarization state e−Le
þ
R or

e−Re
þ
L , there are three helicity amplitudes, corresponding to

the three possible Z boson polarization states. However, the
two amplitudes with transverse Z polarizations are related
by CP, so there are only two independent amplitudes.
Further, at the tree level within the EFT description, at a
fixed c.m. energy, these amplitudes can be written with
only two free parameters.
To describe these amplitudes, it is most convenient to

begin by considering only the contribution from s-channel
Z boson exchange using the very simple—apparently,
oversimplified—phenomenological Lagrangian

ΔL ¼ m2
Z

v
ð1þ aÞhZμZμ þ 1

2

b
v
hZμνZμν: ð39Þ

Let EZ and k be the energy and momentum of the Z in the
c.m. frame. Then we find that, for e−Le

þ
R , this gives the

helicity amplitudes
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iMðeþe− → Zð�1ÞhÞ

¼ igL

ffiffiffiffiffi
2s

p

ðs −m2
ZÞ

�
ð1þ aÞm

2
Z

v
þ b

EZ
ffiffiffi
s

p
v

�
ðcos θ � 1Þ;

iMðeþe− → Zð0ÞhÞ

¼ igL

ffiffiffiffiffi
2s

p

ðs −m2
ZÞ

�
ð1þ aÞmZEZ

v
þ b

mZ
ffiffiffi
s

p
v

�
ð

ffiffiffi
2

p
sin θÞ;

ð40Þ

where θ is the polar angle in production and the amplitudes
are labeled by the Z helicity. For e−Re

þ
L , the helicity

amplitudes take the same form except for the substitution
of gR for gL and ðcos θ ∓ 1Þ for ðcos θ � 1Þ. These helicity
amplitudes control the total cross section, the Zh angular
distributions, and the distributions of the Z decay angle.
In particular, the total cross section for a polarized initial
state is given for e−Le

þ
R by

σðe−LeþR → ZhÞ

¼ 1

6π

g2

c2w

m4
Z=v

2

ðs −m2
ZÞ2

·
2kffiffiffi
s

p ·

�
2þ E2

Z

m2
Z

�

·

�
1

2
− s2w

�
2
�
ð1þ 2aÞ þ 6b

EZ
ffiffiffi
s

p
m2

Zð2þ E2
Z=m

2
ZÞ
�
: ð41Þ

For e−Re
þ
L , we have the same expression with the sub-

stitution ð1
2
− swÞ2 → s2w.

In Ref. [54], it was shown how to obtain the values of the
parameters a and b by fitting to the production and decay
angular distributions in eþe− → Zh events. Using a full
simulation with the ILD detector model and the 4 ab−1

event sample expected for the ILC at 500 GeV, it was
shown that the parameters a and b can be constrained at the
percent level. The precise uncertainties expected, including
their correlation, are given in Appendix B. To the accuracy
of the study, these uncertainties are independent of the
initial eþe− polarization state.
We can connect this analysis to the EFT parametrization

of new physics effects by noting that the complete tree-level
calculation of the helicity amplitudes for eþe− → Zh gives
results that are still of the form of Eq. (40) for appropriate
identification of the parameters a and b. The complete set
of Feynman diagrams is shown in Fig. 4. This includes a
diagram with s-channel Z exchange (with the s-channel AZ
mixing already included in the expressions for gL and gR), a
diagram with s-channel photon exchange that makes use of
the ζAZ vertex, and a contact interaction proportional to
ðcHL þ c0HLÞ or cHE. Diagrams with AZ kinetic mixing on
the final-state line are of order c2I and so are not included in
our calculation.
Evaluating the diagrams in Fig. 4 and also expanding the

SM dependence of the prefactors, we find, for e−Le
þ
R ,

aL¼δgLþ2δmZ−δvþηZþ
ðs−m2

ZÞ
2m2

Zð1=2−s2wÞ
ðcHLþc0HLÞ

þkZδmZþkhδmh;

bL¼ ζZþ
swcw

ð1=2−s2wÞ
ðs−m2

ZÞ
s

ζAZ: ð42Þ

Similarly, for e−Re
þ
L ,

aR ¼ δgR þ 2δmZ − δvþ ηZ

−
ðs −m2

ZÞ
2m2

Zðs2wÞ
cHE þ kZδmZ þ khδmh;

bR ¼ ζZ −
cw
sw

ðs −m2
ZÞ

s
ζAZ: ð43Þ

The expressions for aL and aR include the kinematic factors

kZδmZ þ khδmh ¼
1

2
δ

�
1

ðs −m2
ZÞ2

·
kffiffiffi
s

p ·

�
2þ E2

Z

m2
Z

��
:

ð44Þ

The expansions of these expressions in terms of the cI are
given in Appendix A. Note, in particular, that, up to
parameters that have already been constrained as explained
in the previous sections, ηZ ¼ − 1

2
cH and ζZ ¼ c2wð8cWWÞ.

Then, in principle, the percent-level constraints on the a
and b coefficients will become percent-level constraints on
the parameters cH and cWW . At this point, we have put
constraints on all of the EFT parameters that contribute to
the cross section for eþe− → Zhh except for the parameter
c6 that we hope to determine from this reaction.
Table II shows the 1σ errors on the EFT parameters

obtained from the various stages of our fit. The first four
columns of the table show the results from the fits described
up to this point. The fits have increasing numbers of
parameters, from seven parameters in the precision electro-
weak fit to 22 parameters in the full ILC fit. In each fit, we
set the parameters not yet included to zero. The analysis of
this paper concentrates on 500 GeV measurements, but we
also show for reference the fit results for 250 GeV
measurements. The table shows the progression that we
have explained in this paper: precision electroweak fir fixes
three EFT coefficients, taken here to be cT , cHE, and cHL, to
below the 10−3 level. The measurement of eþe− → WþW−

adds constraints on c0HL and 8cWB. The LHC measurements

FIG. 4. Feynman diagrams contributing to the amplitudes for
eþe− → Zh.
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of ratios of branching ratios constrain two additional linear
combinations of the dimension-six terms involving squares
of field strengths and thus provide significant constraints on
8cBB and 8cWW . Finally, adding information from eþe− →
Zh sharpens all of these constraints while also constraining
the coefficient cH.
These constraints, however, are not yet sufficiently

powerful to achieve our goal in this paper. The problem
comes from the fact that, although the errors on cHE, cHL,
and c0HL are quite small, these parameters appear in
Eqs. (42) and (43) with very large coefficients, of order
2s=m2

Z ∼ 60. This limits the power of these equations to
constrain cH. The uncertainty on cH resulting from the
analysis described so far is about 5%, as shown in the first
entry in the last line of Table II. This is already consistent
with our approximation of ignoring terms of other c2H
and other terms quadratic in the EFT coefficients. However,

this constraint is weaker than what we need for the
determination of the triple Higgs coupling. The constraint
on cWW , which comes from the angular distribution and
polarization asymmetry in eþe− → Zh, is already quite
strong.
It should be noted that a similar analysis at 250 GeV,

where the coefficients of the contact terms are smaller by a
factor of 4, gives a much stronger constraint on cH. This is
shown in the first entry in the last line of the top half of
Table II. One can see from the sixth column in the bottom
half of Table II that a combined analysis of 250 and
500 GeV data is especially powerful to constrain the effects
of the contact interactions.
In any event, it is also possible to improve the constraint

on the parameter cH by including additional information
from eþe− Higgs reactions. In Secs. VI and VII, we will
explain how to improve our fit using information from the
W fusion reaction eþe− → νν̄h and from the Higgs decay
partial widths. After we add this information, the fit results
will evolve further to those shown in the fifth and sixth
columns of Table II.
The analysis in Ref. [54] also considered the addition of

a third, CP-violating, term in the effective Lagrangian,

ΔL ¼ 1

2

b̃
v
hZμνZ̃μν: ð45Þ

It was found that the same data set constrains the coefficient
b̃ to be less than 1%. This is the final piece of information
that we need to demonstrate that—if significant CP-
violating terms are not actually generated by new phys-
ics—the possibility of CP-violating operators does not
affect the uncertainties estimated in our analysis.

VI. CONSTRAINTS FROM e+ e − → νν̄h

To obtain additional constraints on cH, we now turn to
the process eþe− → νν̄h. Unlike eþe− → Zh, it is not
possible to measure this total cross section directly. But
still, this process plays an important role in the extraction of
Higgs boson partial widths from eþe− data.
The Feynman diagrams for eþe− → νν̄h are shown in

Fig. 5. There is one helicity amplitude, for e−Le
þ
R → νLν̄Rh.

The first diagram is the one that appears at tree level in the
SM. The additional three diagrams involve contact inter-
actions proportional to cHL and c0HL. There are further
contributions from the process eþe− → Zh, Z → νν̄, but

TABLE II. 1σ uncertainties, in %, on EFT coefficients at
different stages of this analysis. As more information is included,
more parameters can be added to the fit. Parameters that are not
yet included are set to 0 and marked in the table with � � �. First
column: Precision electroweak only (seven-parameter fit). Sec-
ond column: Add eþe− → WW (ten-parameter fit). Third col-
umn: Add LHC measurements (12-parameter fit). Fourth column:
Add the eþe− → Zh cross section, angular distribution, and
polarization asymmetry (13-parameter fit). Fifth column: Add
eþe− → νν̄h and all σ · BR measurements, as described in
Sec. VII and in Ref. [23] (22-parameter fit). In the top half of
the table, the eþe− data is the expectation for 2000 fb−1 at
250 GeV. In the bottom half of the table, the eþe− data is the
expectation for 4000 fb−1 at 500 GeV. The last column in the
bottom half shows the result from the full ILC program at 250 and
500 GeV.

250 GeV

cI Prec. EW þWW þLHC þZh ILC 250

cT 0.011 0.051 0.051 0.048 0.052
cHE 0.043 0.026 0.085 0.047 0.055
cHL 0.042 0.035 0.035 0.032 0.039
c0HL � � � 0.028 0.028 0.028 0.047
8cWB � � � 0.078 0.080 0.076 0.090
8cBB � � � � � � 0.20 0.16 0.11
8cWW � � � � � � 0.21 0.13 0.13
cH � � � � � � � � � 1.12 1.20

500 GeV

cI Prec. EW þWW þLHC þZh ILC 500 250þ 500

cT 0.011 0.046 0.047 0.041 0.037 0.030
cHE 0.043 0.015 0.077 0.040 0.010 0.009
cHL 0.042 0.030 0.030 0.027 0.016 0.013
c0HL � � � 0.027 0.028 0.026 0.014 0.011
8cWB � � � 0.070 0.072 0.067 0.052 0.041
8cBB � � � � � � 0.20 0.15 0.088 0.062
8cWW � � � � � � 0.21 0.11 0.044 0.039
cH � � � � � � � � � 4.78 1.24 0.65

FIG. 5. Feynman diagrams contributing to the amplitudes for
eþe− → νν̄h.

BARKLOW, FUJII, JUNG, PESKIN, and TIAN PHYS. REV. D 97, 053004 (2018)

053004-12



these are important only when the final Z is close to its
mass shell. We will ignore them, and, more generally, we
will ignore interference between the W fusion reaction and
the eþe− → Zh reaction.
The first diagram shown in Fig. 5 has the value

iM ¼ i
g2W
2

�
2m2

W

v
ð1þ ηWÞgμν −

2

v
ζWðq1 · q2gμν − qν1q

μ
2Þ
�

·
1

ðq21 −m2
WÞðq22 −m2

WÞ
· ūLðνÞγμuLðe−Þv̄RðeþÞγνvRðν̄Þ ð46Þ

where q1, q2 are the momenta of the two off-shell W
bosons. Including also the various contact interactions, the
full expression for this amplitude is

iM¼ i
g2W
2

�
2m2

W

v
ð1þηWÞgμν−

2

v
ζWðq1 ·q2gμν−qν1q

μ
2Þ

þ2c0HL

�
q21−m2

Wþq22−m2
W

2m2
W

��
·

1

ðq21−m2
WÞðq22−m2

WÞ

· ūLðνÞγμuLðe−Þv̄RðeþÞγνvRðν̄Þ−
g2

c2w

gμν

vðs−m2
ZÞ

ðcHL−c0HLÞ · ūLðνÞγμvRðν̄Þv̄RðeþÞγνvRðν̄Þ: ð47Þ

It is not straightforward to quote analytic results for the
dependence of the total cross section on the EFT parameters.
However, we can integrate the expression (47) over the
three-body phase space numerically to compute the fully
polarized cross section. We obtain, for

ffiffiffi
s

p ¼ 250 GeV,

σ=ðSMÞ ¼ 1þ 2ηW − 2δvþ 2δgW − 1.6δmW − 3.7δmh

− 0.22ζW − 6.4c0HL − 0.37ðcHL − c0HLÞ; ð48Þ

for
ffiffiffi
s

p ¼ 350 GeV,

σ=ðSMÞ ¼ 1þ 2ηW − 2δvþ 2δgW − 1.2δmW − 2.0δmh

− 0.32ζW − 7.5c0HL − 0.28ðcHL − c0HLÞ; ð49Þ

for
ffiffiffi
s

p ¼ 380 GeV,

σ=ðSMÞ ¼ 1þ 2ηW − 2δvþ 2δgW − 1.1δmW − 1.7δmh

− 0.34ζW − 7.8c0HL − 0.26ðcHL − c0HLÞ; ð50Þ

and for
ffiffiffi
s

p ¼ 500 GeV,

σ=ðSMÞ ¼ 1þ 2ηW − 2δvþ 2δgW − 0.85δmW − 1.2δmh

− 0.39ζW − 8.8c0HL − 0.19ðcHL − c0HLÞ: ð51Þ

Each expression contains ð−cH − að8cWWÞÞ, with the first
term coming from ηW and the second from ζW . The
coefficient a of ζW increases slowly with center-of-mass

energy. Thus, measurements of σ · BR for WW fusion to a
Higgs boson and then to a given final state can constrain the
parameters cH and cWW in the context of a global fit to Higgs
boson data.
In the second line of each of these expressions, the

second term comes from the diagrams with contact inter-
actions and t-channel W exchange. The numerical coef-
ficients in these c0HL terms are large and increase with
center-of-mass energy, just as we saw for the contact
contributions in eþe− → Zh. However, now there is an
interesting possibility. If the cross sections for both proc-
esses are measured, the contact interaction coefficients are
overdetermined and can be constrained even more strongly
than they are from precision electroweak data. We will see
in Sec. VIII that this is indeed the case.
Since the total cross section for eþe− → νν̄h cannot be

measured directly, we must consider the formulas (48),
(49), and (51) in conjunction with formulas for Higgs decay
processes. We develop these formulas in the next section.

VII. EFT FORMALISM FOR GENERAL HIGGS
BOSON COUPLINGS

In the process of answering the main issue of this paper,
we have already come very close to assembling the
complete set of formulas that we need to represent general
Higgs boson cross sections at eþe− colliders in terms of
EFT coefficients. In this section, we derive the remaining
formulas needed for such an analysis. These are the
formulas for the various Higgs decay widths. The impli-
cations of the formalism of this paper for the extraction of
Higgs couplings at eþe− colliders will be discussed in a
companion paper [23].
In Sec. IV, we derived expansions for two of the minor

decay amplitudes, h → γγ and h → Zγ. What remains is to
derive formulas for the major Higgs boson decay ampli-
tudes to fermions, WW�, and ZZ�.

A. Higgs decay to fermions and gluons

At the level of this tree-level analysis, the appropriate
treatment of Higgs decays to fermions is very simple. For
definiteness, consider the case of h → τþτ−. Deviations in
the Higgs couplings from the SM expectation are generated
by the dimension-six operator

ΔL ¼ −cτΦ
yτ
v2

ðΦ†ΦÞL̄3 ·ΦτR þ H:c:; ð52Þ

where yτ is the bare Yukawa coupling. Then

mτ ¼
yτvffiffiffi
2

p
�
1þ 1

2
cτΦ

�
: ð53Þ

Substituting mτ for yτ using this formula and including the
Higgs field-strength renormalization from Eq. (8), the τ
couplings to the Higgs boson becomes
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ΔL ¼ −mττ̄τ ·

�
1 −

1

2
cH þ cτΦ

�
·
h
v
: ð54Þ

The variation of the Higgs width is then

δΓðh → τþτ−Þ ¼ 1 − cH þ 2cτΦ þ δ; ð55Þ

where δ ¼ 2δmτ þ δmh − 2δv. For simplicity, we will
absorb this term into cτΦ.
A similar logic applies to the Higgs boson couplings to

b, c, μ, and other fermions. Then, we will write

δΓðh → bb̄Þ ¼ 1 − cH þ 2cbΦ;

δΓðh → cc̄Þ ¼ 1 − cH þ 2ccΦ;

δΓðh → τþτ−Þ ¼ 1 − cH þ 2cτΦ;

δΓðh → μþμ−Þ ¼ 1 − cH þ 2cμΦ: ð56Þ

QCD corrections provide factors that commute with the
effect of dimension-six operators and so do not affect these
formulas. Mixed QCD-electroweak corrections will give
loop-level corrections to these formulas.
The effect of dimension-six operators on the partial

width for h → gg is more complex. The first contribution to
this width in the SM comes at the loop level. Dimension-six
operators correct this expression through a tree-level
contribution proportional to the coefficient cGG of a gluonic
operator similar to that for cWW, and through corrections to
the SM loop diagrams, for example, from ctΦ. Fortunately,
for an on-shell Higgs boson, it is a good approximation to
summarize all of these effects as an effective coupling of
the form

δL ¼ A
h
v
GμνGμν: ð57Þ

In fitting Higgs couplings, we will write

δΓðh → ggÞ ¼ 1 − cH þ 2cgΦ; ð58Þ

letting the parameter cgϕ stand in for all of the effects just
described.
A full description of the h → gg width in the EFT

formalism would include the dependence of this partial
width on the canonical EFT parameters cGG, ctΦ, and ctG
[27], with small corrections from other dimension-six
operators. That discussion is beyond the scope of this
paper. The leading effects can be disentangled by mea-
surements of Higgs emission from tt̄, Higgs production in
pp collisions at high pT , and top quark pair production
at high energy. A part of this analysis was given in
Refs. [55,56].

B. Higgs decay to WW� and ZZ�

The Higgs decay widths to WW� and ZZ� also bring in
new EFT vertices. However, in this case, the new terms
can be constrained by additional precision electroweak
measurements.
As a first step in this analysis, consider a model of h →

WW� in which the W− converts only to e−ν̄ and the Wþ
converts only to eþν. In this case, the W width would be

ΓW;simple ¼
g2WmW

48π

¼ g2mW

48π
ð1þ 2δgþ δmW þ 2c0HL þ δZWÞ: ð59Þ

For an off-shell W, we will use the propagator

DðqÞ ¼ 1=ðq2 −m2
W þ iq2ðΓW=mWÞÞ ð60Þ

with a q2-dependent width.
It is straightforward to compute the rate of the h → WW�

decay in this model. The Feynman diagrams are shown in
Fig. 6. Note that, in addition to the usual SM diagram, there
are contributions from the contact interaction proportional
to c0HL. The decay amplitude is

iM ¼ i
g2W
2

�
2m2

W

v
gμν

�
ð1þ ηWÞDðq21ÞDðq22Þ

þ c0HL

2m2
W
ðDðq21Þ þDðq22ÞÞ

�

−
2

v
ζWðq21 · q22gμν − qν1q

μ
2Þ
�

× ūLðe−ÞγμvRðν̄ÞūLðνÞγνvRðeþÞ; ð61Þ

where q1, q2 are the momenta of the W− and Wþ.
Integrating this expression over phase space and using
Eq. (59) to simplify the numerator, we find

Γ=ðSMÞ ¼ 1þ 2ηW − 2δv − 11.7δmW þ 13.6δmh

− 0.75ζW − 0.88CW þ 1.06δΓW; ð62Þ

where we have written CW ¼ c0HL. There is a partial
cancellation between the factors of c0HL that appear

FIG. 6. Feynman diagrams contributing to the amplitudes for
h → WW�.
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explicitly due to the contact interactions and the factors that
appear in ΓW through Eq. (59).
In reality, theW boson can decay to all of the SM SUð2Þ

doublets except ðt; bÞ. This brings in additional c0HX
coefficients for the first and second quark generations.
Fortunately, these new coefficients appear only in the same
combination that appears in the full W width. Let

CW ¼
X
X

c0XN X

.X
X

N X; ð63Þ

where X runs over the five SM doublets that appear in W
decays, c0X is the coefficient of the operator similar to that
multiplying c0HL, and N X is the number of color states for
that doublet, including the QCD radiative correction. Then,
including all first-order EFT corrections, the W width is
given by

ΓW ¼ g2mW

48π

�X
X

N X

�
· ð1þ 2δgþ δmW þ δZW þ 2CWÞ:

ð64Þ

The expression (62) remains valid, but with c0HL replaced
byCW. We can constrain the value of CW by a measurement
of the W total width, and then Eq. (62) becomes an
additional constraint on the EFT parameters cH and cWW .
It is also striking that the expression (62) shows a very

strong dependence on the masses of the W boson and the
Higgs boson. The improvements in these quantities
expected from the LHC and ILC and listed in Table I will
be important to make use of the Higgs boson width toWW�
in a global fit to the Higgs boson couplings.
The analysis of h → ZZ� is formally quite similar, but

there is some additional bookkeeping to do. We write the
SM coupling of one chiral flavor X to the Z boson as

ΔL ¼ g
cw

QZXZμX̄γμX; ð65Þ

where QZX ¼ I3X − s2wQX, where I3X and QX are the weak
isospin and the electric charge of X. The contact inter-
actions yield an additional direct coupling

ΔL ¼ g
cw

cXZμX̄γμX

�
1þ 2

h
v
þ � � �

�
; ð66Þ

introducing a new parameter cX for each chiral flavor.
When we include this effect and all other first-order EFT
corrections, the coupling of the Z to XX̄ is modified to

gX ¼ g
cw

�
QZX

�
1þ c2wδgþ s2wδg0 þ

1

2
δZZ

�

þQXð2s2wc2wðδg − δg0Þ þ swcwδZAZÞ þ cX

�
: ð67Þ

Then the total Z width becomes

ΓZ ¼ g2mZ

24πc2w

�X
X

Q2
ZXN X

�

·

�
ð1þ 2c2wδgþ 2s2wδg0 þ δmZ þ δZZÞ

þ
P

XQZXQXN XP
XQ

2
ZXN X

ð4s2wc2wðδg − δg0Þ þ swcwδZAZÞ
�

· ð1þ 2CZÞ; ð68Þ
where

CZ ¼
P

XcXQZXN XP
XQ

2
ZXN X

: ð69Þ

For the Z decaying to SM fermions,X
X

Q2
ZXN X ¼ 3.75;

X
X

QZXQXN X ¼ 1.99: ð70Þ

The contact interaction also affects the h → ZZ� decay
by adding additional contact diagrams similar to those in
Fig. 6. We find

Γ=ðSMÞ ¼ 1þ 2ηZ − 2δv − 13.8δmW þ 15.6δmh

− 0.50ζZ − 1.02CZ þ 1.18δΓZ: ð71Þ
So, here again, there is an extra EFT parameter, but it can be
controlled by measurements of the Z total width.
The conclusions of this section are summarized in

Appendix A.

VIII. THE TOTAL CROSS SECTION
FOR e+ e − → Zhh

We are now ready to describe the derivation of the
parameter c6 from the value of the total cross section for

FIG. 7. Feynman diagrams contributing to the amplitudes for
eþe− → Zhh.
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eþe− → Zhh. The tree-level Feynman diagrams for this
process are shown in Fig. 7. Evaluating these diagrams and
numerically integrating over three-body phase space, we
will obtain an expression of a form similar to our cross
section formulas for eþe− → νν̄h.
The diagrams in the first row of Fig. 7 are those of the

Standard Model. However, in our EFT formalism, all ZZh
vertices also include the renormalization of all Higgs vertices
by δZh and new structures proportional to ζZ. The last
diagram in this row contains the modification of the triple
Higgs coupling proportional to c6 but also the additional
vertex structure from the term proportional to θh in Eq. (25).
The diagram in the second rowmakes use of the ζAZ term that
converts A to Z while emitting one or more Higgs bosons.
Recall that kinetic mixing between A and Z in the s-channel
propagator has already been taken into account in the
parameters gL, gR. Diagrams with kinetic mixing beyond
the first vertex are of order c2I and can be ignored. The
diagrams in the third row involve the contact interactions
proportional to ðcHL − c0HLÞ and cHE. In all, there are many
opportunities for EFT coefficients other than c6 to influence
the value of this cross section.
The amplitude for eþe− → Zhh depends on the initial

beam polarization and on the final polarization state of theZ.
We compute the cross section at

ffiffiffi
s

p ¼ 500 GeV for definite
choices of the initial beam polarization and summed over Z
helicities. For a fully polarized initial state e−Le

þ
R , we find

σ=ðSMÞ¼ 1þ2δgLþ1.40ηZþ1.02ηZZþ18.6ζZþ24.8ζAZ

þ0.56ηh−1.58θhþ108.3ðcHLþc0HLÞ
−3.9δmhþ3.5δmZ: ð72Þ

For a fully polarized initial state e−Re
þ
L , we find

σ=ðSMÞ¼ 1þ2δgRþ1.40ηZþ1.02ηZZþ18.6ζZ−28.7ζAZ

þ0.56ηh−1.58θh−125.5cHE

−3.9δmhþ3.5δmZ: ð73Þ

For an unpolarized eþe− initial state, we find

σ=ðSMÞ ¼ 1þ 1.15δgL þ 0.85δgR þ 1.40ηZ þ 1.02ηZZ

þ 18.6ζZ þ 2.0ζAZ þ 0.56ηh − 1.58θh

þ 62.1ðcHL þ c0HLÞ − 53.5cHE

− 3.9δmh þ 3.5δmZ: ð74Þ

These equations are rewritten with some convenient rear-
rangements of terms in Appendix A.
We find the dependence on EFT parameters shown in

this equation to be quite surprising. It is well known that the
dependence of the eþe− → Zhh cross section on the triple
Higgs coupling is weak. Here, that dependence appears in
the coefficient of ηh ¼ c6 þ � � �. The relation

σ=ðSMÞ ¼ 1þ 0.56c6 þ � � � ð75Þ

agrees with Ref. [12] and earlier studies. What is
remarkable is that the dependence on other parameters
is much larger. We might pay particular attention to
the dependence on cH and cWW , the two parameters that
are only fixed by single Higgs production processes.
The parameter cH appears in ηZ, ηZZ, ηh, and θh. The
parameter cWW appears in ζZ and ζAZ; we omit a further
dependence from the independently constrained δgL:R.
The sum of these terms gives (in the unpolarized case)

σ=ðSMÞ ¼ 1 − 4.15cH þ 15.1ð8cWWÞ þ � � � ð76Þ

The coefficients here are an order of magnitude larger
than that in Eq. (75). In addition, the parameters ðcHL þ
c0HLÞ and cHE, which are constrained by precision
electroweak measurements, have very large coefficients,
reflecting an s=m2

Z enhancement of their contributions.
We have seen this effect already in both of the single
Higgs boson reactions considered earlier in this paper.
It is clear that, without precise constraints on the EFT
parameters from all of the sources that we have
discussed in this paper, it is not possible to convinc-
ingly attribute a measured increase in the double
Higgs production cross section to a shift in the triple
Higgs coupling.
We can discuss this quantitatively using a fit to the EFT

parameters aside from c6 using the inputs in Table I, for
precision electroweak data, the inputs listed in Appendix B
for WþW−, and the measurement of the aL;R and bL;R
parameters in eþe− → Zh. This fit involves 13 parameters:
the four SM parameters and the nine EFT coefficients
introduced in Sec. II. The fit results for the relevant cI
parameters have already been shown in Table II. This fit
leads to the following values for the root-mean-square
errors (in %) on EFT coefficients:

A ½hA2i�1=2 A ½hA2i�1=2
cH 4.8 ðcHL þ c0HLÞ 0.048
ð8cWWÞ 0.11 cHE 0.040

ð−4.15cH þ 15.1ð8cWWÞÞ 21 62.1ðcHL þ c0HLÞ − 53.5cHE 4.9

ð77Þ
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We find for the root-mean-square uncertainty in the complete
right-hand side of Eq. (74), omitting the dependence on c6

½hðδσÞ2i�1=2 ¼ 14%: ð78Þ

This means that a measurement of c6 from the cross section
for eþe− → Zhh will be subject to a 28% systematic
uncertainty from the uncertainties in the other EFT param-
eters. So the logic that we have described is in principle valid,
but it leads to a very large uncertainty from other new physics
effects in the determination of c6.
We pointed out at the end of Sec. V that this problem can

be solved by adding data from the various σ · BR mea-
surements possible with eþe− → νν̄h, together with infor-
mation from σ · BR measurements in eþe− → Zh. Given
the absolute measurement of the total cross section for
eþe− → Zh, these additional measurements fix the various

new parameters that appear in the Higgs boson decay
amplitudes. Using the fit to these parameters, we can
bootstrap the measurement of the total cross section
for eþe− → Zh into a determination of the total cross
section for eþe− → νν̄h and the absolute normalization
of the partial widths Γðh → WW�Þ and Γðh → ZZ�Þ.
This gives an independent way to determine cH.
This method is applied in the fits presented in the
fifth and sixth columns of Table II, and one can see
from that table that it is effective. The full set of inputs
to these fits, and the results for Higgs boson couplings
and decay amplitudes, were described in detail in
Ref. [23].
Using the fit described in the final column of Table II,

including all cross sections and branching fractions that
will be measured at the ILC at 250 and 500 GeV, the errors
reported in Eq. (77) improve to

A ½hA2i�1=2 A ½hA2i�1=2
cH 0.65 ðcHL þ c0HLÞ 0.014
ð8cWWÞ 0.039 cHE 0.009

ð−4.15cH þ 15.1ð8cWWÞÞ 2.8 62.1ðcHL þ c0HLÞ − 53.5cHE 0.85

ð79Þ

and the uncertainty in δσ becomes

½hðδσÞ2i�1=2 ¼ 2.4%: ð80Þ

At this point, the effects of other EFT coefficients con-
tribute only a 5% systematic error to the determination of
the parameter c6, and so this parameter can be determined
from the measurement of the eþe− → Zhh cross section
with high precision in a model-independent way.
As an aside, we note that the full fits to Higgs

observables give quite an impressive improvement in the
uncertainties in the parameters cHE, cHL, and c0HL from the
original precision electroweak determination. In precision
electroweak observables, the cHL and related parameters
alter the W and Z couplings with coefficients that are of
order 1. In the EFT formalism, these same parameters
appear as contact interactions in the Higgs reactions, with
coefficients that are enhanced by factors of order s=m2

Z.
Then the sensitivity to these factors is much stronger. The
EFT formalism implies that the measurement of Higgs
reactions can provide more powerful tests of deviations of
the predictions of precision electroweak analysis than
precision electroweak measurements themselves.

IX. CONCLUSIONS

In this paper, we have assembled a complete formalism,
valid at the tree level and to linear order in the coefficients
of dimension-six operators, describing the possible new

physics perturbations of the Standard Model predictions
for precision electroweak observables, eþe− → WþW−,
and Higgs boson production and decay reactions. This
formalism requires a fit to 14 variables for the determi-
nation of the triple Higgs coupling and an additional seven
variables for a general analysis of Higgs decays to Standard
Model particles. However, it provides a completely model-
independent description of the effects of new physics that
arises at mass scales much larger than the mass of the
Higgs boson.
It is challenging to fit this large number of parameters

with high precision and with systematic understanding of
the constraints. However, future eþe− colliders will be up
to this challenge. We have shown that the determination of
the parameters can make use of all of the important
advantages of eþe− experimentation: beam polarization,
the visibility of all relevant decay channels, and the ability
to measure over essentially all of phase space. It is already
understood that these are powerful capabilities, but it is
wonderful to see in this analysis how these powerful
measurements interlock to provide a rich and secure basis
from which to search for new effects.
The analysis that we have described is particularly

important for the determination of the triple Higgs cou-
pling. This fundamental quantity of the Standard Model is
never seen in isolation. It is always studied as an interfer-
ence effect, in combination with many other particle
vertices. We might be able to measure a deviation that
could plausibly arise from a shift of the triple Higgs
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coupling, but to understand definitely that this and not
some other perturbation is the cause, an analysis of the type
described in this paper is required.
It is difficult to imagine repeating the analysis presented

here with data from hadron colliders only. The use of
hadronic initial states brings in many more unknown
coefficients of dimension-six operators, while offering
fewer tools to discriminate between their effects. For the
triple Higgs coupling, there is the additional complication
that the leading double Higgs production process, gg → hh,
is loop level in the Standard Model, which adds another
layer of complexity.
Thus, a future eþe− collider is not only sufficient but

also essential for a full understanding of the physics of the
Higgs boson.
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APPENDIX A: EXPANSIONS IN SMALL
PARAMETERS USED IN OUR ANALYSIS

In this appendix, we list the expansions in SM coupling
shifts and cI operator coefficients used in the analysis of
this paper. The notation is δA ¼ ΔA=A.
Observables depend on the underlying parameters both

directly, through the coupling constants, and indirectly,
through kinematic dependence on the masses mW , mZ,
and mh, which in turn depend on the coupling constants.
In these formulas, we track both types of dependence. The
variation of parameters contributing to the boson masses
and the physical couplings is controlled by measurements
of these masses and couplings that are included in our fit.
Expansions of boson field strength renormalizations:

δZW ¼ ð8cWWÞ;
δZZ ¼ c2wð8cWWÞ þ 2s2wð8cWBÞ þ s4w=c2wð8cBBÞ;

δZA ¼ s2w

�
ð8cWWÞ − 2ð8cWBÞ þ ð8cBBÞ

�
;

δZAZ ¼ swcw

�
ð8cWWÞ −

�
1 −

s2w
c2w

�
ð8cWBÞ −

s2w
c2w

ð8cBBÞ
�
;

δZh ¼ −cH: ðA1Þ

Expansions of bare couplings:

δ½g2 þ g02�1=2 ¼ c2wδgþ s2wδg0;

δðgg0=½g2 þ g02�1=2Þ ¼ s2wδgþ c2wδg0;

δsw ¼ −c2wðδg − δg0Þ;
δcw ¼ s2wðδg − δg0Þ: ðA2Þ

Expansions of physical couplings:

δe ¼ s2wδgþ c2wδg0 þ
1

2
δZA;

δgL ¼ 1

ð1=2 − s2wÞ
�
c2w

�
1

2
þ s2w

�
δg − s2w

�
1

2
þ c2w

�
δg0 þ 1

2
ðcHL þ c0HLÞ

þ 1

4
c2wð1þ 2s2wÞð8cWWÞ −

1

2
s2wð1 − 2s2wÞð8cWBÞ −

1

4

s4w
c2w

ð1þ 2c2wÞð8cBBÞ
�
;

δgR ¼ −c2wδgþ ð1þ c2wÞδg0 −
1

2s2w
cHE −

1

2
c2wð8cWWÞ þ c2wð8cWBÞ þ

1

2

s2w
c2w

ð1þ c2wÞð8cBBÞ;

δgW ¼ δgþ c0HL þ 1

2
ð8cWWÞ; δgZ ¼ ð1þ s2wÞδg − s2wδg0 þ

1

2
δZZ þ sw

cw
δZAZ: ðA3Þ

Expansions of boson masses:

δmW ¼ δgþ δvþ 1

2
δZW; δmZ ¼ c2wδgþ s2wδg0 þ δv −

1

2
cT þ 1

2
δZZ; δmh ¼

1

2
δλ̄þ δvþ 1

2
δZh: ðA4Þ
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Expansions of precision electroweak observables:

δα−1 ¼ −2δe;

δGF ¼ −2δvþ 2c0HL;

δAl ¼ 4g2Lg
2
RðδgL − δgRÞ

ðg2L þ g2RÞðg2L − g2RÞ
;

δΓl ¼ δmZ þ 2g2LδgL þ 2g2RδgR
ðg2L þ g2RÞ

;

δΓW;l ¼ δmW þ 2δgW;

δΓW ¼ 2δgþ δmW þ δZW þ 2CW;

δΓZ ¼ 2c2wð1þ 2Qs2wÞδgþ 2s2wð1 − 2Qc2wÞδg0
þ δmZ þ δZZ þQswcwδZZA þ 2CZ; ðA5Þ

where, in the last line Q ¼ 0.529.

Expansions of Higgs coupling parameters:

ηW ¼ −
1

2
cH þ 2δmW − δv;

ηZ ¼ −
1

2
cH þ 2δmZ − δv − cT;

ηZZ ¼ −cH þ 2δmZ − 2δv − 5cT;

ηh ¼ −
3

2
cH þ c6 þ δλ̄þ δv: ðA6Þ

Expansions of effective W vertex parameters:

δgZ;eff ¼ δgZ þ 1

c2w
ððc2w − s2wÞδgL þ s2wδgR − 2δgWÞ;

δκA;eff ¼ ðc2w − s2wÞðδgL − δgRÞ þ 2ðδe − δgWÞ þ ð8cWBÞ;
δλA;eff ¼ −6g2c3W: ðA7Þ

Expansions of eþe− → Zh parameters:

aL ¼ ηZ þ δgL þ ðs −m2
ZÞ

2m2
Z

ðcHL þ c0HLÞ
ð1=2 − s2wÞ

þ kZδmZ þ khδmh;

aR ¼ ηZ þ δgR −
ðs −m2

ZÞ
2m2

Z

cHE

s2w
þ kZδmZ þ khδmh;

bL ¼ 1

ð1 − 2s2wÞ
�
c2w

�
1 − 2s2w

m2
Z

s

�
ð8cWWÞ þ 2s2wð1 − 2s2wÞ

m2
Z

s
ð8cWBÞ −

1

c2w

�
1 − 2c2w

m2
Z

s

�
ð8cBBÞ

�
;

bR ¼ c2w
m2

Z

s
ð8cWWÞ þ

�
1 − ð1 − 2s2wÞ

m2
Z

s

�
ð8cWBÞ þ

s2w
c2w

�
1 − c2w

m2
Z

s

�
ð8cBBÞ: ðA8Þ

In the formulas for aL and aR,

kZ ¼ 2m2
Z

s −m2
Z
þ EZm2

Z

2k2
ffiffiffi
s

p −
m2

Z

2k2
−

E2
Z=m

2
Z

ð2þ E2
Z=m

2
ZÞ

�
1 −

m2
Z

EZ
ffiffiffi
s

p
�
;

kh ¼ −
EZm2

h

2k2
ffiffiffi
s

p −
E2
Z=m

2
Z

ð2þ E2
Z=m

2
ZÞ

m2
h

EZ
ffiffiffi
s

p : ðA9Þ

Expansions of σðeþe− → νν̄hÞ for different c.m. energies:

δσð250Þ ¼ 2ηW − 2δvþ 2δgW − 1.6δmW − 3.7δmh − 0.22δZW − 6.4c0HL − 0.37ðcHL − c0HLÞ;
δσð350Þ ¼ 2ηW − 2δvþ 2δgW − 1.2δmW − 2.0δmh − 0.32δZW − 7.5c0HL − 0.28ðcHL − c0HLÞ;
δσð380Þ ¼ 2ηW − 2δvþ 2δgW − 1.1δmW − 1.7δmh − 0.34δZW − 7.8c0HL − 0.26ðcHL − c0HLÞ;
δσð500Þ ¼ 2ηW − 2δvþ 2δgW − 0.85δmW − 1.2δmh − 0.39δZW − 8.8c0HL − 0.19ðcHL − c0HLÞ: ðA10Þ
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Expansions of Higgs boson partial widths:

δΓðh → bb̄Þ ¼ −cH þ 2cbΦ;

δΓðh → cc̄Þ ¼ −cH þ 2ccΦ;

δΓðh → τþτ−Þ ¼ −cH þ 2cτΦ;

δΓðh → μþμ−Þ ¼ −cH þ 2cμΦ;

δΓðh → ggÞ ¼ −cH þ 2cgΦ;

δΓðh → WW�Þ ¼ 2ηW − 2δv − 11.7δmW þ 13.6δmh − 0.75δZW − 0.88CW þ 1.06δΓW;

δΓðh → ZZ�Þ ¼ 2ηZ − 2δv − 13.8δmZ þ 15.6δmh − 0.50δZZ − 1.02CZ þ 1.18δΓZ;

δΓðh → γγÞ ¼ 528δZA − cH þ 4δeþ 4.2δmh − 1.3δmW − 2δv;

δΓðh → ZγÞ ¼ 290δZAZ − cH − 2ð1 − 3s2WÞδgþ 6c2wδg0 þ δZA þ δZZ þ 9.6δmh − 6.5δmZ − 2δv: ðA11Þ

Expansions of σðeþe− → ZhhÞ at ffiffiffi
s

p ¼ 500 GeV for states of given eþe− beam polarization:

δσðLÞ ¼ 2δgL þ 1.40ηZ þ 1.02ηZZ þ 18.6δZZ þ 24.8δZAZ þ 0.56ηh − 1.58cH þ 108.3ðcHL þ c0HLÞ − 3.9δmh þ 3.5δmZ;

δσðRÞ ¼ 2δgR þ 1.40ηZ þ 1.02ηZZ þ 18.6δZZ − 28.7δZAZ þ 0.56ηh − 1.58cH − 125.5cHE − 3.9δmh þ 3.5δmZ;

δσðUÞ ¼ 1.15δgL þ 0.85δgR þ 1.40ηZ þ 1.02ηZZ þ 18.6δZZ þ 2.0δZAZ þ 0.56ηh − 1.58cH þ 62.1ðcHL þ c0HLÞ
− 53.5cHE − 3.9δmh þ 3.5δmZ: ðA12Þ

In these equations L refers to the beam polarization state
e−Le

þ
R , R refers to the beam polarization state e−Le

þ
R , and U

refers to unpolarized beams. To find the expressions for
arbitrary polarizations, it is useful to have the total cross
sections for the two completely polarized beam configu-
rations: σðLÞ ¼ 0.36 fb, σðRÞ ¼ 0.27 fb.

APPENDIX B: VALUES FOR PROJECTED
UNCERTAINTIES INPUT INTO

OUR ANALYSIS

The 13-parameter fit described in Sec. V used as inputs
projected uncertainties in precision electroweak observ-
ables, LHC measurements of ratios of Higgs boson
branching ratios, and measurements of the a and b
parameters of eþe− → Zh at the 500 GeV ILC. For the
precision electroweak inputs, we have taken the values
listed in Table I, including the future improvements quoted
there. For LHC measurements, we have used as our inputs

δðBRðh → ZZ�Þ=BRðh → γγÞÞ ¼ 2%;

δðBRðh → ZγÞ=BRðh → γγÞÞ ¼ 31%;

δðBRðh → μþμ−Þ=BRðh → γγÞÞ ¼ 12% ðB1Þ

as described in Sec. III. For the a and b parameter
measurements, we have used the estimates [54]

beam polarization δa δb ρða; bÞ
−80%=þ 30% 4.0 0.70 84.8
þ80%=− 30% 4.2 0.75 86.5

ðB2Þ

with all numbers in %.
The final fit described in Sec. VIII, which uses 22

parameters, makes use of a much larger number of inputs.
These are listed in the Appendix of Ref. [23]. The full set of
linear relations given in Appendix A, and the final 22 × 22

covariance matrices for the fit parameters given by the ILC
250 fit and the full ILC fit are given in the files
CandV250.txt and CandV500.txt provided in the
Supplemental Material of Ref. [23].

APPENDIX C: RELATION BETWEEN THE EFT
AND S, T FORMALISMS

In the S, T formalism for the interpretation of precision
electroweak measurements [37], we define a reference
value of the weak mixing angle from the quantities
αðm2

ZÞ, mZ, and GF and then compare the predictions
for other precision electroweak observables to expect-
ations based on this value. More specifically, we define
sin2 θ0 by

4s20c
2
0 ¼

4παffiffiffi
2

p
GFm2

Z

: ðC1Þ
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Then we can write expressions for precision electroweak
observables in terms of s20. The variations of the SM
parameters conveniently cancel out of these formulas at
leading order. For example,

m2
W=m

2
Z ¼ c20 þ

c20
c20 − s20

ðc20cT − 2s20ðc0HL þ ð8cWBÞÞ

s2� ¼ s20 þ
s20

c20 − s20
ðc0HL þ ð8cWBÞ − c20cTÞ

−
1

2
cHE − s20ðcHL − cHEÞ; ðC2Þ

where s2� is the value of the weak mixing angle that
governs the polarization asymmetries at the Z pole.
The S and T parameters are defined so that, in the

approximation in which all precision electroweak correc-
tions arise from vacuum polarization diagrams, the
formulas (C2) take the form

m2
W=m

2
Z ¼ c20 þ

αc20
c20 − s20

�
−
1

2
Sþ c20T

�
;

s2� ¼ s20 þ
α

c20 − s20

�
1

4
S − s20c

2
0T

�
: ðC3Þ

Then we can identify

αS ¼ 4s20ð8cWB þ c0HLÞ; αT ¼ cT: ðC4Þ

The S, T formalism was quite appropriate for the
experimental situation of the early 1990s, when α, GF,
and mZ were by far the best-measured electroweak param-
eters. Today, the uncertainties inmW and Al have improved
to the point where these observables should be treated on
the same footing. The formalism used in this paper is more
democratic with respect to possible choices of the reference
electroweak parameters.
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